JCM Accepted Manuscript Posted Online 9 March 2016 J. Clin. Microbiol. doi:10.1128/JCM.03142-15 Copyright © 2016 Sheppard et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

1 Capsular typing method for Streptococcus agalactiae using whole

2 genome sequence data

- 3 Running title: GBS capsular typing using whole genome sequence data
- 4 Anna E Sheppard,^{1#} Alison Vaughan,¹ Nicola Jones,¹ Paul Turner,^{2,3} Claudia
- 5 Turner,^{2,3} Androulla Efstratiou,^{4,5} Darshana Patel,⁴ the Modernising Medical
- 6 Microbiology (MMM) Informatics Group,¹ A Sarah Walker,¹ James A Berkley,^{2,6}
- 7 Derrick W Crook,¹ Anna C Seale.^{2,6#}
- 8 1. Modernising Medical Microbiology Consortium, Nuffield Department of Clinical
- 9 Medicine, University of Oxford, UK.
- 10 2. Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University
- 11 of Oxford, UK.
- 12 3. Shoklo Malaria Research Unit, Thailand
- 13 4. Microbiology Reference Division, Public Health England, London, UK
- 14 5. Imperial College, London, UK
- 15 6. KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
- 16
- ¹⁷ [#]Corresponding authors: Anna E Sheppard (anna.sheppard@ndm.ox.ac.uk) or Anna
- 18 C Seale (aseale@nhs.net).
- 19
- 20 Word count:
- 21 Abstract 47/50
- 22 Main text 933/1000

23 Abstract

Group B streptococcus (GBS) capsular serotype is a major determinant of virulence, and affects potential vaccine coverage. Here we report a whole genome sequencingbased method for GBS serotype assignment. This shows high agreement (kappa=0.92) with conventional methods, and increased serotype assignment (100%) to all ten capsular types.

29

30 Main text

Streptococcus agalactiae, or Group B Streptococcus (GBS), is an important pathogen in neonates (1-3), with early infection acquired from the maternal genitourinary tract (4). In addition, GBS is now recognised as an increasingly important pathogen in high-income regions in immunosuppressed and elderly individuals (5, 6).

GBS expresses a capsular polysaccharide, which is involved in virulence and immune evasion. Ten different variants, or serotypes, have been described (Ia, Ib, II, III, IV, V VI, VII, VIII and IX), which differ in their disease-causing ability. Conjugate vaccines targeting the most common disease-causing serotypes are currently in development (7). Establishing vaccine serotype coverage is important, as is surveillance post-introduction to monitor for potential serotype replacement, as has been seen following the introduction of other conjugate vaccines (8).

42 Current methods for GBS serotype allocation rely on latex agglutination assays or 43 PCR (9). Recent advances in whole genome sequencing (WGS) have enabled the 44 development of approaches that can be used in place of traditional microbiological 45 methods, such as strain typing and antibiotic susceptibility profiling (10-12). A major 46 advantage of this approach is that the cost of sequencing can be mitigated by the ability to use the same data to generate multiple outputs. Given the decreasing cost
of WGS (13), and the ongoing increase in WGS data generation, we sought to
establish and validate a WGS-based method for GBS capsular typing.

We developed an algorithm for serotype assignment on the basis of sequence similarity between a given *de novo* assembly and capsular gene sequences of the ten GBS serotypes. For nine serotypes, published sequences were used as references (Table 1), while for serotype IX, only a partial capsular locus sequence has been published (14). A suitable reference for the full capsular locus region was therefore determined by WGS of a serotype IX isolate obtained from the Statens Serum Institute, Denmark.

To assign serotype for a given isolate, a BLAST database was generated from the 57 58 de novo assembly and queried with the variable region of the capsular locus 59 sequence for each serotype (cpsG-cpsK for serotypes Ia-VII and IX, cpsR-cpsK for 60 serotype VIII) using BLASTn with an evalue threshold of 1e-100 and otherwise 61 default parameters. A serotype was considered as correct if it showed ≥95% sequence identity over ≥90% of the sequence length. These thresholds were chosen 62 on the basis of being stringent enough to provide differentiation between the various 63 64 reference sequences, while maximising serotype allocation on an initial test set of publicly available GBS WGS data, where serotype information was not available (so 65 we had no way of knowing whether the assigned serotypes were in fact correct). 66

This sequence-based method for serotype allocation was validated using WGS on a set of 223 colonising or invasive human isolates from Canada, Latin America, Singapore, UK, USA, and Thailand, for which serotype had previously been determined using conventional latex agglutination assays, with PCR used to confirm 71 weak positives or negatives in a subset (15-17). For two rare serotypes (Serotype VIII and IX), one isolate of each was obtained from the Statens Serum Institute, 72 Denmark. GBS isolates stored at -80°C were sub-cultured on Columbia blood agar 73 for 24-48 hours, followed by DNA extraction from a single colony using a commercial 74 kit (QuickGene, Fujifilm, Tokyo, Japan). High throughput sequencing was 75 76 undertaken at the Wellcome Trust Centre for Human Genetics (Oxford University, UK) using the Illumina HiSeq2500 platform, generating 150 base paired-end reads. 77 De novo assembly was performed using Velvet and VelvetOptimiser (18, 19). 78 79 Agreement between serotype allocations was tested with the Kappa statistic.

High quality sequence data were obtained for all 223 GBS isolates (median read 80 81 number: 2,975,508, range: 1,798,744-13,073,718; median contig number: 46, range 82 16-106; median assembly length: 2.05 Mb, range: 1.94-2.22 Mb). Each isolate was allocated to a single serotype using the WGS data (Table 2). Three isolates that did 83 not have a capsular type assigned by latex agglutination methods had serotypes lb, 84 85 VI and VIII assigned. For all previously serotyped GBS isolates with a known capsule type, the kappa statistic (0.92) indicated very high agreement between WGS-86 predicted and conventional serotype. There were nine discordant isolates. In each 87 case there was strong support for the sequence-allocated serotype, with >98% 88 sequence identity over 100% of the reference length in all nine cases (Figure 1). 89 90 Across all isolates, differences in relatedness between the capsular locus sequences of the different serotypes led to characteristic relationships between the allocated 91 (best match) serotype and the second-best match. For example, all isolates 92 93 assigned as serotype Ia had serotype III as the second-best match. In all cases, the 94 second-best match was substantially poorer than the best match, demonstrating that there was no ambiguity in predicted serotype (Figure 1, Table 3). 95

Accepted Manuscript Posted Online

Journal of Clinical Microbiology

JCM

96 The nine discordant and three non-typeable isolates were retested by latex agglutination (Table 4) and resequenced using the Illumina MiSeq platform, with 97 sequence processing and WGS-based serotype prediction performed as above. In 98 all cases, resequencing was consistent with the initial WGS classification. For 6/9 99 discordant isolates, the new latex agglutination results matched the WGS-based 100 101 prediction, suggesting that the initial discordance may have resulted from incorrect 102 latex agglutination typing or sample mislabelling. The other three initially discordant isolates, and the three non-typeable isolates, were all classified as non-typeable on 103 104 retesting.

This WGS-based method for GBS serotyping, validated using 223 isolates typed using conventional methods, was therefore highly accurate. Although WGS may not currently be cost-effective for directly replacing traditional serotyping, costs are likely to further decrease. Furthermore, WGS may already be the cheapest option for combined studies, with possibilities to utilise the resulting data for additional analyses such as multi-locus sequence typing, relatedness to other sequenced isolates, and detailed phylogenetic analysis.

113 Funding

114 This publication presents independent research commissioned by The Wellcome 115 Trust ([www.wellcome.ac.uk 093804, 098532] ACS, JAB), the Health Innovation Challenge Fund (grant HICF-T5-358 and WT098615/Z/12/Z), a parallel funding 116 partnership between the Department of Health and the Wellcome Trust (DWC, AES 117 and ASW); the UK Clinical Research Collaboration (a parallel funding partnership 118 between the Medical Research Council [G0800778], Biotechnology and Biological 119 Sciences Research Council and the Wellcome Trust [087646/Z/08/Z]); and the 120 National Institute for Health Research (NIHR) Oxford Biomedical Research Centre. 121 DWC is a NIHR (UK) Senior Investigator. The views expressed in this publication are 122 those of the author(s) and not necessarily those of the funders. 123

124

125 Acknowledgements

We would like to thank The Wellcome Trust Centre for Human Genetics, University of Oxford where the whole genome sequencing was done, and we thank the library and sequencing teams. We thank the Shoklo Malaria Research Unit, Thailand for providing GBS isolates.

130

131 Modernising Medical Microbiology (MMM) informatics group

132 Jim Davies, Charles Crichton, Milind Acharya, Carlos del Ojo Elias

134 References

135	1.	Baker CJ, Barrett FF, Gordon RC, Yow MD. 1973. Suppurative meningitis due to streptococci
136		of Lancefield group B: a study of 33 infants. J Pediatr 82: 724-729.
137	2.	Barton LL, Feigin RD, Lins R. 1973. Group B beta hemolytic streptococcal meningitis in
138		infants. J Pediatr 82: 719-723.
139	3.	Communicable Disease Surveillance Centre London. 1985. Neonatal meningitis: a review of
140		routine national data 1975-83. Br Med J (Clin Res Ed) 290:778-779.
141	4.	Dillon HC, Jr., Gray E, Pass MA, Gray BM. 1982. Anorectal and vaginal carriage of group B
142		streptococci during pregnancy. J Infect Dis 145:794-799.
143	5.	Schuchat A. 1998. Epidemiology of group B streptococcal disease in the United States:
144		shifting paradigms. Clin Microbiol Rev 11:497-513.
145	6.	Phares CR, Lynfield R, Farley MM, Mohle-Boetani J, Harrison LH, Petit S, Craig AS, Schaffner
146		W, Zansky SM, Gershman K, Stefonek KR, Albanese BA, Zell ER, Schuchat A, Schrag SJ,
147		Active Bacterial Core surveillance/Emerging Infections Program N. 2008. Epidemiology of
148		invasive group B streptococcal disease in the United States, 1999-2005. JAMA 299:2056-
149		2065.
150	7.	Madhi SA, Dangor Z, Heath PT, Schrag S, Izu A, Sobanjo-Ter Meulen A, Dull PM. 2013.
151		Considerations for a phase-III trial to evaluate a group B Streptococcus polysaccharide-
152		protein conjugate vaccine in pregnant women for the prevention of early- and late-onset
153		invasive disease in young-infants. Vaccine 31 Suppl 4: D52-57.
154	8.	Mulholland K, Satzke C. 2012. Serotype replacement after pneumococcal vaccination.
155		Lancet 379: 1387; author reply 1388-1389.
156	9.	Imperi M PM, Alfarone G, Baldassarri L, Orefici G, Creti R. 2010. A multiplex PCR assay for
157		the direct identification of the capsular type (Ia to IX) of Streptococcus agalactiae. J
158		Microbiol Methods 80:212-214.

159	10.	Gordon NC, Price JR, Cole K, Everitt R, Morgan M, Finney J, Kearns AM, Pichon B, Young B,
160		Wilson DJ, Llewelyn MJ, Paul J, Peto TE, Crook DW, Walker AS, Golubchik T. 2014.
161		Prediction of Staphylococcus aureus antimicrobial resistance by whole-genome sequencing.
162		J Clin Microbiol 52: 1182-1191.
163	11.	Stoesser N, Batty EM, Eyre DW, Morgan M, Wyllie DH, Del Ojo Elias C, Johnson JR, Walker
164		AS, Peto TE, Crook DW. 2013. Predicting antimicrobial susceptibilities for Escherichia coli
165		and Klebsiella pneumoniae isolates using whole genomic sequence data. J Antimicrob
166		Chemother 68: 2234-2244.
167	12.	Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Iqbal Z, Feuerriegel S,
168		Niehaus KE, Wilson DJ, Clifton DA, Kapatai G, Ip CL, Bowden R, Drobniewski FA, Allix-
169		Beguec C, Gaudin C, Parkhill J, Diel R, Supply P, Crook DW, Smith EG, Walker AS, Ismail N,
170		Niemann S, Peto TE, Modernizing Medical Microbiology Informatics G. 2015. Whole-
171		genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and
172		resistance: a retrospective cohort study. Lancet Infect Dis doi:10.1016/S1473-
173		3099(15)00062-6.
174	13.	Loman NJ, Constantinidou C, Chan JZ, Halachev M, Sergeant M, Penn CW, Robinson ER,
175		Pallen MJ. 2012. High-throughput bacterial genome sequencing: an embarrassment of
176		choice, a world of opportunity. Nat Rev Microbiol 10: 599-606.
177	14.	Slotved HC, Kong F, Lambertsen L, Sauer S, Gilbert GL. 2007. Serotype IX, a Proposed New
178		Streptococcus agalactiae Serotype. J Clin Microbiol 45: 2929-2936.
179	15.	Bisharat N, Crook DW, Leigh J, Harding RM, Ward PN, Coffey TJ, Maiden MC, Peto T, Jones
180		N. 2004. Hyperinvasive neonatal group B streptococcus has arisen from a bovine ancestor. J
181		Clin Microbiol 42: 2161-2167.
182	16.	Jones N, Oliver K, Jones Y, Haines A, Crook D. 2006. Carriage of group B streptococcus in
183		pregnant women from Oxford, UK. J Clin Pathol 59: 363-366.

Journal of Clinical Microbiology

184	17.	Davies HD, Jones N, Whittam TS, Elsayed S, Bisharat N, Baker CJ. 2004. Multilocus sequence
185		typing of serotype III group B streptococcus and correlation with pathogenic potential. J
186		Infect Dis 189: 1097-1102.
187	18.	Gladman S, Seeman T. 2012. VelvetOptimiser.
188		http://bioinformatics.net.au/software.velvetoptimiser.shtml
189	19.	Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de
190		Bruijn graphs. Genome Res 18: 821-829.
191	20.	Yamamoto S, Miyake K, Koike Y, Watanabe M, Machida Y, Ohta M, lijima S. 1999.
192		Molecular characterization of type-specific capsular polysaccharide biosynthesis genes of
193		Streptococcus agalactiae type Ia. J Bacteriol 181: 5176-5184.
194	21.	Watanabe M, Miyake K, Yanae K, Kataoka Y, Koizumi S, Endo T, Ozaki A, lijima S. 2002.
195		Molecular characterization of a novel beta1,3-galactosyltransferase for capsular
196		polysaccharide synthesis by Streptococcus agalactiae type Ib. J Biochem 131: 183-191.
197	22.	Martins ER, Melo-Cristino J, Ramirez M. 2007. Reevaluating the serotype II capsular locus of
198		Streptococcus agalactiae. J Clin Microbiol 45:3384-3386.
199	23.	Chaffin DO, Beres SB, Yim HH, Rubens CE. 2000. The serotype of type Ia and III group B
200		streptococci is determined by the polymerase gene within the polycistronic capsule operon.
201		J Bacteriol 182: 4466-4477.
202	24.	Cieslewicz MJ, Chaffin D, Glusman G, Kasper D, Madan A, Rodrigues S, Fahey J, Wessels
203		MR, Rubens CE. 2005. Structural and genetic diversity of group B streptococcus capsular
204		polysaccharides. Infect Immun 73: 3096-3103.

205

JCM

Serotype	Accession	Region	Reference
la	AB028896.2	6982-11695	Yamamoto et al.(20)
Ib	AB050723.1	2264-6880	Watanabe et al.(21)
11	EF990365.1	1915-8221	Martins et al.(22)
111	AF163833.1	6592-11193	Chaffin et al.(23)
IV	AF355776.1	6417-11656	Cieslewicz et al.(24)
V	AF349539.1	6400-12547	Cieslewicz et al.(24)
VI	AF337958.1	6437-10913	Cieslewicz et al.(24)
VII	AY376403.1	3403-8666	Cieslewicz et al.(24)
VIII	AY375363.1	2971-7340	Cieslewicz et al.(24)
IX	NA	NA	This study

206 **Table 1.** Reference sequences used for sequence-based serotype allocation

207

JCM

			S	eroty	pe all	ocate	ed by	WGS	5			
		la	lb	II	III	IV	v	VI	VII	VIII	IX	Tota
	la	34	0	0	1	0	0	0	0	0	0	35
	lb	0	9	1	0	0	0	0	0	0	0	10
	II	0	0	25	0	0	0	0	0	0	0	25
	III	3	0	0	111	0	0	0	0	0	1	115
Serotype by	IV	0	0	0	0	1	0	1	0	0	0	2
atex	V	0	0	0	0	0	16	0	0	0	0	16
agglutination	VI	0	0	0	0	0	1	8	0	0	0	9
	VII	0	0	0	0	0	0	0	5	0	0	5
	VIII	0	0	0	0	0	0	0	0	1*	0	1
	IX	0	1	0	0	0	0	0	0	0	1*	2
	Non-	0	1	0	0	0	0	1	1	0	0	3
	typeable											
	Total	37	11	26	112	1	17	10	6	1	2	223

208 Table 2. Serotype allocation by WGS to serotype allocation by latex agglutination

209 *Reference GBS isolates from Statens Serum Institute serotypes VIII and IX

210

Journal of Clinical Microbiology

Allocated serotype	% match	Second-best serotype	% match
la	93.91-100	III	64.56
111	100	la	62.98
V	100	IX	36.26
IX	100	V	31.05
VI	100		26.68
IV	100	la	20.3
Ib	99.61-100	VI	15.55
II	99.86-100	IV	9.45
VII	100	Ib	6.95
VIII	100	none	0

211 **Table 3.** Relationship between allocated serotype and second-best match (see also Figure 1)

213

JCM

Journal of Clinical Microbiology

		Latex agg	lutination	WGS		
Isolate	Reason for	Initial	Repeat	Initial	Repeat	
	retyping					
CB466	Discordant	111	la	la	la	
IW8194	Discordant	111	IX	IX	IX	
IW8466	Discordant	la	111	111		
IW8471	Discordant	111	la	la	la	
IW7157	Discordant	lb	II	П	II	
SMRU1	Discordant	VI	V	V	V	
SMRU25	Discordant	IV	NT	VI	VI	
SMRU4	Discordant	IX	NT	Ib	Ib	
SMRU59	Discordant	111	NT	la	la	
Z41	Non-typeable	NT	NT	Ib	Ib	
UK22	Non-typeable	NT	NT	VII	VII	
IW2723	Non-typeable	NT	NT	VI	VI	
CB454	Control	III	III	111		
IW4445	Control	la	la	la	la	
IW4077	Control	II		II		

214 **Table 4.** Retyping of discordant and non-typable isolates

215

Accepted Manuscript Posted Online

JCM

Journal of Clinical Microbiology

JCM

217	Figure 1 Discordant isolates show high support for sequence-based serotype allocation.
218	For each isolate, the percentage of the capsular locus region present (≥95% sequence
219	identity) for the assigned serotype is shown on the X axis, and that for the serotype showing
220	the next best match on the Y axis. Isolates showing agreement between sequence-based
221	and conventional serotyping are shown in grey, those classified as non-typeable by
222	conventional methods in blue, and discordant isolates in red. Small circles represent single
223	isolates, the large circle represents 100 isolates. For each serotype, the second-best match is
224	identical in all cases, leading to the observed horizontal banding (details in Table 3).

Journal of Clinical Microbiology

JCM