
1 
 

Capsular typing method for Streptococcus agalactiae using whole 1 

genome sequence data 2 

Running title: GBS capsular typing using whole genome sequence data 3 

Anna E Sheppard,1# Alison Vaughan,1 Nicola Jones,1 Paul Turner,2,3 Claudia 4 

Turner,2,3 Androulla Efstratiou,4,5 Darshana Patel,4 the Modernising Medical 5 

Microbiology (MMM) Informatics Group,1 A Sarah Walker,1 James A Berkley,2,6 6 

Derrick W Crook,1 Anna C Seale.2,6# 7 

1. Modernising Medical Microbiology Consortium, Nuffield Department of Clinical 8 

Medicine, University of Oxford, UK. 9 

2. Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University 10 

of Oxford, UK. 11 

3. Shoklo Malaria Research Unit, Thailand 12 

4. Microbiology Reference Division, Public Health England, London, UK 13 

5. Imperial College, London, UK 14 

6. KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.  15 

 16 

#Corresponding authors: Anna E Sheppard (anna.sheppard@ndm.ox.ac.uk) or Anna 17 

C Seale (aseale@nhs.net). 18 

 19 

Word count: 20 

Abstract 47/50 21 

Main text 933/1000  22 

JCM Accepted Manuscript Posted Online 9 March 2016
J. Clin. Microbiol. doi:10.1128/JCM.03142-15
Copyright © 2016 Sheppard et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.



2 
 

Abstract 23 

Group B streptococcus (GBS) capsular serotype is a major determinant of virulence, 24 

and affects potential vaccine coverage. Here we report a whole genome sequencing-25 

based method for GBS serotype assignment. This shows high agreement 26 

(kappa=0.92) with conventional methods, and increased serotype assignment 27 

(100%) to all ten capsular types. 28 

 29 

Main text 30 

Streptococcus agalactiae, or Group B Streptococcus (GBS), is an important 31 

pathogen in neonates (1-3), with early infection acquired from the maternal genito-32 

urinary tract (4). In addition, GBS is now recognised as an increasingly important 33 

pathogen in high-income regions in immunosuppressed and elderly individuals (5, 6).  34 

GBS expresses a capsular polysaccharide, which is involved in virulence and 35 

immune evasion. Ten different variants, or serotypes, have been described (Ia, Ib, II, 36 

III, IV, V VI, VII, VIII and IX), which differ in their disease-causing ability. Conjugate 37 

vaccines targeting the most common disease-causing serotypes are currently in 38 

development (7). Establishing vaccine serotype coverage is important, as is 39 

surveillance post-introduction to monitor for potential serotype replacement, as has 40 

been seen following the introduction of other conjugate vaccines (8).  41 

Current methods for GBS serotype allocation rely on latex agglutination assays or 42 

PCR (9). Recent advances in whole genome sequencing (WGS) have enabled the 43 

development of approaches that can be used in place of traditional microbiological 44 

methods, such as strain typing and antibiotic susceptibility profiling (10-12). A major 45 

advantage of this approach is that the cost of sequencing can be mitigated by the 46 
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ability to use the same data to generate multiple outputs. Given the decreasing cost 47 

of WGS (13), and the ongoing increase in WGS data generation, we sought to 48 

establish and validate a WGS-based method for GBS capsular typing.  49 

We developed an algorithm for serotype assignment on the basis of sequence 50 

similarity between a given de novo assembly and capsular gene sequences of the 51 

ten GBS serotypes. For nine serotypes, published sequences were used as 52 

references (Table 1), while for serotype IX, only a partial capsular locus sequence 53 

has been published (14). A suitable reference for the full capsular locus region was 54 

therefore determined by WGS of a serotype IX isolate obtained from the Statens 55 

Serum Institute, Denmark.   56 

To assign serotype for a given isolate, a BLAST database was generated from the 57 

de novo assembly and queried with the variable region of the capsular locus 58 

sequence for each serotype (cpsG-cpsK for serotypes Ia-VII and IX, cpsR-cpsK for 59 

serotype VIII) using BLASTn with an evalue threshold of 1e-100 and otherwise 60 

default parameters. A serotype was considered as correct if it showed ≥95% 61 

sequence identity over ≥90% of the sequence length. These thresholds were chosen 62 

on the basis of being stringent enough to provide differentiation between the various 63 

reference sequences, while maximising serotype allocation on an initial test set of 64 

publicly available GBS WGS data, where serotype information was not available (so 65 

we had no way of knowing whether the assigned serotypes were in fact correct).  66 

This sequence-based method for serotype allocation was validated using WGS on a 67 

set of 223 colonising or invasive human isolates from Canada, Latin America, 68 

Singapore, UK, USA, and Thailand, for which serotype had previously been 69 

determined using conventional latex agglutination assays, with PCR used to confirm 70 
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weak positives or negatives in a subset (15-17). For two rare serotypes (Serotype 71 

VIII and IX), one isolate of each was obtained from the Statens Serum Institute, 72 

Denmark. GBS isolates stored at -80°C were sub-cultured on Columbia blood agar 73 

for 24-48 hours, followed by DNA extraction from a single colony using a commercial 74 

kit (QuickGene, Fujifilm, Tokyo, Japan). High throughput sequencing was 75 

undertaken at the Wellcome Trust Centre for Human Genetics (Oxford University, 76 

UK) using the Illumina HiSeq2500 platform, generating 150 base paired-end reads. 77 

De novo assembly was performed using Velvet and VelvetOptimiser (18, 19). 78 

Agreement between serotype allocations was tested with the Kappa statistic. 79 

High quality sequence data were obtained for all 223 GBS isolates (median read 80 

number: 2,975,508, range: 1,798,744-13,073,718; median contig number: 46, range 81 

16-106; median assembly length: 2.05 Mb, range: 1.94-2.22 Mb). Each isolate was 82 

allocated to a single serotype using the WGS data (Table 2). Three isolates that did 83 

not have a capsular type assigned by latex agglutination methods had serotypes Ib, 84 

VI and VIII assigned. For all previously serotyped GBS isolates with a known capsule 85 

type, the kappa statistic (0.92) indicated very high agreement between WGS-86 

predicted and conventional serotype. There were nine discordant isolates. In each 87 

case there was strong support for the sequence-allocated serotype, with >98% 88 

sequence identity over 100% of the reference length in all nine cases (Figure 1). 89 

Across all isolates, differences in relatedness between the capsular locus sequences 90 

of the different serotypes led to characteristic relationships between the allocated 91 

(best match) serotype and the second-best match. For example, all isolates 92 

assigned as serotype Ia had serotype III as the second-best match. In all cases, the 93 

second-best match was substantially poorer than the best match, demonstrating that 94 

there was no ambiguity in predicted serotype (Figure 1, Table 3). 95 
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The nine discordant and three non-typeable isolates were retested by latex 96 

agglutination (Table 4) and resequenced using the Illumina MiSeq platform, with 97 

sequence processing and WGS-based serotype prediction performed as above. In 98 

all cases, resequencing was consistent with the initial WGS classification. For 6/9 99 

discordant isolates, the new latex agglutination results matched the WGS-based 100 

prediction, suggesting that the initial discordance may have resulted from incorrect 101 

latex agglutination typing or sample mislabelling. The other three initially discordant 102 

isolates, and the three non-typeable isolates, were all classified as non-typeable on 103 

retesting. 104 

This WGS-based method for GBS serotyping, validated using 223 isolates typed 105 

using conventional methods, was therefore highly accurate. Although WGS may not 106 

currently be cost-effective for directly replacing traditional serotyping, costs are likely 107 

to further decrease. Furthermore, WGS may already be the cheapest option for 108 

combined studies, with possibilities to utilise the resulting data for additional 109 

analyses such as multi-locus sequence typing, relatedness to other sequenced 110 

isolates, and detailed phylogenetic analysis. 111 

  112 
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Table 1. Reference sequences used for sequence-based serotype allocation 206 

Serotype Accession Region Reference 

Ia AB028896.2 6982-11695 Yamamoto et al.(20) 

Ib AB050723.1 2264-6880 Watanabe et al.(21) 

II EF990365.1 1915-8221 Martins et al.(22) 

III AF163833.1 6592-11193 Chaffin et al.(23) 

IV AF355776.1 6417-11656 Cieslewicz et al.(24) 

V AF349539.1 6400-12547 Cieslewicz et al.(24) 

VI AF337958.1 6437-10913 Cieslewicz et al.(24) 

VII AY376403.1 3403-8666 Cieslewicz et al.(24)

VIII AY375363.1 2971-7340 Cieslewicz et al.(24) 

IX NA NA This study 

  207 



11 
 

Table 2. Serotype allocation by WGS to serotype allocation by latex agglutination  208 

      Serotype allocated by WGS   

    Ia Ib II III IV V VI VII VIII IX Total 

Serotype by 

latex 

agglutination 

Ia 34 0 0 1 0 0 0 0 0 0 35 

Ib 0 9 1 0 0 0 0 0 0 0 10 

II 0 0 25 0 0 0 0 0 0 0 25 

III 3 0 0 111 0 0 0 0 0 1 115 

IV 0 0 0 0 1 0 1 0 0 0 2 

V 0 0 0 0 0 16 0 0 0 0 16 

VI 0 0 0 0 0 1 8 0 0 0 9 

VII 0 0 0 0 0 0 0 5 0 0 5 

VIII 0 0 0 0 0 0 0 0 1* 0 1 

IX 0 1 0 0 0 0 0 0 0 1* 2 

Non-

typeable 
0 1 0 0 0 0 1 1 0 0 3 

  Total 37 11 26 112 1 17 10 6 1 2 223 

*Reference GBS isolates from Statens Serum Institute serotypes VIII and IX 209 

  210 
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Table 3. Relationship between allocated serotype and second-best match (see also Figure 1) 211 

Allocated serotype % match Second-best serotype % match 

Ia 93.91-100 III 64.56 

III 100 Ia 62.98 

V 100 IX 36.26

IX 100 V 31.05 

VI 100 III 26.68 

IV 100 Ia 20.3 

Ib 99.61-100 VI 15.55 

II 99.86-100 IV 9.45

VII 100 Ib 6.95 

VIII 100 none 0 

 212 

  213 
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Table 4. Retyping of discordant and non-typable isolates 214 

  Latex agglutination WGS 

Isolate Reason for 

retyping 

Initial Repeat Initial Repeat 

CB466 Discordant III Ia Ia Ia 

IW8194 Discordant III IX IX IX

IW8466 Discordant Ia III III III 

IW8471 Discordant III Ia Ia Ia 

IW7157 Discordant Ib II II II

SMRU1 Discordant VI V V V 

SMRU25 Discordant IV NT VI VI 

SMRU4 Discordant IX NT Ib Ib 

SMRU59 Discordant III NT Ia Ia 

Z41 Non-typeable NT NT Ib Ib

UK22 Non-typeable NT NT VII VII 

IW2723 Non-typeable NT NT VI VI 

CB454 Control III III III III 

IW4445 Control Ia Ia Ia Ia 

IW4077 Control II II II II 

  215 
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 216 

Figure 1 Discordant isolates show high support for sequence-based serotype allocation. 217 

For each isolate, the percentage of the capsular locus region present (≥95% sequence 218 

identity) for the assigned serotype is shown on the X axis, and that for the serotype showing 219 

the next best match on the Y axis. Isolates showing agreement between sequence-based 220 

and conventional serotyping are shown in grey, those classified as non-typeable by 221 

conventional methods in blue, and discordant isolates in red. Small circles represent single 222 

isolates, the large circle represents 100 isolates. For each serotype, the second-best match is 223 

identical in all cases, leading to the observed horizontal banding (details in Table 3). 224 
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