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Genome-wide methylation profiling identifies novel methylated genes in neuroblastoma tumors 

Maja Olsson1, Stephan Beck2, Per Kogner3, Tommy Martinsson4 and Helena Carén1,* 

1Sahlgrenska Cancer Center, Department of Pathology, Institute of Biomedicine, Sahlgrenska Academy, 

University of Gothenburg, Sweden 

2Department of Cancer Biology, UCL Cancer Institute, University College London, UK 

3Childhood Cancer Research Unit, Department of Woman and Child Health, Karolinska Institute, Karolinska 

Hospital, Sweden 

4Department of Clinical Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 

Sweden 

*Corresponding author contact: Helena Carén: helena.caren@gu.se, Tel: +46 (0)31 786 3838 

ABSTRACT 

Neuroblastoma is a very heterogeneous tumor of childhood. The clinical spectra range from very aggressive 

metastatic disease to spontaneous regression, even without therapy. Aberrant DNA methylation pattern is a 

common feature of most cancers. For neuroblastoma, it has been demonstrated both for single-genes as 

well as genome-wide, where a so-called methylator phenotype has been described. Here, we present a study 

using Illumina 450K methylation arrays on 60 neuroblastoma tumors. We show that aggressive tumors, 

characterised by International Neuroblastoma Risk Group (INRG) stage M are hypermethylated compared to 

low-grade tumors. On the contrary, INRG stage L tumors display more non-CpG methylation. The genes with 

the highest number of hypermethylated CpG sites in INRG M tumors are TERT, PCDHGA4, DLX5, and DLX6-

AS1. Gene ontology analysis showed a representation of neuronal tumor relevant gene functions among the 

differentially methylated genes. For validation, we used a set of independent tumors previously analyzed 

with the Illumina 27K methylation arrays, which confirmed the differentially methylated sites. Top candidate 
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genes with aberrant methylation were analyzed for altered gene expression through the R2 platform 

(http://r2.amc.nl), and for correlations between methylation and gene expression in a public dataset. 

Altered expression in nonsurvivors was found for the genes B3GALT4 and KIAA1949, CLIC5, DLX6-AS, TERT, 

and PIRT, and strongest correlations were found for TRIM36, KIAA0513, and PIRT. Our data indicate that 

methylation profiling can be used for patient stratification and informs on epigenetically deregulated genes 

with the potential of increasing our knowledge about the underlying mechanisms of tumor development. 

Keywords 

Neuroblastoma, epigenetics, DNA methylation, 450K, pediatric, CIMP, TERT, PCDHGA4, DLX5 

Abbreviations 

CpG, cytosine-phosphate-guanine; DMR, differentially methylated region; MNA, MYCN amplification; MVP, 

methylaton variable position; MYCN, v-myc avian myelocytomatosis viral oncogene neuroblastoma derived 

homolog; NB, neuroblastoma 
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INTRODUCTION 

Neuroblastoma is a pediatric extracranial solid tumor of the peripheral sympathetic nervous system showing 

vast clinical heterogeneity. The tumors are characterized by patterns of genetic aberrations with unbalanced 

translocations and focal changes in ploidy. The proto-oncogene MYCN is amplified in 20% of the primary 

tumors, 1 and is associated with a more aggressive disease. 2 Rare but recurrent somatic mutations have 

been identified in the anaplastic lymphoma receptor tyrosine kinase (ALK) gene in both sporadic and familial 

cases. 3-7 The International Neuroblastoma Risk Group (INRG) classification system classifies tumors into 

localized tumors (stage L1 and L2), metastatic tumors (M), and metastatic tumors with particular features in 

children younger than 18 months (MS) . 8, 9 

Aberrant DNA methylation has emerged as an important feature of both development and progression in 

many cancers. Although the full scope of regulatory mechanisms exerted from DNA methylations remain to 

be elucidated, certain modes of the regulatory effect on expression patterns have been discovered. For 

instance the hypermethylation of CpG islands in promoter regions are generally associated with reduced 

transcriptional activity. Thus, this adds to yet another mechanism that can silence a tumor suppressor genes, 

apart from deletional events and mutational gene silencing, and thus contribute to induction of malignancy. 

However, not only gene promoter regions harbor deregulated methylation sites with transcriptional 

regulatory impact. In other malignancies, the combined analysis of global DNA methylation patterns and 

global transcription patterns have revealed that hypomethylation of intragenic methylation sites are 

associated with increased gene expression, but for some genes also the opposite is true. In neuroblastoma 

the transcriptional regulation of DNA methylation has also been shown to be valid for a smaller subset of 

genes. 10, 11 Furthermore, genomic regions such as enhancers and silencers are known to have cis-regulatory 

importance but can be positioned distant from its target gene. Recently, species of non-coding RNAs have 

emerged as important regulators of cancer, and the dysregulation of these RNAs have been reported to be 

associated with regional methylation alterations in neuroblastoma. 12 

Most analyses of DNA methylation in neuroblastoma (NB) tumors have been performed on single genes or 

with limited sample sizes. Several genes in various cellular pathways (apoptosis, cell cycle, differentiation, 
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invasion, and metastasis) have been identified as aberrantly methylated. The study by Alaminos et al. was 

one of the first to demonstrate that the clustering of NB tumors based on the methylation profile of ten 

genes could divide NB into clinical risk groups. 13 Since then, genome-wide analyses of DNA methylation have 

revealed a DNA methylator phenotype in NB with poor prognosis, characterized by the methylation of a set 

of multiple CpG islands. 14 A study of seven genes in two NB cell lines (tumorigenic LA1-55n and non-

tumorigenic LA1-5s) by Yang et al. reports that tumorigenic properties can be inhibited by reversing 

epigenetic changes with a demethylating agent, suggesting that epigenetic aberrations contribute to the NB 

phenotype. 15 

Recent advances in high-throughput technology in the field of epigenetics now enable large-scale studies 

using bisulfite modified DNA hybridized to DNA methylation arrays. We have previously used the Illumina 

HumanMethylation27 DNA analysis BeadChip to determine methylation profiles of NB primary tumors and 

identified aberrantly methylated genes that can be used as biomarkers. 16 Extending on that study we now 

used the Illumina 450K arrays, profiling more than 450,000 CpG sites, for a large set of neuroblastoma 

tumors. 

RESULTS 

Clustering the samples based on methylation data identifies a NB methylator phenotype 

Genome-wide methylation analysis using the Infinium HumanMethylation450 BeadChips was performed on 

a set of 60 primary neuroblastoma tumors. The sample set contained 17 tumors with MYCN amplification, 9 

samples with 11q-deletion and 12 with ALK mutations, and is further described in Supplementary Table 1 

and in Fig. 1. After quality control analysis and filtering of methylation data, a set of 364,774 probes 

remained for further analyses. To get an overview of the methylation patterns in the data, we applied 

unsupervised clustering of the 1% most variable probes (n=3,648). The analysis separated samples into two 

clusters (Fig. 1A) that discriminated also by INRG classification (P = 0.00017), deletion of chromosome 1p (P = 

0.015) and on MYCN-amplification (MNA) (P=0.034) (Fig. 1A). The two INRG MS cases in the cohort clustered 
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together (Fig 1A). Furthermore, the probes that were used for clustering differed in mean methylation levels 

(Fig. 1B, P=2.2*10-6, t-test), and in 5-year overall survival (OS) (P=0.014; Fig 1A and 1C). The CpG site with 

largest difference in methylation  value between the two clusters was cg17878351, located in the gene 

CLIC5. As the samples separated most strongly based on INRG stage, we focused our further analyses on this 

grouping. 

Sites with variable methylation are hypermethylated in INRG stage M tumors 

Using the ChAMP package 17 we compared the groups of INRG metastatic (M, 26 samples) and INRG localized 

(L, 32 samples). In total, 37,891 probes gave an adjusted P-value below 0.05, and 4,557 of these probes 

showed a difference in -value methylation between the INRG M and L groups that was larger than 0.2 

(20%). We defined this set of probes as the Methylation Variable Positions (MVPs) (Fig. 2A and 

Supplementary Table 2). More than 80% of these MVPs were hypermethylated in INRG M (Fig. 2A; 3,738 

hyper- and 819 hypo-methylated). The genomic distribution of the MVPs in relation to CpG islands (CGI) was 

compared to the reference distribution of probes in relation to CGIs for the dataset of 364,774 probes for 

each locational feature analyzed. MVPs were overrepresented in regions of low CpGs (“ocean”) and 

underrepresented in CGIs (P-value <0.001 for both, Pearson 2 test). Also CGI shelves and shores showed a 

non-random distribution between the identified MVPs and the genomic CGI representation on the analyzed 

platform (Fig. 2B; P<0.01 for shelves and shores, respectively). When the MVPs were divided into hyper- or 

hypo-MVPs, both the direction of distributional change and significance remained for probes located in 

oceans and CGI (Fig. 2B upper panel). In hyper-MVPs, shores were overrepresented compared to the 

reference distribution (P<0.0001, Fig. 2B), whereas localization of MVPs in shelves were underrepresented 

compared to reference (P<0.001, Fig. 2B). On the contrast, hypo-MVPs were underrepresented at shores 

compared to the reference (P<0.001; Fig. 2B). 

INRG differentially methylated sites are enriched in enhancer regions 
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When MVPs were mapped in relation to gene positions we found a significant overrepresentation of MVPs in 

intergenic regions (IGR; P<0.0001) and this significance remained also when subdividing into hyper- and 

hypo-methylated MVPs (Fig. 2B lower panel). An increased representation of MVPs in gene body (P<0.01) for 

MVPs was not seen when subdividing into hyper- and hypo-methylated MVPs. An overall 

underrepresentation in MVPs located in the first exon (P<0.0001, Fig. 2B) was present in both hyper- and 

hypo-MVPs (P<0.0001 and P<0.0012, respectively; Fig. 2B). Furthermore, there was an underrepresentation 

of MVPs in the upstream region of transcription start site (TSS) that remained when analyzed separately for 

in hyper- and hypo-MVPs, both in the region 200 bases upstream of TSS and in the region 1,500 bases 

upstream of TSS (P<0.0001 for all, Fig. 2B lower panel). In line with this, there was an underrepresentation of 

MVPs in 5’ untranslated region (UTR). However, the representation of MVPs in 3’UTR was similar as in the 

reference data, both when hyper- and hypo-MVPs were analyzed together and separately. Both 

hypermethylated and hypomethylated MVPs were enriched in enhancer sites (P<0.0001), suggesting a 

regulatory function of the differential methylation. 

Location of MVPs 

The distributions of the three most discriminatory hyper-MVPs and three hypo-MVPs for INRG are shown in 

Figure 2C. The cg13441112 is located on chromosome region 1q32 within the cluster of complement factor H 

related genes. Its genomic feature is classified as intergenic, although its position can be intronic by 

alternative splicing of the nearby complement factor H-related 4  

(CFHR4) gene. The INRG M hypermethylated cg07469926 and cg23195028 are located in gene bodies of the 

genes tripartite motif containing 36 (TRIM36; chr5q22.3) and protein phosphatase 2, regulatory subunit B, 

gamma (PPP2R2C; chr4p16.1), respectively. The three most selective hypomethylated probes were located 

in intergenic regions on chromosome region 1p36 (cg02971581 and cg09510180), and on chromosome 13 

(cg25233139). Kaplan-Meier survival curves based on the methylation of these sites are shown in Fig. 2D and 

Kaplan-Meier curves of INRG stage, 11q-deletion and MYCN-amplification in Supplementary Figure 1A. The 

gene with the associated probe with largest difference in methylation  value between INRG M and L was 
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the PIRT gene, harboring three of the top five hyper-MVP sites ( of 0.4-0.45, all sites located in the TSS200 

region). 

We next explored the predictive capacity of using tumor methylation signatures for improved patient 

stratification for the 23 patients who died from the disease and the 18 patients with >60 months of no 

evidence of disease. We performed multivariate analysis (logit regression) using INRG stage and MNA status 

as predictors of outcome, which gave a predictive accuracy of AUC = 0.86. When using the methylation 

cluster and the six top discriminating CpG sites mentioned above, the predictive accuracy increased to 0.95 

(P-value for difference between the models <0.05). Combining the methylation factors with INRG stage and 

MNA status did not further increase the accuracy of the model (AUC = 0.96). 

The 4,557 identified MVPs mapped to 1,516 genes; out of these, 1,265 genes were hypermethylated and 290 

genes hypomethylated (Supplementary Table 2) in the INRG M group. The genes with the highest number of 

MVPs (Table 1) were the hypermethylated genes protocadherin gamma subfamily A, 4 (PCDHGA4; chr5q31) 

and telomerase reverse transcriptase (TERT; chr5p15). PCDHGA4 is located in a cluster of multiple 

overlapping protocadherin genes and has previously been recognized as hypermethylated in NB. 14 The TERT 

gene had 24 MVPs, the majority of which were located in the gene body (Fig. 3A). The gene list also contains 

the two adjacent genes DLX5 and DLX6-AS1, the latter one transcribes antisense of the DLX6 gene. Genes 

with most hypomethylated MVPs in INRG M included XKR4, KNDC1, ABLIM1, BSX, CYTL1, ITGBL1, KIAA0513, 

MOG, C1orf92, and CDH22 (Table 1). Genes with both hyper- and hypo-MVPs were also identified (n=39; 

detailed in Supplementary table 3). The gene PR domain containing 16 (PRDM16), located at chromosome 

1p36, a region frequently deleted in neuroblastoma, was the only gene showing at least 2 of each hyper- and 

hypo-MVPs. 

Gene ontology analysis identifies NB relevant terms 

To evaluate the functions of the genes with associated MVPs we used gene ontology classification through 

the DAVID bioinformatics resource. 18 Genes containing either hyper- or hypo-methylated MVPs were 

submitted to default settings in DAVID. This analysis showed a representation of neuronal tumor relevant 
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gene functions, such as cell adhesion, neuronal development, neuronal differentiation, and neuron 

projection development (Fig. 3B). 

Differentially methylated regions 

To identify coherent chromosomal areas of aberrant methylation the dataset was analyzed for differentially 

methylated regions (DMRs). Using the default P-value of 0.01 in the ChAMP package we identified 459 DMRs 

(spanning 21-7,185 base pairs) distributed over 2,425 probes. One fourth (26%) of these probes was 

classified as MVPs in the above analysis. The DMRs represented 283 annotated genes out of which 204 

genes were included among the identified MVP genes above. The DMRs with the lowest P-values are listed 

in Table 2 (B3GALT4, KIAA1949, DLX6AS, HLA-DOA, intergenic region at 12q24.33, GABBR1). As we noted an 

uneven distribution among the chromosomes for the DMRs, we visualized the genomic locations of DMRs 

located to genes (Fig. 3C). Interestingly, multiple DMRs were located at chromosomal regions 1p36 and 17q, 

two regions that frequently show copy number alterations in neuroblastoma, and on chromosome 6 several 

genes with DMRs were located in the MHC region. 

Analysis of other prognostic factors in NB and overall survival 

As a next step, we looked for methylation discriminating between samples with or without MYCN-

amplification, 5-year OS, and 11q deletion. We applied the same strategy for MVP calling (volcano plots are 

shown in Supplementary Fig. 2). The genes with the highest number of MVPs in each comparison are listed 

in Supplementary tables 4-6. Boxplots of the three probes with lowest P-values for both increased and 

decreased methylation are shown in Supplementary Figures 1B-D for each of the three comparisons with 

and without MNA, with and without 11q deletion, and 5-year OS versus dead of disease. The strongest P-

value was found for the probe cg20678442 (chromosome region 1q44) that gave a complete separation for 

tumors with and without MNA (adjusted P=4.2 * 10-21, Suppl. Fig. 2B). The distributions of overlaps of genes 

with MVPs between all analyses (INRG, 5-year OS, MNA, and 11q) are shown in Supplementary Fig. 3 (Venn 

diagram), and the 102 genes with MVPs in all four analyses are listed in Supplementary Table 7. Only 8 
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probes were called MVPs in all four analyses and these were located in the genes HORMAD2 (two probes), 

SUSD5, PPAPDC1A, NKPD1 and 2 intergenic probes located on chromosome 2 and 9 (Supplementary Fig. 4, 

Supplementary Table 8). 

Non-CpG methylation separates NB patients 

The Illumina arrays also contain 3,091 non-CpG sites, out of which 1,678 remained after filtering (see 

Materials & Methods). Cluster analysis of the 10% most variable sites (n=168) separated the patients into 

separate clusters, of which also here INRG was the strongest clinical variable (Fig. 4A). For non-CpG sites, 

however, the highest methylation frequency was found in the INRG stage L (P=0.001; compared to INRG M, 

Fig. 4B). 

Validation of the obtained methylation profiles using published data sets 

For confirmation of the results we used a set of 26 primary NB tumors with INRG classification previously 

analyzed on the Illumina 27K platform. 11 Samples that were analyzed on both platforms showed, as 

expected, a strong correlation of  values for probes present on both platforms. The validation set contained 

187 probes that overlapped with the 4,557 MVPs. We used unsupervised hierarchical clustering of these 187 

probes measurements on the 27K platform. The generated clustermap separated both on INRG and survival 

(Fig. 5; two-sided Fisher exact probability test P=0.045 and P=0.013, respectively). In addition, we used a 

recent published dataset of 450K data from 35 NB tumors (GEO accession GSE54719) annotated with INSS 

stage. 19 Following unsupervised hierarchical clustering of the 4,557 MVPs in this dataset, the clusters 

separated on INSS (P-value=0.025 two-sided Fishers exact test of stages 1-3 vs. stage 4; Supplementary Fig 

5A). The distribution of the three most top ranked hyper- and hypo-MVPs in this dataset showed a similar 

trend as in our dataset (Supplementary Fig 5B). 

Expression of genes with differential methylation in prognostic groups 

To further look into the biological relevance of the genes with identified MVPs, we used the R2: Genomics 

Analysis and Visualization Platform (http://r2.amc.nl). We used the Kocak set of 649 NB tumors (GEO ID: 
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GSE45547).20 Many of the genes identified in the current study also showed significant differences in gene 

expression when it comes to overall survival of the patients (Supplementary Fig 6). For example, the genes 

B3GALT4 and KIAA1949, identified as hypermethylated in INRG stage M showed lower gene expression in 

patients who died from their disease (Bonferroni corrected P-values 5.4 * 10-14 and 1.6 * 10-17, respectively). 

The gene DLX6AS1, which showed hypermethylation in the gene body (indicative of stable gene expression), 

showed high expression in patients who died from their disease (Bonferroni corrected P-values, 5.7 * 10-13). 

The CLIC5 gene, with the top site that discriminated the two methylation clusters, showed lower expression 

in non-survivors (Bonferroni corrected P-values, 2.1 * 10-5). We also verified that the same was true using 

other gene expression data sets (using the SEQC_NB data set composed of 498 samples, GEO ID: GSE62564). 

The PIRT gene, with the CpG sites with the largest difference in methylation value between INRG stage M 

and L, showed lower expression in non-survivors (Bonferroni corrected P-values, 3.3 * 10-22; SEQC_NB 

dataset – gene not included in the Kocak set). 

Correlation of DNA methylation and gene expression in neuroblastoma tumors 

To further explore if the identified genes with differential methylation and differential expression were also 

correlated to each other in individual tumors, we used a recently published smaller set of NB tumors for 

which paired methylation and gene expression data was available for 19 samples (GEO accession numbers 

GSE54719 and GSE54720). 19 Correlation between DNA methylation and gene expression with nominal 

significance <0.05 were found for 16 of 39 genes tested (Supplementary Table 9). The three strongest 

correlations were found for TRIM36 (rho=-0.83), KIAA0513 (rho=0.80), and PIRT (rho=-0.79); for TRIM36 and 

KIAA0513, the tested methylation site was located in the corresponding gene body; for PIRT, the methylation 

site was located within 200 bases upstream of the transcription start site (Supplementary Table 9 and 

Supplementary Figure 5C). 

DISCUSSION 

Current risk stratification for NB tumors is based on MYCN-amplification status and presence of 

chromosomal segmental breaks. Attempts have been made to improve classification based on methylation 

of single-genes, or genome-wide profiles. 16, 21-26 The studies are often limited to small cohorts without 
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validation sets. Here we present a larger study of 60 patients using Illumina methylation arrays, which profile 

485,000 CpG sites; as validation, we use our previously published study using the 27,000 CpG site platform. 

11 Cluster analysis identified two clusters with different methylation levels: the hypermethylated cluster had 

a mean methylation of 0.64 and the hypomethylated cluster had a mean methylation of 0.43. The patients in 

the hypermethylated cluster had a poorer survival than the other group of patients. 

The methylation profiles separated the NB tumors into clinically relevant groups, of which INRG stage was 

the strongest clinical factor. Gene ontology analysis of the identified genes identified relevant terms as cell 

adhesion, neuronal development, neuronal differentiation, and neuron projection development. One of the 

top differentially methylated genes in INRG stage M was the telomerase reverse transcriptase gene TERT. 

Telomerase expression plays a role in cellular senescence, as it is normally repressed in postnatal somatic 

cells resulting in progressive shortening of telomeres. Deregulation of telomerase expression in somatic cells 

may be involved in oncogenesis. Gene expression of TERT is significantly higher in NB patients who die from 

their disease (R2: Genomics Analysis and Visualization Platform). Methylation of TERT has recently been 

proposed as a biomarker for risk stratification of childhood brain tumors, as hypermethylation of a region 

upstream of the transcription start site of TERT was found to be associated with tumor progression and poor 

prognosis. 27 A high-risk neuroblastoma subgroup defined by genomic rearrangements causing increased 

expression of TERT was recently presented. 28, 29 In our study, TERT had the highest number of 

hypermethylated sites in INRG M (Table 1), suggesting altered epigenetic regulation, which is consistent with 

a high-risk TERT subgroup, although the genomic rearrangements are not known for our samples. TRIM36 

was hypermethylated in INRG stage M and has lower expression in stage M tumors. Overexpression of 

TRIM36 has been described to decelerate the cell cycle and limit cell growth 28 and TRIM-NHL proteins are 

important regulators of developmental transitions, for example, by promoting differentiation and repressing 

cell growth and proliferation in stem and progenitor cells 29. Also, the PIRT gene shows the same pattern in 

NB. PIRT functions as a regulatory subunit of the TRPV1 protein with roles in cell migration, cytoskeleton 

reorganization, and in neuronal guidance. TRPV1 could be important during neuronal differentiation as its 

expression is increased during all-trans-retinoic acid differentiation in NB cell lines. 30 
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As validation, we used a set of NB tumors previously analyzed on the Illumina 27K platform 11 and also here 

separate clusters were formed where the hypermethylated group of patients was associated with INRG 

stage M and a poor survival. 

Our results fit well into and extend on previous studies. A hypermethylator phenotype linked to poor 

outcome has been suggested previously, which our study supports. 14 For single genes, for example the 

KRT19 gene has previously been suggested as a marker of clinical risk factors in NB and was also in the 

current study identified as differentially methylated in INRG stage M compared to stage L. 11, 21 A recent 

study of a smaller number of NB tumors also reported on differences in non-CpG methylation where the 

presence of non-CpG methylation was mostly associated with tumors characterized by favorable 

clinicobiological features 19, which the current study confirms. 

Our data show that methylation profiles can separate NB tumors into relevant clinical groups. It also 

highlights genes that, in addition to the differential DNA methylation, also show differential gene expression 

of the respective gene, suggesting that these genes might have a role in tumor development or progression, 

which needs further functional studies to address. 

MATERIALS AND METHODS 

Patients and samples 

A panel of 60 neuroblastoma tumors was used in this study (Supplementary Table 1). Ethical permission was 

granted by the local ethics committee. 

DNA extraction and bisulfite modification 

DNA extraction was carried out with the DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany), including a 

RNA removal step, according to the protocol provided by the supplier. The DNA was quantified with the 

Nanodrop and 1 ug was used for bisulfite modification using the EZ DNA methylation kit (D5001, Zymo 

Research, Orange, CA) according to the protocol provided with the modification step according to the 
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recommendations for array processing of the samples. Control PCR reactions were carried out before array 

analysis to confirm successful modification of the DNA. 

DNA methylation arrays 

The bisulfite-modified DNA (500 ng) was applied to the Infinium HumanMethylation450 BeadChips 

(Illumina), which determine the methylation levels of 485,000 CpG sites. 31 After bisulfite treatment of the 

DNA samples, the cytosines in the CpG sites were genotyped as C/T polymorphisms according to the 

manufacturer’s protocol. The fluorescence signals were measured from the BeadArrays using an Illumina 

BeadStation GX scanner. The fluorescence data were then analyzed using the GenomeStudio software 

(Illumina). The software assigns a score called a “β value” to each CpG site, which corresponds to the ratio 

between the fluorescence signal of the methylated allele (C) and the sum of the fluorescent signals of the 

methylated (C) and unmethylated (T) alleles. The data generated by the BeadStudio software was exported 

and further analyses were performed in the R programming environment. 

The R-package ChAMP 17 was used for data preprocessing, normalization and comparison between groups. 

Singular value decomposition analysis was performed to identify confounding factors. 

Positions on the X and Y chromosome were filtered away using ChAMP and we applied a filter for SNPs from 

the IMA package (https://www.rforge.net/IMA/); hereafter, a set of 364,774 probes remained for analyses. 

Probes with highest variation were identified using median absolute deviation. ChAMP was used to calculate 

probes that were differentially methylated between groups. We defined methylated variable positions 

(MVPs). We set the criteria for MVP as calling at significance of a Benjamini-Hochberg adjusted P<0.05 and a 

difference in -value between groups larger than 0.2. Hierarchical clustering of samples was done with the 

heatmap function in the R NMF package using Euclidean distances. Samples classified as no-evidence-of-

disease (NED) with less than 60 months follow-up time (n=19) were omitted from the survival analysis. 

Analysis of differentially methylated regions (DMRs) was done using ChAMP. The web-based program 

Phenogram (http://visualization.ritchielab.psu.edu/) was used to map and visualize chromosomal positions 
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of DMRs located to genes. When a DMR included more than one gene it was mapped to the gene with most 

probes or if equal to the gene with the strongest signal. 

Differences between groups were tested with t-test, Pearson 2 square test or by Fisher exact two-tailed test 

as appropriate. Spearman rank correlation was used to test for correlation between expression and 

methylation. Log-rank test was used to compare survivals distributions. 

ACKNOWLEDGEMENTS 

This work was supported by the Childhood Cancer foundation, BioCARE - a National Strategic Research 

Program at University of Gothenburg, The Swedish Cancer Society, the Swedish Children’s Cancer Society, 

the Harald och Greta Jeanssons Stiftelse, the Magnus Bergvall foundation, the Assar Gabrielsson foundation, 

the Ollie och Elof Ericsson Stiftelse, the Mary Béves Stiftelse för Barncancerforskning, Sven och Dagmar 

Saléns stiftelse, Lions Cancerfond Väst and the Royal Physiographic Society in Lund. HC was supported by the 

Swedish Research Council and the Wenner-Gren foundation. 

  

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

on
do

n]
 a

t 0
7:

04
 2

9 
Ja

nu
ar

y 
20

16
 



 

15 

 

REFERENCES 

1. Carén H, Erichsen J, Olsson L, Enerbäck C, Sjöberg RM, Abrahamsson J, Kogner P, Martinsson T. High-

resolution array copy number analyses for detection of deletion, gain, amplification and copy-neutral LOH in 

primary neuroblastoma tumors: Four cases of homozygous deletions of the CDKN2A gene. BMC Genomics 

2008; 9:353. 

2. Carén H, Kryh H, Nethander M, Sjöberg RM, Träger C, Nilsson S, Abrahamsson J, Kogner P, 

Martinsson T. High-risk neuroblastoma tumors with 11q-deletion display a poor prognostic, chromosome 

instability phenotype with later onset. Proc Natl Acad Sci U S A 2010; 107:4323-8. 

3. Carén H, Abel F, Kogner P, Martinsson T. High incidence of DNA mutations and gene amplifications of 

the ALK gene in advanced sporadic neuroblastoma tumours. Biochem J 2008; 416:153-9. 

4. Mosse YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF, Laquaglia MJ, Sennett R, Lynch JE, 

Perri P, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 2008. 

5. Chen Y, Takita J, Choi YL, Kato M, Ohira M, Sanada M, Wang L, Soda M, Kikuchi A, Igarashi T, et al. 

Oncogenic mutations of ALK kinase in neuroblastoma. Nature 2008; 455:971-4. 

6. George RE, Sanda T, Hanna M, Frohling S, Luther W, 2nd, Zhang J, Ahn Y, Zhou W, London WB, 

McGrady P, et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 2008; 

455:975-8. 

7. Janoueix-Lerosey I, Lequin D, Brugieres L, Ribeiro A, de Pontual L, Combaret V, Raynal V, Puisieux A, 

Schleiermacher G, Pierron G, et al. Somatic and germline activating mutations of the ALK kinase receptor in 

neuroblastoma. Nature 2008; 455:967-70. 

8. Cohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM, Faldum A, Hero B, Iehara T, 

Machin D, et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task 

Force report. J Clin Oncol 2009; 27:289-97. 

9. Monclair T, Brodeur GM, Ambros PF, Brisse HJ, Cecchetto G, Holmes K, Kaneko M, London WB, 

Matthay KK, Nuchtern JG, et al. The International Neuroblastoma Risk Group (INRG) staging system: an INRG 

Task Force report. J Clin Oncol 2009; 27:298-303. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

on
do

n]
 a

t 0
7:

04
 2

9 
Ja

nu
ar

y 
20

16
 



 

16 

 

10. Sugito K, Kawashima H, Uekusa S, Yoshizawa S, Hoshi R, Furuya T, Kaneda H, Hosoda T, Masuko T, 

Ohashi K, et al. Identification of aberrant methylation regions in neuroblastoma by screening of tissue-

specific differentially methylated regions. Pediatr Blood Cancer 2013; 60:383-9. 

11. Carén H, Djos A, Nethander M, Sjöberg RM, Kogner P, Enström C, Nilsson S, Martinsson T. 

Identification of epigenetically regulated genes that predict patient outcome in neuroblastoma. BMC Cancer 

2011; 11:66. 

12. Pandey GK, Mitra S, Subhash S, Hertwig F, Kanduri M, Mishra K, Fransson S, Ganeshram A, Mondal T, 

Bandaru S, et al. The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by 

regulating cell proliferation and neuronal differentiation. Cancer Cell 2014; 26:722-37. 

13. Alaminos M, Davalos V, Cheung NK, Gerald WL, Esteller M. Clustering of gene hypermethylation 

associated with clinical risk groups in neuroblastoma. J Natl Cancer Inst 2004; 96:1208-19. 

14. Abe M, Ohira M, Kaneda A, Yagi Y, Yamamoto S, Kitano Y, Takato T, Nakagawara A, Ushijima T. CpG 

island methylator phenotype is a strong determinant of poor prognosis in neuroblastomas. Cancer Res 2005; 

65:828-34. 

15. Yang Q, Tian Y, Ostler KR, Chlenski A, Guerrero LJ, Salwen HR, Godley LA, Cohn SL. Epigenetic 

alterations differ in phenotypically distinct human neuroblastoma cell lines. BMC Cancer 2010; 10:286. 

16. Djos A, Martinsson T, Kogner P, Carén H. The RASSF gene family members RASSF5, RASSF6 and 

RASSF7 show frequent DNA methylation in neuroblastoma. Mol Cancer 2012; 11:40. 

17. Morris TJ, Butcher LM, Feber A, Teschendorff AE, Chakravarthy AR, Wojdacz TK, Beck S. ChAMP: 

450k Chip Analysis Methylation Pipeline. Bioinformatics 2014; 30:428-30. 

18. Dennis G, Jr., Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. DAVID: Database for 

Annotation, Visualization, and Integrated Discovery. Genome Biol 2003; 4:P3. 

19. Gomez S, Castellano G, Mayol G, Sunol M, Queiros A, Bibikova M, Nazor KL, Loring JF, Lemos I, 

Rodriguez E, et al. DNA methylation fingerprint of neuroblastoma reveals new biological and clinical insights. 

Epigenomics 2015:1-17. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

on
do

n]
 a

t 0
7:

04
 2

9 
Ja

nu
ar

y 
20

16
 



 

17 

 

20. Kocak H, Ackermann S, Hero B, Kahlert Y, Oberthuer A, Juraeva D, Roels F, Theissen J, Westermann F, 

Deubzer H, et al. Hox-C9 activates the intrinsic pathway of apoptosis and is associated with spontaneous 

regression in neuroblastoma. Cell death & disease 2013; 4:e586. 

21. Decock A, Ongenaert M, Hoebeeck J, De Preter K, Van Peer G, Van Criekinge W, Ladenstein R, 

Schulte JH, Noguera R, Stallings RL, et al. Genome-wide promoter methylation analysis in neuroblastoma 

identifies prognostic methylation biomarkers. Genome Biol 2012; 13:R95. 

22. Dreidax D, Bannert S, Henrich KO, Schroder C, Bender S, Oakes CC, Lindner S, Schulte JH, Duffy D, 

Schwarzl T, et al. p19-INK4d inhibits neuroblastoma cell growth, induces differentiation and is 

hypermethylated and downregulated in MYCN-amplified neuroblastomas. Hum Mol Genet 2014; 23:6826-

37. 

23. Hoebeeck J, Michels E, Pattyn F, Combaret V, Vermeulen J, Yigit N, Hoyoux C, Laureys G, De Paepe A, 

Speleman F, et al. Aberrant methylation of candidate tumor suppressor genes in neuroblastoma. Cancer Lett 

2009; 273:336-46. 

24. Buckley PG, Das S, Bryan K, Watters KM, Alcock L, Koster J, Versteeg R, Stallings RL. Genome-wide 

DNA methylation analysis of neuroblastic tumors reveals clinically relevant epigenetic events and large-scale 

epigenomic alterations localized to telomeric regions. Int J Cancer 2011; 128:2296-305. 

25. Abe M, Watanabe N, McDonell N, Takato T, Ohira M, Nakagawara A, Ushijima T. Identification of 

genes targeted by CpG island methylator phenotype in neuroblastomas, and their possible integrative 

involvement in poor prognosis. Oncology 2008; 74:50-60. 

26. Carén H, Fransson S, Ejeskär K, Kogner P, Martinsson T. Genetic and epigenetic changes in the 

common 1p36 deletion in neuroblastoma tumours. Br J Cancer 2007; 97:1416-24. 

27. Castelo-Branco P, Choufani S, Mack S, Gallagher D, Zhang C, Lipman T, Zhukova N, Walker EJ, Martin 

D, Merino D, et al. Methylation of the TERT promoter and risk stratification of childhood brain tumours: an 

integrative genomic and molecular study. The lancet oncology 2013; 14:534-42. 

28. Miyajima N, Maruyama S, Nonomura K, Hatakeyama S. TRIM36 interacts with the kinetochore 

protein CENP-H and delays cell cycle progression. Biochem Biophys Res Commun 2009; 381:383-7. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

on
do

n]
 a

t 0
7:

04
 2

9 
Ja

nu
ar

y 
20

16
 



 

18 

 

29. Tocchini C, Ciosk R. TRIM-NHL proteins in development and disease. Seminars in cell & 

developmental biology 2015. 

30. El Andaloussi-Lilja J, Lundqvist J, Forsby A. TRPV1 expression and activity during retinoic acid-induced 

neuronal differentiation. Neurochemistry international 2009; 55:768-74. 

31. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, Delano D, Zhang L, Schroth GP, Gunderson KL, 

et al. High density DNA methylation array with single CpG site resolution. Genomics 2011; 98:288-95. 

32. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The human genome 

browser at UCSC. Genome Res 2002; 12:996-1006. 

  

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

on
do

n]
 a

t 0
7:

04
 2

9 
Ja

nu
ar

y 
20

16
 



 

19 

 

Table 1. Genes with highest number of hyper or hypo MVPs in INRG M group.  

Group Official HGNC Full Name Gene Gene location 

No. of 

MVPs in 

Gene 

Probe with 

lowest P-value 

(adj P-value) 

INRG M 

hyper-

MVP 

protocadherin gamma 

subfamily A, 4 PCDHGA4 5q31 24 

cg18705909 

(0.00024) 

 

telomerase reverse 

transcriptase TERT 5p15 24 

cg02048657 

(0.000092) 

 DLX6 antisense RNA 1 DLX6AS 7q21 23 

cg12055395 

(0.00018) 

 neurexophilin 1 NXPH1 7p22 16 

cg24529280 

(0.0019) 

 

phosphatidylethanolamine-

binding protein 4 PEBP4 8p21 15 

cg19185544 

(0.00018) 

 distal-less homeobox 5 DLX5 7q22 14 

cg13286614 

(0.0006) 

 heparan sulfate proteoglycan 2 HSPG2 1p36 14 

cg03977084 

(0.00049) 

 

potassium channel, sodium 

activated subfamily T, member 

1 KCNT1 9q34 14 

cg00342415 

(0.0015) 

 

inositol polyphosphate-5-

phosphatase, 145kDa INPP5D 2q37 13 

cg07026910 

(0.0006) 

 protein phosphatase 1, KIAA1949 6p21 13 cg00128100 
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regulatory subunit 18 (0.000013) 

 

protein tyrosine phosphatase, 

receptor type, N polypeptide 2 PTPRN2 7q36 13 

cg18371428 

(0.00000065) 

 ventral anterior homeobox 2 VAX2 2p13 13 

cg05603527 

(0.0001) 

INRG M 

hypo-

MVP 

XK, Kell blood group complex 

subunit-related family, member 

4 XKR4 8q12 16 

cg09075515 

(0.0001) 

 

kinase non-catalytic C-lobe 

domain (KIND) containing KNDC1 10q26 7 

cg18139178 

(0.000041) 

 actin binding LIM protein 1 ABLIM1 10q25 6 

cg11936643 

(0.000057) 

 brain-specific homeobox BSX 11q24 6 

cg15503722 

(0.0038) 

 cytokine-like 1 CYTL1 4p15 6 

cg01114088 

(0.0017) 

 integrin, -like 1 ITGBL1 13q33 6 

cg03386869 

(0.00096) 

 KIAA0513 KIAA0513 16q24 6 

cg03543954 

(0.00011) 

 

myelin oligodendrocyte 

glycoprotein MOG 6p22 6 

cg05598246 

(0.00056) 

 

leucine rich repeat containing 

71 C1orf92 1q23 5 

cg26614154 

(0.0000016) 

 cadherin 22, type 2 CDH22 20q13 5 cg24101578 
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(0.000025) 

 

chemerin chemokine-like 

receptor 1 CMKLR1 12q24.1 5 

cg03408433 

(0.00016) 

 

DLC1 Rho GTPase activating 

protein DLC1 8p22 5 

cg19040483 

(0.000097) 

 

polypeptide N-

acetylgalactosaminyltransferase 

9 GALNT9 12q24.33 5 

cg19736098 

(0.0000072) 

 

potassium channel, voltage 

gated subfamily A regulatory  

subunit 2 KCNAB2 1p36.3 5 

cg07220157 

(0.000003) 

  

potassium channel, voltage 

gated subfamily E regulatory  

subunit 4 KCNE4 2q36.1 5 

cg14592092 

(0.0025) 

#Number of additional MVPs in opposite direction: n(KIAA0513)=2; n(KCNAB2)=1. 
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Table 2. The strongest DMRs when comparing INRG groups. 

Probe with 

strongest signal Gene Gene location DMR size (bp) 

No. of probes 

in DMR DMR P-value 

cg03127244 B3GALT4 6p 664 23 4.02E-39 

cg00010853 KIAA1949 6p 4118 34 2.09E-31 

cg21545390 DLX6AS 7q 2824 13 1.90E-23 

cg26175846 HLA-DOA 6p 3984 34 1.59E-22 

cg08087969 NA 12q 7185 18 1.96E-22 

cg17806418 GABBR1 6p 551 10 2.16E-22 

cg23047544 MIR199A1 19p 1072 9 1.06E-18 

cg11505037 NA 13q 1978 4 1.54E-18 

cg18771195 RPH3AL 17p 5031 12 3.64E-18 

cg00055529 FBXO47 17q 515 9 3.83E-18 

NA, intergenic region; bp, base pairs. 
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Figure 1. Top 1% most variable sites. (A) Clustering dendrogram from hierarchical clustering. Differences 

between clusters were tested with 2 statistics (except for chr11q and chr12 that were tested with Fisher 

exact test due to low numbers). Abbreviations: amp, amplified; del, deletion;OS_5y, Overall survival 5 years; 

dod, dead of disease; ned, no evidence of disease (>60 months; samples with ned <60 months were blanked 

in display), chr1p, chromosome 1p; chr11q, chromosome 11q; chr12, chromosome 12; chr17q, chromosome 

17q; ns, non-significant. (B) Boxplot presenting mean methylation level in cluster 1 compared with cluster 2 

(P-value < 2.2 * 10-16, Student t-test). Upper and lower hinges of the box represent the 75th percentile and 

25th percentile respectively; whiskers indicate the highest and lowest values that are not outliers; thick 

horizontal line within box, median. Open circles represent outliers. (C) Kaplan-Meier plot representing 

survival probability of cluster 1 and cluster 2. Kaplan-Meier plot representing survival probability of cluster 1 

and cluster 2 (P=0.011; log-rank test). *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001 
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Figure 2. INRG methylated variable positions. (A) Volcano plot showing the distribution between adjusted 

P-values and difference in  value (deltaBeta) from the ChAMP analysis of the 450K data of INRG M (n=26) 

and L (n=32) samples. Lines represent used cut-off values to identify the most hyper- and hypomethylated 

sites in INRG M (n=4557). (B) Distribution of hyper- and hypomethylated loci (MVP; methylated variable 

position) across CpG features (top) and gene regions (bottom). (C) The three INRG M hyper and hypo MVPs 

with smallest P-values. (D) Kaplan–Meier plots showing survival probability for subjects with above median 
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methylation (black line; n=30), and below median methylation (red line; n=30) for the three INRG hyper, and 

hypo MVPs with lowest P-values. P-value of log-rank test is shown in each plot. 
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Figure 3. Hypermethylated genes in INRG stage M compared to stage L. (A) Gene plot of the TERT gene. The 

TERT gene represented by a UCSC track (http://genome.ucsc.edu/), 32 showing TERT transcripts and positions 

of 450K probes (upper panel). Gene plot showing mean methylation levels of INRG M, and L for all probes on 

the Illumina 450K platform annotated to TERT gene (lower panel); (B) The 10 gene ontologies (GO) with 

lowest P-value from functional GO analysis using the DAVID software. Adj P-value; Benjamini adjusted P-

value. (C) Chromosomal distribution of genes at INRG DMRs. 
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Figure 4. Non-CpG methylation. (A) Hierarchical cluster analysis of most variable non-CpG sites (n=168 sites) 

defines three main groups of patients with different methylation frequency. (B) Boxplot presenting mean 

methylation level of non-CpG sites in INRG L (n=32) compared with INRG M (n=26). 
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Figure 5. Validation of the INRG separation from the 450K results with 27K data. One hundred and eighty-

seven probes from the intersect that were on both the 450K and the 27K platform separated the samples on 

cluster 1 and cluster 2 (both on INRG and survival, two-sided Fisher exact probability test P=0.045 and 

P=0.013, respectively). OS, overall survival; dod, dead of disease; ned, no evidence of disease; amp, 

amplified; del, deletion. 
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