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Dysregulation of the inflammatory profile in magnitude or duration following severe 

infectious or sterile insults including sepsis, burn and trauma is associated with a 

period of immunoparalysis, the acquisition of hospital acquired-infections and an 

associated increase in mortality. Prostaglandin E2 (PGE2), a cyclooxygenase (COX)-

derived eicosanoid classically regarded as pro-inflammatory, regulates multiple 

aspects of the immune response and has been ascribed a causal role in 

immunoparalysis during alternate disease states. Systematic review of the clinical 

literature relating COX-inhibiting non-steroidal anti-inflammatory drugs (NSAIDs) use 

with either susceptibility to or outcome from acute infection revealed epidemiological 

evidence of benefit from NSAID administration during severe inflammatory states 

(sepsis), but not minor infection, providing a rationale for investigation of a 

mechanistic contribution to critical illness-induced immune dysfunction (CIIID). 

PGE2, at pathophysiologically relevant concentrations (IC50 317pg/mL, 95% CI 105 

– 959pg/mL), suppressed ex vivo whole blood (WB) cytokine secretion: a validated 

measure of clinically relevant immune dysfunction. EP4 receptor-mediated increase 

in intracellular cyclic adenosine monophosphate (cAMP) was determined as the 

principal pathway, antagonism of which afforded an alternate immunorestorative 

strategy to established immunoadjuvant agents (interferon-γ and granulocyte-

macrophage colony stimulating factor). A complementary in vitro bioassay of PGE2-

mediated monocyte deactivation employing 1α, 25 dihydroxycholecalciferol 

differentiated (vitamin D3, 10ng/ml) Mono Mac 6 (MM6), a human cell line, mirrored 

this response. Pre-clinical evaluation of an association between PGE2 release during 

the systemic inflammatory response syndrome (SIRS) and subsequent 

immunoparalysis using the human intravenous endotoxin model (2ng/kg), however 

neither confirmed this link, nor refuted it, failing to replicate key immunological 

features of CIIID (sustained reduction in monocyte HLA-DR expression, WB cytokine 

secretion and absolute lymphocyte count). Mass spectroscopic analysis of plasma 

revealed significant elevation of COX-derived PGF2α, thromboxane A2 and PGE2, the 

latter peaking at 3hours, 7.8x higher than baseline values (10pg/mL compared to 

1.3pg/mL). These did not suppress MM6 cytokine release. 

Compelling arguments suggest PGE2 contributes to CIIID. Alternative or adapted 

techniques will be required to determine the validity of this premise, potentially 

identifying a novel therapeutic immunorestorative strategy in the critically ill.   
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1.1 Critical Illness 

Protean in its manifestations, defined variably by type and complexity of disease, 

severity of organ dysfunction and expected outcome, critical illness (CI) remains an 

enigma1,2. Key CI syndromes include sepsis, acute lung injury, adult respiratory 

distress syndrome and multi-organ failure (MOF). These lack pathognomonic 

‘hallmarks’, being diagnosed instead by consensus derived clinical, laboratory, 

radiologic and physiologic amalgams. United by their therapeutic requirement for 

organ support on intensive care units (ICU), these syndromes in-turn represent the 

clinical end-points of a multitude of disparate disease states.  

In the US and UK the predominant reasons for admission to ICU (excluding cardiac 

diagnoses) are sepsis, respiratory insufficiency/failure, trauma, peri-operative care, 

post-cardiac arrest, neurologic pathology and poisoning3,4. Despite the heterogeneity 

of the CI population they share a largely common set of clinical sequelae5. Prolonged 

hospitalization, physical6-9, iatrogenic10 and psychiatric complications11 are common 

during and after CI and admission to ICU. In particular the acquirement of 

nosocomial infections with resultant episodes of sepsis pose a particular problem, 

contributing significantly to excess morbidity and mortality12,13.  

The incidence and demand for CI is increasing both in the developed14-18 and 

developing world1,19. Already consuming over 13% of hospital costs and 0.5% of the 

US gross domestic product - sepsis alone accounting for in excess of $14 billion per 

annum20 - the expense of caring for CI patients may soon become prohibitive21-23. As 

such, the importance of understanding, delineating and identifying the pathogenic 

processes mutual to all CI patients and developing therapeutic tools to modify them 

is increasingly imperative. 

1.1.1 Critical Illness: Definitions and Epidemiology 

The systemic inflammatory response syndrome (SIRS) is inducible by infectious 

(sepsis) and non-infectious pathology (ischaemia/reperfusion, trauma, burn, 

haemorrhage, surgery) alike. Originally defined over 20 years ago by common 

physiological and haematological abnormalities resulting from severe inflammation (2 

or more of: temperature <36°C or >38°C; white cell count <4x109/L or >12x109/L or 

>10% immature forms; heart rate >90bpm; respiratory rate >20 or arterial pCO2 

<4.3kPa) it serves as a sensitive, non-specific descriptor that unites these distinct 

pathological entities (see Table t1.1)24-26. Arising from infectious and non-infectious 

causes with near equally frequency5, and having both high incidence and prevalence 

in ICU patients, the SIRS both reflects and contributes to CI.  



 13 

SIRS criteria however fail to capture the range of organ specific and biochemical 

abnormalities that may follow a severe, generalised insult to the host. In an attempt 

to better represent these, modifications to the original definitions, specifically made to 

improve the diagnosis and categorisation of sepsis, were thus made in 200127 (see 

Table t1.1). Whilst producing a more adequate, holistic description of the sequelae of 

systemic inflammation, the breadth and complexity of these refined parameters mean 

that they remain non-specific (being neither unique to, nor pathognomonic of 

infection). Further, they may fail to capture important differences between subsets of 

patients relating to site of infection, demographic diversity, co-morbidity burden, 

endocrine and immunological function etc. potentially leading to the inappropriate 

grouping of what remains a heterogeneous population. These concerns have led to 

the current consensus that further refinement of the definitions surrounding CI and, in 

particular sepsis, are required28-31. An additional key metric is severity of illness.  

 

Table t1.1 Evolving definitions of the systemic inflammatory response syndrome and sepsis. 

Left Panel: 1991 American College of Chest Physicians and Society of Critical Care Medicine 

Consensus Conference definitions. Right Panel: 2001 Consensus Conference by the Society 

of Critical Care Medicine / European Society of Intensive Care Medicine / American College 

of Chest Physicians / American Thoracic Society / Surgical Infection Society modified 

definitions. Tables reproduced with permission from Mayr et al 201420. 

The terms severe sepsis and septic shock were designed to reflect the increased 

mortality in those with organ dysfunction and refractory hypotension, being envisaged 

as part of a continuum of worsening inflammation. Rough current estimates of 

mortality in each group are 10-20% in those with sepsis, 20-50% when compounded 

by organ failure (severe sepsis) and 40-80% in septic shock32. Whilst evidence that 

the risk of dying from sepsis has decreased from near 30% to below 20% over the 
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past 30 years has accumulated from both large epidemiological studies15 and 

analyses of temporal trends in clinical trials33, mortality rates have remained static for 

the past ten years1. Further, given changing demographics and advances in parallel 

fields (surgery, oncology, transplantation) the actual number of people dying from 

sepsis – itself highly correlated with overall ICU outcomes given its prevalence - 

appears to be increasing year on year, now exceeding 200,000 in the US alone, 

similar to myocardial infarction32. Whilst some of this recorded increase may be 

attributable to organisational (documentation, coding) factors, it is clear that these 

syndromes continue to pose both a considerable clinical challenge and economic 

burden34. 

One of the principle reasons why further in-roads have not been made into reducing 

the incidence, prevalence, morbidity and mortality from CI is that novel management 

techniques and pharmacological interventions have disappointingly proven largely 

ineffective2,35,36. It is not yet clear whether this has been the result of employing 

strategies that target central processes common to all CI in ill-defined populations 

(reducing the signal to noise ratio), or failing to develop agents that remedy specific 

aberrations in identifiable patient subsets. 

1.1.2 Inflammation Unites Critical Illness  

The primary trigger of the systemic inflammatory response has classically been 

ascribed key importance in delineating pathology, classic divisions being into sterile 

or infective insults, and within the latter into species and Gram type.  

Epidemiological studies have collectively demonstrated an increase in the rate of 

Gram-positive bacterial sepsis to near parity with Gram-negative infection – the 

classic cause – with the recent EPIC II study reporting rates of 46.8% and 62.2% 

respectively15,37 (see for review20). However one-third of all patients with severe 

sepsis never have a positive blood culture38. Whilst bacterial species has been 

related to outcome this is inevitably confounded by site of infection and additional 

host factors (e.g. infection with less virulent bacteria likely indicates a greater degree 

of underlying immuno-compromise)39. Further, as first recognised by Osler, and re-

iterated by Thomas in his classic review ‘Germs’, there is growing acceptance that 

the key to the pathogenesis of CI is not the trigger per se but instead that ‘it is our 

response that makes the disease’40. 

Irrespective of initiating stimuli, evidence has accumulated that the human 

inflammatory response appears largely constant. Gene expression profiling in CI has 

repeatedly demonstrated a surprisingly consistent pattern of genomic re-prioritisation 
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regardless of aetiology41-43 or pathogen44-46, with few exceptions47, which seems to 

indicate that at least qualitatively, there exists a fundamental human transcriptomic 

response to severe inflammatory stress42. This appears to be due to commonalities 

in the molecular signalling and transduction pathways that underlie inflammation. 

Cellular disruption, whether infective or sterile, releases common motifs - damage-

associated molecular patterns (DAMPs) or alarmins - into the circulation 48-52. 

DAMPS such as free-DNA and histones, via evolutionarily conserved similarities to 

pathogen-associated molecular patterns (PAMPs), bind and activate the same 

families of cell surface pattern-recognition receptors (e.g. Toll-like receptors [TLR] 

and nucleotide-binding oligomerisation domain [NOD]-like receptors [NLR]), 

instituting common signal transduction and downstream processing50,53 (see Box 1). 

These may thus act as a universal ‘alarm signals’ to tissue injury regardless of the 

injurious stimuli26,42,54-56. Discrete TLR signalling via TLR-2 and 4 (in response to 

Gram-positive and Gram-negative bacteria respectively) may also elicit overlapping 

response elements57-60 with receptors displaying extensive cross-tolerance61. Thus 

both distinct ligands and signal transducers may derive a largely indistinguishable 

cellular response. 

Resultant cytokine production at the primary inflammatory site may initially establish 

SIRS62-65, however immune-alterations and organ-dysfunction, with sufficient 

provocation, may rapidly become established independent of this66,67. A 

compartmentalized cascade through distant tissues has been repeatedly 

demonstrated in different CI aetiologies. Mediators including bacterial products - 

endotoxin68-70 (from gut translocation71,72 or pulmonary sources73), DNA74 and 

peptidoglycan-associated lipoprotein75 – and host derived cytokines (TNFα, IL-1, IL-

6), anaphylotoxins (especially C5a), IFN-γ, high-mobility group protein B1 (HMGB-1), 

macrophage migration inhibition factor (MIF) and others (see76,77 for review), are 

universally released, which, aided by increases in vascular dilatation and epithelial 

permeability, cause compartment cross-talk and inflammatory contagion. Indeed, 

organ systems experimentally isolated from plasma that has circulated past inflamed 

tissues are ‘protected’78 highlighting this ‘domino’ effect.  

In short, CI, at least in terms of the inflammatory component, may not be as 

heterogeneous as previously suspected, with a common transcriptomic, biochemical 

and clinical signature emerging. Therapeutically this is highly relevant as the ability to 

manipulate or regulate unifying inflammatory processes deemed harmful will 

potentially have applicability across the pantheon of CI patients. 
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Box 1: Pattern-Recognition Receptors 

We are constantly exposed to potentially pathogenic microbes. In order to afford a 

rapid, effective, but non-specific response to this challenge both cells of innate 

immune system and non-professional immune cells possess receptors directed 

towards invariant molecular constituents of infectious agents, or, as more recently 

appreciated, moieties released as a result of the local tissue damage that may 

accompany invasion: pattern-recognition receptors (PRR)56,79. These frequently 

target structures essential for the survival of the microbe (PAMPs), for instance the 

conserved lipid A of lipopolysaccharide (LPS) or peptidoglycan, or elements normally 

present only intracellularly, for instance histones (DAMPs). Multiple families of these 

receptors exist including the cell membrane TLR and C-type lectin receptors (CLRs), 

and the intracellular cytoplasmic NLR and retinoic acid-inducible gene [RIG]-1-like 

receptors (RLRs). These last three families have been reviewed extensively and will 

not be further described here80. 

TLRs are characterized by N-terminal leucine-rich repeats and a transmembrane 

region followed by a cytoplasmic Toll/IL-1R homology (TIR) domain. In humans ten 

separate receptors have been identified that sense discrete but overlapping 

components of pathogens either independently or via the formation of heterodimers 

e.g. TLR2 with either TLR1 or TLR681. Accessory molecules may additionally be 

involved with their binding and or signalling. TLR4 for example recognises LPS 

together with myeloid differentiation factor 2 (MD2), two complexes of TLR4-MD2-

LPS interacting symmetrically to form a homodimer82. CD14, a soluble or membrane-

anchored (on myeloid cells) glycoprotein, is another, being capable of binding a 

variety of microbial and endogenous products and enhancing the ability of these 

ligands to activate TLRs. With regards to LPS, CD14 appears to chaperone LPS from 

LPS-binding protein to TLR4-MD2 at the cell surface, and to be required for both 

TRIF (TIR domain-containing adaptor protein inducing IFNβ) and MyD88 (myeloid 

differentiation primary-response protein 88) signalling (see83 for review). 

Recognition of PAMPs or DAMPs by TLRs leads to transcriptional up-regulation of 

distinct (but frequently overlapping) genes, depending on the TLR and cell types 

involved. This is principally determined by the TIR domain-containing adaptor 

molecules recruited. Whilst five such adaptors exist, signalling is roughly divided into 

two distinct pathways depending on the usage of the adaptor molecules TRIF and 

MyD8880. Whilst both eventually result in the translocation of NF-κB to the nucleus 

and activate the expression of pro-inflammatory cytokine genes (see accompanying 
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image) they may additionally activate discrete signalling cascades e.g. MAP kinase, 

which form alternate translational complexes, and possess both different kinetics and 

regulating factors. These are reviewed in full here80,81,84. Multiple elements of the TLR 

signalling response from the receptors themselves, their co-factors and accessory 

molecules and the subsequent signalling cascade are being actively explored as 

therapeutic targets in the treatment of CI85,86. 

 

Reproduced with permission from Akira and Takeda 200487 

1.1.3 Critical Illness: An Immunosuppressive State 

Inflammation represents a vital, stereotyped response designed to facilitate 

containment and removal of noxious stimuli prior to initiation of tissue repair and re-

establishment of homeostasis88. It involves both a local and systemic response and 

represents a careful and subtle balance between complex networks of pro 

(amplifying) and anti (down-regulating)-inflammatory signals76. The desired 

inflammatory response is one with sufficient potency to eliminate the triggering 

stimuli, yet limited in temporal and spatial dimensions to avert excessive host tissue 
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damage. Dysregulation of the normally highly conserved inflammatory process has 

clear pathogenic consequences89. 

In CI, and sepsis in particular, an excessive pro-inflammatory response has 

classically been the prime concern24,90. Unbridled activation of the innate immune 

system and subsequent ‘cytokine storm’ has long been known to result in 

physiological collapse (shock) and MOF91-94, and pro-inflammatory mediators, 

variously described as accelerators’88 or ‘go’ signals95 consequently ascribed as the 

primary determinants of pathology. However the repeated failure of their 

pharmacological blockade22, 23, or more recently antagonism of their receptor 

signalling96, to improve clinical outcomes in sepsis - alongside improvements in 

supportive care over the past 20 years - have either obviated the need for this 

therapeutic avenue to be pursued (aside from in key exceptions e.g. Neisseria 

meningitidis infection), or rendered it of lower importance30,97. Instead, a pre-

dominantly anti-inflammatory, immunosuppressive period, commonly portrayed (and 

perhaps falsely so42) as the second stage of a serial bi-phasic inflammatory response 

– the compensatory anti-inflammatory response syndrome (CARS) – may now be 

regarded as the primary clinical concern26,98-100 97,101.  

This phase is associated with well-recognized inter-connected negative pathogenic 

physiological aberrations including microcirculatory dysfunction102, coagulopathy103, 

catabolic predominance104, bioenergetic failure105,106 and ultimately multi-organ 

failure107,108. However, it is principally marked by vulnerability to nosocomial (hospital-

acquired infection, HAI) infection and repeated episodes of sepsis12,13,109,110.  

1.1.4 Immunoparalysis: Evidence and Definitions 

CI patients may fail to remove the initial injurious stimuli111 and are rendered 

vulnerable both to secondary infection with less virulent, multi-drug resistant 

opportunistic organisms12,112 and to re-activation of latent pathogens113,114. Indeed, 2-

15% of those post multiple-trauma115,116, nearly 20% after burn injury117 and  1-4% of 

those undergoing surgery (elective or emergency) 118 119 acquire sepsis. In total, 

nearly 30% of intensive care patients will develop at least one nosocomial infection, a 

rate 6-times higher than that on standard wards12,120. Acquisition of an infection on 

ICU has been shown to independently confer a two to three-fold increased risk of in-

patient mortality over non-septic patients in large recent point-prevalence 

studies37,116.  

Whether adaptive121 or pathogenic97 the immunological consequences of CARS, 

variably described as immunoparalysis, anergy, leukocyte re-programming or as here 
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critical-illness induced immune dysfunction (CIIID)122-124, appear to pose an equal if 

not greater threat to the host than the initial ‘cytokine storm’. Now understood to 

spatially and temporarily parallel pro-inflammatory signalling, it is the magnitude, 

extension and establishment of anti-inflammatory networks that appear to drive 

mortality and morbidity42,125,126. The suggested mechanisms involved are complex, 

multi-level and likely vary between both organ system and individuals. Loss of key 

effector cells especially via apoptosis, a shift in cytokine production from a pro-

inflammatory Th1 to an anti-inflammatory Th2 profile, alteration in cell-surface 

receptor expression (increased co-inhibitory [e.g. PD-1] and decreased co-

stimulatory receptors e.g. monocyte HLA-DR) and multiple other alterations have 

been reported. These have been extensively reviewed elsewhere and will not be fully 

explored here97,98,100,123,127-129.  

Recognition of this phase of immunoparalysis has led to a paradigm shift in the use 

of immunomodulatory therapies in sepsis from targeted blockade of pro-inflammatory 

mediators to augmentation of the immune system via immunoadjuvant agents 

including granulocyte macrophage colony-stimulating factor (GM-CSF) and interferon 

γ (IFNγ)130. This approach has demonstrated initial promise in selected septic 

patients, with evidence of improved infective clearance, reduced time on ventilator, 

ICU and hospital stay, but not yet 28-day mortality, in early trials131,132.  

Key to such an immunorestorative strategy is patient stratification: firstly identifying 

individuals with infective pathology if employed as primary therapy and secondly 

those with clinically meaningful immunosuppression who may benefit from 

intervention (and equally to restrict its use in those without). Whilst multiple 

biomarkers of immunosuppression have been described (including IL10/TNFα ratio, 

T-cell PD-1 and neutrophil CD88 expression etc., see for review133), to date, two 

markers have been repeatedly demonstrated to predict acquisition of nosocomial 

infection and mortality – flow cytometrically determined monocyte human leukocyte 

antigen DR (mHLA-DR) expression134-136 and ex vivo lipopolysaccharide (LPS)-

stimulated whole blood (WB) TNFα release 137-139.  

Based on these metrics tentative definitions of ‘immunoparalysis’ have been 

suggested including prolonged (variably employed: routinely accepted as either on 2 

consecutive days or ≥3 days) mHLA-DR <30%131 or reduction in WB TNFα release 

<200pg/mL140. Whilst employed in the aforementioned clinical trials these definitions 

have been neither extensively validated nor compared to alternate cut-offs. Further, 

the proposed markers are not independent of each other (both pertaining to 
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monocyte function), may be more accurate in combination (including with other 

metrics), and their kinetics may be more informative than single values133. 

Considerable work remains in demonstrating not only that those who do acquire HAI 

or die on ICU do routinely have immunosuppression (case-control vs. the cohort 

methodologies employed to date), but in proving both a causal relationship between 

the two and describing optimal, clinically relevant, cut-offs by which to diagnose and 

thus treat immunoparalysis. 

One neglected but potentially important contributing factor to the CIIID phenotype 

may be the pathways and mediators that regulate the resolution of inflammation141. 

Capable of multi-modally modulating immune function and demonstrated to be 

immunosuppressive in alternate disease states142, a greater understanding of their 

role in CI may afford both additional means of patient stratification and novel 

therapeutic targets. 

1.2 Resolution of Inflammation 

Inflammation does not resolve passively through removal of the injurious stimuli and 

catabolism of pro-inflammatory mediators alone, but involves a program of unique 

active pathways, signalling molecules and cell subtypes, ending with completion of 

tissue repair and re-establishment of homeostasis88,143,144. Key steps in this process 

include clearance of the inciting stimuli, withdrawal of local survival signals, 

normalisation of chemokine gradients, apoptosis of infiltrating polymorphonuclear 

cells (PMN, neutrophils), their efferocytosis by tissue and monocyte-derived 

macrophages (MDM) and either the incorporation of these myeloid cells into the local 

population or their recirculation via lymph or blood88. Small molecule bioactive lipid 

mediators (LM) are pivotal in this cascade: determining the switch from the onset of 

inflammation to resolution and orchestrating these separate but spatially, temporally 

and functionally linked events145-147.  
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Figure f1.1: Dysregulation of immune responses in critical illness. (A) The current paradigm 

describes simultaneous up-regulation of pro-inflammatory and suppression of adaptive 

immune responses after significant damage to host tissues, regardless of aetiology. Patients 

experiencing adverse outcomes (prolonged hospital stay, secondary infection, in-patient 

mortality) display exaggerated, prolonged dysregulation of the immune-inflammatory state 

(dashed line); adapted from Xiao et al [5]. (B) Illustrative summation of observed alterations in 

cell numbers resulting from failure of resolution pathways in critical illness. Delayed neutrophil 

apoptosis, failure of macrophage efferocytotic function and drainage/recirculation with over-

representation of MDSCs and T-Regs is proposed as a mechanistic driver of critical illness-

induced immune dysfunction (CIIID). Functional impairment accompanies and exacerbates 

numerical/proportional changes (see Figure f1.2). Reproduced with permission from Fullerton 

et al141. 

Clinically, failure of resolution has classically been discussed in terms of either an 

insufficiency or inadequacy leading to chronic inflammation, tissue damage, and 

dysregulated tissue healing (see 89,148,149). The opposite perspective that these 

regulatory pathways may exert excessive influence with equally deleterious 

consequences – what may be termed ‘injurious resolution’ - has not however 

received significant attention. This concept represents an acceptance that active 

resolution of inflammation is not a panacea, and that, as with all biological systems, it 

may become dysregulated with pathogenic consequences. In this hypothetical 

situation an excessive immuno-regulatory effect is exerted by either the processes or 
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mediators designed to bring about resolution in magnitude, duration or location 

leading to a blunting of the inflammatory response and a susceptibility to secondary, 

predominantly infective, insults – a case of ‘gamekeeper turned poacher’.  

In the following sections evidence that regulatory LM released during inflammation, in 

particular prostaglandin E2 (PGE2), may contribute to immune dysfunction is 

discussed. It is argued that in the context of critical illness-induced severe 

inflammation the subset of patients experiencing an excessive, dysregulated 

inflammatory profile - known to have a higher rate of adverse outcomes (including 

nosocomial infection acquisition42) - do so as a result of either LM excess or 

deficiency. It is recognised however that LM represent only one class of signalling 

molecule and that the impact of both alternate mediators and parallel cellular, 

vascular, metabolic etc, processes to this phenotype is significant. Detailed 

descriptions of the pathogenic contribution of resolution processes to CIIID including 

cell death (apoptosis vs. necrosis) and clearance (efferocytosis), and the potential 

involvement of specialized regulatory cell subsets (T-regs and myeloid-derived 

suppressor cells [MDSC]) are not provided here, however have been elaborated in 

Fullerton et al141 and are summarised in Figures f1.1 and f1.2. 
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Figure f1.2: Contribution of inflammatory resolution processes to critical illness-induced 

immune dysfunction (CIIID). Active resolution pathways promoting the apoptosis of infiltrating 

neutrophils, their efferocytosis by both tissue-resident and monocyte-derived macrophages, 

associated humoral mediators (eicosanoids, particularly PGE2) and specialized regulatory 

cell subtypes may all impair innate responses to secondary challenges, a process we term 

‘injurious resolution’. Reproduced with permission from Fullerton et al141. 

1.3 Inflammation-Regulating Lipid Mediators Contribute to Immune 

Dysfunction 

Lipid mediators (LM) including eicosanoids and the more recently discovered 

‘specialized pro-resolution lipid mediators’ (SPM) represent vital endogenous 

biochemical determinants of inflammatory kinetics and are the principle mediators of 

inflammatory resolution149. Arachidonic acid (AA, 20:6, omega-6), docosahexaenoic 

acid (DHA, 22:6, omega-3) and eicosapentaenoic acid (EPA, 20:5, omega-3) are 

polyunsaturated fatty acids that form the substrates for the enzymatic generation of 

several groups of bioactive LM. Eicosanoids – the generic term for a group of 

bioactive lipids containing 20 carbons derived from AA – are divided into several 

separate mediator families, the major groups being the prostaglandins (PG, see Box 

2), leukotrienes and lipoxins. More recently discovered omega-3 derived SPM 

families include resolvins, protectins and maresins. The formation, metabolism and 

signalling of these and other lipid families are comprehensively reviewed here149-151.  
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The ability of NSAIDs to reduce the primary symptoms and signs of inflammation via 

cyclooxygenase (COX) inhibition and hence PG suppression has led to a common 

assumption that they, and LM in general, are universally pro-inflammatory. This 

represents a grossly simplified view. These signalling molecules are variably 

constitutive and inducible, expressed widely yet in a cell-type and tissue-specific 

manner, and their actions are diverse, multi-faceted and vary down to the receptor 

level. Individual LM have been shown to variably exert pro- and anti-inflammatory 

effects along with pro-resolution properties in a context-dependent manner.  

Given their immuno-modulatory potency and diversity of action, for an effective and 

self-limited inflammatory reaction to be facilitated LM generation must be localized, 

balanced, proportionate and timely. Disturbance in any of these dimensions in 

isolation, or more likely combination, may contribute adversely to disease states. 

Several pathogenic aberrations may be hypothesized: 

1) Location of action.  

 Compartment leakage or altered distribution of generation. Endocrine as 

opposed to typical autocrine or paracrine activity. 

2) Increased or decreased concentration.  

 Altered synthesis, via host, pathogen or iatrogenic intervention, through 

modulation of substrate or enzymatic process.  

 Promotion or loss of catabolism (local or systemic) or the failure of 

feedback loops. Altered bioavailability or protein-binding (e.g. albumin). 

3) Deranged temporal profile of production.  

 Failure or dysregulation of eicosanoid ‘class switching’ 147,152.  

4) Up or down regulation of receptors, alteration in receptor profile, including 

distribution.  

5) Modification of action (e.g. co-stimulation – additive, synergistic or anergic) by 

other stimuli/mediators in the surrounding inflammatory milieu 

 

In broad terms and as alluded to earlier, two key patterns may result from such 

aberrations, either contributing to the anti-inflammatory immunosuppressive 

phenotype of CIIID. Firstly, deficient or failed resolution where either an insufficient 

concentration of SPM are available to facilitate inflammatory function and 

termination, or their action is inadequate. This has been recently discussed in varying 

inflammatory conditions149. Alternatively, a state of excessive immunoregulation may 
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exist driven by LM (principally PGs) involved in the initiation or control of resolution, 

rendering host defences locally or systemically compromised141. 

Box 2: Generation of Prostaglandins 

AA is released from cell membrane phospholipids through the activity of several 

phospholipase enzymes, predominantly phospholipase A2 (PLA2). Whilst PLA2 is 

expressed in numerous different isoforms it is the 85 kDa cytosolic PLA2 which 

predominantly supplies AA for PG synthesis. This form requires calcium and 

calmodulin for activation, and is inducible by various cellular agonists including 

receptor-mediated agonists (e.g. IL-8, platelet activating factor), microorganisms or 

DAMPS153. Once in the cytosol, AA can be metabolised (oxygenated) via three 

principal enzymes to form eicosanoids: lipoxygenase (LOX), the cytochrome P450 

family, and COX – the enzymes responsible for PG production (see151 for full review 

of the LOX and P450 pathways). 

COX exists as two predominant isoforms: constitutively expressed COX-1 and the 

usually undetectable COX-2, which is rapidly induced upon exposure to inflammatory 

stimuli154. The pathways regulating expression are numerous and complex, varying 

between cell type and stimulus. Both are membrane-bound, residing in the 

endoplasmic reticulum after synthesis, have a similar molecular mass (70kDa) and 

are identical in length, however differ critically in their substrate binding sites and 

catalytic region. The substitution of Ile in COX-1 for Val in COX-2 in two positions 

results in COX-2 possessing a larger and more flexible substrate channel. COX-1 

further demonstrates negative allosterism at low concentration of AA, suggesting that 

COX-2 may out compete COX-1 for AA (see155 for review). COX-1 and 2 are 

bifunctional enzymes, first catalysing the bisoxygenation and cyclisation of AA to 

PGG2, before the perioxidation of PGG2 to PGH2. It is this latter molecule that forms 

the substrate for multiple synthases to generate the biologically active prostanoids 

PGD2, PGE2, PGF2α, PGI2 (prostacyclin) and thromboxane (TXA2) (see 

accompanying schematic).  

Individual synthases are expressed in a tissue and cell-type selective manner. Their 

expression may further be modulated by the prevailing inflammatory state leading to 

the preferential release of specific prostanoids. As such, the ‘end’ prostanoid profile 

of a given cell is resultant on both basal and induced synthase expression and is 

shaped by biochemical mechanisms including preferential coupling with COX 

isoforms, the intracellular physical compartmentalisation of COX isoforms and 
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terminal synthases, and differences in the substrate affinity and kinetics of the 

various synthases156-158. Diversity in biological action is further afforded downstream 

by the binding of individual prostanoids to multiple cell surface receptors with discrete 

signalling responses. 

 

Reproduced with permission from Stables and Gilroy 2011151 

1.3.1 Specialised pro-resolution mediator deficiency 

Omega-3 derived SPM from different series appear to have individually separate yet 

collectively beneficial effects on multiple modalities of immune function. Evidence 

indicates that a paucity of these LM contributes to derangement of the inflammatory 

profile and CIIID, with therapeutic replacement restoring or augmenting immune 

function. Data relating to specific LM of the resolvin and protectin series, and later the 

lipoxin and leukotriene families will be discussed in interventional animal models of 

infection/inflammation. 

Defining features of SPM bio-action include the ability to: i) counter-regulate 

mediators that summon leukocytes, in particular polymorphonuclear cells [PMN, 

neutrophils], to an inflamed site; ii) dampen pain; iii) stimulate non-phlogistic 

monocyte recruitment; and iv) activate macrophages to efferocytose apoptotic 

granulocytes and clear both pathogens and tissue debris149. Whilst being part of the 

endogenous ‘anti-inflammatory’ process via action i) (with associated prevention of 

inflammatory amplification) it is attributes iii) and iv) in tandem with promotion of 
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phagocyte trafficking to lymph nodes159 that distinguishes them from classical anti-

inflammatory mediators such as interleukin (IL)-10 or IL-1 receptor antagonist149. 

SPM have repeatedly been demonstrated to lack an immunosuppressive action, and 

indeed to augment host-directed anti-microbial defenses160. These molecules 

stimulate mucosal production of bactericidal peptides161 and enhance bacterial 

phagocytosis by PMNs and macrophages, working synergistically with antibiotics, to 

increase their therapeutic action and hence bacterial clearance162. They have further 

been shown to suppress nuclear viral mRNA transcript export, and hence replication, 

reducing mortality from influenza infection163: a potentially novel therapeutic addition 

to standard antivirals, focused on modifying host immune capability, avoiding the 

problems posed by these infectious agents diversity, variability and capacity to 

evolve.  

Resolvins and Protectins  

Resolvin E1 (RvE1) administered prior to a murine model of aspiration pneumonia 

(hydrochloric acid with subsequent Eschenderia coli challenge) was associated with 

a reduction in pro-inflammatory cytokines, decreased pulmonary PMN accumulation, 

enhanced bacterial clearance and improved survival164. El Kebir and colleagues have 

further described RvE1’s ability to promote resolution of established infective and 

sterile models of murine lung injury165. Mechanistically RvE1 was noted to enhance 

NADPH-oxidase reactive oxygen species generation and promote phagocytosis-

induced neutrophil apoptosis (with subsequent efferocytosis by macrophages) via the 

leukotriene B4 (LTB4) receptor BLT1. Increased activation of caspase-8 and caspase-

3 in tandem with attenuation of both ERK and Akt-mediated apoptosis-suppressing 

signals shifting the balance of pro-/anti-survival information toward apoptosis via 

induction of mitochondrial dysfunction. In addition, RvE1, at concentrations as low as 

1nM, enhances macrophage phagocytosis, with the products of its metabolism 

continuing to exert pro-resolution properties but with reduced bioactivity in vivo166.  

Resolvin D1 (RvD1) pre-treatment prior to LPS-induced acute lung injury is 

protective, improving pathological changes and survival167. The central mechanism 

appears to be suppression of NF-kB activation in a partly PPARγ-dependent manner, 

with associated reduction in downstream signaling/transcriptomic alteration168. 

Resolvin D2 (RvD2) but not its isomer trans-RvD2, has been shown specifically to 

improve survival in murine polymicrobial sepsis (caecal-ligation and puncture, CLP). 

Its actions appear multifaceted - modulating leukocyte-endothelial interactions in a 

direct (adhesion receptor expression) and indirect manner (endothelial NO 
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production), altering the cytokine profile (reduced IL-17, IL-10, PGE2 and LTB4), 

enhancing bacterial phagocytosis and intraphysosomal vacuolar production of 

reactive oxygen species160. More recently the ability of RvD2 to restore neutrophil 

directionality, prevent CIIID and thus increase survival from a secondary septic 

challenge post-burn injury has been demonstrated169. 

Discrete specialized pro-resolution mediators are unlikely to be produced in isolation 

and have overlapping pro-resolving actions. RvE1, aspirin-triggered (ATL, 15-epi-

lipoxin A4) and protectin D1 may independently rescue COX and lipoxygenase 

(LOX)-derived ‘resolution deficits’ in vitro and in vivo, with actions extending to 

promotion of phagocyte trafficking away from the primary inflammatory site159. The 

ability to bind and act as agonists on alternate SPM receptors (e.g. RvD1 on the 

lipoxin A4 (LXA4) receptor167) may provide one pharmacological explanation for this 

phenomenon. However, despite their common actions the source of different classes 

of SPM in inflammation appears diverse. Recent evidence suggests that RvE1 and 2 

are synthesized by PMNs via the 5-LOX pathway170, whilst eosinophils are 

responsible for generation of 12/15-LOX-derived mediators protectin D1 and the 

newly discovered resolvin E3171,172. Deficiency of these cell types in the resolution 

phase may lead to impaired biosynthesis with deleterious consequences171. The 

same may be true of poly-unsaturated fatty acids at the inflammatory site. 

Experimentally, the omega-3 resolvin precursors EPA and DHA have been 

demonstrated to increase in exudates during the resolution phase, being both plasma 

(partially bound to leaked albumin) and locally derived149,173. Whilst early indirect 

evidence to support the therapeutic benefit of increasing SPM series concentration in 

humans came from the physiological and clinical benefits observed in randomised 

controlled trials of fish oil addition to parenteral or enteral nutrition in septic 

patients174,175, this effect has not been confirmed in recent meta-analyses176,177. There 

is additionally no proof to date that dietary omega-3 supplementation is directly 

correlated with SPM formation in humans during inflammation178. 

Leukotrienes and Lipoxins 

Therapeutic use of the AA-derived lipoxin series may also be beneficial. Post-insult 

treatment with LXA4 has been demonstrated to limit inhaled LPS-induced lung 

injury179, and to reduce pro and anti-inflammatory cytokine production, enhance 

macrophage recruitment, reduce blood bacterial load and improve mortality in a rat 

CLP model180. In this later study macrophage recruitment was increased without 

impairing phagocytic function, and systemic inflammation reduced without increasing 
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bacterial spread, mirroring the previously described observations with other SPM 

160,164.  

A similar paradoxical relationship between an attenuated innate immune response 

(PMN trafficking to the infected site), yet efficacy of the overall inflammatory process, 

as determined by survival, has been demonstrated in both wild-type mice treated with 

MK 886 (a 5-lipoxygenase[5-LOX] inhibitor) and in 5-LOX-deficient mice 181. This 

effect could be partially replicated if antagonists of cysteinyl-leukotrienes (cysteinyl-

LTs, a family including LTC – F4) were given, but crucially not with antagonism of the 

classically pro-inflammatory LTB4. This elegantly demonstrates the hierarchical, 

multi-faceted and often opposing effects of eicosanoids in sepsis. In this setting it 

appears that the prevention of the cysteinyl-LTs deleterious effects on the 

vasculature, hence host haemodynamics, assumes primacy as the main cause of 

benefit in 5-LOX antagonism. In contrast selective LTB4 inhibition prior to and post-

CLP appeared to have little effect on vascular tone and permeability, but may have 

blunted the innate immune response - specifically neutrophil trafficking - exacerbating 

the infective insult182,183.  

The complex interplay between AA-derived LMs in sepsis has also been highlighted 

in recent data showing flavocoxid, a dual COX-2 and 5-LOX inhibitor, reduced the 

expression of NF-kB, COX-2 and 5-LOX with resultant improved survival in a murine-

CLP model184. Plasma IL-10 and LXA4 concentrations were increased whilst TNF-α, 

IL-6, LTB4 and PGE2 were decreased. Whether the observed improvement in 

outcome is due to enhanced pro-resolution effects driven by increased LXA4, 

decreased cytokine storm (TNF-α and IL-6), augmentation of the immune response 

via reducing PGE2 and 5-LOX derived LTs (discussed below), selective shunting of 

AA down the COX or LOX pathways, or a combination of the above is unclear.  

Separately, biologically active ATL and aspirin-triggered resolvins have been noted to 

have pro-resolution effects, inhibiting leukocyte trafficking in a NO-dependent manner 

in both murine185 and human inflammation186, and down-regulating superoxide 

production in neutrophils along with macrophage inflammatory peptide 2 and IL-1β 

production187. The importance of ATL and LXA4 inhibitory stimulation has been 

previously demonstrated in CI; its absence leading to un-bridled inflammation and 

elevated mortality in animal models of infection due to DC hypersensitivity188.  

Thus, accumulating evidence supports the notion that SPM are both necessary to the 

host immune response and beneficial in severe inflammatory states. Increasing 

lipoxin, resolvin, and protectin concentrations augments host defence and improves 
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survival in pre-clinical models of CI via multi-modally enhancing innate immune 

function and ameliorating CIIID. The immunomodulatory actions of SPM on 

inflammatory resolution processes are summarized in Figure f1.3. 

 

 

Figure f1.3: Potential therapeutic interventions to modify resolution defects and improve 

innate effector cell functionality in critical illness. Targets on the left of the diagram (red) 

describe means of reducing excessive or prolonged production of immunosuppressive COX-

generated PGs or antagonizing their action. Targets on the right (blue) indicate means of 

supplementing and/or augmenting levels of SPMs that nonphlogistically enhance multiple 

effector modalities. AA, arachidonic acid; ATL, aspirin- triggered lipoxin (15-epi-LXA4); COX, 

cyclooxygenase; EP2/4, E prostanoid 2/4 receptor; LOX, lipoxygenase; LT, leukotriene; LX, 

lipoxin; PD, protectin; PG, prostaglandin; PPAR, peroxisome proliferator-activated receptor; 

Rv, resolvin; SPM, specialized proresolving lipid mediator. Reproduced with permission from 

Fullerton et al.189 
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1.3.2 Cyclooxygenase-derived eicosanoid excess 

Pre-Clinical Evidence 

The majority of the interventional studies described above have used a paradigm of 

substrate supplementation, direct molecule addition or aspirin-augmented 

biosynthesis to highlight the benefits of SPM in CI. Their pathogenic contribution to 

severe inflammatory states thus appears to be one of absence or insufficiency. 

Conversely, excess (absolute or relative) or persistence of early-phase LM, 

specifically prostaglandins, may be equally deleterious to host immune function. 

Indication of their role in CI is consequently derived from the reverse methodology - 

their reduction or antagonism. 

Like humans, severe inflammatory stress in mice is associated with a predominantly 

anti-inflammatory state and relative immunosuppression following the initial pro-

inflammatory response. This is characterized by increased susceptibility to and worse 

outcomes from infection190-192, mimicking clinical observations193 and thus providing a 

model to explore CIIID. Vulnerability to secondary infective challenge (replicating 

HAI) is dependent on time post-initial insult, decreasing with increased temporal 

separation191,192, and may be reduced by therapeutic strategies designed to restore 

immune function191. PGE2 appears to be a key mediator of this phenomenon.   

Bronchoalveolar lavage fluid in mice subjected to pulmonary Aspergillus fumigatus 

conidia challenge post CLP contains higher amounts of PGE2, the production of 

which seems dependent upon both alveolar macrophages and epithelial cells194. 

Treatment with ketoprofen (a non-selective COX-inhibitor) after CLP but prior to 

fungal challenge reduced the PGE2 concentration leading to enhancement in 

neutrophil recruitment, macrophage phagocytosis and pro-inflammatory cytokine 

secretion, with a consequent four-fold increase in survival. The central mechanism 

underlying suppression of innate immune effector cell function was elevation of intra-

cellular cyclic adenosine monophosphate (cAMP) concentration via the E-prostanoid 

(EP) 4 receptor194. The efficacy of COX-2 inhibition (via NS-398) in attenuating critical 

illness-induced PGE2-mediated immune suppression has also been demonstrated in 

response to alternate severe inflammatory stressors: mortality from infective 

challenge post trauma/haemorrhage being reduced by NS-398 administration (a 

selective COX2 inhibitor)195,196.  

In addition to signalling via the EP4 receptor, other G protein-coupled EP receptors 

have also been implicated as mediators of immune suppression. Aronoff and co-

workers demonstrated that selective knockout of the Gi-coupled EP3 leads to 



 32 

increased survival after intra-pulmonary Streptococcus pneumoniae or intra-

peritoneal LPS challenge197. EP3-/- mice exhibited increased pulmonary clearance of 

bacteria despite reduced accumulation of lung neutrophils, lower number of 

circulating leucocytes and an impaired febrile response to infection, the key 

mechanism being augmented alveolar macrophage phagocytic and bactericidal 

capacity. Interestingly, alveolar macrophages may additionally be compromised by a 

PGE2-Gs-coupled EP2-cAMP axis, with both specific EP2 receptor antagonists or 

EP2-deficient mice preventing PGE2-induced impairment of Fcγ receptor-dependent 

phagocytosis and H2O2-mediated, NADPH oxidase-generated bacterial killing198,199. 

These phenomena appear to be related to PGE2-induced alterations in scavenger 

receptor and microRNA-155 expression200, and inhibition of the p40phox subunit of 

NADPH oxidase respectively201. Indeed the most frequently observed and 

reproducible immunosuppressive pathway in macrophage populations appears to be 

either EP2 or EP4-mediated increase in cAMP with subsequent activation of protein 

kinase A (PKA) and associated downstream effects. These have demonstrated 

relevance to clinical infection outside the respiratory tract202,203. 

Beyond functional deficits, PGE2 may additionally impair microbial sensing. PGE2, 

again via the Gs-coupled EP2 and EP4 receptors and unanchored type 1 PKA has 

recently been shown to reduce the key PAMP recognition receptor TLR4 at the 

translational level, having similar kinetics to cycloheximide in rat alveolar 

macrophages204. Such alterations may compound the pleotropic effects PGE2 exerts 

on the nascent TLR response post-ligation205, and represents an additional 

mechanism to previously established effects on transcription, proteolysis and 

secretion of proteins206. It further represents a novel explanation for the reduction in 

pro-inflammatory cytokine release observed in LPS-stimulated monocytes or 

macrophages pre-treated with PGE2
207-209. 

Temporal Correlation and Source of Prostanoid Generation 

Alterations in COX-2 expression and PGE2 synthesis correspond with the observed 

temporally defined window of immunosuppression following CI. Higher circulating 

plasma concentrations of PGE2 have been recorded on both day 1 and 7 post-severe 

inflammatory stress in mice compared to controls, suggesting exaggerated and 

prolonged prostanoid production196. Patients who have experienced major trauma 

were reported to have plasma PGE2 concentrations that peaked 5-7days post-insult 

at 400% of control, the source being identified as circulating ‘inhibitory’ monocytes. If 

PGE2-release was ablated in ex-vivo culture of patient’s PBMCs by the addition of an 

NSAID, immune competence, as determined by IL-2 release, was restored210. This 
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result was replicated in-vivo in a small clinical trial of IV indomethacin (a non-specific 

COX-inhibitor) administration following major surgery, where multimodal 

improvements in cell-mediated immunity were observed including monocyte kinetics 

and lymphocyte co-stimulatory receptor expression211. Crucially, it has also been 

shown that PGE2-mediated immune cell suppression may not merely arise from 

increased concentration of this LM but secondary to amplified sensitivity to it, likely 

through an alteration in receptor profile: burn patient’s displaying both elevated levels 

of PGE2 and a proportionally greater functional reduction at any given 

concentration212.  

With regards to the source of circulating PGE2 it is likely multi-focal. Splenic 

macrophages were found to have increased COX-2 mRNA expression in response to 

LPS stimulation even at day 7 post-severe inflammatory stress and are thus one 

potential source of endocrine PGE2
195,196. Alternatives may be liver (Kupffer cells) and 

alveolar macrophages, or peripheral blood mononuclear cells (PBMCs), all of which 

demonstrated increased COX-2 expression via real-time PCR in either murine 

models or patient samples142. Increased PGE2 concentrations may additionally arise 

downstream and independent of COX, stemming from selective induction of 

microsomal-PGE2 synthase 1 (mPGES-1) by CI states194. In comparison, peritoneal 

neutrophils from burn-injured animals have been reported to exhibit a late-phase 

decrease in COX-2 expression and PGE2 synthesis coupled with a lack of induction 

to secondary infective challenge213, likely indicating the compartmentalization of the 

inflammatory response and/or potential compensatory downregulation in the face of 

elevated circulating concentrations of PGE2
76,214. 

As intimated above there is considerable evidence that CI also modifies AA release 

and its COX-mediated metabolism in humans as well as mice. In patients with 

fracture or burn injury, peripheral blood mononuclear cells exhibit increased COX-2 

mRNA and PGE2 synthesis in response to LPS stimulation215. In contrast, COX-2 

gene expression in septic patients has been reported as reduced such that both 

basal circulating concentrations of its metabolites (including PGE2) and those 

induced by LPS-stimulation of blood leukocytes ex-vivo, were lower than in healthy 

controls216. Further, the degree of AA-metabolism derangement was associated with 

disease severity (greater in septic shock vs. severe sepsis), and failure of its 

recovery between admission to ICU and day 3 post-admission was predictive of 

adverse clinical outcome (prolonged admission or death). The authors speculate that 

reduced prostanoid generation forms part of the anti-inflammatory CIIID phenotype.  
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This seemingly opposing data may be potentially be rationalized by two inter-linked 

hypotheses: 1) that altered AA-metabolism and PGE2 generation in the blood 

compartment either represents an adaptive change to prevent systemic 

inflammation76,121; or 2) a response to excess production extra-vascularly (i.e. the 

primary infective/inflammatory site). Up- and down-regulation of prostanoid receptors 

has been observed in CI humans215 along with alterations in COX-2 and mPGES-1 

expression216 indicating a dynamic, responsive system. In mice the EP2 and EP4 

receptors are differentially expressed on monocytes depending on activation 

status217,218, and may contribute to a negative feedback loop that suppresses COX-2 

and thus PGE2 synthesis upon ligand binding219. Late-phase immunosuppressive 

mediators are thought to arise from tissue-resident macrophages in vivo220. It would 

thus not be surprising if endocrine release of PGE2 into the circulation from 

macrophages local to the primary event (or indeed in distal tissue beds) induced 

compensatory adaptions in blood leukocytes. 

Immune Dampening by Apoptotic Cells and Efferocytosis is PGE2-Mediated 

Autopsy studies in septic patients have demonstrated profound apoptosis-induced 

loss of follicular dendritic cells (DC), B-cells, and CD4+ T-cells in secondary lymphoid 

organs193,221-223. Whilst mature macrophage numbers and MHC II expression may be 

relatively maintained223, immature or developing macrophages have been shown to 

be at particular risk (murine CD68+CD11bhiF4/80inter)224. Increased numbers of 

circulating apoptotic lymphocytes and mononuclear cells are seen in septic patients, 

levels correlating with disease severity, being higher initially in septic shock than 

sepsis alone225,226. Failure to restore the undamaged lymphocyte count (notably 

CD8+ T cells) by day 6 post-insult in CI patients, implying on-going excessive 

apoptosis, is predictive of in-patient mortality226. These observations have led to 

dysregulation of apoptosis being accepted as a key contributor to 

immunosuppression123,227. Animal studies support this supposition. 

Adoptive transfer of AC prior to induction of sepsis is associated with a significant 

increase in mortality compared to controls, whereas transfer of necrotic cells is 

protective, an effect in which IFNγ appears pivotal228. Multiple other studies have also 

demonstrated the benefits of modulating (reducing) excess apoptosis to restore both 

innate and adaptive immune function via TNF-related apoptosis-inducing ligand 

(TRAIL)229,230, IL-15231 232, IL-7233, caspase-1 inhibition234, Fas/Fas-ligand235 and 

programmed cell death protein 1(PD-1)236,237 in models of CI. Rectification of the 

apoptotic-inflammatory imbalance may thus represent an attractive therapeutic 

avenue238,239. 



 35 

Mechanistically, aside from the consequences of direct effector cell loss, AC exert 

independent multimodal immuno-modulatory effects. Uptake of AC by macrophages 

and dendritic cells (DC) – efferocytosis - triggers the release of anti-inflammatory IL-

10, transforming growth factor (TGF)-β, nitric oxide (NO) and PGE2 in addition to 

reducing TLR-4 mediated pro-inflammatory cytokine secretion in response to 

subsequent LPS challenge240-243. Purported mechanisms include both translational 

down-regulation and transcriptional inhibition by autocrine/paracrine mediators 

including TGF-β244, PGE2 and platelet-activating factor241. Down-regulation of co-

stimulatory molecule expression by DC after phagocytosing AC induces immune 

tolerance245-247 and may in part be responsible for alterations in the adaptive immune 

response in CI248,249. 

Medeiros and colleagues198 have shown that the efferocytosis of AC by activated 

macrophages causes suppression of Fcγ receptor-mediated phagocytosis and 

bacterial killing by an autocrine/paracrine PGE2 mechanism in the lung. EP2 

receptor-mediated elevation of intracellular cAMP appeared to be the primary 

pathway in AC-induced functional impairment, being reversed with aspirin or 

indomethacin pre-treatment and direct EP2-receptor antagonists198. This finding 

reinforces a previously described immunosuppressive role for the PGE2-EP2-cAMP 

axis, being separately demonstrated to reduce both phagocytosis250 and NADPH 

oxidase-mediated killing199 in a dose dependent manner. Other authors have 

implicated TGF-β251, potentially via PGE2 again (directly or indirectly252) or 15-LOX 

derived lipoxins A4 (LXA4)251, and an IFNγ/NO mechanism253 as the soluble 

immunosuppressive mediators involved in the effect of AC on phagocytes. Such 

heterogeneity in data indicates that AC have pleiotropic effects, the predominant 

pathway likely depending on the subset, phenotype and activation state of the 

efferocytosing phagocyte198,254. 

Evidence that AC induced PGE2 may not only contribute to failure of primary 

pathogen clearance but CIIID and susceptibility to subsequent nosocomial challenge 

also exists. Intra-pulmonary pre-treatment with apoptotic thymocytes leads to 

reduced PMN recruitment and greater lung and bloodstream bacterial burden after 

Streptococcus pneumoniae challenge, an effect not seen in EP2-/- KO mice198. This 

mirrors work showing that alveolar macrophages derived from these mice display 

enhanced ex-vivo pro-inflammatory cytokine production (TNF-α, MIP-2), 

phagocytosis, intracellular killing and reactive oxygen species generation, functions 

which translate to a reduced bacterial burden and improved survival on in-vivo 

challenge255. Part of this additional anti-microbial capacity may derive from greater 
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macrophage maturity. PGE2 was recently demonstrated to restrain macrophage 

maturation in-vitro via EP2-mediated protein kinase A activation with septic EP2-/- 

mice exhibiting a higher percentage of F4/80high/CD11bhigh cells and greater 

expression of macrophage colony-stimulating factor receptor in both the blood and 

the inflammatory site 256. 

The immunosuppressive pathogenicity of PGE2 in CIIID may be extended by its 

regulatory role in apoptosis of phagocytes. Early studies demonstrated a mixed effect 

of PGE2 in this capacity, being demonstrated to either induce apoptosis during T-cell 

differentiation257, or inhibit apoptosis in PMNs258 through a cAMP mediated 

mechanism258,259. Recent data indicates that PGE2, or its metabolites PGA2 (via non-

enzymatic dehydration) and 15-keto PGE2 (catalyzed by 15-hydroxyprostglandin 

dehydrogenase) promote apoptosis in several cell types through Bcl-2-associated X 

protein (Bax). PGD2 may however inhibit PGE2 binding to Bax and hence PGE2-

mediated apoptosis, the ratio determining cell fate260. Comparative levels of other 

eicosanoids to PGE2, particularly LXA4, may additionally influence whether 

phagocytes undergo necrosis or apoptosis, PGE2 again representing the pro-

apoptotic factor via EP2/4 signaling261. 

In summary, this data indicates that, contrary to popular conceptions, COX-derived 

eicosanoids, and in particular PGE2, have significant anti-inflammatory and 

immunosuppressive effects (see Figure 1.3). In both animal and human studies, CI 

induces alteration of prostanoid dynamics either as part of the primary inflammatory 

cascade or as part of resolution-regulating programmes. Sustained or excessive 

production of these resolution-regulating eicosanoids alone or in conjunction with 

other ‘vulnerability factors’ (e.g. reduction in serum albumin142) may be pathogenic, 

contributing to CIIID, increasing susceptibility to secondary infection and reducing 

patient’s ability to clear primary infections. The efficacy displayed by COX-inhibition 

and PGE2 antagonism in pre-clinical work clearly warrants further investigation262.  

Non-Immune Benefits of PGE2 Suppression or Antagonism 

PGE2’s actions are multi-faceted, impacting on all aspects of Virchow’s classic signs 

of inflammation - calor, dolor, rubor and tumour – by virtue of the wide but varied 

distribution and different signalling pathways of it’s four receptors219. Pursuance of a 

strategy of PGE2 ablation or, ideally, selective EP receptor antagonism, may 

therefore have additional benefits in the CI aside from restoration of immune 

competence.  
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CI states are frequently marked by recalcitrant hypotension necessitating the use of 

vasoactive inotropic drugs and excessive vascular leak with resultant protein-rich 

tissue fluid and clinical oedema, secondary to multiple mechanisms and 

mediators263,264. In animal models PGE2 has been shown to exert diverse effects on 

vascular tone dependent on the vascular bed tested, concentration employed and 

presence or absence of alternate agents (e.g. noradrenaline, potassium)265. This 

appears to relate to the relative expression of EP receptor subtypes: EP3 being more 

prevalent centrally (e.g. aortic rings) and promoting contraction, whilst EP4 is found 

in distal vessels and causes dilatation (e.g. mesenteric arteries and tail)266 - the 

central mechanism of which appears to be endothelium-dependent stimulation of 

eNOS activity that results in cGMP-mediated vasorelaxation267. It is thus theoretically 

possible that the central/peripheral split in PGE2’s effect could be exploited; either 

using pan-blockade to achieve central vasodilation and peripheral vasoconstriction to 

maximise vital organ support, or employing selective EP4 antagonism as a selective 

peripheral vasopressor to maintain blood pressure268. With regards to the latter 

strategy this may also have benefits on vascular leak, Omori and colleagues recently 

demonstrating that both EP2 and EP4 signalling increases blood flow and vascular 

permeability269. Whilst EP3 was observed to exert the opposite effect in this paper – 

enhancing the endothelial barrier – a conflicting role for the receptor in mediating 

mast cell activation, histamine release and hence inducing permeability has been 

described270. Whilst it is clear that further mechanistic and proof-of-principle work 

needs to be conducted, the benefits of a novel strategy to reduce both vasodilation 

and vascular permeability would be profound, being exemplified by the success of 

IFN β1a in reducing mortality from acute respiratory distress syndrome (ARDS) in a 

preliminary trial via increasing lung CD73 expression and hence endothelial barrier 

protective adenosine release271. 

Conceptually, further benefits may arise from antagonism of both PGE2’s role in 

temperature regulation and nociception. PGE2 is central to the generation of fever, 

acting in the median pre-optic nucleus via the EP3 receptor to disinhibit central heat-

conserving and heat-generating pathways272. The potential benefits and hazards of 

therapeutic temperature control (or not) is currently a key topic in the management of 

the CI, with various strategies proposed and debated273,274. Whilst there is a strong 

theoretical case for the benefit for fever suppression in the critically ill, particularly 

with regards to physiological work, the failure of both the classic ibuprofen in sepsis 

study and a recent trial of paracetamol in the same context to demonstrate benefit 

casts doubt on whether this promise will translate to reality275,276. Finally, PGE2 is also 
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a key mediator of inflammatory pain both at peripheral sites and select dorsal root 

ganglion neurons, primarily through the EP4 receptor277,278. Reduction of visceral and 

neuropathic pain in CI may serve to both reduce sympathetic outflow (with attendant 

physiological benefits) and ameliorate patient discomfort, reducing sedation and 

analgesic requirements, potentially impacting psychological outcomes. As with all the 

above modes of action, proof of clinical action requires to be established 

1.3.3. Feast and Famine: A single or dual defect? 

It is unlikely that either an excess of immunosuppressive eicosanoids or a deficiency 

of SPM exists independently in CI, their production being inextricably inter-linked. 

Over the course of the inflammatory response, lipid-mediator profiles undergo a 

‘class switch’ from initial-phase COX-derived PGs and LTs to specialized pro-

resolution mediators of the lipoxin, resolvin and protectin series, with PGE2 playing a 

controlling role147,152. In particular there is now evidence to suggest that different 

phagocytic cell types and their subpopulations display specific eicosanoid profile 

signatures that are dynamically altered at defined intervals throughout inflammation, 

influenced by the surrounding milieu and ingested material254.  

Recent data demonstrate that severe inflammatory stress undermines these normally 

tightly regulated resolution programs. In a murine peritonitis model contrasting low 

dose, self-resolving inflammation with high-dose, non-resolving inflammation (10mg 

vs. 1mg zymosan), sustained high amounts of PGE2 and LTB4 (>5x normal) were 

reported in the high-dose exudates along with persistently compromised SPM 

production (LXA4, protectin D1 and resolvins ~3-fold less than normal 

concentrations)279. Alterations in microRNA (miRNA) expression, specifically miR-

219-2, and subsequent target gene expression were implicated. This situation 

appears analogous to the dysregulated transcriptomic and inflammatory response 

associated with adverse outcomes in CI42. Humans display different inflammatory 

response profiles to set stimuli that are largely determined by resolution-processes 

and mediators, broad categories of ‘resolution phenotype’ being established pre-

clinically280 and tentatively in various clinical settings281,282. I hypothesise that 

inflammatory stress of sufficient magnitude, in individuals rendered susceptible via 

their resolution phenotype, may trigger higher and persistent amounts of initial-phase 

eicosanoids with concomitant failure of SPM generation, resulting in both injurious 

and failed resolution (see Figure f1.4). Such dysregulation of lipid mediator synthesis 

may both exacerbate the acute systemic inflammatory response (SIRS) and 

subsequently contribute mechanistically to late-phase CIIID141. 
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Figure f1.4: Proposed dysregulation of resolution-phase lipid mediators in critical illness. 

Solid lines indicate the normal inflammatory profile, with an early rise in cyclooxygenase 

(COX)-derived prostaglandins (PGs) and 5-lipoxygenase-derived leukotriene B4, which 

trigger a subsequent rise in specialized proresolving lipid mediators (SPMs) including lipoxins, 

resolvins, and protectins. Dashed lines display the altered profile of eicosanoids in critical 

illness-induced immune dysfunction, with persistence of early-phase lipid mediators that exert 

negative immunomodulatory effects and a paucity or relative insufficiency of SPMs, which 

non-phlogistically augment several key resolution pathways including bacterial clearance. The 

combination of this dual defect contributes to vulnerability to hospital-acquired infection. 

Identification of aberrant eicosanoid profiles in critically ill patients may allow their therapeutic 

correction or antagonism to ameliorate effector cell functional impairment as indicated by the 

dotted lines. Reproduced with permission from Fullerton et al189. 
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1.4 Hypothesis 

Prostaglandin E2 mechanistically contributes to critical-illness induced immune 

dysfunction and represents both a predictive biomarker and potential therapeutic 

target. 

1.5 Aims 

In order to address this hypothesis I intend to: 

a) Conduct a scoping systematic review exploring the clinical literature for 

evidence of either a beneficial or detrimental effect of non-steroidal anti-

inflammatory drugs (NSAIDs, including aspirin) in acute infection. This will 

include both altered incidence, presentation or progression of infection in 

those taking NSAIDs for alternate indications, and their ability to modify 

outcomes from infection when prescribed acutely. 

b) Characterise the effect of PGE2 in clinically validated assays of immune 

dysfunction, describing novel bioassays that determine this lipid mediator’s 

contribution to observed alterations in pre-clinical and clinical samples. 

c) Employ intravenous endotoxemia to elucidate the time-course of immune 

dysfunction and the plasma lipid mediator profile elicited by systemic 

inflammation in humans. Ex-vivo assays characterised in b) will be employed 

to quantify the functional contribution of PGE2 to observed changes. 

 

1.6 Expected Outcome 

Implication of PGE2 as a key driver of immune dysfunction in critically ill patients 

experiencing excessive dysregulated inflammation, with consequent identification of 

a novel pathway through which to restore immune competence and reduce 

acquisition of nosocomial infection. 

  



 41 

CHAPTER 2: General Materials and Methods 
 

2.1 Human Blood 

2.2 Mono Mac 6 Cell Line 

2.3 Assays 

2.4 Flow Cytometry 

2.5 Intravenous Endotoxemia 

2.6 Statistical Analysis 

2.7 Ethical Approval 

 

Publications: 

 

Fullerton JN, Segre E, De Maeyer RPH, Maini AAN and Gilroy DW. Intravenous 

endotoxin challenge in healthy humans: An experimental platform to investigate and 

modulate systemic inflammation. Journal of Visualised Experimentation. In Press 

 

 

 

 

 

 

 

 

 

 

  



 42 

2.1 Human Blood 

Whole blood, primary cells (peripheral blood mononuclear cells [PBMCs], monocyte-

derived macrophages [MDMs]) and both plasma and serum were obtained from 

healthy, consenting male and female volunteers (aged 21 - 50 years). 

2.1.1 Human Plasma and Serum 

Whole blood was obtained from the median cubital vein using a 20g butterfly needle 

and aseptic non-touch technique (ANTT). BD Vacutainer® tubes pre-filled with 

different anti-coagulants (ethylenediaminetetraacetic acid [EDTA], lithium and sodium 

heparin [LH, 17 IU/mL] and sodium citrate [0.129M]) were employed to collect 

plasma. After repeated inversion tubes were immediately centrifuged 

(2000g/10mins/20°C) and the layer of platelet rich plasma aspirated and stored at -

80°C. Serum was obtained via BD Vacutainer® serum separator tubes (SST). After 

repeated inversion tubes were left on the bench top for 30mins to allow clotting. They 

were subsequently centrifuged (2000g/10mins/20°C) and serum removed via pipette 

and stored as above. 

2.1.2 Peripheral Blood Monocyte-Derived Macrophage Isolation (1) 

Different techniques may be employed to isolate cell sub-populations from total blood 

leukocytes. The overall aim is to maximise recovery (yield), viability, and functionality 

of cells to ensure downstream assay consistency and reliability. Broadly, PBMC may 

be separated via either their physical characteristics – most commonly by density-

gradient centrifugation and/or adherence to different substances – or their cell 

surface marker profile. The latter may employ positive (selecting for markers 

associated with the sub-population e.g. using fluorescence-activated cell sorting) or 

negative (removing cells possessing lineage markers inconsistent with the desired 

population e.g. antibody-bound magnetic beads) selection. Isolated cells may be then 

be further sub-divided using the above methods (in combination) or via incubation 

with reagents known to cause a shift in the phenotypic or maturation profile. 

Techniques involving separation by physical characteristics, whilst less specific than 

antibody-dependent methodologies, are felt to preserve the in vivo functional state, 

being less likely to ‘activate’ the target cell population or have off-target effects. 

Consequently this strategy was employed initially.  

Monocytes were isolated from heparinized venous blood (5U/mL) by density-gradient 

centrifugation (800g/30mins/20°C/no brake) with Lymphoprep (Axis-Shield). The 

isolated PBMC layer was extracted, washed twice in sterile phosphate buffered 

saline (PBS, Gibco, Grand Island NY), and re-suspended in RPMI 1640 (Gibco).  
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10mL 5x106 cells/mL cell suspension was plated onto sterile 8cm2 tissue-culture 

plates (Nunc™), incubated for 2 hours (37°C/5% CO2) before being washed with 

PBS to remove non-adherent cells, and adherent cells re-covered with 10mL RPMI 

1640 (Gibco, Grand Island, NY) supplemented with 1% Penicillin/Streptomycin 

(Gibco) and 10% fetal calf serum (FCS, Invitrogen™) and incubated for four days 

(37°C/5% CO2) to allow differentiation. Adherent cells (MDMs) were scraped, 

centrifuged (250g/5mins/20°C) and re-suspended in 1mL X-Vivo (Lonza, UK) prior to 

counting. MDMs were diluted in X-Vivo to a concentration of 1x106cells/mL, plated in 

sterile 96-well (Corning®Costar®) tissue culture plates at 100,000 cells/well (in 100µL) 

and incubated overnight (37°C/5% CO2). The following day all media was aspirated 

and replaced in preparation for reagent addition. Protocol adapted from Smith and 

co-workers283. 

Yield and cell purity was assessed via microscopic examination of morphology, vital 

dye exclusion (2.1.6) and flow cytometry (2.4). Whilst acquired cells were responsive 

to stimulation (5.2.2), MDM yield was variably between 2 and 30x106 MDM from 

200mL of blood rendering experimental planning challenging (~1x107 cells required 

per 96-well plate at 100,000 cells/well). Yield was both inter and intra-volunteer 

dependent. Additionally, purity of the acquired MDM population was inconsistent and 

frequently well below the accepted cut-off of 95%: CD14+ cells 

(monocytes/macrophages) comprising 25-50% of acquired cells, the remainder being 

predominantly CD3+ or CD19+ (T or B-cells respectively). In light of these 

considerations an alternate methodology, employing both physical characteristic and 

antibody-mediated selection, for acquiring MDM was trialled. 

2.1.3 Peripheral Blood Monocyte-Derived Macrophage Isolation (2) 

100mL of blood taken in EDTA-coated Vacutainers® was stained with 12.5uL/mL of 

RosetteSep™ Human Monocyte Enrichment Cocktail (StemCell Technologies, 

Cambridge, UK) for 20min under constant agitation. RosetteSep™ represents a 

specific antibody cocktail (CD2, CD3, CD8, CD19, CD56, CD66b, CD123 and 

glycophorin A) that crosslinks un-wanted cells to erythrocytes to form 

immunorosettes, facilitating purification via negative selection. Monocytes were 

isolated by density-gradient centrifugation (1000g/40mins/20°C/no brake) with Ficoll-

Paque™ (GE Healthcare), the cell layer being aspirated via pipette, transferred to a 

new vial, and centrifuged (300g/10min/10°C). Cells were re-suspended in ACK lysis 

buffer (2.1.5) to remove residual erythrocyte contamination, washed twice in 30mL 

HBSS and centrifuged at 120g (10mins/20°C) to reduce platelet contamination. After 

counting (2.1.6) monocytes were plated at 4million cells/well in complete X-Vivo 15 
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medium (10% pooled human serum) in a 6-well polystyrene plate and allowed to 

adhere over 2hours, prior to medium aspiration and replacement to reduce 

lymphocyte contamination. Media was supplemented with 20ng/mL macrophage-

colony stimulating factor (M-CSF) and cells incubated (37°C/5% CO2) with media 

replacement every 3days to allow differentiation. 

After 6days media was aspirated and replaced with 4mg/ml lidocaine and 10mM 

EDTA in PBS and incubated for 20mins (37°C/5% CO2) prior to gentle scraping to 

obtain monocyte-derived macrophages. After washing twice in HBSS, cells were 

assessed for purity, counted and seeded in 96 well tissue culture-treated plates 

(Corning CoStar, Corning, NY) at 50,000 cells/well in 50µL complete X-Vivo 15 

supplemented with 20ng/mL M-CSF. After incubation overnight cells were stimulated 

as per desired experimental conditions. 

This technique was found to exhibit greater consistency of yield (~10x106 cells from 

100mL blood) and purity (MDM routinely exceeding 98%), as indicated above. 

Viability was universally >95%. 

2.1.4 Peripheral Blood Mononuclear Cell Isolation 

20mL whole blood (BD EDTA Vacutainer®) was layered over SepMate 50™ tubes 

(Stemcell Technologies™, Cambridge, UK) pre-filled with 15mls of density gradient 

medium (Ficoll-Paque™), topped up to 50mls total volume with Hank’s Balanced Salt 

Solution (HBSS, Gibco) and centrifuged at 1200g (10min/20°C/high break). The 

resultant PBMC-enriched supernatant was rapidly decanted into a second tube, 

topped up to 50mL with HBSS to wash the cells, and spun as previously to leave a 

pellet of purified PBMC. Residual erythrocyte contamination was, if required, reduced 

via ACK lysis (as per 2.1.5). 

2.1.5 Ammonium-Chloride-Potassium Erythrocyte Lysis 

Leukocytes were isolated from whole blood via the addition of Ammonium-Chloride-

Potassium (ACK) lysis buffer. EDTA anti-coagulated blood or previously isolated cell 

populations with residual erythrocyte contamination were mixed at a ratio of 1 part to 

9 parts ACK lysis buffer and allowed to stand until transparent (~10min) before 

centrifugation (300g/5mins/20°C). The resultant leukocyte pellet was washed twice in 

an appropriate buffered salt solution prior to analysis. 

2.1.6 Cell Counting and Viability 

Vital dye exclusion method was employed to determine overall leukocyte or isolated 

cell population number, live cell count and percentage cell viability. Cells were re-

suspended in a known volume, and either with or without an optional dilution step 
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(e.g. 100:1, 10:1) dependant on expected number, mixed 1:1 with 0.4 % Trypan Blue 

(Sigma). The cell/dye suspension was added to a cell counting chamber and 

evaluated using a Countess™ automated cell counter (Invitrogen™). 

2.2 Mono Mac 6 Cell Line 

Mono Mac 6 (MM6) were obtained as a frozen culture from the Leibniz Institute 

DSMZ-German Collection of Microorganisms and Cell Cultures (Germany). 

MM6 are a human cell line established from the peripheral blood of a 64-year-old 

man with relapsed acute monocytic leukemia (AML FAB M5) following myeloid 

metaplasia284. Morphologically they are single, round/multiformed cells or small 

clusters of cells in suspension that are occasionally loosely adherent. 1-5% are giant 

cells. Cell surface marker expression has been reported as CD3 -, CD4 -, CD13 +, 

CD14 +, CD15 +, CD19 -, CD33 +, CD34 -, cyCD68 +284. CD14 expression is highly 

dependent on cultivation conditions285. 

2.2.1 Culture Conditions 

Mono Mac 6 cells were cultured under LPS free conditions in RPMI 1640 (Gibco) 

containing 10% FCS (invitrogen™), 200U/mL penicillin (Gibco), 200µg/mL 

streptomycin (Gibco), 2mM L-glutamine, 1mM sodium pyruvate (Gibco), 1mM 

oxaloacetic acid (Sigma), 1x MEM non-essential amino acids (Gibco) and 9 µg/mL 

human insulin (Sigma) in accordance with standard practice284. After addition of the 

aforementioned supplements, the medium was ultra-filtered and stored at 4°C.  

After removal of MM6 from cryostorage cells were cultured initially for 1 week in 

culture medium alone in 24 well plates (Orange Scientific, Belgium) at a density of 

2x105cells/mL (2mL/well) and passaged every 48hours. Doubling time was initially, 

40-50hours decreasing to 30-40hours, with cell viability increasing from 86-88% to 

≥95%. MM6 were subsequently maintained in T75 flasks (25mL media), passaged 

every 48hrs with seeding at 2x105cells/mL (5x106/flask). Morphology was regularly 

monitored microscopically (Figure f2.1) to evaluate for any apparent shift in 

phenotype (increased giant cells, increased multinucleated cells), clumping 

(reflecting potential LPS contamination) and/or clouding of the media (indicative of 

bacterial/fungal contamination). All tissue culture was carried out in sterile conditions 

with mycoplasma contamination evaluated for. Experiments were carried out 

between passage 4 and passage 30. Significant deviation in cytokine production in 

control conditions from the established, expected range (1000-2000pg/mL TNFα in 

response to LPS 100ng/mL), or decreased percentage viability on routine passage 
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(<95%) led to discarding of the cells and re-instatement of the line from a frozen 

aliquot 

2.2.2 Differentiation of Mono Mac 6 Cells 

MM6 may be further differentiated via incubation with various ligands to induce 

distinct cellular phenotypes and responses to stimuli285,286. These reagents aim to 

transform the relatively immature MM6287 into cells with characteristics that resemble 

mature monocytes or macrophages288.  

Three different methods of differentiation were selected from the previous published 

literature: incubation with phorbol 12-myristate 13-acetate (PMA, Sigma, 10ng/mL)285, 

M-CSF, (Sigma, 20ng/mL) or 1α, 25 dihydroxycholecalciferol (VD3, dihydroxyvitamin 

D3, calcitriol, Sigma, 10ng/mL)288. MM6 were cultured with these reagents in T75 

flasks (25mL) seeded at 2x105 for either 48 or 72hours, scraped to ensure collection 

of newly adherent cells, washed, re-suspended in media alone to a density of 2x106 

and plated in 96-well plates at 1x105 cells/well (50μL media) prior to stimulation. 

Viability (2.1.6) after co-incubation did not vary between reagents (exceeding 95%). 

 

Figure f2.1. Photographs of MM6 taken via simple light microscopy (20X). Left Panel: ‘un-

differentiated’ MM6 incubated in standard cell culture media alone. Right Panel: MM6 

following incubation with PMA 10ng/mL for 48hrs. VD3 (10ng/mL) treated cells additionally 

demonstrated increased clustering (to a lesser degree) without clear morphological alteration. 

2.3 Assays 

2.3.1 Single-Analyte Enzyme Linked Immunosorbent Assay 

The concentration of the cytokines TNF-α, IL-6 and IL-1β and PGE2 in cell culture 

supernatants and patient plasma was measured via enzyme-linked immunosorbent 

assay (ELISA). Pre-validated kits employing the ‘sandwich’ principle of analyte-

specific capture and biotinylated detection antibodies were obtained from R&D 

systems (USA, Duoset system) for the evaluation of TNF-α and from eBioscience 
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(USA, Ready-SET-Go! system) for IL-6 and IL-1β, and conducted on half-volume 

(50μL) 96 well Corning CoStar high-binding, clear flat bottom polystyrene plates. 

Light absorbance of the streptavidin-horse radish peroxidase (HRP) catalysed 

breakdown of 3,3’,5,5’-tetramethylbenzidine (TMB) was measured at 450nM against 

a reference wavelength of 595nM on a Tecan® GENios™ microplate 

spectrofluorometer and sample values interpolated from a standard curve of known 

antigen concentration on a plate by plate basis (Figure f2.2). Supernatants and 

plasma samples were thoroughly thawed and diluted in reagent diluent (PBS 

containing 5% bovine serum albumin) prior to addition to ensure working 

concentrations in the centre of the standard curve (1:2 MM6, 1:10 MDM, 1:10 whole 

blood) and the HRP-TMB reaction stopped via the addition of 1M sulphuric acid.  

 

Figure f2.2. Example linearized standard curve generated during TNFα ELISA. A solution of 

known concentration (1ng/mL) of TNFα was made up and serial dilutions plated in duplicate. 

The logged average absorbance (optical density) of these wells (minus the mean zero 

standard) was then plotted against the log concentration. Linear regression was employed to 

draw a line of best fit and extrapolate unknown sample values. A minimum goodness of fit 

(R2) was considered >0.98. 

PGE2 concentration in biological fluids was determined using a R&D Systems 

Parameter™ Kit (Abingdon, Oxford). This assay relies on the forward sequential 

competitive binding technique whereby PGE2 in a sample competes with HRP-

labelled PGE2 for a limited number of binding sites on a mouse monoclonal antibody. 

As sample is added to the pre-coated wells first, absorbance intensity is inversely 

proportional to the concentration of PGE2 in the sample. As above, unknown 

concentrations was determined via comparison to known concentrations.  
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Figure f2.3. Example standard curve generated during PGE2 ELISA. A solution of known 

concentration (2.5ng/mL) of PGE2 was made up and serial dilutions plated in duplicate. The 

mean reading for each standard, control and sample was calculated and the average non-

specific binding optical density subtracted. The % B/B0 was calculated by dividing mean 

readings for samples or standards (B) by the zero standard (B0, 0pg/mL) and multiplying by 

100. This value was then plotted against the log PGE2 concentration and four parameter 

logistic (4PL) regression employed to draw a curve of best fit and extrapolate unknown 

sample values. A minimum goodness of fit (R2) was considered >0.98. 

2.3.2 Multiplex Cytokine Array 

Concurrent evaluation of 10 cytokines known to be involved with the inflammatory 

response and immune regulation was undertaken via a high-sensitivity 

electrochemiluminescence assay on select plasma samples and supernatants from 

LPS-stimulated whole blood (2.3.3) derived from healthy volunteers undergoing IV 

endotoxemia (2.5). Briefly, after defrosting, samples were diluted 1:40 in RPMI, prior 

to placement on a Meso Scale Discovery (MSD®) V-PLEX™ Proinflammatory Panel 

1 Kit coated with anti-human antibodies for IFN-γ, IL-10, IL-12p70, IL-13, IL-1β, IL-2, 

IL-4, IL-6, IL-8, and TNF-α, and incubated according to manufacturer instructions. 

After the addition of detection antibodies specific for the same analytes, plates were 

read using a MSD® QuickPlex SQ 120 imager (Institute of Child Health, UCL) to 

determine individual cytokine concentrations. 

2.3.3 Whole Blood Cytokine Secretion 

Unless otherwise stated, heparinized whole blood (Grenier Bio-One Vacuette® 9ml 

LH) was diluted 1:5 in RPMI (Gibco) in 15ml Falcon™ conical centrifuge tubes 

(Fisher Scientific, Pennsylvania, USA) and stimulated for 6hrs (37°C, 250rpm) with 

1ng/ml LPS (Salmonella abortus equi S-form [TLRgrade™], Enzo Life Sciences®), 

as per Kox and co-workers220. Additional reagents were added as determined by 
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experimental conditions. After incubation samples were centrifuged 

(2000g/10mins/20°C) and supernatant stored at -80°C prior to analysis. 

2.3.4 Mass Spectroscopic Assessment of Plasma Lipid Concentrations 

Assessment of 64 known lipid mediator precursors, lipid mediators and their 

metabolites (Table t2.1) in plasma was undertaken by electrospray ionisation, liquid 

chromatography mass spectrometry (ESI/LC-MS) by Ambiotis (Toulouse, France). 

Plasma (EDTA BD Vactainer®) was centrifuged (2000g/10mins/20°C) and 3mL 

aliquots immediately made in glass vials pre-filled will 100mM butylated 

hydroxytoluene (BHT). These were stored at -80°C prior to analysis. 
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1 6-keto-PGF1a 33 RvD5 

2 TxB2 34 RvD6 

3 PGF2alpha 35 AT-RvD1  

4 PGE2 36 PD1  

5 PGD2 37 10S,17S-diHDHA (PDx) 

6 8-iso-PGF2a 38 AT-PD1 

7 PGE3 39 Maresin 1 

8 11 HDHA 40 7S,14S-diHDHA 

9 13 HDHA 41 RvE1   

10 10 HDHA 42 RvE2 

11 17 HDHA 43 RvE3  

12 14 HDHA 44 LXA4  

13 7 HDHA 45 LXB4  

14 4 HDHA 46 5S,15S-diHETE  

15 12 HETE 47 AT-LXA4  

16 20 HETE 48 LTB4  

17 5 HETE 49 20-OH-LTB4  

18 8 HETE 50 tetranor-PGEM 

19 11 HETE 51 tetranor-PGAM 

20 15 HETE 52 2,3-dinor-8-iso-PGF2a 

21 8 HEPE 53 2,3-Dinor-TxB2 

22 11 HEPE 54 2,3-dinor-6-keto-PGF1a 

23 15 HEPE 55 11-dehydro-2,3-dinor-TxB2  

24 5 OXOETE 56 11-dehydro-TxB2 

25 18 HEPE 57 15-keto-PGE2 

26 5 HEPE 58 13,14-Dihydro-15-keto-PGE2 

27 12 HEPE 59 13,14-Dihydro-15-keto-PGA2 

28 9 HODE 60 15-deoxy-delta-12,14-prostaglandin J2 

29 13 HODE 61 5,6-EET 

30 RvD1   62 8,9-EET 

31 RvD2 63 11,12-EET 

32 RvD3 64 14,15-EET 

 

Table t2.1: Lipid mediator precursor, lipid mediator and metabolite concentrations determined 

by Ambiotis (France) using ESI/LC-MS. Cytochrome 450 derived lipids (italicised) were 

deemed more technically challenging to measure and hence to be quantified only if deemed 

feasible after quality control. 
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2.4 Flow Cytometry 

2.4.1 Sample Collection 

Isolated leukocyte cell populations from whole blood (all constituents, PBMC) or cell 

culture (MDM, MM6) were, where appropriate, depleted of erythrocyte contamination 

by ACK lysis buffer and re-suspended in flow cytometry buffer (FACS buffer: 5% FBS 

in PBS), counted, and aliquots of between 0.2-1x106cells/condition made in flow 

cytometry tubes or ‘v’ shaped plates. If ACK lysis buffer were employed cells were 

washed twice with flow cytometry wash buffer (FACS wash: FACS buffer with 2mM 

EDTA).  

2.4.2 Antibodies 

Working dilutions of each antibody were either established previously by the host 

laboratory by titration and assessment of expression of cell surface markers on 

circulating leukocytes or taken from the manufacturers literature. The list of 

antibodies used, including information on the fluorescent conjugate, clone, 

manufacturer, concentration employed, and whether an intra [I] or extra-cellular 

target [I] are given in Table t2.2. All antibodies employed were directly conjugated. 

Panels from this set were designed dependent upon experimental question with 

reference to spectral overlap and relative expression on target populations. 

FluoroFinder® was employed to aid panel setup and verification. 

2.4.3 Cell Surface Staining 

In order to reduce nonspecific binding cells were first incubated in Human TruStain 

FcX (Biolegend) (15mins, 4°C) to block Fc receptors. Cells were then centrifuged 

(500g/3mins/4°C), washed in FACS wash, re-spun and the pellet re-suspended in the 

volume of FACS buffer required to render the end volume of the cell/buffer/antibody 

mix 100μl. Selected antibodies targeted at cell surface antigens were then added as 

a pre-created cocktail (‘master mix’) and kept at 4oC for 30 minutes in the dark. After 

incubation, 50µL wash buffer was added to the mixture before centrifugation 

(500g/3mins/4oC). Cells were washed twice more by adding 100µL wash buffer and 

repeating the spin. If intra-cellular staining was not planned cells were re-suspended 

in 150µL FACS Buffer and 150µL fixative (0.1% paraformaldehyde in PBS) added 

prior to transfer to a 1mL microtube for analysis. 
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Target Fluorochrome Clone Manufacturer Stock [] 
(µg/ml) 

V 
(µl/sample) 

CD11b [E] PerCP-Cy5 ICRF44 Biolegend NS 1.25μl 

CD14 [E] AF700 MSE2 BDPharm 500μg/ml 2.5μl 

CD16 [E] APC 3G8 Biolegend 150μg/ml 1μl 

CD16 [E] PE/Cy7 3G8 Biolegend 200μg/ml 1.25μl 

CD33 [E] PE WM53 Serotec 1mg/ml 5μl 

EP2 [I] PE Poly Abcam 100μg/ml 3μl 

EP4 [I] APC Poly Abcam 100μg/ml 3μl 

HLA-DR [E] APC-H7 G46-6 BDPharm NS 2.5μl 

HLA-DR [E] BV421 L243 Biolegend 25μg/ml 1.25μl 

CD3 [E] FITC HIT3a Biolegend 200μg/ml 1.25μl 

CD19 [E] FITC HIB19 Biolegend 400μg/ml 1.25μl 

CD20 [E] FITC 2H7 Biolegend 100μg/ml 1.25μl 

CD56 [E] FITC MEM-188 Biolegend 400μg/ml 1.25μl 

CD66b FITC G10F5 Biolegend 300μg/ml 1.25μl 

CD88 [E] PE/Cy7 S5/1 Biolegend 200μg/ml 2.5μl 

 
Table t2.2: Antibodies employed. Target designates the cellular protein to which the 

antibody binds. [E]/[C] denotes whether the antibodies target epitope is located extra-

cellularly ([E]) or intracellularly ([C], thus requiring permeabilisation). The fluorochromes give 

the labels a recognisable property for flow cytometry. The clones refer to the B cell clone from 

which these monoclonal antibodies have been obtained. It is advisable to use only one clone 

throughout to avoid any differences in binding affinity and eventually output signal.  

 

2.4.4 Permeabilisation and Intra-Cellular Staining 

To achieve intra-cellular staining, cells washed of excess extra-cellular antibodies 

were permeabilised via re-suspension in BD Bioscience Cytofix/Cytoperm® solution 

(100μL) for 20mins at 4°C. Cells were subsequently washed twice with, and then re-

suspended in BD Perm/Wash® solution, and fluorochrome-conjugated antibodies 

targeted at intra-cellular epitopes added to create a total volume of 100μL. This 

mixture was incubated for a further 30mins (4°C/dark). Cells were subsequently 

washed twice prior to re-supension in FACS buffer, transfer to a microtube and made 

up to a volume of 300μL.  
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2.4.5 Compensation and Isotype Control  

Where necessary, compensation controls were established for each fluorochrome 

used in the antibody mix to control for spectral overlap. BD CompBeads® were 

employed as they bind to all antibodies with uniform efficiency. Compensation 

controls were prepared by mixing 60μL of positive beads, 60μL of negative beads 

and the appropriate volume of antibody. The mixture was incubated for 30mins 

(4°C/dark). Stained beads were washed three times with 1mL of FACS wash with 

centrifugation at 800g (5mins/4°C). Following the final wash step, supernatant was 

discarded and the stained bead pellet re-suspended in 300μL PBS and transferred to 

a FACS tube. Compensation between fluorochromes was calculated automatically by 

the BD FACS Diva software. A maximum tolerance of 30% spectral overlap was 

allowed between fluorochromes. 

Isotype controls are employed to help identify and discount non-specific binding 

(NSB). Here either the fraction-antigen binding (Fab) portion of a fluorochrome 

tagged antibody binds to a low affinity, non-specific target on the cell surface (or 

intracellular target if membrane integrity is compromised) or the fraction crystallisable 

(Fc) portion binds to Fc-receptors (FcR) expressed on certain cell types. Without 

appropriate controls this cell may be falsely identified as positive for the surface 

marker associated with the fluorochrome, being indistinguishable from one 

expressing the target epitope and specifically bound by the antibody-fluorochrome 

conjugate. Isotype controls are ideally antibodies from the same species and clone, 

with the same heavy chain, light chain, fluorochrome and F:P ratio (fluorescent 

molecules per antibody) as the antibody-conjugate to be employed but targeting a 

protein not found on the cell surface. Cells may then be incubated with this isotype 

and those binding it (inevitably non-specifically) may then be excluded from analysis 

leaving true-positives only. 

Unfortunately several problems exist with the control: availability of isotype controls 

for each selected antibody-fluorochrome conjugate, cross-reactivity to a similar 

epitope on a different antigen, cost, requirement for additional cells from often limited 

samples etc. These are discussed in full here289, and have lead to the adoption of 

alternate strategies to combat NSB. These include: titration of reagents to ensure 

high signal in bright populations while reducing spread in negative populations, 

employment of Fc-block, ensuring high and consistent cell viability (reducing 

‘stickiness’ associated with necrosis/apoptosis) and use of FMOs to determine 

positivity. Given the complexity of the panels employed and these valid concerns a 
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strategy of pre-experimental optimisation, viability confirmation and Fc-block was 

selected as opposed to use of individual isotype controls. 

2.4.6 Data Gathering and Analysis 

Samples were analysed using the LSR FortessaTM flow cytometer (BD Bioscience, 

USA) either on the same day as staining if permeabilisation had been performed or 

within 48hours of fixation if not. 

Data were analysed using FlowJo software (FlowJo v7.6.1, Tree Star Inc., USA). Cell 

populations were identified using dot plots based on size (from forward scatter, FSC), 

granularity (from side scatter, SSC) and fluorescence. A gating strategy was adapted 

from previous data obtained by the host laboratory to identify individual cell 

populations. Cells positive for a marker were identified by performing fluorescence-

minus-one (FMO) controls, made up of cells stained using an antibody mixture 

containing the entire panel except for one. Populations are labelled according to 

relative fluorescence intensity, indicated by superscript text i.e. xhi or x+/++ for high 

expression and xlo or x- for low or no expression. 

Identified populations are given as a percentage of the total cell number (linear scale, 

mean ± SD) and as absolute cell numbers (logarithmic scale, median ± interquartile 

range). Differences between time points, differentiation and stimulation conditions are 

assessed where possible by paired Student’s t tests for the percentage of total cells, 

or by Wilcoxon matched pairs tests for absolute cell numbers. Median fluorescence 

intensity (MFI) is given in arbitrary units (logarithmic scale, median ± interquartile 

range) as this value varies between cytometers and used settings. 
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2.5 Intravenous Endotoxemia 

2.5.1 Participants, Inclusion and Exclusion Criteria 

Healthy, non-smoking male volunteers aged between 18 to 50 were advertised for 

via word of mouth and internal UCL email. After providing informed written consent 

potential participants were invited to participate in a ‘health screen’ to minimise risk 

from undergoing intravenous (IV) endotoxemia. Screening consisted of a full medical 

history, clinical examination of the cardiovascular and respiratory systems, routine 

clinical observations (blood pressure, pulse oximetry, heart rate, [Carescape V100, 

Dinamap, GE Healthcare] respiratory rate, temperature [Thermscan Pro 4000, Braun 

Welch Allyn]), 12-lead electrocardiogram (ECG) and core heamatology and 

biochemistry investigations (full blood count, urea and electrolytes, liver function 

tests, C-reactive protein, bone profile, magnesium: all The Doctor’s Laboratory, 

London, UK). Exclusion criteria included acute or chronic illness, regular prescribed 

medication use or current over-the counter NSAID use, abnormal physical 

examination, electrocardiogram or blood results (deemed to increase the liklihood of 

adverse events), drug or alcohol misuse, and recent vaccination or transfusion within 

1month. Abnormal results were reported to the participant’s general practitioner. 

Individuals were paid £200 for completion of all elements of the study protocol. 

2.5.2 Elicitation of Systemic Inflammation 

Clinical Centre Reference Endotoxin (CCRE, E.coli O:113 EC-6) was made freely 

available by the National Institutes of Health (NIH), Bethsheda, USA. CCRE is 

manufactured to Good Medicinal Practice standards and undergoes regular testing 

for safety, stability and efficacy by the NIH. It is supplied in single use sterile glass 

vials as a white lyophillised powder, each vials containing 10,000 endotoxin units 

(EU) (approximately 1μg). 

Participants were asked to refrain from food from midnight prior to intravenous (IV) 

endotoxin injection and alcohol and caffeine for the 24hours before the start of the 

experiment. After confirmation of consent and health status participants were asked 

to lie on a bed, the head placed initially at 45° whilst two IV cannulae were inserted: a 

20G in the dorsum of the non-dominant hand for endotoxin administration and an 

18G in the opposite ante-cubital fossa. A 3-way tap was attached to this second 

cannula to allow fluid administration and repeated blood draw. 

CCRE was re-constituted with 5ml sterile water for injection using full ANTT and 

agitated for a minimum of 1hour to generate a 2000EU/ml / 200ng/ml solution. A 

dose of 2ng/kg was subsequently injected IV as a bolus over 2minutes with a 
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subsequent flush of 10mls of 0.9% sodium chloride to elicit systemic inflammation. 

After administration of CCRE an infusion of Hartmann’s Solution (Baxter™, UK)was 

commened at a rate of 500ml/hour for two hours, then 166mls/hr for the following six 

hours to avoid dehydration and minimise the risk of endotoxin-associated cardiac 

arhythmias. 

All elements of the study were conducted in the UCL/University College London 

Hospital Clinical Research Facility (CRF). Two clinically qualified members of the 

research team were allocated to each procedure, one always attending the 

participant. 

2.5.3 Clinical Monitoring and Sample Schedule 

Participants were monitored for 8 hours post-injection. Clinical observations (as per 

health screen) were undertaken hourly. Participants were additionally asked to score 

symptom severity on visual analogue scales rating nausea, shivering, muscle ache, 

and headache with the option of adding additional symptoms.  

Blood was drawn at baseline (cannula insertion, prior to CCRE injection), 1hour, 1.5, 

2, 3, 4, 6, and 8hours post-injection. At each time point 5mLs of blood was drawn and 

discarded prior to sample collection to negate dead space. Mid-stream urine samples 

were collected at baseline, 2, 4 and 8hours post-injection. At eight hours post-

injection, following final sample draw and provided clinical observations were either 

trending towards or back at baseline, lines were removed and vital sign monitoring 

ceased (Figure f2.4). 

Blood and urine were additionally collected at 24, 48, 72, 96hours, day 7 and day 14 

post-endotoxin injection. All samples were processed according to standard-

operating procedures as detailed above. The full schedule of analysis is provided in 

Chapter 6. 
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Figure f2.4: Schematic Representation of the IV Endotoxemia Protocol. Key procedures, 

interventions, monitoring and sampling time-points are illustrated.  

2.6 Statistical analysis  

2.6.1 Cell Culture and Ex Vivo Experiments 

Various conventions for presenting n-values from cultured cell experiments exist. 

Unfortunately, no method is accepted and the majority of publications provide 

insufficient information to know how n-values have been calculated and what 

constitutes ‘separate experiments’. Truly independent experiments may be 

considered those performed on separate days with fresh, newly reconstituted 

reagents290. When using primary cells it is desirable to perform experiments in 

separate donors, on separate days, with new drugs for each experiment. Where 

immortal cell lines, such as MM6, are employed which are clones and therefore 

cannot provide repeats with genetically different cells, it is important to perform 

experiments multiple times using different passages with newly generated reagents. 

However, practically this is not always possible and where donors and or/samples 

are limited, different techniques must be used to satisfy the scientific need for 

experimental repeats. 

When undertaking the whole blood cytokine secretion assay blood was taken from 3-

10 individuals (dependent upon experiment) selected by availability from a pool of 18 

consenting healthy volunteers (72.2% male, mean age 32). Three separate 

tubes/individual/time point or condition were stimulated and supernatant from each of 

these assayed (ELISA) in duplicate, the mean of all values (6) taken as the overall 

reading. N was considered equivalent to the number of individual volunteers, 

enabling repeated-measures statistical analysis. This practice is in accordance with 
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previously published literature291. Experiments involving the MM6 cell line were 

undertaken in 96 well plates. In general, each condition was replicated in four wells 

on two or three separate experimental days involving separate drugs and passage, 

cells being drawn from one on-going culture. Supernatants were assayed (ELISA) in 

duplicate or triplicate. Data points represent the mean value of technical repeats (8-

12), n reflecting the number of biological (experimental) repeats. When plasma was 

employed figure legends indicate whether this was obtained from one or multiple 

individuals.  

2.6.2 IV Endotoxemia 

10 individuals were recruited. All physiological and haematological values were 

obtained from one reading/individual/time-point. Mean data from all 10 volunteers is 

presented. Cytokine profiles were obtained from the multiplex MSD array performed 

in duplicate, values for each individual representing the average of these. Data from 

bioassays represent either a) whole blood cytokine release: one tube/time-point or 

condition, each supernatant assayed (ELISA) in duplicate or b) MM6: plasma placed 

into four wells (96-well plate) with or without additional reagents, each supernatant 

assayed (ELISA) once. Individual values represent the average of ELISA values and 

n = 10 for all assays unless otherwise stated. 

2.6.3 Software and Definitions 

Statistical analysis was performed using GraphPad Prism 6 (GraphPad Software 

Inc., La Jolla, CA). Differences were considered statistically significant at *P<0.05, 

**P<0.01, ***P<0.001 and ****P<0.0001, or non-significant (ns).  

2.7 Ethical Approval 

Ethical approval for the conduct of all studies on human volunteers was sought from 

the University College London Research Ethics Committee. Two separate 

applications were made: ‘The effect of inflammation on local and systemic immune 

function’, UCL Project ID 5060/001, covering the IV endotoxin model (Chapter 6) and 

‘LPS-stimulated whole blood cytokine release: comparison of different 

methodologies’ UCL Project ID 4332/001, covering the whole blood cytokine 

secretion assay (Chapter 4). Both are attached as appendices to the thesis. 

Additional permission was gained from the UCL/UCLH Joint Research Office and the 

CRF Adoption Committee. 
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CHAPTER 3: Systematic Review 
 

DO NON-STEROIDAL ANTI-INFLAMMATORY DRUGS ALTER PREDISPOSITION 

TO OR OUTCOME FROM ACUTE INFECTION? A SYSTEMATIC REVIEW OF THE 

CLINICAL LITERATURE 

 

3.1 Introduction 

3.2 Additional Methods 

3.3 Results 

3.4 Discussion 

3.5 Summary 

3.6 Appendix 

 
 

The following literature review was conducted in conjunction with James Bott and 

Noam Roth, UCL Medical School Students, as part of an Acamedics Project 

supervised by Dr James Fullerton. JB and NR performed the literature search, 

reviewed the papers and extracted data. JNF conceived the review, analysed and 

interpreted the data and drafted the chapter. 
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3.1 INTRODUCTION 

Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most commonly 

administered medications globally, an estimated 30 million people using them every 

day292,293. Exhibiting analgesic, anti-inflammatory and anti-pyretic properties clinically, 

they form part of the World Health Organisation’s core list of Essential Medicines. 

NSAIDs are a chemically heterogeneous group of compounds united by their 

mechanism of action294. As collective but variable inhibitors of both constitutively 

expressed cyclooxygenase (COX) 1 and inducible COX-2 they prevent the 

conversion of arachidonic acid to prostaglandin (PG) H2 (via PGG2): the first 

committed enzymatic step in the prostanoid synthetic pathway295. Their therapeutic 

(and side) effects predominantly derive from reduced production of the major down-

stream molecules PGD2, PGE2, PGF2α, PGI2/prostacyclin and thromboxane 

(TXA2)296,297. These bioactive lipid mediators play myriad physiological roles and are 

central in the inflammatory response, contributing directly or indirectly to 

hyperalgesia, vasodilation, oedema and fever151,298,299. Less widely appreciated 

however are their effects on host defence. 

Several eicosanoids, and in particular PGE2, are now understood to exert distinct 

anti-inflammatory, immune regulatory and/or pro-resolution properties in addition to 

their more recognised roles189,300,301. Recent studies have indicated that 

prostaglandins can impair innate and adaptive immune function in 

bacterial197,255,302,303, viral304 and fungal305 infections, and elicit immunosuppression in 

discrete patient populations142. Indeed, certain pathogens exploit these mechanisms 

directly, Pseudomonas aeruginosa, Cryptococcus spp. and Candida albicans altering 

local lipid mediator concentrations at infected sites via direct release of eicosanoids, 

the enzymes required for their formation, or by stimulating host production, to protect 

themselves against elimination306-308. Correspondingly and as described in the 

Introduction, pre-clinical data has shown that NSAIDs enhance the effector functions 

of myeloid lineage cells both in-vitro and in-vivo, and that their administration 

repeatedly confers benefit in animal models of severe infection262. The central 

mechanism appears to be ablation of the aforementioned immunosuppressive 

prostanoids255,309. 

Interest in immunoadjuvant therapy - where pharmaceutical agents are employed to 

restore or potentiate immune function with the aim of preventing infection and 

improving pathogen clearance – is growing310. This strategy affords an antimicrobial 

chemotherapeutic approach that harnesses the host’s innate defences whilst being 
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insusceptible to resistance. Given the pre-clinical evidence that NSAIDs and thus 

prostanoid blockade exerts an immunomodulatory effect, this systematic review 

seeks to summarize and broadly interrogate the clinical literature for such a signal. 

Benefit or harm from NSAID administration as either primary or adjunctive therapy in 

acute infection was sought, along with any suggestion that COX-inhibition alters 

susceptibility to, and severity of, infection. Sub-analyses focus on delineating whether 

particular demographic, pharmacological or infective factors determine either efficacy 

or risk of NSAID use in this context, with the aim of identifying future clinical and 

research opportunities. 

3.2 ADDITIONAL METHODS 

3.2.1 Systematic review 

The systematic review was performed in line with the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) statement311. Inclusion and 

exclusion criteria were established a priori with the objective of evaluating the clinical 

literature for any signal of harm or benefit associated with either pre-existing NSAID 

use during, or NSAID therapy commenced in response to, acute infection. Evidence 

of whether NSAID use for alternate clinical indications resulted in an altered 

incidence of acute infection was additionally sought. Pre-defined sub-group analyses 

investigated whether demographic (age), pharmacological (NSAID class, non-

selective vs. COX-2 selective inhibition, dose, route or duration of therapy), co-

prescription (acute mono-therapy vs. adjunctive prescription with established anti-

microbial), or infective (pathogen, site of infection, severity) factors were linked with 

either efficacy or adverse outcomes from NSAID use in this setting. 

3.2.2 Search strategy and inclusion criteria 

A systematic review of articles using MEDLINE and MEDLINE In-Process and Other 

Non-Indexed Citations (1946 – November 2014) was performed. Databases were 

searched according to the strategy developed by the Cochrane Collaboration312. 

Additional studies were identified via independent manual trawl of the bibliographies 

of identified articles by two authors (JB and NR). The following key search terms 

were used “non-steroidal anti-inflammatory drug”, “NSAID”, “aceclofenac”, 

“acemetacin”, “aspirin”, “azapropazone”, “celecoxib”, “dexibuprofen”, “dexketoprofen”, 

“diclofenac”, “difunisal”, “etodolac”, “etoricoxib”, “fenoprofen”, “flurbiprofen”, 

“ibuprofen”, “indomethacin”, “ketoprofen”, “ketorolac”, “meclofenamic acid”, 

“mefenamic acid”, “meloxicam”, “namebutone”, “naproxen”, “nimeslide”, “oxaprozin”, 

“phenylbutazone”, “piroxicam”, “salicylic acid”, “sulindac”, “tenoxicam”, “tiaprofenic 
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acid”, and “tolmetin” and/or “infection”, “anti-microbial”, “sepsis”. All searches were 

limited to English language and “humans”. 

Both observational and interventional (randomised and non-randomised) studies 

were included. No restriction was placed on patient age (neonate [<28 days], 

paediatric [28 days-17years], or adult [≥18years]), infective site, pathogen (bacteria, 

viral, fungal, protozoan) or drug (whether in current clinical use, dose, route or 

formulation). In-vitro, animal, and pre-clinical studies were excluded. Papers 

exploring the effect of NSAIDs on the clearance of chronic infection and where no 

acute infection was identified were also excluded, along with review articles not 

reporting original data.   

3.2.3 Assessment of methodological quality 

Articles meeting inclusion criteria after independent screening of title and abstract by 

2 authors (JB and NR) were extracted and reviewed using predefined data fields. 

These included year of publication, geographic location, study design, patient 

demographics, details of associated pharmacological regimen, pathology and defined 

outcome measures. Disagreement between the 2 extracting authors was resolved by 

consensus. If this could not be reached a third author was deferred to for arbitration 

(JNF). To assess the risk of bias and determine methodological quality all studies 

underwent scoring using either the Jadad scoring system (for randomized and non-

randomised controlled trials)313 or the Newcastle-Ottawa Scoring system (NOS, for 

cohort and case-control studies)314. Reduced risk of bias and/or acceptable 

methodological quality was defined by achievement of a Jadad score ≥3 or a NOS of 

≥6 in line with previous systematic reviews315,316. Papers were not excluded on the 

basis of score but analysed separately. Included studies were also inspected for 

author disclosures deemed to imply a conflict of interest, the source of research 

funding and, if stated, who acted as the guarantor of the article (responsible for data 

control and decision to publish). 

3.2.4 Data interpretation 

A pre-defined structured outcome matrix was utilized to classify the effect of NSAIDs 

on predisposition to, or outcome from, infection in studies meeting the inclusion 

criteria (Table t3.1). This non-validated construct was designed to be applicable 

across study types and to provide a broad un-weighted comparison of the effect of 

NSAIDs in disparate clinical contexts. 

Outcomes were classified according to the original study authors determined effect – 

beneficial (positive), null or harmful (negative) - and whether this was subjective 
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(outcome category 1), objective (outcome category 2) or related to mortality 

(outcome category 3). In studies reporting multiple outcome measures a single 

category was attributed for further analysis (that affording the greatest certainty in 

effect – category 3>2>1).  

Outcome 

category 

Outcome definition 

Positive 3 Survival benefit 

Positive 2 Physiological/radiological/biochemical/microbiological/clinical benefit 

(e.g. reduced length of stay)  

Positive 1 Change in clinically relevant symptoms (symptomatic benefit) 

Null No significant effect measured 

Negative 1 Change in clinically relevant symptoms (symptomatic worsening) 

Negative 2 Physiological/radiological/biochemical/microbiological/clinical harm 

(including new infective diagnoses) 

Negative 3 Increased mortality 

Table t.3.1. Structured outcome matrix employed to grade author-determined outcomes in 

reviewed studies 

In order to verify the original author’s conclusions, two authors (JB and NR) 

independently reviewed the reported effect direction, size and data interpretation. In 

addition, side effects of drug administration reported in the studies were recorded. In 

the event of disagreement regarding classification of a given study’s outcome 

resolution was achieved as per study inclusion. 

No meta-analysis was performed on the extracted data. 
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3.3 RESULTS 

3.3.1 Article characteristics 

The initial search strategy retrieved 330 studies and a further 20 were identified via 

bibliographic trawl (total 350). After removing duplicates (70), screening of titles and 

abstracts led to the exclusion of 157 papers (foreign language, in-vitro, animal, 

correspondence, comment or review articles). 27 papers were excluded as pre-

clinical, mechanistic or pharmacological studies, post-hoc analyses of included 

studies or related to chronic infection (Helicobacter pylori and periodontitis). For 26 

articles the full text could not be retrieved, leaving 70 studies for inclusion into the 

final review (see Section 3.6: Appendix). Study selection and exclusion is 

represented in Figure f3.1. 

 

Figure f3.1. Flow chart illustrating article inclusion and exclusion. 
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The final group of 70 papers comprised 28 RCTs, 2 NRTs, 11 cohort studies (4 

prospective, 7 retrospective), 15 case control studies, 5 case series and 9 case 

reports. Publication date ranged from 1960 to 2013 with the majority being published 

after 1980. Studies were predominantly (>75%) conducted in Europe and North 

America. 

The majority of studies were small, 27/28 RCTs recruiting fewer than 500 patients (in 

all treatment arms combined) and 7/11 cohort studies included less than 1000 

participants. The quality of included studies was variable. Employing a cut-off of ≥3 

on the Jadad score for interventional studies only 12/28 RCT’s and NRT’s were 

deemed of adequate methodological quality. In contrast 25/26 cohort and case 

control studies achieved the pre-defined limit of NOS ≥6. Risk of overt bias was 

explored by reviewing declared funding and conflict of interests. 11 of the RCTs were 

funded by pharmaceutical companies, in 4 they had provided funding to the principal 

investigator, and in one study controlled the data analysis and decision to publish. 

Overall 25 studies (36%) reported mortality as the primary outcome (outcome 

category 3), 14 (20%) reported physiological, biochemical, radiological, 

microbiological or other objective clinical outcomes (outcome category 2) and 31 

(44%) reported symptomatic alteration (outcome category 1). 

Interventional studies demonstrated objective or subjective benefit from the primary 

or adjunctive use of NSAIDs in 76% (22) of papers, with a null effect (neither 

beneficial nor harmful) being reported in 24% (7). Only one RCT utilised mortality as 

the primary outcome measure276. No interventional study demonstrated harm from 

NSAID prescription in acute infection, as determined by their primary outcome 

measure (Figure f3.2, Panel A). The direction of effect of NSAIDS in RCTs deemed 

to be of adequate methodological quality (Jadad ≥3) was similar to those not 

achieving the pre-determined cut-off. 

Observational studies were found to demonstrate a more diverse, polarized, range of 

outcomes, with clear clustering apparent (Figure f3.2, Panel B). Groups of reviewed 

papers separately indicated both benefit (including potential survival benefits from 

severe infection) and harm (association with increased predisposition to and severity 

of infection) from NSAID administration. Inevitably the vast majority of case reports 

and case series (12/14) reported negative outcomes from the use of NSAIDs during 

acute infection, this publication format being more commonly employed to describe 

novel or idiosyncratic adverse events.  
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Figure f3.2. Outcomes reported in interventional (Panel A) and observational studies 

(Panel B), categorised according to a pre-defined outcome matrix (Table t3.1). 

3.3.2 Pharmacological factors 

Agent, Dose, Route and Duration 

Significant heterogeneity was demonstrated in the pharmaceutical agent, dose, route 

of administration and duration of therapy employed in the reviewed studies. Analysis, 

and hence comparability, was further impaired by missing data, the frequent use of 

multiple case definitions for inclusion and variable treatment regimens.  

In total 23 different NSAIDs were employed across the manuscripts (Figure f3.3). Of 

these only 10 agents are currently licensed for use in the UK. 16 studies explored the 
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effect of ‘NSAIDs’ as a drug class as opposed to stating individual agents. Aspirin 

(12) and ibuprofen (11) were the most frequently investigated individual agents. 

 

 

Figure f3.3. NSAID employed in included studies. A total of 23 different NSAIDs 

were investigated throughout the 70 studies. ‘Other’ includes 17 different agents 

investigated less than 3 times. 

Divergence in treatment regimen and data omission can be exemplified by employing 

ibuprofen as an example. Ibuprofen was identified as the lone study drug in 11 

papers (7 RCTs, 2 cohort, 1 case control, 1 case report). A dose was stated in only 9 

manuscripts, with 2 of the 9 comparing multiple doses. 4 studies reported an 

absolute quantity, ranging from 400mg-1600mg/day administered as either a single 

dose or split into twice to four-times/daily divided dose regimens. The remaining 

studies, predominantly relating to paediatric or neonatal patients, employed a weight-

based dose ranging from 5mg/kg twice/day to 10mg/kg four-times/day. Route of 

administration was described in 10/11 papers. Oral administration was the most 

frequently employed route of administration (8) followed by intravenous (IV, 2), with 

one study employing a mixed regimen of IV administration followed by per rectum. 9 
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studies reported duration of therapy with the majority of these (6) utilizing ibuprofen 

for between 1-3 days.  

Given the number of agents employed and the variability between study protocols it 

is impossible to establish any meaningful relationship between either dose or 

duration of therapy and differences in outcome. No clear divergence in outcome 

between IV, oral or rectal administration of NSAIDs was apparent, although intra-

muscular (IM) administration of NSAIDs (in particular diclofenac) was linked to 

necrotizing fasciitis in 3 case reports/series317-319. In interventional studies the 

rationale for selection of individual elements of the treatment regimen (agent, dose, 

frequency of dosing etc.) was habitually neither stated, nor clearly related to either 

prior publications or in-vivo/pre-clinical work establishing efficacy. Therapeutic 

decisions must thus be assumed to have resulted from investigational team 

preference, local institutional policy or been determined by the clinical situation 

(patient age, renal function etc.). 

NSAID Class and COX Selectivity 

Dividing studies reporting single-agent NSAID use (45) according to the chemical 

class of the drug (acetic acids, fenamates, oxicams, propionic acids, pyrazolones, 

salicylic acids and sulphonamides, [see Rao et al.294]) revealed no discrete effects on 

outcome. Acetic acids were associated with negative outcomes more frequently than 

other groups, primarily due to the aforementioned reports of IM diclofenac use and 

separate case reports linking indomethacin with soft tissue infection320 and 

necrotizing enterocolitis321. In contrast, sulphonamides (consisting of just nimesulide 

in reviewed papers) were associated with universally positive physiological (category 

2) or symptomatic (category 3) outcomes in 4 RCTs322-325. Despite this, such small 

study numbers and the presence of multiple confounding factors render it impossible 

to draw meaningful conclusions as to chemical class effects. 

The same single-drug studies were additional subcategorised according to their COX 

1/2 selectivity according to Warner et al326. The vast majority of NSAIDs employed in 

the reviewed manuscripts (19) were categorised into Group 1 (non-selective), with 2 

NSAIDs in Group 2 (selective for COX-2: bromofenac and nimesulide), and 2 

NSAIDs in Group 4 (weak inhibitors of both isoforms of COX: diflusinal and niflumic 

acid). None were classified in Group 3 (strongly selective for COX-2).  As above, 

heterogeneity in study populations and treatment protocols, in tandem with the 

paucity of agents in categories other than Group 1, render any comparison of relative 
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efficacy and hence the contribution of each isoenzyme to outcome of, or 

predisposition to, infection impossible. 

Stand-Alone or Adjunctive Therapy 

8 interventional studies tested the efficacy of NSAID prescription alone versus 

established anti-microbial therapy, an alternative analgesic/anti-pyretic or placebo in 

the management of acute infection. In the remaining 20 RCTs or NRTs NSAIDs were 

co-prescribed with standard therapy as an adjunct. 

NSAIDs as single-agent therapy were found to be effective in symptom relief 

(principally pyrexia suppression) in upper or lower respiratory tract infections of 

presumed viral origin, however no conclusive evidence for attenuation of disease 

course was identified, reports describing conflicting evidence325,327. Whilst one study 

reported ibuprofen as non-inferior to antibiotic (ciprofloxacin) for the management of 

urinary tract infection (UTI) this finding is tentative, arising from a pilot study designed 

to establish equipoise for a larger trial. Used adjunctively, all trials reported either a 

positive or null effect of NSAID addition to standard anti-infective therapy. Again, this 

primarily related to subjectively reported or objectively noted symptoms. Two RCT’s 

reported improvement in either biochemical metrics when used in sepsis276, or 

muscle performance and mobility in geriatric patients hospitalized with infection-

induced inflammation328. 

3.3.3 Demographic factors 

Age 

50 papers reported the effect of NSAIDs in adult patients alone, 15 in the paediatric 

population, 3 in neonates, and in 2 studies inclusion criteria crossed the pre-defined 

age boundaries.  

Systemic differences were evident between the manuscripts pertaining to different 

age categories. A greater proportion of papers in the paediatric literature explored 

NSAID’s influence on the outcome of upper and lower respiratory tract infections 

(50%, 8/16) compared to the adult literature (excluding TB, 18%, 9/50), presumably 

related to relative incidence in the two different age groups. Additionally, the 

indication for therapy was more frequently to achieve relief from infective 

symptomology with outcome measures being aligned to this. Ibuprofen was 

employed in a greater proportion of reviewed neonatal/paediatric papers (43%, 6/14 

papers using a single-agent) whilst aspirin use was described in only 1 paper 

reflecting concern over Reye’s syndrome and absence of prescription for 

cardiovascular risk reduction. In total 4 of the reviewed paediatric and neonatal 
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papers were case reports. Of the remaining 16 that included individuals 18 years of 

age and under only 6 (37.5%) met the pre-defined cut-offs for methodological quality. 

A clear dichotomy was evident in the paediatric/neonatal literature with regards the 

direction of NSAID’s effect in the context of infection. On one hand COX-inhibition 

appears efficacious in reducing local and systemic symptomology in this age range. 

Multiple RCTs report a significant analgesic and antipyretic effect compared to 

placebo or alternate agents, along with focal infective symptom (e.g. cough or 

rhinorrhea) suppression329-335. Whilst some evidence of objective clinical 

improvement, such as reduced tonsillar hypertrophy324 and inflammatory indices 

(white cell count, C-reactive protein, IL-6, erythrocyte sedimentation rate325,336) has 

been reported the significance of these findings is not clear. Equally no clear benefit 

of NSAID use in addition to an antibiotic compared to antibiotic alone was seen in 

two paediatric studies329,337, although trends to reduced symptomology and quicker 

resolution were observed. 

In contrast, several observational studies suggest an association between NSAID 

use and increased predisposition to bacterial infection. Whilst two case reports link 

NSAIDs with neonatal necrotizing enterocolitis (confounded by co-consumption of 

steroids and the co-existence of hyperprostaglandin E syndrome321) and altered 

presentation (but not outcome) of bacterial meningitis338, the majority relate their 

prescription for a primary insult with subsequent severe soft-tissue infection, in 

particular bacterial superinfection following varicella zoster339-343. 

3.3.4. Infective factors 

Site 

In the reviewed papers four focal infective sites were specifically addressed more 

than once: soft tissue (17), respiratory (16), lower gastro-intestinal (GI, 9), and 

urogenital (3). A further group of studies addressed clinical syndromes without 

discriminating between location of the primary insult (sepsis [9], acute lung injury [2]). 

Review of the data suggests NSAIDs exert divergent effects on the outcome or 

predisposition to infection in these separate sites (Figure f3.4). 

Investigational studies have predominantly sought to test either the non-inferiority of 

treatment with NSAID alone compared to antibiotic, or the superiority of antimicrobial 

plus NSAID compared to antibiotic alone in the setting of upper respiratory (URTI) 

and urinary tract infections (UTI). With both sites COX-inhibition results in clear 

symptomatic benefit, ameliorating both systemic and local features subjectively. 

These effects relate to the analgesic and anti-inflammatory effect of NSAIDs and are 
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repeatedly demonstrated to be superior to placebo, non-inferior to antibiotics 

alone344,345, equivalent or superior to alternative agents e.g. paracetamol331,334,346, and 

to vary within class: certain NSAIDs being more efficacious333,334. As described 

earlier, there is little evidence in the literature to support an assertion that NSAID 

administration leads to objective (outcome category 2 or 3) benefit over antibiotic 

administration alone or alternate analgesic/anti-inflammatory agents in URTI or UTI. 

There is no inference of an antimicrobial effect separate to their known properties. 

Evidence of benefit in lower respiratory tract infections (LRTI) is less clear. A recent 

randomized placebo controlled trial of ibuprofen versus amoxicillin-clavulanic acid in 

uncomplicated acute bronchitis, found no significant reduction in symptoms by either 

agent compared to placebo and a greater adverse effect burden in the antibiotic 

arm347. In cases of community acquired pneumonia (CAP) two separate case control 

studies described either a significant independent association between acute NSAID 

prescription and the development of pleuropulmonary complications (37.5% NSAID 

vs. 7% no NSAID, OR 8.1; 95%CI 2.3-28)348 or, paradoxically, reduced need for 

intensive care treatment (5% vs. 24.4%) and a shorter hospital stay in those 

previously taking anti-platelet drugs (84% aspirin)349.  
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Figure f3.4 Comparative reported outcomes from NSAID administration during acute 

infection at different sites, including ‘severe infection’, as assessed by a pre-defined 

outcome matrix (Table 1). Included studies were grouped into severe infection (Panel 

A: sepsis, ICU, ALI), soft tissue infection (Panel B), respiratory (Panel C: URTI, LRTI 

including pneumonia), urogenital (Panel D), and gastro-intestinal (GI, Panel D). 
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Almost universally, reviewed papers describing soft tissue and lower GI pathology, 

relate NSAID administration to an increased incidence and/or severity of infection. As 

previously described, severe skin and soft-tissue infection (necrotizing cellulitis, 

necrotizing fasciitis, gangrenous myositis) is primarily associated with NSAID use for 

a primary insult, predominantly varicella zoster infection, but may include minor 

injury350,351 or surgery320. Case control studies estimate the additional risk of 

complications from NSAID use prior to or during paediatric varicella infection 

between 4.9 (rate ratio, 95% CI 2.1-11.4352) and 11.5 (odds ratio, 95% CI 1.4-

96.9341), with increased risk persisting in the adult zoster population but at a lower 

degree of magnitude (rate ratio 1.6, 95% CI 1.0-2.2352). One included single centre 

retrospective case series additionally suggested an increased risk of development of 

streptococcal toxic shock syndrome with acute NSAID administration353. 

Of the reviewed papers six suggest an association with NSAID use and 

complications of diverticular disease. Two case-control studies report increased risk 

of pericolic abscess formation, generalized peritonitis following perforation, bleeding, 

or fistula formation in patients with diverticular disease taking NSAIDs354,355, with a 

further indicating their use is related to an increased risk of recurrence in mild colonic 

diverticulitis managed conservatively356. Three cohort studies complement these, 

describing increased risk of symptomatic diverticular disease, specifically bleeding in 

NSAID users357-359. Despite this, paracetamol, an alternate analgesic, was seen to 

have a similar effect in one study358, and the finding of increased diverticulitis is 

neither universal nor pronounced (multivariable hazard ratio 1.25; 95% CI 1.05-

1.47)359. Separately, one small single centre retrospective case-control study of 84 

patients suggests an association between acute appendicitis and NSAID 

consumption in those over 50 years of age (OR 6.5, 95% 2.1-8.8) including a non-

significant increased relative risk of death (OR 2.1, 95%CI 1.1-4.1)360, however this 

was not supported in a larger study361. 

Pathogen 

The vast majority of included studies described either the prescription of NSAIDs in 

the context of bacterial or viral infection or their development during NSAID use. A 

much smaller number related explicitly to mycobacterial (1 tuberculosis, 1 leprosy), 

protozoan (1 malaria) or fungal (1 corneal ulcer) infection. Assessment for 

discrepancies in effect of NSAID on different pathogen groups was inherently 

conflated with infective site: viral infection being the predominant cause of respiratory 

tract infections, and bacteria being responsible for secondary soft-tissue and urinary 
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tract infections. Determination of gradated efficacy or harm in this context was felt 

disingenuous given the absence of clearly divergent results between categories. 

Comparisons of specific sub-classes of pathogen (e.g. Gram-positive versus 

negative bacteria, aerobic versus anerobic) were rendered largely impossible due the 

paucity of studies specifying detailed microbiology. Case reports and series 

surrounding severe soft-tissue infection were the exception, frequently identifying 

Group A beta-haemolytic Streptococcus (GAS) as the cause of necrotizing fasciitis. 

Other bacteria implicated in these cases included Streptococcus pyogenes, 

Streptococcus pneumoniae and Staphylococcus aureus. Whilst it could be 

hypothesized that NSAIDs led to increased susceptibility to Gram-positive bacteria, 

the inclusion of studies advocating the efficacy of NSAIDs in reducing the incidence 

of Gram-positive infections in separate settings362 and the comparable 

microbiological profile of patients with CAP taking NSAIDs or not348, suggests 

otherwise. 

Severity 

Infection severity was necessarily graded in a binary manner; included papers being 

split into those exploring the effect of NSAIDs on either sepsis or patients admitted to 

critical care, or not. 2 papers addressing severe pneumonia with septic complications 

were additionally reviewed. In total 14 manuscripts were classified as relevant to 

‘severe infection’. 

Three RCT’s explored the effect of NSAID administration on sepsis. One small trial 

(29 patients) designed to assess safety of IV ibuprofen administration in severe 

sepsis demonstrated a significant anti-pyretic effect but no corresponding 

haemodynamic, respiratory or metabolic alterations363.  The second reported no 

significant effect of IV lornoxicam on any parameter, including biochemical and major 

pro-inflammatory cytokine concentrations compared to placebo364.  Both studies 

indicated that short term NSAID administration was safe with no adverse GI, renal or 

hepatic sequelae.  

The major interventional study to date in this population, randomising patients with 

sepsis and at least one organ failure to either placebo or IV ibuprofen (10mg/kg [max 

800mg] every 6 hours for 8 doses), found significant reduction in urinary prostanoid 

metabolites with corresponding decreases in physiological variables (including 

oxygen consumption and lactic acidosis), but no statistically significant improvement 

in survival (37% NSAID vs. 40% placebo)276. This is supported by a small 

observational study in septic neonates where babies receiving ibuprofen for 
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treatment for patent ductus arteriosum were noted to have lower circulating C-

reactive protein and IL-6 after day 4 compared to those not on NSAIDs336. No 

comment on outcome was made in this paper. 

The null findings of RCTs contrast strongly with reviewed observational reports of 

NSAID use in severe infection. Prescription of anti-platelet regimes for 

cardiovascular, cerebrovascular or peripheral artery disease was associated with 

decreased risk of mortality in various subgroups of a mixed intensive care population 

(ORs 0.04-0.34, 93.5% of patients taking aspirin), even including those with high 

bleeding risk365.  Patients with severe sepsis receiving anti-platelet agents for at least 

two days during their ICU stay (96.7% including aspirin) were reported to have a 

significantly reduced risk of in-patient mortality (In-ICU: OR 0.56, 95% CI 0.37-0.84, 

In-hospital: OR 0.57, 95% CI 0.39-0.83)366. This is supported by a large retrospective 

cohort study relating aspirin usage in the 24-hour period around the time of the 

systemic inflammatory response syndrome or sepsis recognition with reduced in-

hospital death (10.9% aspirin vs. 17.2% propensity matched non-users, and 27.4% 

vs. 42.2% respectively)367. There was also evidence within the reviewed papers that 

this beneficial effect may extend to other NSAIDs, however this was abrogated if they 

were used in conjunction with aspirin368. 

Observational data regarding a potentially preventative or protective role for COX-

inhibiting drugs against severe infection was mixed. As previously discussed, one 

case-control study indicated that prior anti-platelet therapy (predominantly aspirin) 

may reduce the requirement for ICU admission and length of hospital stay in patients 

with CAP349, however pre-hospital aspirin therapy was not found to be independently 

associated with a reduction in either the development of sepsis, acute lung injury 

(ALI)/acute respiratory distress syndrome (ARDS) or in-hospital mortality in a 

separate prospective cohort study369. Despite concerns that acute and/or chronic 

NSAID use during evolving bacterial community-acquired infection may lead to the 

development of sepsis and septic shock raised in one article348 this was not borne out 

in a multi-centre case-control study370. 

Two included studies investigated the effect of existing aspirin therapy on the 

development of ALI specifically, the most common cause of which is severe sepsis. A 

small, single-centre cohort study reported reduced incidence of ALI (12.7% vs. 28%; 

OR 0.37, 95% CI 0.16-0.84) in patients admitted to ICU with known risk factors (34% 

presenting with pneumonia, 27% meeting sepsis criteria) on anti-platelet therapy 

(99% aspirin), however there was no effect on ICU or in-hospital mortality371. A 
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similar reduction in incidence of ALI was also noted in a multicenter international 

cohort study, however this did not reach significance on multivariate analysis and 

after adjusting for propensity to receive aspirin (Cochran-Mantel-Haenzel pooled OR 

0.7; 95% CI 0.48-1.03)372. 

3.3.5 Adverse effects 

No reviewed interventional study reported statistically significant increases in non-

infective adverse effects with short term NSAID therapy. This includes typical NSAID 

adverse effects including increased risk of bleeding, GI ulceration and 

hypersensitivity reactions. Indeed, as described, benefit was witnessed from their use 

was observed even in groups at high-risk of bleeding in one epidemiological study365. 

Caution in their acute use should not be neglected however. One small trial of 

ibuprofen in sepsis noted a trend to reduced creatinine clearance363 whilst aspirin 

users experienced double the rate of renal impairment in propensity-matched non-

users in a retrospective cohort study367.  

Long-term usage of NSAIDs is commonly associated with both upper and lower GI 

side effects secondary to inhibition of ‘protective’ homeostatic PG production, and in 

the case of certain agents, direct toxicity. These may account for many of the 

complications, including perforation with resultant local abscess formation or 

generalized peritonitis, seen when employed in patients with known diverticular 

disease359. 

 

3.4 DISCUSSION 

A large published literature regarding the use of NSAIDs in clinical infection has 

accumulated. Whilst this variably describes the impact of NSAIDs on both the 

predisposition to, and the symptoms, severity and outcome from multiple infections, 

breadth has triumphed over depth. The articles included in this review demonstrate 

wide variance in experimental question, size, design and study population. Whilst 

partly a function of the expansive search and inclusion criteria employed, this likely 

reflects a fundamental lack of clear research aims and hence direction. 

Heterogeneity in case definitions and methodological quality, coupled to the frequent 

absence of either microbiological detail or a clear pharmacological strategy, render it 

challenging to draw substantive conclusions regarding the immunomodulatory 

potential of NSAIDs from this body of work. 
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3.4.1. Protopathic bias links NSAIDs to harm  

The accumulated evidence does indicate that NSAIDs are clearly efficacious as 

analgesic, anti-pyretic and anti-inflammatory agents in the context of acute infection, 

superior to placebo and potentially alternate agents. This may be both a blessing 

(predominantly) and, paradoxically - as this review highlights - a curse.  

Multiple epidemiological studies reported an association between NSAID 

administration and severe soft tissue infections, particularly GAS necrotizing fasciitis, 

and worsening of353 or increased severity348 of bacterial infection. The potential for a 

causal link between these events has been the subject of debate for around 30 years 

but is inherently confounded by the observational nature of studies and protopathic 

bias: where drugs are applied to treat symptoms that are actually early 

manifestations of the outcome of interest373,374. 

The apparent efficacy of NSAIDs in masking clinical indicators of disease severity 

(i.e. pyrexia, pain, local oedema and erythema) may delay illness recognition, 

presentation and appropriate intervention with resultant adverse outcomes: a feature 

shared with other analgesic agents343,375. This may be exacerbated when the 

patient’s ability to describe or qualify symptom evolution is impaired or confounded. 

Accordingly, this review found a preponderance of articles detailing the occurrence of 

secondary bacterial infection in the paediatric population or in the presence of a 

primary insult/existing diagnosis to which symptoms may be ascribed. To date, 

experimental animal models and prospective studies have failed to support the 

association between NSAIDs and invasive streptococcal disease (see Aronoff and 

Bloch for review376) or sepsis370, although concern lingers343. As such, whilst 

clinicians should have a high index of suspicion for infective 

complications/progression when prescribing NSAIDs acutely in this context, there is 

no clear clinical evidence of a negative immunomodulatory effect arising from COX-

inhibition. 

3.4.2. A potential role for NSAIDS in critical illness 

A signal for the beneficial impact from NSAID administration, primarily aspirin, in 

sepsis was also evident: several observational studies over the past 5 years 

suggesting administration may reduce severity and improve outcomes when 

employed as an adjunctive treatment. Whilst these reports seem to stand in 

opposition to the major RCT in this area, which described significant improvement in 

biochemical markers but not mortality following ibuprofen administration in sepsis276, 

the debate may not be so clear-cut. The Ibuprofen in Sepsis Study was 

underpowered when seen in the context of modern day ICU trials, being designed to 
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detect a 35% reduction in mortality377. Further, in a post-hoc analysis of the data, 

patients admitted with hypothermic sepsis were found to have an exaggerated 

inflammatory response with significantly elevated serum cytokine and urinary PG 

metabolites. These individuals experienced a significant benefit from ibuprofen 

administration with 30 day mortality being reduced from 90% (18/20) to 54% 

(13/24)378. Given our increasingly nuanced view of sepsis and acceptance that a 

‘one-size fits all’ therapeutic strategy is unlikely to be successful29, this report offers 

hope despite its intrinsic methodological limitations.  

Dysregulation of the inflammatory profile in terms of magnitude and duration is 

related to the occurrence of adverse outcomes in the critically ill, including prolonged 

hospital stay, acquisition of nosocomial infection and increased mortality42. 

Identification and subsequent stratification of ICU patients by associated humoral, 

cellular and functional biomarkers that delineate this population affords a rational 

approach to therapeutic decision making, allowing the administration of ‘tailored’ 

therapy379,380. This strategy has already demonstrated potential when applied to the 

use of immunoadjuvant drugs381. With recent work linking hypothermia at 

presentation with sepsis to clinically relevant immunosuppression382, the tentative 

report of a mortality benefit from NSAID use in this population described above may 

reflect an inadvertent proof-of-principle study that prostaglandin blockade has a role 

in the immunostimulatory armamentarium alongside more established agents such 

as granulocyte-macrophage colony stimulating factor and interferon gamma381,383. 

Indeed it has already shown promise in patients undergoing an alternate source of 

severe inflammation: major surgery210,211,384. 

How may NSAIDs exert a beneficial impact in this setting? The answer is likely multi-

factorial. Reduction of immunosuppressive prostanoid levels with consequent 

restoration of innate immune effector competence including phagocytosis and 

NADPH mediated killing199,203 would represent one central mechanism. NSAIDs 

proven ability to suppress fever could be another: a recent trial demonstrating 

superior outcomes in pyrexic septic patients cooled to normothermia385. Aspirin, for 

which there is the greatest evidence of benefit, may additionally augment anti-

microbial function by increasing aspirin-triggered SPM release160,162 and via it’s anti-

platelet effects (inhibition of TXA2) mitigate microvascular thrombosis and 

subsequent organ failure386. Further, in high doses it may modulate NF-κB activation 

(via IκB kinase) and through acetylation of the endothelial nitric oxide (NO) synthase 

protein release NO, which reduces migration and infiltration of lymphocytes, 

regulates vascular tone and micro-vascular thrombi formation – all thought 
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pathogenic in ARDS (see for review377,387). If confirmed, delineation of the key 

mechanistic pathway involved may allow refinement of therapeutic strategies, 

targeting more select pathways (e.g. the E-prostanoid 2 or 4 receptor, or microsomal 

PGE2 synthase 1) to mitigate the risk of side effects. 

3.4.3. Conclusions and limitations 

Several limitations are evident with the review. The question asked was wide ranging 

and arguably un-focused, seeking to address the effect of any NSAID prescription on 

both predisposition to and outcome from all types and sites of infection. This was 

deliberate - the article being designed to primarily describe, and secondarily ‘scope’, 

the clinical literature on NSAIDs and infection for signals of either harm or benefit that 

may be evaluated in future more focused studies. Bias may have been introduced as 

only one database (MEDLINE and MEDLINE In-Process and Other Non-Indexed 

Citations) was searched, English language papers alone were eligible for inclusion, 

not all identified records were retrieved due to inability to gain institutional access and 

papers not identified through the initial search may have been missed on 

bibliographic trawl. Whilst this cannot be excluded it is unlikely that these restrictions 

would either exert systematic influence on the reviews conclusions or lead to the 

omission of whole themes. To further mitigate this, abstracts from papers where lack 

of institutional access prevented the full-text being obtained were separately 

evaluated to determine whether important or novel content was omitted. No clear 

new outcome patterns or themes were identified.  

Heterogeneity within the study set and the breadth of the clinical question precluded 

performance of formal meta-analysis. The outcome matrix employed was non-

validated, un-weighted and intended to provide an inclusive, summative guide to 

direction of effect. Consideration of discrete sub-classes of paper – particularly case 

reports and case-series – separately may have been beneficial, these studies 

exerting disproportionate influence on the overall analysis given the relative number 

of patients described. The majority of included studies were observational in nature 

and thus unable to establish causality. Given the multi-modal clinical effects of 

NSAIDs this renders determination of a mechanism of action even more challenging; 

recorded alterations in outcome (especially symptomatic) potentially being due to 

analgesic, anti-pyretic, anti-inflammatory, anti-platelet, anti-microbial effects or a 

combination of these discrete but overlapping properties. Exploration of existing 

clinical trail databases where patients have been randomised to NSAID and either 

placebo or alternate therapy in the absence of infectious disease (e.g. osteoarthritis) 
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for evidence of altered incidence, prevalence and/or severity of infection (as adverse 

events) may help ameliorate these concerns. 

Despite these limitations, I believe the review highlights key deficiencies and areas of 

promise in the literature. NSAIDs are effective in reducing local and systemic 

symptoms of infection, however may obscure or delay the diagnosis of secondary 

infection or infective complications. There is little to no evidence of altered objective 

(e.g. biochemical markers or duration of illness) or mortality outcomes in non-severe 

infection of any aetiology when administered alone or as adjuvant to standard anti-

microbial chemotherapy. Importantly, short-term NSAID administration in the context 

of acute infection appears safe, RCT’s demonstrating no increase in rates of 

traditional side effects. 

Observational evidence of clinical benefit in severe infections corresponds with 

animal-studies262. To date there have been a paucity of high quality, appropriately 

designed and powered prospective clinical studies to either refute or support pre-

clinical evidence of efficacy and/or harm from in-vivo lipid mediator manipulation in 

the context of infection. In particular establishment of both a clear mechanism of 

action (physiological/immunological/haematological, tissue/cell type, mediator, 

receptor) and pharmacological rationale has been absent (COX-isoform, timing, 

dose, route, duration of administration). Aspirin, the first NSAID, appears a promising 

agent and sepsis, arguably man’s oldest ailment, the best target to validate this in. 

Clinical trials are already underway to test this hypothesis, investigating whether 

aspirin may prevent (ANTISEPSIS, Aspirin to Inhibit Sepsis, 

ACTRN12613000349741) or improve outcomes from sepsis (Aspirin for the 

Treatment of Sepsis, NCT01784159). Additionally, aspirin’s ability to both avert the 

development of ARDS (LIPS-A, Lung Injury Prevention Study with Aspirin, 

NCT01504867) and treat it (STAR Trial, Aspirin as a Treatment for ARDS, 

NCT02326350) is being evaluated by Phase 2 and 3 trials387. Knowledge gleaned 

from these trials will hopefully validate the accumulated observational data, inform 

future patient stratification and facilitate refinement of therapeutic strategies. 
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3.5 SUMMARY 

 The clinical literature describing NSAID use in the context of, or their effect on 

susceptibility to, acute infection demonstrates heterogeneity in demographic, 

pharmacological and infective dimensions. 

 NSAID use in severe infection appears safe. RCT’s do not demonstrate an 

increased rate of ‘tradiitonal’ GI, renal, haematological and allergic side 

effects. Their use may however obscure new infective diagnoses or disease 

progression. 

 Multiple observational studies report benefit from NSAID use, and in particular 

aspirin, in the context of critical illness (severe pneumonia, sepsis, acute lung 

injury). The mechanism of action underlying this effect is unknown and likely 

multi-factorial. Ablation of immunosuppressive COX-derived prostanoids 

represents one plausible explanation. 

 Pre-clinical human studies to delineate biomarkers predictive of efficacy and 

define a pharmacologically rational approach to COX-inhibition in critical 

illness are required. These may inform future clinical trials of stratified 

immunomodulatory therapy. 
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3.6 APPENDIX: Articles meeting inclusion criteria, accessible online via institutional access. Key:  Adult: age ≥18 years. Paediatric: 28 days – 

17 years. Neonate: age <28 days. Not specified: Information not specified in the study.  ‘–‘: Information not relevant to the study. n/a: Not 

applicable. X: Information not accessible. 

 

 

First Author 

 

Journal 

 

Reference 

Observational/ 

Interventional 

 

n= 

 

Drug 

 

Dose 

 

Route 

 

Duration 

 

Infections 

 

Pathogens 

Type of pathogen  

Outcome 

Desmeules 

R. 

Can Med 

Assoc J 

82:1219-22, 

1960 Jun 11 

Interventional 20 Phenybutazone 400mg OD PO 1-12 months Tuberculosis Mycobacterium 

tuberculosis 

Mycobacterial Null 

Fraser Pk. Lancet 1(7230):614-6, 

1962 Mar 24 

Interventional 600 Aspirin 332mg TDS PO Not specified Upper respiratory 

tract infections  

Not specified Bacterial and 

Viral 

Pos1 

Doull JA. Int J Lepr 

Mycobact Dis 

35(2):128-39, 

1967 Apr-Jun. 

Interventional 400 Mefenamic acid 750mg PO 24 weeks Lepromatous 

leprosy 

Not specified Mycobacterial Null 

Nespoli L. J Int Med Res 10(3):183-8, 

1982. 

Interventional 80 Fentiazac 100-200mg 

OD-BD 

PR 7 days Upper respiratory 

tract infection 

- Viral Pos1 

Pfandner K. Arzneimittel-

Forschung 

34(1):77-9, 

1984 

Interventional 40 Nimesulide 200mg OD PO 20 days Urinary tract 

infection 

Not specified Bacterial Pos1 

Krige JEJ. Lancet 1985; 2: 1432-3 Observational 1 Diflusinal Not specified PO 1 day Soft tissue 

infections 

Group B 

streptococcus 

Bacterial Neg2 

Brun-

Buisson CJL. 

BMJ 1985; 290: 1786 Observational 6 Aspirin, Diclofenac, 

Indomethacin, 

Phenylbutazone, 

Oxyphenbutazone 

Not specified PO Not specified Soft tissue 

infections 

Group A 

streptococcus 

Bacterial Neg2 

Weippl G. Arzneimittel-

Forschung 

35(11):1724-7, 

1985. 

Interventional 120 Suprofen 50-200mg PR 1 day Not specified  Not specified Bacterial and 

Viral 

Null 

Weippl G. Arzneimittel- 35(11):1728-31, Interventional 115 Suprofen 50-200mg PO 2 days Not specified Not specified Bacterial and Pos1 
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Forschung 1985. Viral 

Rimailho A. J Infect Dis 155(1):143-6, 

1987 Jan. 

Observational 7 Aspirin, Diclofenac, 

Piroxicam, Niflumic 

acid 

2g, 100mg, 

20mg, 500mg 

PO Not specified Soft tissue 

infections 

Group A 

streptococcus 

Bacterial Neg2 

Corder A Br Med J Clin 

Res Ed. 

295(6608):1238

, 1987 Nov 14. 

Observational 192 NSAIDs n/a PO n/a Diverticulitis Not specified Not specified Neg2 

Varsano IB. Ann Otol 

Rhinol 

Laryngo 

98(5 Pt 1):389-

92, 1989 May 

Interventional 81 Naproxen 7mg/kg TDS PO 10 days Acute otitis media Not specified Not specified Null 

Wilson RG. Br J Surg 77(10):1103-4, 

1990 Oct 

Observational 92 NSAIDs n/a PO 4 weeks-5 

years 

Diverticulitis Not specified Not specified Neg2 

Bertin L. J Ped 119(5):811-4, 

1991 Nov 

Interventional 231 Ibuprofen 10mg/kg TDS PO 2 days Upper respiratory 

tract infection 

Not specified Bacterial and 

Viral 

Pos1 

Chosidow O. Arch Derm 127(12):1845-6, 

1991 Dec 

Observational 96 NSAIDs n/a PO n/a Soft tissue 

infections 

Not specified Not specified Neg2 

Haupt MT. Crit Care 

Med 

19(11):1339–

1347. 1991 

Nov. 

Interventional 29 Ibuprofen 600mg OD, 

IV 800mg 

OD, IV 

800mg TDS, 

PR 

IV, PR 1 day Septic shock Not specified Not specified Pos1 

Smith RJ. South Med J 1991; 84: 785-7  Observational 1 Piroxicam 10mg x8 PO 1 day Soft tissue 

infections 

Group A 

streptococcus 

Bacterial Neg2 

Campbell K. Br J Surg 78(2):190-1, 

1991 Feb. 

Observational 50 NSAIDs n/a PO n/a Diverticulitis Not specified Not specified Neg2 

van Ammers 

PM. 

S Afr Med J. 80(4):203-4, 

1991 Aug 17. 

Observational 3 Indomethacin, 

Flurbiprofen 

100mg BD PR 2-6 days Soft tissue 

infections 

Staph aureus, 

Strep pyogenes, 

klebsiella 

Bacterial Neg2 
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Campbell 

KL. 

Br J Surg 79(9):967-8, 

1992 Sep. 

Observational 84 NSAIDs n/a PO n/a Acute appendicitis Not specified Not specified Neg2 

Lotti T. Drugs 46 Suppl 1:144-

6, 1993. 

Interventional 120 Nimesulide 200mg OD PO 9 days Urinary tract 

infection 

Not specified Bacterial Pos1 

Gianiorio P.  Drugs 46 Suppl 1:204-

7, 1993. 

Interventional 40 Nimesulide 1.5mg/kg 

TDS 

PO 3-7 days Lower respiratory 

tract infection 

Not specified Viral Pos2 

Salzberg R. Drugs 46 Suppl 1:208-

11, 1993. 

Interventional 100 Mefenamic acid, 

Nimesulide 

5mg/kg PO 3-10 days Upper respiratory 

tract infection 

Not specified Viral Pos1 

Ugazio AG. Drugs 46 Suppl 1:215-

8, 1993 

Interventional 100 Nimesulide 5mg/kg OD PO 3-9 days Upper respiratory 

tract infection 

Not specified Bacterial and 

Viral 

Pos2 

Barberi I. Drugs 46 Suppl 1:219-

21, 1993. 

Interventional 70 Aspirin, Nimesulide 50mg BD, 

350mg BD 

PO 5 days Upper and lower 

respiratory tract 

infections 

Not specified Not specified Pos1 

Hird B.  J Trauma 1994; 36:589-

91 

Observational 1 NSAIDs Not specified PO Not specified Soft tissue 

infections 

Group A 

streptococcus 

Bacterial Neg2 

Rowan JA. Am J Obs & 

Gyne 

173(1):241-2, 

1995 Jul. 

Observational 1 Diclofenac 75mg BD PO 4 days Soft tissue 

infections 

Group A 

streptococcus 

Bacterial Neg2 

             

             

Bernard GR. N Engl J Med 1997; 336:912–

918. 

Interventional 455 Ibuprofen 10mg/kg 

QDS 

IV 2 days Sepsis Not specified Not specified Pos2 

Choo PW. Anna 

Epidemiol 

7(7):440-5, 

1997 Oct. 

Observational 89 Ibuprofen n/a n/a n/a Soft tissue 

infections 

Not specified Bacterial Null 

             

Evans JM. Br J Surg 84(3):372-4, Observational 138 NSAIDs n/a PO n/a Acute appendicitis Not specified Not specified Null 
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1997 Mar 

Aldoori WH. Arch Fam 

Med 

1998 May-

Jun;7(3):255-60 

Observational 3561

5 

NSAIDs n/a PO n/a Diverticulitis Not specified Not specified Neg2 

Zerr DM. Pediatrics 103(4 Pt 1):783-

90, 1999 Apr 

Observational 19 Ibuprofen n/a PO n/a Soft tissue 

infections 

Group A 

streptococcus, 

other Gram 

positives 

Bacterial Neg2 

Ulukol B. Eur J Clin 

Pharmacol 

55(9):615-8, 

1999 Nov. 

Interventional 90 Ibuprofen, 

Nimesulide 

2.5mg/kg BD, 

10mg/kg TDS 

PO 5 days Upper respiratory 

tract infection 

Not specified Bacterial and 

Viral 

Pos1 

Passali D. Clin 

Therapeut 

23(9):1508-18, 

2001 Sep 

Interventional 241 Ketoprofen 160mg in 

100mL BD 

Gargle

d 

7 days Upper respiratory 

tract infection 

Not specified Not specified Pos1 

Frick S. Clin Infect 

Dis 

33(5):740-4, 

2001 Sep 1. 

Observational 2 Diclofenac, 

Tenoxicam 

75mg OD IM 1 day Soft tissue 

infections 

Strep 

pneumoniae 

Bacterial Neg3 

Barnham 

MR. 

Clin 

Microbiol 

Infect 

8(3):174-81, 

2002 Mar. 

Observational 11 Ibuprofen, Aspirin, 

Diclofenac, 

Fenbufen 

Not specified PO Not specified Toxic shock Strep pyogenes Bacterial Neg3 

Vinh H. Ped Infect Dis 

J 

23(3):226-30, 

2004 Mar 

Interventional 80 Ibuprofen 10mg/kg 

QDS 

PO 36 hours post-

fever 

Typhoid fever Salmonella 

typhi 

Bacterial Pos1 

Adler A. Ped Cardiol 25(5):562-4, 

2004 Sep-Oct 

Observational 1 Aspirin 3mg/kg/day PO 7 days Infective 

endocarditis 

Serratia 

marcescens  

Bacterial Pos2 

Memis D.  Crit Care 8(6):R474-82, 

2004 Dec. 

Interventional 40 Lornoxicam 8mg BD IV 3 days Sepsis Not specified Bacterial Null 

Bachert C. Clin 

Therapeut 

27(7):993-1003, 

2005 Jul. 

Interventional 392 Aspirin 500mg OD, 

1000mg OD 

PO 1 day Upper respiratory 

tract infection 

Not specified Viral Pos1 

Tamburini J.  J Infect 51(4):336-7, 

2005 Nov 

Observational 1 Ibuprofen 1200mg OD PO 5 days Meningitis Neisseria 

meningitidis 

Bacterial Null 
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Goto M. Int Med 46(15):1179-86, 

2007 

Interventional 174 Loxoprofen 60mg BD PO 7 days Upper respiratory 

tract infection 

Not specified Viral Null 

Sedlacek M.  Am J Kid Dis 49(3):401-8, 

2007 Mar 

Observational 872 Aspirin n/a PO n/a Bacteraemia Staphylococcus Bacterial Pos2 

Orlando A.  J Infect 54(3):e145-8, 

2007 Mar 

Observational 1 Ketorolac, 

Diclofenac 

Not specified IM 1 day Soft tissue 

infections 

E. Coli Bacterial Neg3 

Souyri C. Clin Exper 

Derm 

33(3):249-55, 

2008 May. 

Observational 38 NSAIDs n/a n/a n/a Soft tissue 

infections 

Group A strep, 

Staphylococcus, 

Pseudomonas 

aeruginosa, 

Proteus, 

Colibacillus 

Bacterial Neg2 

Cetinkaya M. Turk J Ped 50(4):386-90, 

2008 Jul-Aug. 

Observational 1 Indomethacin 1mg/kg PO 18 days Necrotizing 

enterocolitis 

Klebsiella Bacterial Neg3 

Mikaeloff Y. Br J Clin 

Pharmacol 

65(2):203-9, 

2008 Feb 

Observational 1067 NSAIDs n/a PO n/a Soft tissue 

infections 

Not specified Bacterial Neg2 

Dubos F. Acta 

Dermato-

Venereologic

a 

88(1):26-30, 

2008. 

Observational 159 NSAIDs n/a PO n/a Soft tissue 

infections 

Not specified Bacterial Neg2 

Legras A. Crit Care 13(2):R43, 

2009. 

Observational 152 NSAIDs n/a n/a 6 days Sepsis Strep 

pneumoniae, 

Staph aureus,  

Strep pyogenes, 

E. coli 

Bacterial Null 

Winning J. Platelets 2009; 20(1):50-

7 

Observational 224 Aspirin ≤100mg OD PO >6 months Pneumonia Not specified Not specified Pos2 

Kumar M.  Invest 

Ophthalmol  

50(12):5601-8, 

2009 Dec 

Interventional 45 Aspirin 350mg BD PO 30 days Latent HSV-1 HSV-1 Viral Null 
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Vis Sci 

Winning J. Crit Care 

Med 

2010; 38(1):32-

7 

Observational 615 Aspirin n/a PO n/a Not specified Not specified Not specified Pos3 

Schechter 

BA. 

Adv Ther 27(10):756-61, 

2010 Oct. 

Interventional 24 Bromfenac 0.09% 

solution, 

single 

eyedrop BD 

Eyedro

p 

102 days max Corneal ulcer Not specified Bacterial and 

Fungal 

Pos1 

Uri O. J Plast 

Reconstr 

Aesthet Surg 

63(1):e4-5, 

2010 Jan. 

Observational 1 Diclofenac 75mg OD IM 5 days Soft tissue 

infections 

Staph aureus Bacterial Neg2 

Bleidorn J. BMC 

Medicine 

26;8:30, 2010 

May 26 

Interventional 80 Ibuprofen 400mg TDS PO 3 days Urinary tract 

infection 

E. coli Bacterial Pos1 

Krudsood S. Am J Trop 

Med Hyg 

83(1):51-5, 

2010 Jul 

Interventional 60 Ibuprofen 400mg QDS IV 3 days Malaria Plasmodium 

falciparum 

Parasite Pos1 

Azuma A. Pharmacolog

y 

85(1):41-7, 

2010. 

Interventional 170 Zaltoprofen 80mg OD, 

160mg OD 

PO 1 day Upper respiratory 

tract infection 

Not specified Viral Pos1 

Beyer I. BMC 

Musculoskele

t Disord 

12:292, 2011. Interventional 30 Piroxicam 10mg OD PO 3 weeks max - - - Pos1 

Voiriot G. Chest 139(2):387-94, 

2011 Feb. 

Observational 90 NSAIDs n/a PO 5 days Pneumonia Strep 

pneumoniae, 

Legionella, 

Pseudomonas 

aeruginosa 

Bacterial Neg2 

Strate LL. Gastroenterol

ogy 

140(5):1427-33, 

2011 May. 

Observational 4721

0 

NSAIDs 325mg (1 to 

>6 

doses/week) 

PO n/a Diverticulitis Not specified Not specified Neg2 
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Erlich JM. Chest 2011; 

139(2):289-95 

Observational 161 Aspirin n/a PO n/a ALI n/a n/a Pos2 

O’Neal HR. 

Jr 

Crit Care 

Med 

2011; 39:1343–

1350 

Observational 575 Aspirin n/a PO n/a Sepsis - - Pos3 

Kor DJ Crit Care 

Medicine 

2011; 

39(11):2393-

400 

Observational 3855 Aspirin n/a PO n/a ALI n/a n/a Null 

Azuma A. Pharmacolog

y 

87(3-4):204-13, 

2011. 

Interventional 330 Zaltoprofen 160mg OD PO 1 day Upper respiratory 

tract infection 

Not specified Viral Pos1 

de Korte N. Colorectal 

Disease 

14(3):325-30, 

2012 Mar 

Observational 272 NSAIDs n/a PO n/a Diverticulitis Not specified Not specified Neg2 

Eisen DP. Crit Care 

Medicine 

40(6):1761-7, 

2012 Jun 

Observational 7945 Aspirin 150mg OD PO 1 day Sepsis Not specified Not specified Pos3 

Demirel G. Early Hum 

Devel 

88(4):195-6, 

2012 Apr 

Observational 121 Ibuprofen 10mg/kg OD, 

then 5mg/kg 

BD 

PO 2 days Sepsis Not specified Not specified Pos2 

Otto GP. Platelets 2013; 24(6): 

480–485 

Observational 886 Aspirin n/a PO n/a Sepsis Not specified Bacterial Pos3 

Sossdorf M. Crit care 2013; 

8;17(1):402 

Observational 979 NSAIDs, Aspirin n/a PO n/a Sepsis Not specified Not specified Pos3 

Llor C BMJ 347:f5762. 2013 

Oct 

Interventional 416 Ibuprofen 600mg TDS PO 10 days Lower respiratory 

tract infection 

Not specified Viral Null 
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4.1: INTRODUCTION 

4.1.1 Monocyte deactivation 

Monocyte deactivation is a key feature of CIIID. Circulating monocytes extracted 

from CI patients characteristically display reduced production of pro-inflammatory 

cytokines in response to ex-vivo challenge138,388,389, diminished phagocytosis390,391, 

and loss of cell surface markers associated with antigen-presentation/T-cell 

stimulation including CD86 and HLA-DR392,393. Deactivation has clear prognostic 

implications in this population. Reduced HLA-DR expression or cytokine production 

ex-vivo, either on ICU admission or which fails to return to normal values, is 

associated with increased rates of nosocomial infection134,137,393, secondary sepsis394, 

and mortality136,138,395. When combined with objective metrics of dysfunction in other 

leukocyte populations (PMN and T-cells) the predictive ability and clinical 

implications of these bioassays is further pronounced396.  

Such data provide the rationale behind the undertaking of immunological monitoring 

and administration of immunoadjuvant therapy. This strategy dictates the 

stratification of CI patients into those with adequate or inadequate immune function, 

and the administration of tailored therapies to restore effector cell function in those 

with demonstrable immunoparalysis310,397-399. Not only vital in identifying individuals 

as immune-compromised and likely to benefit from immunoadjuvant agents, 

bioassays of immune function may be used to titrate therapy against them, their 

normalisation being predictive of treatment efficacy and clinical benefit381,383. 

4.1.2 Immunorestorative therapy 

To date, late-phase monocyte deactivation has been successfully reversed, at least 

partially, by both granulocyte-macrophage colony stimulating factor (GM-

CSF)132,381,400-402 and interferon-γ (IFN-γ)131,383,403 in pre-clinical and small clinical 

trials. Significantly, rectification of HLA-DR expression and/or ex vivo cytokine 

production is paralleled by in vivo augmentation of pro-inflammatory TNFα and 

attenuation of anti-inflammatory IL-10 release137,383. Further, restoration of immune 

competence via GM-CSF appears to be linked with improved clinical outcomes 

including reduced incidence of nosocomial infection137, significant reduction in length 

of ICU and hospital admission, decreased time on mechanical ventilation, and 

improved acute physiology and chronic health evaluation (APACHE) II score381.  

As discussed in previous chapters, PGE2 has long been known to suppress multiple 

monocyte and macrophage functions - including pro-inflammatory cytokine secretion 

- principally through EP2 and/or EP4-mediated increase in intra-cellular 
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cAMP207,404,405. Given the ability of NSAIDs to improve survival in animal models of 

sepsis and their observed efficacy in critically ill patients, it is plausible that PGE2 

may contribute to clinically relevant monocyte deactivation. If this were true its 

ablation or antagonism would afford a further, potentially complimentary 

immunoadjuvant therapy to the afore-described agents. 

4.1.3 Whole blood LPS-stimulated TNFα secretion 

Ex vivo whole blood (WB) LPS-stimulated TNFα secretion has emerged as a key 

bioassay of immune competence. Thought to principally reflect monocyte function 

(being the primary cellular source of TNFα406), a reduction in pro-inflammatory 

cytokine release has been demonstrated to be predictive of adverse clinical 

outcomes in the paediatric and adult CI population experiencing systemic 

inflammation as a result of either sterile or infective insults131,137,138,407,408. Responsive 

to immunoadjuvant agents both in vivo and ex vivo with restoration of TNFα secretion 

being associated with improved outcomes, it represents an ideal functional assay 

with which to test a potential contribution of PGE2 to clinically relevant monocyte 

deactivation. 

4.1.4 Chapter aims 

 Determine whether PGE2 can induce monocyte deactivation in a clinically 

validated bioassay of immune-competence: whole blood (WB) LPS-stimulated 

TNFα secretion 

 Deduce the pharmacological mechanism of any PGE2-mediated effect and, if 

demonstrated, prove the efficacy of its antagonism determining whether this 

is independent of known immunoadjuvant therapies (GM-CSF and IFN-γ) 

 Generate a key bioassay of PGE2-mediated monocyte deactivation for use in 

the IV endotoxemia model of systemic inflammation through appropriate 

characterisation 
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4.2 ADDITIONAL METHODS 

4.2.1 Whole blood LPS-stimulated cytokine secretion: variation in the assay 

Venous blood was obtained from healthy volunteers and stimulated as per Chapter 2 

Methods (2.1.1 and 2.3.3), supernatant being analysed for cytokines and PGE2 by 

ELISA (2.3.1 and 2.3.2). The effect of several variables on the assay were evaluated 

including:  

 Time-course of TNFα and PGE2 release (30min, 1hr, 2, 4, 6, 8, 24hrs) 

 Anti-coagulant (EDTA, Na Citrate, LH) 

 LPS type (species [Escherichia coli 0111:B4  or 055:B5, Salmonella abortus 

equi S-form, [TLRgrade™], Enzo Life Science, Salmonella Minnesota (R-

form, Serotype:R595 , Hycult®)], rough vs. smooth) and dose (1pg/mL-

100ng/mL) 

 Incubation conditions (dilution, temperature, shaking) 

 Contribution of biological and technical variance 

4.2.2 PGE2-mediated modulation of whole blood LPS-stimulated cytokine secretion 

The core WB assay described in 2.3.3 was employed to evaluate 

 Dose-response curve of PGE2 

 Shift in the dose-response curve elicited by selective EP-receptor: 

o Agonists: Butaprost (EP2), CAY10598 (EP4) 

o Antagonists: PF-04418948 (EP2), MF498 (EP4) 

 NSAID-modulation of TNFα release (Indomethacin) 

 The contribution of cAMP to observed alterations via: 

o Forskolin: direct activator of adenylyl cyclase 

o Rolipram: selective phosphodiesterase 4 inhibitor 

 The effect of established immunorestorative agents: GM-CSF and IFN-γ 

All reagents were obtained from Cayman Chemical (MI, USA) unless otherwise 

stated and re-constituted in DMSO such that the eventual assay concentration was 

<0.01%.  
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4.3 RESULTS 

4.3.1 Characterisation of the WB LPS-stimulated cytokine release model 

A review of the literature on utilisation of ex vivo cytokine secretion as a measure of 

immune competence indicated that authors had employed multiple methodological 

variations in the assay. The effect of each of these was assessed to elucidate their 

comparative impact on supernatant TNFα concentration and variability (Figure f4.1).  

Stimulation with LPS (1ng/mL) from any of four bacterial sources (as 4.2.1) elicited 

high levels of TNFα release (Panel A). Whilst statistically different (matched one-way 

ANOVA with Greenhouse-Geisser correction, p<0.0001), the rough (R) LPS derived 

from Salmonella Minnesota being more potent, the biological relevance of this is un-

clear. TNFα was released in response to concentrations of Salmonella Abortus Equi 

(SAE) as low as 100pg/mL, with only a 10-fold increase – 1ng/mL – eliciting a 

maximal response, no further increase being seen even at 100ng/mL (Panel B). 

Cytokine release in the presence of alternate anticoagulants was observed to be 

significantly different, being lower when EDTA was employed compared to LH or Na 

Cit (Panel C: paired t-test, 2-tailed, both <0.001). Whilst there was a trend towards 

lower TNFα release in Na Cit compared to LH this did not reach significance (paired 

t-test, 2-tailed, p=0.08). 

Supernatant TNFα concentration was observed to peak between 6 and 24hours, and 

showed no significant difference from 4-24hours (Panel D: matched one-way ANOVA 

with Greenhouse-Geisser correction, p=0.09). Incubation at 37°C was required for 

cytokine release, samples being left at room temperature (20°C) failing to release 

significant quantities (Panel E). Whilst a lower mean concentration of TNFα was 

determined in shaken samples (S) than not-shaken (NS), which did not reach 

significance, they were less variable (S: 4934pg/mL SD 455pg/mL, NS: 5911pg/mL 

SD 783pg/mL; paired t-test, 2-tailed, p=0.12). Previous authors have employed 

dilution of WB with cell culture media to aid ease of technical performance and to 

enhance supernatant yield. As expected, with an increased ratio of media to WB, the 

TNFα concentration per unit supernatant fell from a mean of 7267pg/mL (no diluent, 

0) to 2107pg/mL (10:1) (Panel E). Variability however fell with increasing dilution (un-

diluted and 1:1 diluted samples, SD 4158pg/mL and 4161pg/mL respectively, 1:5 SD 

3491pg/mL and 1:10 1925pg/mL). 



 94 

 

Figure f4.1. Methodological characterisation of the ex-vivo cytokine release assay. WB (1ml) 

from 10 HV (in triplicate) was stimulated with A: LPS (1ng/ml) from 4 different bacteria. TNFα 

from un-stimulated cells was undetectable B: Different doses of one type of LPS (SA, 1pg/mL 

– 100ng/mL) C: Having been anti-coagulated with either LH, Na Cit or EDTA (1ng/mL, SA) D: 

For different lengths of time prior to supernatant removal (SA, 1ng/mL, 30min-24h) E: In 

alternate incubation conditions either room temperature [RT, 20°C] or 37°C, whilst being 

shaken (S) or not shaken (NS), and F: Diluted in RPMI to different degrees (no diluent [0] to 1 

part WB 9 parts RPMI [1:10]). N=10, all data in mean +/- SD. 

 

D C 

B A 

E F 
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Biological and technical variance in the assay was explored by undertaking ten 

technical repeats from three volunteers on three consecutive days using 1ng/mL 

SAE, 5:1 dilution, 37°C 250rpm, LH anticoagulant with supernatant aspiration at 

6hours. As Figure f4.2 highlights, significant differences (all 2-way matched ANOVA, 

p<0.001) between subjects, within subjects over time, and interaction between the 

two variables was observed. The latter indicates that individual subjects responses 

did not vary systematically with time, but likely via chance. Technical variance was 

demonstrable by examination of assay repeats (Table t4.1, Figure f4.2). Large 

standard deviations between identical samples (n=10/subject/day) are observed, 

either reflecting genuine biological variability between WB drawn and handled 

identically or, more likely, cumulative variability from the conduct of the assay (e.g. 

length of incubation, dilution), sample storage (e.g. speed of freezing) and 

measurement error in recording TNFα. 

 

 
Day 1 Day 2 Day 3 

Subject Mean SD Mean SD Mean SD 

1 8833.079 1577.628 4662.134 726.415 6992.939 1485.885 

2 7815.977 894.5548 3822.005 1158.577 5739.586 1053.781 

3 7085.192 981.8833 7259.572 1226.343 8441.676 1444 

 

Figure f4.2 and Table f4.1: Intra-individual variation in LPS-stimulated whole blood TNFα 

release and PGE2-mediated suppression. Ten repeats of the WB assay (1mL WB, 5:1, 6hrs, 

SA 1ng/mL) from three individuals (1 male, 2 female) were performed on three consecutive 

days. The central line represents the mean, the upper and lower whiskers the maximum and 

minimum values, n=10/individual/day. 2-way matched-sample ANOVA indicates significant 

differences between subjects (P<0.0001, 14.26% variability), over time (P<0.0001, 32.22% 

variability), and additionally interaction between the two (P<0.0001, 19.47%). 
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4.3.2 PGE2 as a mechanism of monocyte deactivation 

WB was stimulated as per 2.3.3 to evaluate the effect of PGE2 on cytokine secretion. 

10ng/mL PGE2 was observed to significantly suppress the release of both TNFα and 

IL-6 (multiple un-paired t-tests, equal SD assumed, Holm-Sidak correction for 

multiple comparisons) however it was not pan-inhibitory, eliciting non-significant 

increases in IL-1β and IL-8 (Figure f4.3, Left Panel). Minimal IL-10 secretion was 

seen in response to LPS and this was not altered by the addition of PGE2. PGE2 

inhibited LPS-stimulated TNFα release in a dose dependent manner, with an IC50 of 

317pg/mL (95% CI 105 – 959pg/mL) (Figure f4.3, Right Panel). 

 

 

Figure f4.3: LPS-stimulated whole blood cytokine release and modulation by PGE2. Left 

Panel: WB (1ml, 5:1 dilution, n=5 HV, 3 technical repeats/volunteer) was co-incubated with 

PGE2 (10ng/mL) for 15mins prior to stimulation with LPS (SAE, 1ng/ml), supernatants being 

removed at 6hrs. Cytokine concentrations were determined by MSD V-Plex. Multiple un-

paired T-test with Holm Sidak correction, * indicates significance. Right Panel: WB (n = 3 HV, 

3 technical repeats/volunteer, mean +/- SD) was co-incubated with PGE2 (1pg/mL – 10ng/ml) 

prior to stimulation as above. WB was pre-treated with indomethacin 10μM to prevent any 

exogenous prostanoid production. IC50 was determined from a four-parameter dose-

response curve. 

A PGE2-(Gs-coupled) EP4-cAMP axis appears to be the principal mechanism 

underlying TNFα suppression / monocyte deactivation. MF498 (1μM, a selective EP4 

antagonist, Ki 0.7nM) causes a significant right-shift in the PGE2 dose-response 

curve increasing the IC50 100-fold (PGE2 IC50 200pM 95% CI 46–872pM, PGE2-

MF498 21nM 95% CI 1.5nM-305nM) whilst PF-04418948 (1μM, a selective EP2 

antagonist, Ki 16nM) has no significant effect (IC50 380pM 95% CI 128pM-1.1nM) 

(Figure f4.4, Right Panel). In comparison, addition of the selective EP4 agonist 

CAY10598 mimicked the effect of PGE2 at near equimolar concentrations (IC50 1nM 
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vs 1.7nM respectively), whilst the selective EP2 agonist butaprost did so only at ~50 

times higher concentrations (IC50 73nM, Figure f4.4, Left Panel), reflecting their 

stated Ki of 1.2 and 73nM respectively.  

The importance of the secondary messenger cAMP to the action of PGE2 was 

emphasised by the potentiation of its effect in the WB assay by the addition of 10μM 

rolipram (RoP), which prevents catabolism of cAMP (Figure f4.4, Bottom Panel). 

Forskolin (100μM), a direct activator of adenylyl cyclase, mimicked the effect of 

PGE2: an action that was again enhanced by RoP. Interestingly, the addition of RoP 

to LPS-stimulated WB led to an independent decrease in TNFα release, without the 

addition of an exogenous Gs-coupled receptor agonist or adenylyl cyclase activator. 

This implies the presence of an endogenous stimulator of cAMP production. 
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Figure f4.4: Pharmacological assessment of the receptor through which PGE2 supresses 

LPS-stimulated whole blood TNFα release. Left Panel: WB (n=3 HV, 3 technical 

repeats/volunteer) was incubated with 10pM-1μM PGE2, butaprost (selective EP2 receptor 

agonist) or CAY10598 (selective EP4 receptor agonist) prior to stimulation with LPS. Right 

Panel: WB (n=3 HV, 3 technical repeats/volunteer) was co-incubated with PF-04418948 

(1μM, selective EP2 receptor antagonist) or MF498 (1μM, selective EP4 receptor antagonist) 

prior to the addition of PGE2 (1pM-1μM) and stimulation with LPS. IC50 was determined from 

a four-parameter dose-response curve. Data points are mean +/- SD. Bottom Panel: WB 

(n=1 HV, 3 technical repeats) was incubated with PGE2 1nM, rolipram (RoP) 10μM, forskolin 

100μM or combinations of the above and stimulated with LPS. All three agents suppressed 

TNFα concentrations in resultant supernatants, RoP further significantly potentiating the 

action of PGE2 and forskolin. Data points are mean of 3 technical repeats, assayed (ELISA) in 

duplicate. 

The generation and release of ex vivo generated PGE2 by stimulated WB was tested 

for via ELISA (Figure f4.5). PGE2 accumulated in the assay, first appearing around 

1h and increasing up to 24h (666pg/mL, Top Panel). Co-incubation of LPS-

stimulated WB with 1μM MF498 alone (or alternate selective EP4 antagonists, data 

not shown) resulted in increased TNFα release compared to LPS-stimulated blood 
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alone (Left Panel). This was replicated by the addition of the non-selective COX 

inhibitor indomethacin (10μM) to the assay, indicating that the effect of endogenous 

PGE2 may be abrogated via either antagonism of prevention of TLR4-stimulated 

formation. To demonstrate that MF498 was not acting on COX, PGE2 concentrations 

were determined in the same samples. Whilst indomethacin led to a complete 

suppression of PGE2 formation, MF498 had no effect on this process. 

  

Figure f4.5: Endogenously generated PGE2, induced by LPS, acts via the EP4 receptor to 

suppress TNFα secretion. Top Panel: LPS-stimulated WB was assayed for the presence of 

PGE2 at time-points ranging from 1h-24h via ELISA (n=1 HV, 2 technical replicates, assayed 

(ELISA) in duplicate). Columns represent mean values. Left Panel: Both NSAID 

(indomethacin 10μM) and EP4 antagonist (MF498 1μM) addition to LPS-stimulated WB leads 

to enhanced TNFα accumulation (columns represent mean values of n=1 2 technical 

replicates, assayed (ELISA) in duplicate). Right Panel: Indomethacin, but not MF498, 

significantly suppresses PGE2 generation ex-vivo (columns as per Left Panel). 

4.3.3 Specificity and restoration of PGE2 immunosuppressive effect 

At physiologically relevant concentrations PGI2, in addition to PGE2 suppresses ex 

vivo TNFα secretion in the LPS-stimulated WB model. Carbaprostacyclin, a stable 

analog of PGI2, was found to inhibit TNFα release with an IC50 of 590pM (95% CI 

444-785pM) in contrast to 427pM (95% CI 307-592pM) when directly compared to 

PGE2. Carbocyclic thromboxane A2, a stable analog of TXA2, was found to have the 

nearest properties possessing an IC50 of 184nM (95% CI 5.7nM to 5.8μM) (Figure 

f4.6).  
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Figure f4.6: Comparative ability of alternate COX-derived prostanoids to elicit 

immunosuppression in the ex-vivo WB assay. Dose-dependent inhibition of LPS-stimulated 

(1ng/ml) TNFα release by PGD2, PGF2α, PGI2 (carbaprostacyclin, a stable analog of PGI2) 

and TXA2 (carbocyclic thromboxane A2, a stable analog of TXA2). WB was pre-treated with 

indomethacin 10μM to prevent exogenous prostanoid production. Data points represent the 

average of n=3 HV (2 technical repeats/volunteer, each assayed in duplicate [ELISA]), 

whiskers display SD. IC50’s were determined via four-parameter dose-response curves. 

IFN-γ and GM-CSF represent recognised immunoadjuvant therapies, capable of 

restoring ex vivo cytokine secretion in immunocompromised CI patients. As such 

their ability to reverse PGE2-mediated cytokine secretion was assessed. Both agents 

were found to increase mean TNFα concentration (LPS 5482pg/mL, IFN-γ 

8826pg/mL, GM-CSF 8666pg/mL) in assayed supernatants after LPS-stimulation but 

did not induce TNFα release when administered independently (Figure f4.7, Left 

Panel). They were found to ‘reverse’ PGE2 1ng/ml-mediated suppression of TNFα 

release to baseline (LPS 1ng/mL alone), however the co-administration of an EP4-

recpetor antagonist (MF498 1μM) was found to further increase observed TNFα 

concentrations (Figure f4.7, Right Panel). This indicates that IFN-γ and GM-CSF act 

via pathways independent of the PGE2-EP4-cAMP axis and that they may represent 

complementary immunorestorative therapeutic strategies. 
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Figure f4.7: Comparison of established immunostimulatory agents to EP4 receptor 

antagonism in restoring LPS-stimulated WB TNFα secretion. Left Panel: WB was co-

incubated IFNγ (100ng/ml, chess-board pattern) or GM-CSF (50ng/ml, cross-hatch pattern) 

and either stimulated with LPS-of not. Both agents led to significantly greater TNFα release 

(p<0.001). Right Panel: WB was co-incubated with PGE2 (1ng/ml) in the presence or 

absence of IFNγ (100ng/ml, chess-board pattern) or GM-CSF (50ng/ml, cross-hatch pattern) 

with the addition an EP4 receptor antagonist (MF498 1μM) where indicated. LPS 1ng/ml was 

used to stimulate the blood and supernatants were removed after 6hrs. WB was pre-treated 

with indomethacin 10μM to prevent any exogenous prostanoid production in both 

experiments. Bars represent the mean of n=1 HV, with 2 technical repeats/condition, each 

assayed (ELISA) 4 times. 

 

4.4: DISCUSSION 

PGE2 is capable of inducing monocyte deactivation at physiological-relevant 

concentrations with an IC50 ~300pg/mL, as determined by ex vivo WB LPS-

stimulated TNFα release. The EP4 receptor appears central to this process, selective 

EP4 agonists and antagonists either mimicking the effect of PGE2 or abrogating it. 

Like the EP2 receptor, EP4 is GS-coupled, cognate-binding serving to increase the 

intracellular concentration of cAMP409: a mechanism that has been repeatedly 

associated with the immunosuppressive action of PGE2 in vivo and in vitro199,250,410. 

Supportive evidence that this pathway is responsible for the reduction in observed 

TNFα release was provided through the replication of PGE2’s action by forskolin, a 

cell permeable diterpenoid that directly activates adenylyl cyclase411, and it’s 

augmentation by rolipram, a selective phosphodiesterase 4 inhibitor that reduces the 

catabolism of biosynthesised cAMP412,413. LPS-stimulated but not un-stimulated WB 

was additionally observed to release PGE2, acting as an autocrine/paracrine 

immunomodulator. To prevent endogenously generated eicosanoids impairing 

interpretation of the effect of exogenously added PGE2 or alternate 
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immunomodulatory agents pre-treatment with COX-inhibitors (indomethacin 10μM) 

was instituted. 

Preliminary evidence that reversal of PGE2-mediated monocyte deactivation could 

represent a complimentary immunorestorative strategy to those already under 

investigation was obtained. Both GM-CSF and IFN-γ, and NSAIDs and EP4 

antagonists were observed to independently increase TNFα release in the WB 

model, the latter seemingly due to ablation or blockade of the aforementioned 

endogenously released PGE2. Whilst GM-CSF and IFN-γ, appeared to ‘antagonise’ 

the effects of PGE2 - restoring TNFα concentration to baseline (LPS alone) when 

exogenous PGE2 was added - the addition of an EP4 receptor antagonist led to a 

further increase in TNFα release. This indicates that the mechanism through which 

GM-CSF and IFN-γ work is separate to the PGE2-EP4-cAMP axis described above. 

As such, ‘anti-PGE2’ therapy may act synergistically with these established 

immunostimulatory agents, affording greater clinical gain. 

Of note, PGE2 was not the only COX-derived prostanoid to suppress WB TNFα 

release at physiological concentrations, PGI2 possessing a similar IC50. This is not 

unexpected: the IP receptor also being Gs-coupled and therefore potentially exerting 

this action via a common cAMP-protein kinase A axis. PGI2 is now thought to play a 

regulatory or anti-inflammatory role in several disease states (which may be 

beneficial or detrimental), primarily through modulation of dendritic cell (DC) function 

(see414 for review). Equally, previous authors have described how synthetic analogs 

of PGI2 inhibit macrophage and monocyte-derived DC pro-inflammatory cytokine 

release, and thus the data described here may represent an extension of these 

findings415,416. Care must be taken however in translating such results to the in vivo 

setting, artificially long-lasting analogs (in this case carbaprostacyclin) potentially 

being able to generate alterations in cellular function their more fleeting biological 

cousins cannot. 

Additionally, PGE2-induced monocyte deactivation may not however be absolute. 

10ng/mL PGE2 was observed to significantly reduce TNFα and IL-6 release but non-

significantly increase IL-8 and IL-1β. Whilst we and others have focused on TNFα 

due to its central place in the inflammatory cascade and the proven link between 

alteration in LPS-stimulated release and clinically meaningful outcomes, it is clear 

that PGE2 may not universally suppress monocyte function, but phenotypically bias it. 

This may necessitate a more nuanced view than one of PGE2 being entirely 

detrimental in the context of CI.   
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4.4.1 Assay selection and variability 

Several different techniques for undertaking ex vivo WB LPS-stimulation have been 

reported in the literature. These variables were found to have differing degrees of 

impact on the assay and a core technique similar to that used by Kox et al.220 was 

eventually selected based on maximisation of TNFα release, minimisation of inter-

replicate variability and retention of sensitivity to immunosuppressants. This involved 

using SAE 1ng/mL to stimulate 1ml of WB anticoagulated with lithium heparin and 

diluted with 4mls RPMI, which was then incubated at 37°C at 250rpm for 6hours. 

Despite optimisation, significant technical and biological variability with the assay 

remained. Consequently, when employed as a marker of immune competence 

multiple technical replicates and internal controls should be employed. Many of the 

findings reported within this chapter, including evidence supporting cAMP 

involvement in PGE2-mediated TNFα suppression and comparison of GM-CSF and 

IFNγ with EP4 antagonists was undertaken in blood obtained from a single individual. 

Despite technical replication this should be viewed as early proof-of-principle data 

and conclusions tempered appropriately. 

 

4.5: SUMMARY 

 PGE2, at pathophysiological concentrations, induces suppression of whole 

blood ex vivo TNFα release commensurate with that seen in CIIID. 

 The central mechanism for this effect appears to be a PGE2-EP4 receptor-

cAMP axis, although a contribution from the EP2 receptor cannot be refuted. 

 Initial data suggests PGE2 ablation or antagonism may provide a 

complimentary therapeutic strategy to that afforded by the established 

immunoadjuvant agents GM-CSF and IFN-γ: their co-administration 

synergistically increasing monocyte cytokine secretion. This requires further 

validation. 

 Key variables influencing performance of the ex vivo WB LPS-stimulated 

cytokine release assay include dilution of blood, anticoagulant, incubation 

temperature and duration and concentration of LPS. An optimal method has 

been elucidated. 
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4.6: APPENDIX 

 

Figure f4.8: Sex differences in WB-LPS stimulated TNFα release. Whole blood (1ml) from 5 

male and 5 female HV was stimulated with LPS (1ng/mL) in the presence or absence of 

PGE2. In both groups PGE2 elicited significant suppression of TNFα release (male: p=0.0126, 

female p=0.0121, both 2-tailed paired t-test), however there was no significant difference in 

either TNFα release between sexes or in the degree of PGE2-mediated immunosuppression. 

Data points represent individual participants, mean of 3 technical replicates (tubes) each 

assayed (ELISA) in duplicate. 
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CHAPTER 5: Mono Mac 6 
 

DERIVATION OF A FUNCTIONAL BIOASSAY TO DETECT PROSTAGLANDIN E2 

IN CLINICAL SAMPLES 

 

5.1 Introduction 

5.2 Additional Methods 

5.3 Results 

5.4 Discussion 

5.5 Summary 

5.6 Appendix   
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5.1: INTRODUCTION 

5.1.1 PGE2 in health and disease 

Predominantly acting as autocrine or paracrine signalling molecules, prostaglandins 

are evanescent. PGE2 is rapidly cleared from the blood, only 3% of IV-administered 

tritium-labelled PGE2 remaining after 1.5 minutes417, the primary route of elimination 

being via 15-hydroxy-prostaglandin dehydrogenase (15H-PG DH) to 15-keto-13,14-

dihydro-PGE2 in the lungs418. The concentration of PGE2 in healthy individual’s’ 

plasma is around 2-10pg/ml when measured via mass spectrometry419, other 

methods providing considerably higher estimates (radioimmunoassay: 5-

350pg/ml420,421, ELISA: 150-850pg/ml422-424). This discrepancy may be due to 

formation of prostaglandins by leucocytes and platelets during isolation of the 

plasma, and potentially by non-enzymatic cyclization of polyunsaturated fatty 

acids425. The concentration of the principle metabolites of PGE2, the 15-keto-13,14-

dihydro-PGE2 derivatives, have repeatedly been reported to be cumulatively around 

30-50pg/mL425-427. These may represent a superior index of PGE2’s entry into 

peripheral blood being formed principally outside this compartment. 

In disease, specifically that with an inflammatory component, PGE2 concentrations 

may be much higher - elevated levels being identified locally at wounds/infected 

sites428-430, their draining lymphatics431 and in the circulation of patients with CI432. 

During severe sepsis and septic shock, serum concentrations in the range of 500-

1500pg/mL have been reported when measured via ELISA, 15-fold higher than in 

healthy controls433. Using electrospray ionisation liquid chromatography mass 

spectrometry (ESI/LC-MS/MS) we recently described a near 6-fold increase in mean 

plasma PGE2 concentration in patients with acute decompensation of liver cirrhosis 

(90pg/mL) compared to healthy volunteers (15pg/mL)142, a condition associated with 

a similar immunosuppressive burden to CI434,435. Local levels may escalate 

considerably higher, human burn blister exudates containing 2ng/mL429,430, 

cantharidin (a sterile acantholytic) elicited blisters 5ng/mL436 and heat-killed E.coli 

inoculation provoking concentrations ~15ng/mL431 in the efferent lymphatics.  These 

rises may not be benign, but instead have both local437,438 and systemic functional 

consequences212 on host defence. Increasing immune effector cell sensitivity to 

PGE2 may further compound the suppressive effect of an elevated concentration. 

This appears to be the result of altered receptor expression or humoral factors such 

as bacterial muramyl dipeptide and steroid hormones, with shifts in functional assay 

PGE2 IC50 from the low μM to the low nM range being reported212,439-441. 
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Animal studies suggest that tissue resident macrophages (splenic and peritoneal in 

particular442,443) may be the source of circulating PGE2 and further, that its in vivo 

ablation is immunostimulatory444. Studies of patients with thermal445 or traumatic 

injury210,446 and healthy volunteers injected with endotoxin212 suggest that circulating 

monocytes may also contribute to elevated plasma PGE2 concentrations: prostanoid 

release increasing by up to 400% following ex vivo stimulation compared to that seen 

in healthy controls. A final contributing factor appears to be down-regulation of the 

pathways associated with PGE2 catabolism, both 15H-PG DH and carbonyl 

reductase (a secondary, minor route of elimination) being significantly down 

regulated (up to 26-fold) at the transcriptional and post-transcriptional level in 

experimental models of sepsis447,448. 

5.1.2 Derivation of a PGE2 bioassay 

As described in Chapter 4, PGE2 mimics the immunosuppression witnessed clinically 

in an established measure of monocyte deactivation - WB-LPS stimulated TNFα 

release - adding plausibility to the pre-clinical and observational clinical data 

implicating it as a contributing factor to CIIID. Clearly however, not all CI patients will 

have a dysregulated inflammatory response, and of those that do, not all would 

develop immunosuppressive concentrations of PGE2. Stratified medicine represents 

‘the potential to use biomarkers for identifying patients that are more likely to 

benefit… in response to a given therapy’449. If clinically proven, there is a need for 

rapid, meaningful methods to determine the presence and functional impact of PGE2 

in CI patients, stratifying them by immune competence into those that would benefit 

from anti-PGE2 therapy and those it may do more harm than good450. 

Mass spectrometry represents the gold standard for quantification of eicosanoids in 

biological fluids451,452. Whilst unquestionably the most sensitive and specific 

technique it has disadvantages with regards to speed of sample processing, cost, 

complexity, the requirement of specialised training in its use, and availability - 

particularly in resource poor settings. In contrast, cell-based bioassays, already the 

mainstay of CIIID detection (monocyte HLA-DR expression, ex vivo cytokine 

secretion) are quick, cheap, easy to perform, require minimal training and generate 

rapidly interpretable results which may inform clinical decision making. Importantly, a 

bioassay would not merely demonstrate the presence of PGE2 or its receptor binding, 

but indicate its bioavailability and functional/downstream effects, linking an 

assessment of ‘quantity’ with its mechanistic importance in the observed 

pathophysiology. Predictive information regarding the result of PGE2 blockade may 

also be gained. 
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The host laboratory have previously demonstrated the value of one such approach, 

placing plasma from cirrhotic patients on primary monocyte-derived macrophages 

(MDM) derived from healthy volunteers (HV) and using LPS-stimulated TNFα 

production as a read-out for the presence of PGE2, a measure of its 

immunosuppressive impact and the effect of its reversal with selective EP-receptor 

antagonists142. Variants of this technique have also been employed by other 

investigators to determine the presence or absence of immunosuppressive humoral 

mediators in CI453. In preparatory work for this PhD during my Academic Clinical 

Fellowship, I placed sequential plasma samples (25% v/v) derived from nine patients 

admitted to UCLH with moderate-severe CAP (see 5.2.1) on HV MDM obtained via 

the technique described in 2.1.2. As illustrated in Figure f5.1, plasma from these 

patients was observed to reduce MDM TNFα release compared to HV plasma alone 

(P<0.001), individuals’ samples eliciting peak immunosuppression at different time-

points (majority at 36hrs post-admission) and demonstrating divergent degrees of 

‘recovery’ by day 5/discharge (6/9). This immunosuppressive effect was partially 

reversed by pre-incubation with AH6809 (an EP1-3/DP1 antagonist) at study 

recruitment, 36hrs and 5days/discharge, reaching significance at 0hrs (Figure f5.2), 

implying the presence of bioavailable, immunosuppressive PGE2 in these individuals. 

 

Figure f5.1: CAP patient plasma exerts a differential suppression of MDM cytokine production 

dependent on time post-admission. Left Panel: MDM were co-incubated with 25% v/v patient 

plasma (n=9) for 30mins prior to stimulation with LPS 100ng/mL. Data points represent the 

average of two technical (ELISA) repeats. Samples were obtained at study recruitment (0hr), 

12hrs, 36hrs and at day 5 post-recruitment/discharge (resolved), whichever came earlier. 

Supernatants were removed 24hrs post-stimulation. Right Panel: MDM were pre-treated with 

or without 50μM AH6809 (a PGE2 EP1-3/D2 antagonist) for 30mins prior to plasma addition. 

Data points represent individual HV or patient samples (n=9, average of two technical (ELISA) 

repeats) 
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Figure f5.2: Individual (paired-sample) reversal of immune dysfunction with EP-receptor 

antagonism. MDM were co-incubated with 25% v/v patient plasma (n=9) for 30mins with or 

without 50μM AH6809 (a PGE2 EP1-3/D2 antagonist) prior to stimulation with LPS 100ng/ml. 

Data points represent individual patient values, each being the mean of two ELISA repeats. 

Stimulants were removed 24hrs post-stimulation. Paired t-test, ** = p<0.005. 

5.1.3 Mono Mac 6 

Despite the ability of the described bioassay, the use of primary cells to determine a 

PGE2-mediated contribution to CIIID has clear limitations. In my hands the method 

employed to yield MDM (2.1.2, derived from Smith et al.283) demonstrated low purity 

on flow cytometric analysis (MDM comprising only 25-50% of the stimulated 

population with a high proportion of T-lymphocytes) and both a poor and variable 

yield from a given quantity of blood. As such large (200mL) volumes are required, 

experimental planning is rendered challenging and the observed effect cannot be 

ascribed to a single cell population. Further concerns include both inter- and intra-

individual variability regarding LPS-stimulated TNFα release, the lengthy lead-in time 

to generate ‘testable’ cells and the inability to ‘up-scale’ or render the assay standard 

– particularly relevant in the context of multi-site analysis. 

The use of a cell line obviates many of these concerns, offering reliability, 

consistency and cell ‘purity’ at no clinical cost. Most importantly it should afford a 

significantly higher signal to noise ratio. Multiple human myeloid cell lines exist: THP-

1, U937, Mono Mac 1 and Mono Mac 6 (MM6), each displaying unique 

characteristics secondary to their degree of development/maturity and genetic 

alterations that gave rise to their malignant potential. Of these, MM6 is considered to 

most closely resemble mature human monocytes by morphological, cytochemical 

and immunological criteria284 (see section 2.2 for further discussion).  
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After initial trial experimentation with U937 cells in which I found neither consistent 

response to LPS with regards to TNFα release, nor modulation of the elicited 

cytokine profile by PGE2 (data not shown), I elected to efficacy of the MM6 cell line in 

this role. Relevant to my proposed usage these cells display alternate patterns of 

differentiation in response to their culture environment285, a functional AA-pathway 

with up-regulation of COX-2 in response to LPS454, PGE2 generation in response to 

TLR-2 or 4 receptor stimulation in a dose-dependent fashion455, and most 

importantly, both eicosanoid-mediated regulation of agonist-induced TNFα release456 

and features of monocyte deactivation in response to LPS457,458. Already proposed 

for use in assays to determine pyrogen levels in biological samples288 and predict 

adjuvant safety in vivo459, it was hypothesised that MM6 would be suitable to detect 

the presence or absence of immunomodulatory PGE2 in biological samples460. 

5.1.4 Chapter Aims 

 Develop a rapid, cheap and scalable bioassay to delineate the contribution of 

PGE2 within a biological fluid to immune suppression  

 Describe the characteristics of and pathways involved in this assay including 

principal receptors, intra-cellular messengers, specificity and sensitivity to 

alternate humoral mediators 

 Compare the performance of the MM6 bioassay with that of primary MDMs 
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5.2: ADDITIONAL METHODS 

5.2.1 Patient Samples 

Samples were kindly donated by Dr Steve Harris and Prof Mervyn Singer Principal 

Investigators of the Sepsis Physiological and Organisational Timing: In Depth 

[(SPOT)id] study funded by the Wellcome Trust (Project: 088613/Z/09/Z) and the 

Intensive Care National Audit and Research Centre (ICNARC). All samples arose 

from University College London Hospital. Patients admitted to hospital with 

moderate-severe community acquired pneumonia (CAP) (Confusion, Urea, Blood 

Pressure, Respiratory Rate [CURB]-65 score461 ≥2, with clinical and radiological 

evidence of pneumonia) were recruited. After consent, venous blood was taken by 

trained research nurses at set time-points post-recruitment (0hrs [admission], 12hrs 

[day 1], 36hrs [day 2-3], 72hrs [day 5], and at discharge/10 days – whichever is later) 

in EDTA-sprayed Vacutainers® (BD), centrifuged (2000g/10mins/20°C), and 

resultant plasma aliquoted into appropriately labeled cryostorage tubes. Samples 

were stored by the host laboratory at -80°C until analysis. Institutional and ethical 

approval was granted for (SPOT)id by the University College London NHS Trust 

R&D office and the South East London Research Ethics Commission (ref: 

10/H0807/78) respectively.  

5.2.2 MDM Stimulation 

Healthy volunteer MDM were isolated and plated in 96-well plates as per 2.1.2 or 

2.1.3 where stated and incubated overnight (37°C/5% CO2). The following day cells 

were treated sequentially with (dependent on experiment): 

i) PGE2 receptor antagonist: AH6809 (EP1-3/DP1 antagonist), PF-

04418948 (EP2), MF498 (EP4) 

ii) PGE2 OR 25% v/v healthy volunteer or patient plasma 

iii) Lipopolysaccharide (LPS; Salmonella abortus equi S-form, [TLRgrade™], 

Enzo Life Science, 100ng/mL) 

PGE2 and it’s receptor antagonists were obtained from Cayman Chemical, 

reconstituted in DMSO to form stock solutions, and working concentrations made in 

appropriate culture media. 15 minutes was allowed between each addition step to 

allow receptor binding/activation of downstream cascades and facilitate reagent 

addition to requisite wells, providing time for consistent concentration equalisation. 

The validity of this protocol was tested via varying the time from reagent addition to 

LPS stimulation (see Figure f5.7, Left Panel). After addition of LPS cells were 
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incubated overnight (37°C/5% CO2) and supernatants removed after either 6hrs 

(MDM via 2.1.3) or 24hrs (MDM via 2.1.2), and stored at -80°C prior to analysis. 

5.2.3 MM6 Stimulation 

MM6 were differentiated as per 2.2.2, washed, plated in 96-well plates at 1x105 

cells/well in 50μL media and incubated for 1hr (37°C/5% CO2) prior to reagent 

addition or stimulation. Reagents were added in a standardised order as 5.2.2 unless 

otherwise stated to characterise: 

 Effect of alternative differentiation protocols (2.2.2) on TNFα release and 

sensitivity to PGE2 

 Response to gram positive and negative stimuli (LPS; Salmonella abortus 

equi S-form, [TLRgrade™], Enzo Life Science, peptidoglycan (Sigma)) 

 Time-course of TNFα and PGE2 release (30min, 1hr, 2, 4, 6, 8, 24hrs) 

 Impact of healthy volunteer plasma (anti-coagulated with EDTA, Na Citrate, 

LH) or serum on cytokine release (25-100% v/v), including any sex 

differences 

 Dose-response curve of PGE2 

 Shift in the dose-response curve elicited by selective EP-receptor: 

o Agonists: Butaprost (EP2), CAY10598 (EP4) 

o Antagonists:  

 EP2: PF-04418948, TG4-155 (Aobious, MA, USA), AH 6809 

 EP4: MF498, L161,982, ONO-AE3-208 (a kind gift from ONO 

Pharmaceuticals, Osaka, Japan), CJ-023,423 

 The contribution of cAMP to observed alterations via: 

o Forskolin: direct adenylyl cyclase activator 

o Rolipram (RP): selective phosphodiesterase 4 inhibitor 

 The effect of known immunosuppressant agents: IL-10 and dexamethasone 

 The effect of established immunorestorative agents: GM-CSF and IFN-γ 

Order of addition and intervals between steps was as 5.2.2. After LPS addition cells 

were incubated (37°C/5% CO2) for 6hrs (unless stated) prior to supernatant 

aspiration and storage at -80°C. All reagents were obtained from Cayman Chemical 

(MI, USA) unless stated and re-constituted in DMSO such that the eventual assay 

concentration was <0.01%.  
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5.3: RESULTS 

5.3.1 Differentiation Protocols 

Either undifferentiated (not passaged for 48hrs) or differentiated MM6 (PMA 

[10ng/ml], M-CSF [20ng/ml] or 1α, 25 dihydroxycholecalciferol [VD3, 10ng/ml] for 48 

or 72hrs) were analysed by flow cytometry. VD3 differentiation led to a significant 

increase in CD14 expression by 48hours (p<0.001, Figure f5.3). In contrast co-

incubation with alternative differentiation stimuli did not result in altered CD14 

expression from baseline. PMA exposure for either 48 or 72 hours was associated 

with the development of a more macrophage-like phenotype, MM6 displaying 

reduced CD33, CD11b and CD11c (data not shown). CD16 and HLA-DR were 

unaffected by any of the three differentiation stimuli. 

              

Figure f5.3: Differentiation with VD3 leads to increased CD14 expression on MM6. MM6 

were co-incubated with VD3 (10ng/ml) for 48hr, or left un-differentiated prior to flow 

cytometric analysis. Panel A: No significant alteration in CD16 expression was observed, 

however CD14 significantly increased as demonstrated by typical dot-plot, histogram (Panel 

B: light grey = isotype control; dark grey = un-differentiated MM6; red = VD3 48hrs) and 

graphically (Panel C: mean of 3 separate experiments (discrete passage, drugs and day). 

Un-paired t-test, p<0.001). 

Undifferentiated and differentiated MM6, displayed different response characteristics 

to LPS stimulation. Cells cultured with VD3 for 48hrs (VD3 MM6) demonstrated 

heightened sensitivity to LPS (achieving maximal TNFα production at 1ng/ml) and 

increased TNFα release (>1000pg/ml) compared to alternate differentiation protocols 

(Figure f5.4, Left Panel). This pattern was unchanged at 72hours. Minimal TNFα 

release was observed in response to peptidoglycan even at 1μg/ml (data not shown). 

MM6 additionally appeared to display sensitivity to PGE2, co-incubation leading to 

reduced TNFα secretion, in line with primary MDM. This was additionally enhanced 

by VD3 (Figure f5.4, Right Panel).   
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Figure f5.4: LPS-stimulated TNFα release is modified by differentiation stimuli. Left Panel: 

MM6 were co-cultured with either PMA, M-CSF, VD3 or left un-differentiated for 48hrs. Cells 

were subsequently stimulated with LPS of varying concentrations (1ng-1mg/ml) in 96well 

plates (1x105 cells/well) for 6hrs prior to supernatant removal. Right Panel: MM6 treated as 

above and stimulated with LPS 100ng/mL were co-incubated with increasing concentrations 

of PGE2 (10pg/mL–5ng/mL). Individual data points represent the mean of 4 individual 96 

wells, each assayed (ELISA) in duplicate. All stimuli were applied once to the same passage 

of cells. 

5.3.2 Technical characterisation 

PGE2 (1ng/mL) caused significant suppression of MM6 IL-6 release in addition to 

TNFα, but not IL-1β an alternate pro-inflammatory cytokine (Figure f5.5). Minimal IL-

10, the archetypal anti-inflammatory cytokine, release was observed in response to 

LPS, a response un-altered by PGE2. Significant decreases in monocyte 

chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1β (MIP-

1β) were also elicited by PGE2 but neither IL-8 nor MIP-1α release was suppressed 

(data not shown) 

VD3 MM6 TNFα release peaked between 2 and 6 hours post-stimulation with LPS, 

declining thereafter. Minimal PGE2 release was observed over this early time-period 

(<50pg/mL). Instead the PGE2 concentration reached its zenith at 24hr (130pg/mL), 

potentially reflecting accumulation secondary to the absence of in vitro catabolism. 
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Figure f5.5: LPS-stimulated release of classic pro and anti-inflammatory cytokines and PGE2. 

Left Panel: VD3 MM6 were stimulated with LPS (100ng/mL) in 96well plates (1x105 

cells/well, 8 wells/condition) and supernatants aspirated after 6hrs. Cytokine concentration 

was determined by LifeTechnologies Luminex® bead-based flow cytometric assay. Columns 

represent the mean value with SD of 8 wells treated on the same day. Right Panel: 

Supernatant was aspirated at variable time-points post-LPS stimulation and assayed for 

TNFα and PGE2 via ELISA. Columns represent the average with SD of 2 discrete 

(passage/reagents/day) experiments, each condition being replicated in 4 wells.  

Anticoagulants were found to exert an independent effect on VD3 LPS-stimulated 

MM6 TNFα release. Cells bathed in culture media which had been placed in an 

EDTA BD Vacutainer® were found to release significantly less TNFα than those 

exposed to untreated media, LH or Na Cit (Figure f5.6). 

 

Figure f5.6: Effect of anti-coagulant on TNFα release. VD3 MM6 were treated with media that 

had been placed into BD Vacutainers® anticoagulated with lithium heparin (LH), EDTA or 

sodium citrate (Na Cit), prior to stimulation with LPS (100ng/mL). Columns represent the 

mean with SD of 2 discrete (passage/reagents/day) experiments, 4 wells/condition/day, each 

assayed (ELISA) in duplicate, each well equating to n = 1 (8). Un-paired t-test, *** = P<0.001. 
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A PGE2-mediated signal was resilient to variations in cell culture protocol and sample 

handling. Treatment of VD3 MM6 with PGE2 (1ng/ml) up to 1 hour prior to LPS-

stimulation led to no appreciable loss of TNFα suppression, however between 1 to 2 

hours attenuation was seen. Addition of 25% v/v HVP to the culture led to no 

appreciable increase in PGE2 catalysis or loss of bioavailability (Figure f5.7, left 

panel). PGE2 was additionally noted to be able to suppress TNFα release after LPS-

stimulation. The ability of PGE2 to induce monocyte deactivation was not affected by 

one freeze-thaw (-80°C) cycle indicating the validity of storing plasma for later 

analysis (Figure f5.7, right panel). 

 

Figure f5.7: Variations in assay protocol and sample handling. Left Panel: PGE2 (1ng/mL) 

was added in either media alone or 25% v/v HVP to VD3 MM6 at variable time-points prior to 

or following stimulation with LPS (100ng/mL). Right Panel: HVP alone or HVP spiked with 

1ng/mL PGE2 was either added to VD3 MM6 immediately or after undergoing one freeze-

thaw cycle (F-T, -80°C) prior to stimulation. Columns represent the mean of 4 wells, each 

assayed (ELISA) in duplicate 

5.3.3 Detection of PGE2 in plasma 

VD3 MM6 displayed a dose-dependent reduction in TNFα release when bathed in 

increasing proportions of LH anti-coagulated HVP during LPS stimulation (Figure 

f5.8, left panel). 2-way ANOVA found both HVP and PGE2 (1ng/mL) to cause a 

significant decrease in TNFα release (p<0.0001), although HVP accounted for a 

larger percentage of the total variation (67.8% vs 16.7%). As the percentage of HVP 

increased, a significant reduction in the PGE2-mediated suppression of TNFα release 

was additionally observed (interaction p<0.0001): PGE2 1ng/mL reducing TNFα 

release by a mean value of 54.6% in media alone, but only 29.6% at 75% v/v HVP. 

In 25% v/v HVP, PGE2-mediated reduction from LPS-alone was preserved at 56.5%. 
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Figure f5.8: HVP independently suppresses LPS-stimulated TNFα release and impairs 

PGE2’s action on MM6 in a dose-dependent manner. Left Panel: VD3-differentiated MM6 

(1x105 cells/well) were incubated with increasing amounts of healthy volunteer plasma (LH 

anticoagulant, 0%-100% v/v) for 15mins prior to and during stimulation with 100ng/ml LPS. 

Supernatants were removed at 6hrs. Right Panel: As above, VD3 MM6 were incubated with 

either 0 or 25% v/v HVP and spiked with increasing concentrations of PGE2 (10pg-10ng/mL). 

Bars and data points represent the average of 4 biological repeats with SD. Columns or data 

points represent the mean with SD of 2 discrete (passage/reagents/day) experiments, each 

condition being replicated in 4 wells/day and assayed (ELISA) in duplicate (n = 8). HVP was 

from the same individual throughout. 

VD3 MM6 treated with either media or 25% LH HVP containing known 

concentrations of PGE2 demonstrated no significant difference in IC50, being 

680pg/mL (95% CI 603-767pg/mL) and 590pg/mL (95% CI 503-692pg/mL) 

respectively (Figure f5.8, right panel). 

Female plasma was found to have a marginally, yet significantly, greater suppressive 

effect than male plasma (n=5/sex, mean ± SEM 1004pg/mL ± 28.28 vs. 1139pg/mL ± 

48.06 TNFα, p = 0.041, un-paired t-test), however the effect of PGE2 was consistent, 

1ng/mL eliciting a 65.3% and 63.8% reduction respectively (Figure f5.9). 
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Figure f5.9: Differences in male and female HVP on the MM6 bioassay. VD3 MM6 were 

incubated with 25% v/v male (n=5) or female (n=5) HVP in the presence or absence of 1ng/ml 

PGE2 and stimulated with 100ng/ml LPS. Data-points represent the mean of 4 wells treated 

with the same individuals plasma, assayed (ELISA) in duplicate. Line and whiskers indicate 

group mean and SD. Top: Dashed bar shows intra-sex difference in TNFα response p<0.05. 

Solid bars, intra-sex LPS vs. LPS + PGE2 1ng/mL differences p<0.0001 (both t-test).  

5.3.4 Mechanism of PGE2-mediated immunomodulation 

PGE2-mediated suppression of VD3 MM6 TNFα release appears to be through the 

EP4 receptor. Co-incubation with any of four EP4-selective antagonists (ONO-AE3-

208 [Ki 1.3nM], MF498 [Ki 0.7nM], CJ-023,423 [Ki 13nM], L161,982 [Ki 24nM]: Ki for 

other EP/prostanoid receptors >2μM) prior to PGE2 addition and LPS-stimulation led 

to a significant right-shift of the dose response curve (PGE2 alone: 2.4nM [95% CI 

1.7-3.4nM. L161,982 was the least efficient, shifting the IC50 to 160nM (95% CI 70-

363nM), whilst MF498 was the most effective antagonist (4.9μM, 95% CI 934nM-

26μM) (Figure f5.10, top panel). This effect was dose dependent, a greater right-shift 

being elicited with all antagonists as the dose was increased from 10nM to 1μM. 

None of the EP4 antagonists independently altered TNFα release (see Appendix 

f5.14).  

In contrast, selective EP2 antagonists (TG4-155 [Ki 2.4nM] and PF-04418948 [IC50 

16nM], both >1000-fold less active at EP4) and the non-selective EP1-4, DP1 

antagonist AH6809, did not elicit any shift in the PGE2 dose-response curve (Figure 

f5.10, middle panel). An EP4-mediated effect was further supported by the ability of 

CAY10598 (a selective EP4 receptor agonist, Ki 1.2nM, IC50 2nM, 95% CI 740pM-

5.8nM) but not butaprost (a selective EP2 agonist, Ki 73nM) to suppress TNFα 

release from LPS-stimulated VD3 MM6 (figure f5.10, bottom panel). 
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Figure f5.10: PGE2 suppresses TNFα release in MM6 via the EP4 receptor. Top Panel: VD3 

MM6 were co-incubated with varying concentrations of PGE2 (10pM-10μM) in media alone or 

in the presence of one of four selective EP4 receptor antagonists (ONO-AE3-208, MF498, 

CJ-023,423, L161,982; all 1μM) and stimulated with LPS (100ng/mL) for 6hours. Middle 

Panel: As per Top Panel however EP4 receptor antagonists were substituted for three EP2 

receptor antagonists (TG4-155 and PF-04418948; 1μM, AH6809; 50μM) Bottom Panel: VD3 

MM6 were incubated for 15minutes with either butaprost (EP2 agonist) or CAY10598 (EP4 

agonist) at concentrations ranging from 10pM-10μM prior to LPS stimulation. Supernatants 

were aspirated after 6hr. Data points represent the mean with SD of 3 discrete 

(passage/reagents/day) experiments, each condition being replicated in 4 wells/day and 

assayed (ELISA) in duplicate (n = 12) 
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EP4 is a Gs-coupled receptor, which upon ligand binding causes a rise in the 

intracellular second-messenger cAMP. Further confirmation of this pathway as the 

underlying mechanism behind PGE2-mediated TNFα suppression / monocyte 

deactivation was sought via pre-treatment of VD3 MM6 with rolipram (RP, a selective 

phosphodiesterase 4 inhibitor) and forskolin (an independent activator of adenylyl 

cyclase). RP was found to increase the degree of TNFα suppression observed at any 

given concentration of PGE2 (Figure f5.11, panel A), presumably via inhibition of the 

catalysis of EP4-generated cAMP. Correspondingly, forskolin was shown to mimic 

PGE2’s effect, an action also potentiated by co-incubation with RP (panel B). Further, 

salbutamol (a β2-adrenoreceptor partial agonist; an alternate Gs-coupled receptor) 

was found to suppress TNFα release with an IC50 of 20nM (95% CI 14-30nM, panel 

C). This was un-affected by co-incubation with an EP4-receptor antagonist. 

 

Figure f5.11: Increased intra-cellular cAMP is responsible for TNFα suppression in MM6. 

Panel A: Rolipram (RP, 10μM) potentiates the ‘immunosuppressive’ effect of PGE2 on VD3 

MM6 via preventing the catalysis of cAMP. B: Forskolin, an adenylyl cyclase activator, mimics 

the effect of PGE2, an action potentiated by RP. C: Salbutamol increases intra-cellular cAMP 

via the β2-adrenoreceptor, inducing immunosuppression in an EP4-independent manner. 

Columns and data-points represent the mean with SD of 4 wells, each assayed (ELISA) in 

duplicate, each well equating to n = 1. 
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5.3.5 Bioassay specificity 

In preliminary investigations, the VD3 MM6 bioassay displayed minimal alternation in 

TNFα release in response to either alternate COX-derived prostanoids (PGD2, 

PGF2α, PGI2 and TXA2) or classic immunosuppressants (IL-10 and dexamethasone) 

at physiologically relevant or pharmacologically achievable doses (Figure f5.12). The 

IC50 of PGE2 was 1.9nM (95% CI 1.1-3.2nM), equivalent to 3ng/ml. IC50s of 

alternate prostanoids could not be determined. Whilst PGE2 1ng/ml induced 

suppression of TNFα release by MM6, no apparent reduction was seen in response 

to either 10ng/ml IL-10 or 1μM dexamethasone. In contrast, WB ex vivo cytokine 

secretion was clearly suppressed even by concentrations 10-fold lower than these. 

 

Figure f5.12: Specificity of the VD3 MM6 assay. Left Panel: Dose-dependent inhibition of 

LPS-stimulated (100ng/ml) VD3 MM6 TNFα release by COX-derived prostanoids PGD2, 

PGF2α, PGI2 (carbaprostacyclin, a stable analog of PGI2) and TXA2 (carbocyclic thromboxane 

A2, a stable analog of TXA2). Data points represent the mean and SD of 4 wells, each 

assayed (ELISA) in duplicate, each well equating to n = 1. Right Panel: MM6 or WB LPS-

stimulated TNFα release, expressed as % of LPS alone, following pre-treatment with PGE2, 

IL-10 or dexamethasone. Columns represent the mean with SD of 4 wells (MM6) or 3 

volunteers (WB), n = 1 well or volunteer. 

5.3.6 Comparability to primary MDM 

Importantly, VD3 MM6 appear to display similar responses characteristics to primary 

HV-derived MDM (via protocol 2.1.3) with regards to PGE2. MDM PGE2-mediated 

TNFα suppression is seemingly mediated principally via the EP4-recpetor, MF498 

(EP4 antagonist) but not PF-04418948 (EP2 antagonist) significantly abrogating 

PGE2’s effect (Figure f5.13, Left Panel, PGE2 IC50: 4.5nM [95% CI 3.0 - 6.6nM, with 

MF498 1μM: 72nM [95% CI 47 - 111nM). Both cells types also display near 
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equivalence in sensitivity to PGE2, MDM having an IC50 as above, MM6 - when 

TNFα release is normalized for comparison – an IC50 of 7.7nM (95% CI 4.2 – 

14.1nM) indicating they may act as accurate substitutes for primary cells (Figure 

f5.13, right panel). Of note, MM6 release appreciably less TNFα than MDM (~30 fold) 

and whilst HVP reduces release from MM6, it enhances that from MDM. 

 

Figure f5.13: PGE2 suppresses TNFα release in MDM via the same receptor (EP4) and with 

a similar IC50 to MM6. Left Panel: MDM were co-incubated with varying concentrations of 

PGE2 (10pM-10μM) in media alone or in the presence of either a selective EP4 receptor 

antagonist (MF498 1μM) or EP2 receptor antagonist (PF-04418948 1μM) prior to stimulation 

with LPS (100ng/mL). Right Panel: Dose response curves (four parameter variable slope) 

were calculated for MDM and MM6 in response to PGE2, normalised for TNFα release (LPS 

alone = 100%). Data-points represent the mean with SD of 8 wells (MM6) or 4 wells (MDM, 

cells being derived from 1 volunteer), n = 1 well or volunteer. 

 

5.4: DISCUSSION 

MM6 display many favourable characteristics to support their use as a bioassay for 

the presence and functional relevance of PGE2. Following incubation with VD3 for 

48hours they demonstrate exquisite sensitivity to LPS, rapidly (within 2-4hours) 

generating a consistent quantity of TNFα across passages. PGE2 elicits a clear, 

reproducible, dose-dependent suppression of TNFα, with a threshold of ~100pg/ml 

and IC50 590pg/mL (95% CI 503-692pg/mL) when incubated with 25% v/v plasma. 

This effect appears to be mediated by the EP4 receptor alone and is secondary to 

elevated intracellular cAMP. Preliminary experiments indicate the assay to be 

specific, demonstrating little or no response to either alternate COX-derived 

prostanoids or classic anti-inflammatory mediators (IL-10, glucocorticoids), the 
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contributory role of PGE2 to monocyte deactivation in a given biological sample being 

confirmed via reversal with selective EP4 antagonists (e.g. MF498 1μM). To date 

VD3 MM6 have demonstrated similar qualitative (IC50) if not quantitative (TNFα 

production) responses to LPS and PGE2 as primary MDM, making them an 

appropriate substitute, although this finding requires replication in MDM derived from 

a greater number of donors. Further, the PGE2-mediated effect appears robust to 

variations in protocol and sample handling. As with the WB assay, alternate 

cytokines including IL-1β and IL-10 do not display PGE2-mediated suppression, 

however the heterogeneous modulation of cytokine biosynthesis by cAMP has long 

been recognised404. 

In line with previous publications VD3 was observed to increase MM6 CD14 

expression and TNFα release in response to LPS288,462. As a known co-receptor for 

TLR4 this is perhaps not surprising, although it’s activation traditionally requires the 

presence of LPS binding protein463. PMA incubation was associated with a shift to a 

more macrophage-like phenotype with increased clumping, adherence (associated 

with an increase in CD11b and CD11c), and loss of CD33. This was not 

accompanied by increased TNFα release in response to LPS or peptidoglycan. M-

CSF surprisingly had no effect on the MM6, inducing no phenotypic or functional 

alteration. 

Of concern, plasma taken from healthy volunteers suppressed MM6 LPS-stimulated 

TNFα release in a dose-dependent manner. This effect is the opposite of that seen in 

primary MDM and could only be partially overcome by employing higher 

concentrations of LPS (data not shown). Further, higher concentrations of plasma 

reduced the ability of exogenous PGE2 to suppress MM6 TNFα release. This may 

reflect altered bioavailability (e.g. binding by albumin) or increased rates of 

catabolism. The latter seems less likely however, PGE2 being added to MM6 in 

media alone or in the presence of HVP at increasing times before LPS stimulation 

demonstrating loss of efficacy at comparable rates. This finding accords with 

previous data demonstrating that the half-life of PGE2 in culture is in the order of 

hours, not seconds as in vivo464. 

At 25% v/v plasma PGE2 was demonstrated to retain it’s potency, displaying 

equivalent dose-response characteristics to addition in media alone, and was 

consequently selected as the preferred technique. Use of 25% v/v as opposed to 

100% v/v plasma reduces the sensitivity of the assay four-fold, the effective IC50 

consequently being in the order of 2.5ng/mL. Whilst in the physiological range of 
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PGE2 in exudates or efferent lymphatics draining an inflammatory site such 

concentrations are unlikely to be achieved in plasma. Further work is required to 

assess means of ameliorating the independent ‘immunosuppressive’ effect of plasma 

on MM6 TNFα release (e.g. protein denaturation) or of enhancing the lipid mediator 

signal in a non-cytotoxic manner (e.g. acetone/chloroform extraction and re-

suspension)465.  

In accordance with previous publications, and as seen with the ex vivo WB cytokine 

release assay, EDTA was determined to exert an independent effect, reducing TNFα 

release466-470. Lithium heparin, which unlike EDTA and sodium citrate, does not rely 

on a calcium-chelating mechanism to prevent coagulation exerted the least 

interference with the bioassay. No attempt at either dilution of EDTA or calcium 

replacement was attempted to determine whether this could reverse or reduce the 

observed effect on LPS-stimulated TNFα release. Given that the SPOT(id) patient 

samples were obtained in EDTA-containing tubes this represents a not insignificant 

oversight as correction for assay interference would have facilitated their analysis 

and potentially established clinical proof-of-principle for the MM6 PGE2 bioassay. 

As discussed, the inflammatory profile of patients is now known to determine 

outcome; individuals exhibiting a sustained, exaggerated response being more likely 

to experience adverse outcomes42. Identification of these individuals is key, 

facilitating the administration of a growing arsenal of immunorestorative agents. 

Those patients whose plasma exerts a proportionally greater immunosuppressive 

effect on MM6 (as per the MDM in Figure f5.1) may represent this ‘at risk’ cohort. 

Reversal of observed monocyte deactivation (reduced cytokine secretion) in vitro by 

EP4 antagonism would indicate the presence and mechanistic contribution of PGE2 

and individuals could, hypothetically, be stratified to receive ‘anti-PGE2’ therapy (e.g. 

NSAIDs, EP receptor antagonists). The MM6 bioassay represents one attempt to 

provide a rapid, cheap, reproducible assay to both demonstrate a role for PGE2 in 

CIIID, and potentially, facilitate such clinical decision-making in the future. Whilst 

demonstrating multiple advantageous characteristics its utility remains to be proven. 
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5.5: SUMMARY 

 MM6 display alternate differentiation pathways in response to VD3 and PMA. 

VD3 differentiation significantly increases CD14 expression, sensitivity to 

LPS, and subsequent TNFα release 

 PGE2 causes dose-dependent suppression of MM6 TNFα release at 

physiologically relevant concentrations (IC50 ~600pg/mL), seemingly via an 

EP4 mediated increase in intracellular cAMP. Preliminary experiments 

indicate neither alternate COX-derived prostanoids, nor classic negatively 

immunomodulatory agents (IL-10, glucocorticoids), replicate this effect. 

 MM6 display equivalent qualitative (IC50) if not quantitative (TNFα 

production) responses to LPS and PGE2 as primary MDM, potentially making 

them an appropriate substitute. This requires further verification. 

 Healthy volunteer plasma reduces MM6 LPS-stimulated TNFα release in a 

dose-dependent manner and, above a threshold of 25% v/v, reduces the 

potency of PGE2. EDTA independently interferes with cytokine release. 

 The MM6 bioassay may represent a novel tool to quantify the proportional 

contribution of PGE2 to monocyte deactivation in biological samples and to 

provide an estimate of bioactive PGE2 concentrations. 
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5.6: APPENDIX 

 

 

Figure f5.14: EP4 receptors antagonist characterisation. Top Panel: VD3 MM6 were co-

incubated with varying concentrations of PGE2 (10pM-10μM) in media alone or in the 

presence of one of four selective EP4 receptor antagonists (ONO-AE3-208, MF498, CJ-

023,423, L161,982) at different concentrations (10nM-1μM) prior to stimulation with LPS 

(100ng/mL). The ability of EP4 receptors antagonists to reverse PGE2’s effect was 

concentration dependent in all cases. ONO-AE3-208 is shown as an exemplar Bottom 

Panel: EP4 antagonists were not found to independently increase TNFα release. All data 

points represent mean +/- SD. 
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CHAPTER 6: Intravenous Endotoxemia 
 

DETECTION OF AN IMMUNOMODULATORY PROSTAGLANDIN E2 SIGNAL IN A 

HUMAN MODEL OF SYSTEMIC INFLAMMATION: INTRAVENOUS 

ENDOTOXEMIA 

 

6.1 Introduction 

6.2 Additional Methods 

6.3 Results 

6.4 Discussion 

6.5 Summary 

6.6 Appendix 
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6.1 INTRODUCTION 

Investigation of the inflammatory response and its component pathways in the 

clinical population is challenging. Demographic (age, sex, ethnicity), temporal (time 

of onset, duration of exposure), pathological (type of initiating stimuli, severity of 

insult, co-morbidity burden) and therapeutic (drugs, location/level of care) variance 

impedes access to and interrogation of key biological mechanisms. The traditional 

solution has been to use animal models. Despite affording multiple advantages, their 

fundamental similarity to human pathophysiology471,472 and the relevance of their 

output, has come under increasing scrutiny473-475. An alternative is to employ 

reductionist human models. 

Developed in the late 1960’s, intravenous (IV) endotoxin administration to man offers 

a platform through which to discover, delineate and potentially drug inflammatory 

pathways476-479. National Institutes for Health Clinical Center Reference Endotoxin 

(CCRE, Escherichia coli O:113:H10:K negative, used synonymously with LPS below) 

is a potent TLR4 agonist that triggers the inflammatory cascade in a dose-dependent 

manner. Injected as a bolus of 2-4ng/kg, it reliably and reproducibly generates 

vascular, haematological, endocrine, immunological and organ-specific functional 

effects that parallel, to varying degrees, those seen in the early stages of a ‘sepsis-

like’ state. The associated short–lived, moderate, systemic inflammatory response 

permits controlled investigation of single components of the highly complex host-

pathogen interaction that develops during bacterial infection. Crucially, the human 

endotoxin model appears to recapitulate many of the features of CIIID facilitating 

exploration of both its mechanistic drivers and therapeutic strategies to rectify it.  

6.1.1 IV endotoxin as a model of CIIID 

At a transcriptomic level, in vivo LPS administration has been repeatedly 

demonstrated to cause similar patterns of up and down regulation of inflammatory 

networks to pathophysiological states including trauma, burn and sepsis, potentially 

reflecting a common human response to systemic stress42,471. Functionally, exposure 

to endotoxin appears to have multi-modal immunological consequences. Repeated 

administration of IV endotoxin results in a dramatic reduction in response to this key 

bacterial ligand mirroring monocyte deactivation following sepsis, trauma or burn.  

Indeed, after 5 consecutive daily challenges in vivo cytokine responses were 

observed to be 95-99% lower than after first exposure480. Kox and co-workers 

demonstrated that this effect, as in the CI population, was neither short term, nor 

relied on repeated dosing. Administration of a second dose of IV endotoxin (2ng/kg) 

2 weeks after a first challenge (also 2ng/kg) was still associated with a significantly 
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attenuated response: key pro- and anti-inflammatory cytokines plasma 

concentrations being 10-46% lower220. This may reflect a period of immune 

suppression arising from the on-going release of endogenous mediators, or reflect 

functional alterations in cytokine-releasing cells as a result of endotoxin tolerance. 

Significantly, this ‘immunoparalysis’ appears amenable to therapeutic intervention, 

the same authors demonstrating the efficacy of IFN-γ and potentially GM-CSF as 

immunorestorative therapies in the model – either preventing or ameliorating the loss 

of cytokine response to the second challenge383. 

 

Despite the fact that LPS may be a ligand for TLR4, endotoxin appears to induce 

anergy to multiple TLR ligands including those that signal solely through a MyD88-

independent pathway, WB taken from volunteers 3-8hr after IV endotoxin being 

hyporesponsive to TLR2, TLR3, TLR5 and TLR7 signalling, reflecting extensive 

cross-tolerance61. Nor does endotoxin appear to affect myeloid lineage cells alone, 

lymphocytes too appear deactivated post-experimental exposure, demonstrating 

reduced responses to phytohaemagglutinin (PHA) and IL-2 release ex vivo481. In 

short, human endotoxemia appears to offer a unique, valid, manipulable window into 

CIIID. 

6.1.2 IV endotoxin administration triggers lipid mediator release 

IV endotoxin administration to humans has previously been shown to elicit lipid 

mediator release and been used to investigate the contribution of COX to the 

inflammatory response. This suggests it additionally represents a suitable model to 

study the systemic immune consequences of PGE2. 

 

Bolus doses of endotoxin lead to a significant increase in urinary concentrations of 

both 6-keto PGF1α (the principal metabolite of PGI2) and 11-dehydro thromboxane B2 

(the principal metabolite of TXA2) in a dose-dependent manner (4ng/mL > 2ng/mL), 

indicating increased systemic production. COX2 appears to be the isoform primarily 

responsible for biosynthesis, ibuprofen (a non-selective COX1/2 inhibitor) or 

celecoxib (COX2 selective), but not low-dose aspirin (81mg), ablating this rise and 

also significantly attenuating the constitutional and febrile response482. Ibuprofen, and 

hence prostanoid suppression, additionally appears to alter the human metabolic and 

neuroendocrine response to LPS483-485. Whilst not measured to date it can only be 

assumed that elevated PGE2 forms part of this response – hypothalamic PGE2 

release believed to be one of the core mechanisms underlying the human pyrexial 

response486. 
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Importantly, there is evidence that NSAIDs may alter immune competence in this 

model. Rodrick and colleagues noted that whilst administration of 800mg of ibuprofen 

orally 90min prior to and again at the time of endotoxin injection did not modify 

subsequent cellular kinetics, it did restore otherwise suppressed mitogenic PBMC 

responses to PHA to normal and increase IL-2 production ex vivo481. IL-1 and TNFα 

production from adherent PBMC (monocyte/macrophage) was not re-established 

however potentially indicating discrete mechanisms of deactivation. These findings 

complement their earlier demonstration that bolus endotoxin administration results in 

augmented macrophage PGE2 release and increased lymphocyte sensitivity to 

PGE2, mimicking the changes seen in PBMC obtained from burn patients, and which 

may be rescued by COX inhibition in vivo or ex vivo212. 

 

Evidence for the inflammation-induced release of SPM in humans is less convincing. 

Recent work found only minute concentrations of select mediators in the plasma 

(maresins and PD1) and none of others (RvD1 and RvE1), with no evidence of their 

formation in response to a low dose endotoxin challenge (0.6ng/kg) even when 

volunteers had been taking omega-3 supplementation178. In contrast others report 

key roles for these molecules, especially those derived from the administration of 

drugs including aspirin487 and statins488 in select settings. 

6.1.3 Chapter aims 

 Describe the profile of plasma COX-derived prostanoids in response to 

endotoxin for the first time in man, comparing these to known cytokines and 

clinical markers 

 Validate the IV endotoxin administration as a model of CIIID using 

established measures if immune dysfunction 

 Determine the contribution of PGE2 to observed immune defects using the 

LPS-stimulated WB cytokine release and MM6 bioassay as metrics 

 Implicate PGE2 blockade as a viable therapeutic strategy to restore immune 

competence in the critically ill 
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6.2 ADDITIONAL METHODS 

6.2.1 Monocyte HLA-DR (mHLA-DR) determination; QuantiBrite™ System 

Samples of peripheral blood were obtained in EDTA-coated BD Vacutainers®. 50μL 

of WB was stained with 20μL of QuantiBrite HLA-DR/Monocyte mixture (anti-HLA-DR 

PE [clone L243]/anti-monocyte PerCP-Cy5.5 [CD14, clone MϕP9], Becton Dickinson 

[BD], San Jose, CA) at 4°C for 30min-1hr in the dark. Samples were then lysed with 

450μL BD FACS Lysing solution (1x) and kept in the dark at 4°C until analysis.  

Live cells were first gated out using forward (size) and side (granularity) scatter 

characteristics. Monocytes were identified on the basis of CD14 expression and 

mHLA-DR expression was measured on their surface (mono-parametric histogram) 

as geometric mean fluorescence intensity (MFI) related to the entire population. 

These results were transformed into number of antibodies (AB) per cell (C) (AB/C) 

using calibrated PE-QuantiBrite™ beads (BD) and GraphPad Prism software. 

QuantiBrite™ Beads were run in advance of every participant. This protocol 

represents the current gold standard for mHLA-DR determination and has been 

extensively validated489,490. 

6.2.2 Neutrophil CD88 (complement component 5a receptor) expression 

Blood was obtained as above and processed as per 2.4. A standardised gating 

strategy was employed to identify neutrophils using flow cytometry (adapted from 

491,492). Live cells were first gated using forward and side scatter characteristics 

(>50k), with subsequent doublet exclusion undertaken via forward scatter 

height/area. Lymphocyte and natural killer cell lineage marker (CD3, CD19, CD56) 

and HLA-DR negative cells were further examined for CD16 expression. CD16+ cells 

with high granularity (side scatter) were identified as neutrophils and cell surface 

CD88 (PE-Cy7) expression described as MFI (see Figure 6.16, Appendix). All 

antibodies employed are described in 2.4.3. 

6.2.3 Identification of persistent lymphopenia 

Persistent lymphopenia during CI has recently been identified as predictive of 

adverse clinical outcomes including nosocomial acquisition and mortality. Variable 

definitions have been applied including absolute lymphocyte count <1.2x103/μL 

(severe lymphopenia <0.6x103)382,493, <1.0x103/μL494 and <0.5x103/μL495. 

Haematological analysis (full blood count) of participant samples was performed via 

University College London Hospital (Sysmex XE-2100, Kobe, Japan. The Doctor’s 

Laboratory, London) and the presence of lymphopenia evaluated against all 

published cut-off’s. 
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6.3 RESULTS 

6.3.1. Characterisation of the inflammatory profile 

Injection of 2ng/kg EC-6 endotoxin induced a reproducible systemic inflammatory 

response in all volunteers. Symptoms, including nausea, headache, muscle ache 

and shivering (rigors), peaked between 1.5-2hr after administration before gradually 

abating (Figure f6.13, Appendix). All participants described either no symptomology 

at 8h or only minimal residual effects, none requiring further monitoring. Vital signs 

followed a similar yet temporally distinct pattern, the majority reaching their point of 

greatest divergence from baseline between 3-4hr (Figure f6.14, Appendix). 

Consistent increases in respiratory rate (RR), pulse and tympanic temperature were 

observed. No significant alteration in systolic blood pressure was seen. Arterial 

oxygen saturations exhibited a clinically insignificant late decrease with a nadir at 6hr 

around 97%, potentially reflecting increased capillary permeability and hence lung-

water and/or pulmonary cellular exudate. 90% of participants achieved systemic 

inflammatory response syndrome (SIRS) criteria, the majority meeting all 3 of RR 

>20bpm, pulse ≥90 and temperature ≥38°C. A total white blood cell count (WBC, 

leukocytes) ≥12x109 cells/L – the final SIRS criteria - was witnessed in 7 participants, 

WBC habitually peaking 8hr post-injection (Figure f6.14, Appendix). The final 

individual achieved a pulse of 91bpm and RR of 20 however did not exceed this 

value. 

Individual leukocyte populations displayed discrete kinetics in response to endotoxin 

administration (see Figure f6.1). Neutrophil (PMN) numbers were observed to rise 

rapidly and immediately, reaching a peak 5-6 fold higher than baseline at 8hr in 90% 

of participants, returning to normal by 48-72hr. This was mimicked by C-reactive 

protein (CRP), a hepatically-secreted acute phase reactant employed clinically to 

monitor inflammation. CRP rose significantly by 8hr, peaked at 24hr (mean 

29.9mg/L) and was present at elevated concentrations to day 7. In contrast, striking 

early monocytopenia and lymphopenia was observed, these populations reaching 

their nadir by 2hr and 4hr and recovering to normal concentrations by 8hr and 24-

48hr respectively. The location and fate of these cells during this period is unclear, as 

is whether repopulation of the blood compartment is by the same or newly released 

cells. 



 133 

 

Figure f6.1. Leukocyte and C-reactive protein (CRP) kinetics post-IV endotoxin injection. 

Individual leukocyte populations and CRP were determined by The Doctor’s Laboratory 

between baseline and 14days, via UCLH. EC-6 administration resulted in a clear neutrophilia 

in all participants, peaking at 8hr, and acute phase response, typified by CRP, that reached 

its zenith by 24hrs. In contrast, the immediate post-endotoxin period was characterised by 

monocytopenia and lymphopenia, which had returned to baseline by 8hr and 24-48hr 

respectively. Data-points represent mean and SD of n=10 volunteers. 

Plasma cytokine concentrations displayed complimentary and contrasting profiles. 

Significant quantities of the classic pro-inflammatory cytokines TNFα, IL-6, IL-8, but 

not IL-1β, were recorded in plasma. Natural killer and lymphocyte released IFN-γ and 

the anti-inflammatory cytokine IL-10 were also found but at substantially lower 

concentrations (Figure f6.2). TNFα was the first to be observed, rising by 1hr, 

peaking at 1.5hr (mean 495pg/mL) and gradually returning to baseline by 8hr. IL-8 

and IL-6 displayed similarly broad-based increases but rose and peaked 30minutes 

later (775pg/mL and 389pg/mL respectively). IL-10 and IFNγ sequentially reached 

their zeniths at 3 and 4hrs respectively both with mean concentrations of 54pg/mL. 

Individual cytokine time courses are displayed in Figure 6.15 (Appendix). 
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Figure f6.2. Plasma cytokine concentration. Plasma was assayed for cytokine concentrations 

via the MSD V-Plex system. Left Panel: Individual cytokines are displayed as mean absolute 

concentration (pg/mL, n=10 volunteers) with SD. Right Panel: Cytokines are expressed as % 

individual peak concentration (normalised) allowing appreciation of their discrete yet over-

lapping time-courses. Data-points represent the mean of n=10 volunteers. 

 

6.3.2 Prostaglandin E2 and EP receptor expression 

Mass spectrometric analysis of participants’ plasma (n=5, as per 2.3.4) revealed 

increased circulating concentrations of COX-derived prostanoids in response to IV 

endotoxin administration (Figure f6.3). PGE2, PGF2α and TXA2 were all significantly 

elevated, mean PGE2 peaking at 3hours 7.8x higher than baseline values (10pg/mL 

compared to 1.3pg/mL). TXA2 demonstrated the greatest alteration, increasing 23 

fold from 8.2pg/mL to 191pg/mL on average. No clear pattern was observed in either 

PGD2 or the PGI2 metabolite 6keto-PGF1α concentration following systemic 

inflammation, indicating discrete alterations in PG synthase enzymes downstream of 

COX or altered binding, catalysis and/or elimination of these molecules. Alterations in 

the concentration of alternate AA, EPA, DHA and linoleic acid derived lipid 

mediators, mediated by COX, LOX, cytochrome 450 (CYP450) and non-enzymatic 

oxidization (NEO) are displayed in Figures f6.17-f6.22 (Appendix). 
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Figure f6.3. IV-endotoxin induced plasma COX-derived prostanoid concentration. Plasma 

was assayed for prostanoid concentration by electrospray ionisation, liquid chromatography 

mass spectrometry (ESI/LC-MS) by Ambiotis (Toulouse, France). Panels display individual 

COX-derived prostanoids as stated on the y-axis. Data-points are the mean and SD of n = 5 

participants. PGI2 is represented by its primary metabolite 6-keto-PGF1α. 

The potential contribution of elevated PGE2 to immune dysfunction was tested via the 

ex vivo LPS-stimulated WB (Chapter 4) and the MM6 bioassays (Chapter 5) 

elucidated previously. Addition of either an EP2 (PF-04418948) or EP4 receptor 

antagonist (MF498) to LPS-stimulated WB from individuals 4, 24, 48 or 7days after 

IV-endotoxin injection did not lead to significant increases in ex vivo TNFα release 

compared to baseline (p= 0.95, repeated measures 2-way ANOVA). In comparison, 

significant variation did occur over time. WB at 4hr released significantly less 
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(0pg/mL), and, that taken at 24 and 48hr, but not day 7, secreted significantly more 

TNFα than at baseline (p<0.0001 and p<0.001 respectively, repeated measures 2-

way ANOVA with Dunnett’s multiple comparisons test) (Figure f6.4) 

 

Figure f6.4. Addition of E-Prostanoid (EP) receptor 2 and 4 antagonists does not alter ex-vivo 

WB TNFα release. WB was taken at baseline, 4hr, 24hr, 48hr and 7 days after administration 

of IV endotoxin and stimulated with 1ng/mL LPS in the presence or absence of an EP2 (PF-

04418948 1μM) or EP4 receptor (MF498 1μM) antagonist. Indomethacin 10μM was 

employed to prevent ex vivo prostanoid release. Bars represent the mean and SD of n = 5 

participants (1 tube/condition/time-point/volunteer, TNFα assayed [ELISA] in duplicate). 

No evidence of an immunosuppressive mediator in the plasma was detected by the 

MM6 bioassay post-endotoxin administration. Addition of 25% v/v plasma taken at 

time-points between 2h to 72h after injection failed to suppress MM6 TNFα release 

below baseline (linear regression of mean TNFα values, n=7; R2 0.149, no significant 

deviation from zero, p=0.3455. Figure f6.5, Left Panel). Nor was there any indication 

of an immunosuppressive role for PGE2: 2 way ANOVA comparing the effects of time 

and EP4 antagonism on TNFα release finding no significant effect of MF498 addition 

(p=0.07). Indeed, in direct opposition to the hypothesised effect of PGE2 in the CI, 

antagonism of PGE2-EP4 binding in the assay appeared to non-significantly reduce 

TNFα release at the majority of time-points (Figure f6.5, right panel). 
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Figure f6.5. Plasma acquired post-IV endotoxemia is not immunosuppressive. Left Panel: 

VD3 MM6 (as per Chapter 5, 4 wells) were incubated with 25% v/v plasma (LH) acquired at 

set time-points following IV endotoxin administration and stimulated with 100ng/mL LPS. 

Linear regression was employed to create a line of best fit through the mean of acquired 

values (baseline to 72h, R2 0.149). Data-points represent the average of 4 wells/volunteer, 

assayed (ELISA) in duplicate of n = 7 volunteers. Right Panel: MM6 were stimulated in the 

presence (grey boxes) or absence (black circles) of an EP4 receptor antagonist (MF498 

1μM). Data-points represent the mean + SD of 7 participants (baseline to day 7, as above). 

One potential explanation for how such low concentrations of PGE2 (<50pg/mL) 

could contribute to circulating monocyte deactivation was alteration in EP-receptor 

expression and hence sensitivity to a given concentration of PGE2. WB obtained at 

different set time points after endotoxin administration however demonstrated no 

significant alteration in dose-response to PGE2 with IC50 at baseline being estimated 

between 148 pg/mL-1ng/mL, at 24h 230pg/mL-5.4ng/mL, 48h 202pg/mL-2.1ng/mL 

and 265pg/mL-8ng/mL at 7days (Figure f6.6). Further, a change in the dose-

response to neither butaprost (EP2 agonist) nor CAY10598 (EP4 agonist) was 

witnessed at the same time-points. These findings were corroborated by flow 

cytometric analysis of classical (CD14+) monocyte EP2 and EP4 expression, which 

found no sustained alteration in either receptor (Figure f6.7). Of note and as already 

described, whilst no change in EP-receptor expression could be pharmacologically 

detected, systematic alteration in TNFα release by stimulated WB at different times 

post-endotoxin was repeatedly witnessed (up shift of the dose-response curve). 
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Figure f6.6. Pharmacological evidence for alteration in monocyte E-Prostanoid (EP) receptor 

2 and 4 expression. WB was taken at baseline, 24hr, 48hr and 7 days after administration of 

IV endotoxin and stimulated with 1ng/mL LPS in the presence of increasing concentrations 

(1XM) of PGE2, butaprost (EP2) or CAY10598 (EP4). Indomethacin 10μM was employed to 

prevent ex vivo prostanoid release. Data-points represent the mean and SEM of n=3 

volunteers (1 tube/condition/time-point/volunteer, assayed (ELISA) induplicate). Dose-

response curves and IC50 derived by a variable slope four-parameter logistic curve.  

 

 

Figure f6.7. Flow cytometric assessment of classical monocyte (CD14+) EP2 and 4 

expression. WB was lysed and leukocytes stained to identify the CD14+ monocyte sub-

population and EP2 and EP4-receptors. Geometric mean fluorescence from 4 participants is 

expressed as mean +/- SD fold-change in relation to individual baseline values. 
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6.3.3 IV endotoxin: A model of immunosuppression? 

Despite the assertions of previous authors, the observed alterations in ex vivo WB 

cytokine secretion appear inconsistent with 2ng/kg IV endotoxin representing a 

model of sustained immune dysfunction. Whilst TNFα release by LPS-stimulated 

blood was dramatically suppressed in the hours immediately following IV endotoxin 

administration it was rapidly restored to baseline levels (Figure f6.8). Indeed, at 

24hours and 48hours post-injection blood appeared ‘primed’ to a secondary 

challenge, significantly increased ‘supra-normal’ levels of TNFα being recorded in 

response to the same dose of LPS. Repeated measure 2 way ANOVA showed a 

significant overall difference in TNFα release at different time points, with Dunnett’s 

multiple comparison test highlighting 2h, 4h and 8h as significantly lower than 

baseline (all <0.001) and 24h and 48h significantly higher (both >0.0001). Day 7 was 

non-significantly different from baseline. Whilst addition of an NSAID (10μM 

indomethacin) to the WB assay led to increased TNFα release through the 

prevention of autocrine/paracrine PGE2 signalling (see Chapter 4), it neither restored 

early TNFα secretion, nor led to significant proportional enhancement at 24 or 48h 

compared to baseline (p>0.05). This implies no enduring alteration in monocyte COX 

activity results from IV endotoxin administration 

 

Figure f6.8. Suppression of ex vivo LPS-stimulated WB TNFα release is not sustained. WB 

was taken at baseline, 2hr, 4hr, 8hr, 24hr, 48hr and 7 days after administration of IV 

endotoxin and stimulated with 1ng/mL LPS in the presence (open circles, dashed lines) or 

absence (filled circles, solid line) of indomethacin 10μM. Data points represent mean and SD 

of n=10 participants (1 tube/condition/time-point/volunteer, assayed (ELISA) in duplicate). 

To determine whether reduction in LPS-stimulated WB ex vivo cytokine release could 

purely be attributed to alterations in cell number TNFα was expressed as a fraction of 
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not alter the relationship between time and observed TNFα concentrations: 

suppression in cytokine release still being seen at 4hr (P<0.0001) and 8hr but at a 

lower level of significance (p<0.05, repeated measure 2 way ANOVA with Dunnett’s 

multiple comparison test), with statistically significant elevated release at 24 and 

24hrs (both p>0.001). In vivo administration of endotoxin does therefore appear to 

induce, albeit temporarily, a reduction in ex vivo monocyte response to secondary 

challenge (tolerance) or decreased functional capacity. The source of circulating 

cytokines may not however be monocytes in the blood compartment – peak plasma 

TNFα concentration corresponding with the nadir of blood monocyte numbers (Figure 

F6.X, right panel). 

 

Figure f6.9. Alteration of ex vivo LPS-stimulated WB TNFα release is not secondary to 

alterations in cell number alone. Left Panel: TNFα concentrations derived from stimulated 

WB taken at 4hr, 8hr, 24hr, 48hr and 7 days after administration of IV endotoxin are 

presented as absolute values (left y axis, solid lines, black circles) and as a function of 

monocyte number determined from matched samples (right axis, pg/1000 monocytes, dashed 

line, open circles). Data points are mean and SD of n=10 participants (1 tube/condition/time-

point/volunteer, assayed (ELISA) in duplicate, 1 full blood count/volunteer/time-point). Right 

Panel: Plasma TNFα concentration (solid line, black circles, left axis, pg/mL) in relation to 

temporally matched monocyte number (dashed line, open circles, right axis, cells x109/L). 

Data points represent mean and SD of n=10 participants  

To further characterise bolus IV endotoxin administration as a model of CIIID three 

alternate established measures of immune dysfunction exploring separate cell 

populations were employed. Monocyte HLA-DR expression (mHLA-DR, n=3) was 

found to mimic ex vivo cytokine secretion, demonstrating an initial mean reduction to 

87% (SD 6.9%) of baseline 4hr post-injection of endotoxin, before rebounding to 

reach supra-normal levels at 24hrs (117%, SD 10.6%; Figure f6.10). Expression was 

observed to subsequently decrease at 72hrs, being sustained at day 7. This is of 

unclear physiological significance. 
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Figure f6.10. Monocyte HLA-DR (mHLA-DR) expression post-IV endotoxin administration. 

Top Left Panel: Monocytes were identified by their CD14+ characteristics as per 6.2.1 Top 

Right Panel: Example illustration of mHLA-DR expression, red (baseline) and blue (24hr). 

Data is displayed as a histogram, from which geometric mean fluorescence intensity (GMFI) 

was determined. Bottom Panel: GMFI were transformed into number of antibodies (AB) per 

cell (C) (AB/C) using calibrated PE-QuantiBrite™ beads (BD) and GraphPad Prism software, 

and expressed as percentage change relative to baseline expressed over time. Data points 

represent mean and SD of n=3 participants. 

 

A decrease in neutrophil CD88 expression reflects increased circulating 

concentrations of the anaphylotoxin activated complement component 5 (C5a), a 

known contributor to immune dysfunction. Mean fluorescence intensity was observed 

to initially fall to 66.6% (SD 12.9%) of baseline by 4hr suggesting compromised 

neutrophil function, but again mirrored ex vivo cytokine secretion, recovering to 81% 

(SD 17.9%) by 24h and 110% (SD 33.7%) by 48hr (Figure f6.11). 
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Figure f6.11. Neutrophil CD88 (complement C5a receptor) receptor expression. Left Panel: 

Neutrophils were identified as per the gating strategy stated in 6.2.2 and illustrated in Figure 

f6.16. Example illustration of CD88 expression red (baseline) and blue (24hr). Data is 

displayed as a histogram, from which geometric mean fluorescence intensity (GMFI) was 

determined. Right Panel: Mean GMFI with SD are expressed as percentage change relative 

to baseline expressed over time (n=3 participants). 

 

Finally, the occurrence of sustained lymphopenia was tested for using the multiple 

definitions employed in the literature to date (Figure f6.12). Whilst the point mean 

absolute lymphocyte cell count for all participants (n=10) met the upper two cut-offs 

(<1.2x103/μL382,493 and <1.0x103/μL494) at 2 and 8hr, all 3 were only met at 4hr 

(<0.5x103/μL495) – the lymphocyte nadir. By 24 hours the absolute lymphocyte count 

had risen to 1.42x103/μL (SD 0.53) and at 48hr returned to baseline levels 

(1.78x103/μL, SD 0.41). The absolute count was noted to peak at day 4 (2.13x103/μL, 

SD 0.59). 
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Figure f6.12. Absolute lymphocyte count as a marker of immune compromise. Lymphocyte 

count was performed via University College London Hospital (Sysmex XE-2100, Kobe, 

Japan. The Doctor’s Laboratory, London). Published cut-offs used to define lymphopenia 

predictive of immune compromise are illustrated by horizontal lines. Solid: Drewry et al. 

<1.2x103382,493, dashed: Heffernan et al. <1.0x103/μL494, dotted: Inoue et al. <0.5x103/μL495. 

Data-points represent mean and SD of n=10 volunteers (1 full blood count/volunteer/time-

point). 

 

6.4 DISCUSSION 

Contrary to expectations bolus challenge with 2ng/kg IV CCRE did not institute a 

phase of sustained immunoparalysis. Three separate metrics related to three 

discrete cell populations (monocyte HLA-DR expression, neutrophil CD88 expression 

and absolute lymphocyte count), all known to predict clinically relevant immune 

dysfunction individually and cumulatively396, showed short-term (<24hour) loss of 

competence with restoration by 24-48hours after endotoxin injection. Mimicking WB 

ex vivo LPS-stimulated cytokine secretion they all additionally showed an apparent 

‘rebound’ or ‘priming’ effect, achieving supra-normal values in the days following the 

initial challenge. Whilst noted by previous authors, to the best of our knowledge, this 

phenomenon has neither been explored nor described in such detail previously481. 

As anticipated, endotoxin challenge did however elicit a consistent systemic 

inflammatory response, 90% of participants achieving SIRS criteria. Subjectively 

reported symptoms, vital signs, cellular kinetics and both pro and anti-inflammatory 

cytokines followed predictable courses, comparable to those described by previous 

authors479,496. Against these established parameters we have, for the first time, 

described the concentration and profile of prostanoids in plasma. TXA2, PGF2α and 

PGE2 all showed significant elevation from baseline, the latter increasing nearly 8-

fold by 3hours before returning to baseline by 24-48 hours. As stated, the variance in 
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profiles demonstrated by each individual lipid mediator, in particular the lack of 

appreciable increase by PGD2 and PGI2, may reflect either distinct regulation by 

synthases downstream of COX, altered binding, catalysis or elimination in vivo. The 

lack of appreciable concentrations of 6-keto PGF1α (PGI2-metabolite) is surprising 

given previous descriptions of its appreciable increase in urine concentration 

following endotoxin administration482. One explanation may lie in isolated 

augmentation of renal synthesis. 

No evidence of an immunosuppressive PGE2 signal was detected in either the WB or 

MM6 bioassay. This is not surprising. Firstly, as noted, monocyte deactivation, as 

reflected by ex vivo WB cytokine secretion was only found at the 2, 4 and 8hour time 

points. At this early stage neither addition of indomethacin to the assay, nor EP2, 

EP4 antagonists or both, led to restoration in responsivity. At the originally predicted 

target time points of immunosuppression (24 hours – day 7) there was no monocyte 

reactivation to restore. Secondly, if accurate, the concentrations of PGE2 identified in 

the plasma (maximum ~10pg/mL) were insufficient to elicit significant suppression in 

cytokine release in either assay having IC50 in the order of 300pg/mL (WB) and 

600pg/mL (MM6). In the CI patient population this situation may be altered however, 

previous authors finding that cellular (lymphocyte) sensitivity to PGE2 was increased 

~100-fold, being greater in those who had experienced more severe initial 

inflammatory insults212. No evidence of such a shift in monocyte sensitivity to PGE2 

was elicited in the current set of experiments however, both pharmacological (IC50 of 

PGE2, butaprost or CAY10598) and flow cytometric (EP2 and EP4 receptor 

expression) methodologies indicating no significant temporal change. 

6.4.1 Rejection of the hypothesis? 

IV administration of endotoxin to humans clearly has multiple benefits – elimination of 

inter-species translational barriers, increased signal to noise ratio compared to 

clinical subjects etc. – but an equal number of limitations. Whilst accurately 

mimicking the clinical phenotype of ‘sepsis-like’ states this is only achieved 

qualitatively, not quantitatively or temporally. Administration of a single TLR ligand 

directly into the bloodstream that is cleared within 15minutes of injection clearly 

cannot replicate the complexity of bacterial invasion and persistence at a tissue site, 

nor stimulate an equivalent response from the host. It is already known that mimicry 

of every pathophysiological characteristic feature of disease is not achieved497 and 

‘any expectation that the model fully replicates the clinical condition of severe, 

localized or systemic gram-negative infection is un-warranted’478. Indeed, the lack of 
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requirement for clinical intervention for the phenotypic consequences of endotoxin 

administration to resolve stands testament to its divergence from disease states. 

By ethical necessity only a relatively modest inflammatory response may be elicited. 

2ng/kg was selected for this experimental set having previously been shown to 

induce both short and long-term in vivo immunoparalysis220,480. This may however 

have been insufficient to generate immunosuppressive concentrations of PGE2. 

McAdam and co-workers demonstrated that 4ng/kg CCRE provoked urinary TXA2 

and PGI2 metabolite concentrations 3-4 fold higher than 2ng/kg, following a similar 

time-course to that described here482. In other words prostanoid release appears to 

be initiating stimuli dose-dependent in a non-directly proportional manner, larger 

insults triggering still greater eicosanoid biosynthesis. In animal models where PGE2 

ablation has successfully ameliorated risk of secondary infection mortality from the 

initial challenge was 30-50%194. In hypothermic septic patients with excessive 

prostanoid generation who derived benefit from ibuprofen administration mortality 

was 90%378.  Clearly PGE2 was never predicted to be a ‘universal 

immunosuppressant’, instead contributing to loss of immune competence only in 

select CI individuals with a dysregulated, excessive inflammatory response42. Taken 

in context with the aforementioned data, failure to identify a PGE2 signal in the 

current study does not appear extraordinary, but potentially a limitation of the 

technique. 

A final confounding factor may be the differences between in vivo and ex vivo 

immune responses and their relationship between each other. Whilst ex vivo 

measures of immune competence have been shown to rapidly return to normal 

following exposure to endotoxin, these may not mirror the in vivo situation where 

aberrations persist220. Whilst anti-PGE2 strategies appear ineffective ex vivo in this 

body of work they may actually have exerted benefit if employed in vivo, replicating 

the success of IFN-γ383. Indeed, there is clinical evidence to suggest this may be the 

case arising from patients pre-treated with NSAIDs undergoing major surgery211,384. 

Therefore, whilst not supported here, it seems premature to reject the possibility of 

PGE2-mediated immune dysfunction and the potential utility of PGE2 ablative or 

blocking therapy in stratified patients. 
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6.5 SUMMARY 

 IV endotoxin (2ng/kg) reliably induces COX-derived prostanoids release, 

TXA2, PGF2α and PGE2 being found at concentrations 3 to 23x baseline. Peak 

concentrations are around 3hours post-injection 

 Whilst endotoxin exposure elicits temporary reductions in whole blood ex vivo 

cytokine release in response to LPS, monocyte HLA-DR expression, 

neutrophil CD88 expression and absolute lymphocyte count this effect is only 

short-lived, all metrics returning to normal or exceeding baseline values by 

24-48hours. 

 Prevention of PGE2 production via NSAID addition or antagonism of it’s 

binding to the EP2 and EP4 receptors failed to restore LPS-stimulated WB 

cytokine release during this period. No signal of PGE2-mediated 

immunosuppression was detected by the MM6 bioassay, 25% v/v plasma 

failing to reduce TNFα release at any time point 

 IV endotoxin led to neither alteration in monocyte EP2 or EP4 receptor 

expression, nor pharmacologically determined sensitivity to PGE2. 

 Whilst a valuable tool to explore resolving systemic inflammation, human IV 

endotoxemia may be unable to recapitulate the immunological features of 

critical illness 
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6.6 APPENDIX 

 

 

Figure f6.13. Time-course of cumulative symptom scores. Participants (n=10) were asked to 

score their experience on 4 visual analog scales (max 10/scale) describing headache, muscle 

ache, nausea and shivering at sample collection time-points. Data-points represent mean and 

SD.  
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Figure f6.14. Sequential clinical observations and total white blood cell count (WBC) in 

relation to SIRS definition. Respiratory rate (RR, breaths per minute), arterial oxygen 

saturation (SpO2, %), systolic blood pressure (SBP, mmHg), pulse rate (beats per minute), 

and temperature (°C) were recorded hourly post-endotoxin injection for 8 hours. Total WBC 

(109cells/L) was taken at baseline (0h), 2h, 4h, 8h, 24h, daily till 96hr, at day 7 and 14. Where 

appropriate cut-off’s used to define SIRS have been inserted (dashed lines): RR>20bpm, 

pulse >90bpm, temperature >38°C, WBC >12x109/L. 9 out of 10 participants met SIRS 

criteria (2 or more of the above). Data-points represent mean and SD.  
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Figure f6.15. Individual plasma cytokine concentration. Plasma was assayed for cytokine 

concentrations via the MSD V-Plex system. Data-points represent mean and SD of 10 

participants (0hr-24hr) and 5 from (48hr-D14). 
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Figure f6.16. Gating strategy to identify neutrophils for surface CD88 (C5a receptor 

expression). Live cells were first gated using forward and side scatter characteristics (>50k), 

with subsequent doublet exclusion undertaken via forward scatter height/area. Lymphocyte 

and natural killer cell lineage marker (CD3, CD19, CD56) and HLA-DR negative cells were 

further examined for CD16 expression. CD16+ cells with high granularity (side scatter) were 

identified as neutrophils. Representative pseudocolour dot plots shown (FlowJo, TreeStar). 

Arrows indicate sequential gating-windows. 
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Figure f6.17. IV-endotoxin induced alterations in the concentration of 5-LOX mediated, 

arachidonic acid derived, lipid mediators. Panels display individual values, median and IQR of 

5 participants. 

 

 

Figure f6.18. IV-endotoxin induced alterations in the concentration of 12-LOX, 15-LOX and 

NEO-mediated, arachidonic acid derived, lipid mediators. Panels display individual values, 

median and IQR of 5 participants. 
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Figure f6.19. IV-endotoxin induced alterations in the concentration of CYP450-mediated, 

arachidonic acid derived, lipid mediators. Panels display individual values, median and IQR of 

5 participants. 
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Figure f6.20. IV-endotoxin induced alterations in the concentration of isoprostanes and 

linoleic acid derived, lipid mediators. The latter may be generated by COX, 15-LOX, CYP450 

and NEO. Panels display individual values, median and IQR of 5 participants. 

 

0h
r

1h
r

1.
5h

r
2h

r
3h

r
4h

r
6h

r
8h

r

24
hr

0

10000

20000

30000

40000

50000

p
g

/m
L

13-HODE

0h
r

1h
r

1.
5h

r
2h

r
3h

r
4h

r
6h

r
8h

r

24
hr

0

5000

10000

15000

20000

9-HODE

p
g

/m
L

0h
r

1h
r

1.
5h

r
2h

r
3h

r
4h

r
6h

r
8h

r

24
hr

0

5

10

15

20

p
g

/m
L

8-ISO-PGF2



 154 

 
 

Figure f6.21. IV-endotoxin induced alterations in the concentration of COX, 15-LOX and NEO 

mediated, EPA derived lipid mediators. Panels display individual values, median and IQR of 5 

participants. 
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Figure f6.22. IV-endotoxin induced alterations in the concentration of NEO mediated, DHA 

derived lipid mediators. Panels display individual values, median and IQR of 5 participants. 
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CHAPTER 7: General Discussion 
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This thesis has sought to test the hypothesis that PGE2 mechanistically contributes to 

CIIID via systematic literature review, in vitro/ex vivo experiments and an in vivo pre-

clinical human study. Whilst producing data that supports the assertion, neither 

acceptance nor rejection of the central premise is possible. There remains a 

compelling argument that PGE2, a lipid mediator capable of suppressing multiple 

aspects of immune effector cell function, plays a pathological role in the context of 

severe inflammation. Failure to establish this paradigm using the methods employed 

in this body of work does not constitute failure of the concept, but instead reflects 

their technical limitations. As Kalinski elegantly states, PGE2 has the ‘paradoxical 

status of a pro-inflammatory factor with immunosuppressive activity’301. Whilst 

demonstration of the former is readily achievable, delineating a pathologic 

contribution from the regulatory capacity of PGE2 in vivo is eminently more 

challenging. 

7.1 A question of degree 

Immunosuppression and consequent adverse outcomes is not a universal 

phenomenon in every CI patient99. Instead it appears linked to dysregulation of the 

inflammatory profile in size and duration in response to an initial severe insult42: mild, 

resolving inflammation being associated with a qualitatively and quantifiably different 

cellular and humoral reaction to widespread, non-resolving inflammation, as seen in 

sepsis498. Experimentally in man such a severe inflammatory is impossible to 

replicate. The closest approximation available - the IV bolus endotoxin model of 

systemic inflammation (Chapter 6) – whilst transiently replicating many features of 

CI, phenotypically appears to represent the former self-limited inflammatory 

response, and can potentially only provide limited insight into the latter479,497. The lack 

of sustained immune paralysis (at least as determined by ex vivo metrics220) and 

functional effects of PGE2 observed in this body of work must be interpreted in this 

light. 

Correspondingly, whilst review of the clinical literature (Chapter 3) provides 

consistent epidemiological evidence that COX inhibition (and hence PG ablation) 

may be beneficial following severe infective insults, it appears to afford none in minor 

infection. This is not unexpected. From a teleological perspective it seems 

inconceivable that PGE2 - a mediator which regulates multiple central aspects of the 

inflammatory response including vasodilation and cellular migration locally499-501, and 

pyrexia centrally486 – would be immunopathological under ‘normal’ inflammatory 

conditions, as routinely elicited by invasive pathogens, and consequently what 
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benefits NSAIDs would provide in this setting. The same is not true in severe 

inflammatory states.  

In humans there is evidence that PG biosynthesis is related to the size of the 

inflammatory insult, increasing disproportionally to the initiating stimuli210,482. Larger, 

persistent challenges may thus be associated with greater prostanoid release from 

tissue-associated and circulating cells212. Increased PGE2 production may be 

compounded by local failure of autocrine/paracrine signalled eicosanoid class 

switching147, or downregulation of orthodox clearance pathways including 15-

hydroxyprostaglandin dehydrogenase (15-HPGD) and carbonyl reductase, both 

locally and in the lungs448,502,503. Additional biochemical alterations associated with CI 

may further contribute to PGE2 becoming pathogenic, in particular reduced serum 

albumin, a protein that both binds and catabolises PGE2 under homeostatic 

conditions to reduce it’s bioavailability142,504,505. Accentuating these effects are 

inflammation-induced alterations in E-prostanoid receptor distribution and/or density 

on key circulating leucocyte populations that render effector cells ‘vulnerable’ to their 

PGE2-rich milieu217,506 212. It is likely that the dynamic interaction of these factors 

contributing to PGE2-mediated immune paralysis accounts for the observation that 

neither all CI patients, nor every individual with an elevated circulating PGE2 

concentration, demonstrates immunosuppression: multiple simultaneous aberrations 

being required for the effect to be seen clinically142,378. 

Mimicry of this combination of effects by IV endotoxemia was either not achieved or 

highly unlikely. Whilst the chosen dose elicited SIRS near universally (90%) and 

generated a classic cytokine response in-line with previous authors476, peak plasma 

prostanoid concentrations were orders of magnitude lower than those reported in 

critical illness433. A higher dose (4ng/kg) would have elicited greater PGE2 

synthesis482, but would have however come at a symptomatic cost507. Whether this 

would have been sufficient to generate sustained immune paralysis in unclear. It is 

known that IV endotoxemia does not replicate alterations in microvascular leak seen 

in critical illness states and hence the fluctuations in serum albumin required to 

‘expose’ PGE2-driven immune paralysis may have failed to occur508,509. Whilst only 

monocytes were explored we also demonstrated no alteration in EP receptor 

expression either pharmacologically or via flow cytometry. Alteration in synthetic and 

catalytic enzyme transcription was not evaluated. 

In short, whilst the endotoxin model, as used, provides a key platform on which to 

explore the (self-resolving) inflammatory response in man, the initiating insult 
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employed may be insufficiently severe to generate the severity of inflammation 

required for the development of immunopathology. Detection and elaboration of an 

excessive PGE2-mediated regulatory signal in this system was thus impossible. 

7.2 Alternative approaches 

Regardless of the difficulties posed a translational approach should not be neglected 

however, and variations in the techniques employed may yet yield benefit. As stated, 

an increased dose of endotoxin might afford greater replication of the 

immunosuppressive phenotype. Even if not, the discrepancy in PGE2 release 

between the two doses (2 and 4ng/kg) may allow relative inference of an excessive 

regulatory role. A further intriguing proposition would be replication of murine ‘two-hit’ 

models of systemic inflammation and subsequent infective challenge in humans190. 

Here, IV endotoxemia would be used to elicit the first hit, replicating trauma, burn or 

sepsis, and a second challenge would be provided by either inhaled510 or intradermal 

endotoxin511, mimicking the two most common sites of nosocomial infection. This 

approach would allow exploration of the relevance of proven sustained in vivo 

immune tolerance and/or dysfunction220,512, and crucially ascertain the impact of 

inflammation in one compartment (blood) on function in another (pulmonary, skin)76. 

Finally, direct IV infusion of PGE2 into healthy volunteers has previously been 

undertaken, and may permit focused investigation of the functional consequences of 

this molecule and the benefit of associated immunorestorative therapies in vivo513. 

Whilst exogenous PGE2 was observed to recapitulate the functional deficits observed 

during critical illness in a validated measure of immune compromise (Chapter 4), this 

was only achieved at plasma concentrations recorded in sepsis433. If pre-clinical 

experimental medicines are wholly unable to replicate the clinical phenotype then 

patient-derived samples will be required to delineate a role for PGE2, despite the 

attendant increase in signal-to-noise ratio. Whilst patients with sepsis are the obvious 

choice - given previous suggestions of the efficacy of PGE2 ablative strategies378 – 

an alternative would be to use a more homogenous, controlled population. An 

immunosuppressant role for PGE2 has also been alluded to in patients undergoing 

emergency major surgery211. Elective orthopaedic procedures, with their relative 

uniformity of inflammatory insult, routine multi-dimensional assessment of baseline 

functional status (to which immunological could be added) and range of clinical 

outcomes, may offer the ideal patient cohort for this purpose514. Given the complex 

range of factors that likely determine the immunosuppressive potency of PGE2 aside 

from concentration (albumin, target cell EP receptor expression etc.) it is hoped that, 
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after further development, the MM6 bioassay will provide a superior read-out of this 

effect than standard physico-chemical methods alone (Chapter 5). 
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Appendices: UCL Research Ethics Council Applications 
 

Reference: 5060_001 – Intravenous endotoxemia 

Reference: 4332_001 – Stimulated human whole blood 



UCL RESEARCH ETHICS COMMITTEE 

 
 

IMPORTANT: ALL FIELDS MUST BE COMPLETED. THE FORM SHOULD BE COMPLETED IN PLAIN 
ENGLISH UNDERSTANDABLE TO LAY COMMITTEE MEMBERS. 
SEE NOTES IN STATUS BAR FOR ADVICE ON COMPLETING EACH FIELD. YOU SHOULD READ THE 
ETHICS APPLICATION GUIDELINES AND HAVE THEM AVAILABLE AS YOU COMPLETE THIS FORM. 

APPLICATION FORM 

SECTION A  APPLICATION DETAILS 

 

A1 
 

Project Title: The effect of inflammation on local and systemic immune function 
 

Date of Submission:   23/09/2013 
 
  

Proposed Start Date: 01/12/2013 

UCL Ethics Project ID Number: 5060/001 Proposed End Date:  31/05/2015 

If this is an application for classroom research as distinct from independent study courses, please provide  
the following additional details: 

Course Title: N/A  Course Number: N/A 

 

A2 
 

Principal Researcher  
Please note that a student – undergraduate, postgraduate or research postgraduate cannot be the Principal Researcher for Ethics 
purposes. 

Full Name:  Professor Derek. W Gilroy   Position Held: Professor of Experimental Immunology 
and Welcome Trust Senior Research Fellow. 

Address:  Centre for Clinical Pharmacology, 
Division of Medicine 
Rayne Building 
5 University Street 
LONDON WC1E6JF 

Email:   

   

   

Declaration To be Signed by the Principal Researcher  

§ I have met with and advised the student on the ethical aspects of this project design (applicable only if the 
Principal Researcher is not also the Applicant). 

§ I understand that it is a UCL requirement for both students & staff researchers to undergo Disclosure and 
Barring Service (DBS) Checks when working in controlled or regulated activity with children, young people or 
vulnerable adults. The required DBS Check Disclosure Number(s) is: N/A    

§ I have obtained approval from the UCL Data Protection Officer stating that the research project is compliant 
with the Data Protection Act 1998. My Data Protection Registration Number is: Z6364106/2013/09/08   

§ I am satisfied that the research complies with current professional, departmental and university guidelines 
including UCL’s Risk Assessment Procedures and insurance arrangements. 

§ I undertake to complete and submit the ‘Continuing Review Approval Form’ on an annual basis to the UCL 
Research Ethics Committee. 

§ I will ensure that changes in approved research protocols are reported promptly and are not initiated without 
approval by the UCL Research Ethics Committee, except when necessary to eliminate apparent immediate 
hazards to the participant. 

§ I will ensure that all adverse or unforeseen problems arising from the research project are reported in a timely 
fashion to the UCL Research Ethics Committee. 

§ I will undertake to provide notification when the study is complete and if it fails to start or is abandoned. 
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A3 Applicant(s) Details (if Applicant is not the Principal Researcher e.g. student details): 
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Email:   
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 Email:  
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Sponsor/ Other Organisations Involved and Funding  
a) Sponsor:  UCL   Other institution  

If your project is sponsored by an institution other than UCL please provide details:       
 

b) Other Organisations: If your study involves another organisation, please provide details. Evidence that the relevant authority has 
given permission should be attached or confirmation provided that this will be available upon request. University College 
London Hospital (via use of the Clinical Research Facility). R&D approval has been sought via the Joint 
Research Office and is available upon request. 

c) Funding: What are the sources of funding for this study and will the study result in financial payment or payment in kind to the 
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Trust Research Training Fellowship and Pfizer 'Anti-infectives Specialist Programme for Young 
Researchers' (ASPYRe Award, both awarded to Dr James Fullerton. The latter is a one-off stand-alone 
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obligations (other than interim and final reports, and due acknowledgement on scientific output). No 
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Signature of Head of Department or Chair of the Departmental Ethics Committee 
(This must not be the same signature as the Principal Researcher) 

I have discussed this project with the principal researcher who is suitably qualified to carry out this 
research and I approve it.  The project is registered with the UCL Data Protection Officer, a formal 
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place. Links to details of UCL's policies on data protection, risk assessment, and insurance arrangements can be found at: 
http://ethics.grad.ucl.ac.uk/procedures.php 
UCL is required by law to ensure that researchers undergo a Disclosure and Barring Service (DBS) 
Check if their research project puts them in a position of trust with children under 18 or vulnerable 
adults.  
 

*HEAD OF DEPARTMENT TO DELETE BELOW AS APPLICABLE* 

 I am satisfied that checks: ( 1 ) have been satisfactorily completed 
 ( 2 ) have been initiated 
 ( 3 ) are not required 

If checks are not required please clarify why below. 
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Chair’s Action Recommended:  Yes       No 

A recommendation for Chair’s action can be based only on the criteria of minimal risk as defined in the Terms of Reference of the UCL 
Research Ethics Committee. 

 
PRINT NAME: Prof Raymond MacAllister 

SIGNATURE:   
 
 
 

DATE: 23/09/13 

SECTION B  DETAILS OF THE PROJECT 

 

B1 
 

Please provide a brief summary of the project in simple prose outlining the intended value of the project, giving necessary 
scientific background (max 500 words). 

Nearly 30% of intensive care (ICU) patients develop at least one hospital-acquired infection (HAI), a 
burden 6-times greater than that on standard wards. HAI in this setting confers a 2-3 fold increased risk of 
in-patient mortality and is estimated to cost the UK up to £1billion/year. In particular criticalIy ill patients are 
vulnerable to secondary infection with less virulent, multi-drug resistant, opportunistic organisms and to re-
activation of latent pathogens. Aside from known iatrogenic (medically caused) and physical risk factors 
(e.g. sedation, in-dwelling lines), a failure of the body’s defence system is now recognized as the key 
causative factor - a phenomenon that may be described as critical illness-induced immune dysfunction 
(CIIID). 

Inflammation is an evolutionarily ancient, highly conserved process, designed to protect us against foreign 
bodies or agents. Triggered by a multiple different events such as infection (by bacteria, viruses etc.), 
tissue injury (trauma, burns, major surgery) or chemicals (e.g. alcohol causing pancreatitis) it is a feature of 
nearly all critical illness. Recent data has found that patients on ICU who have adverse outcomes (HAI, 
prolonged hospitalization, in-patient death) experience a dysregulated inflammatory response both in 
magnitude and duration. Predominance and prolongation of regulatory/anti-inflammatory processes and 
mediators (signaling chemicals) appear to contribute directly to CIIID, however the relative contribution and 
time-course of different molecules is not known. In work already performed by our group looking at the 
blood of patients with pneumonia, we have identified both an excess of one inflammation regulating 
chemical – prostaglandin E2 – and an absence of another - aspirin-triggered lipoxin – as potential key 
drivers of immunosuppression and HAI susceptibility. 

The proposed project seeks to establish, characterize and interrogate, for the first time, a robust clinically-
relevant ‘two-hit’ human healthy volunteer model of systemic inflammation (mirroring sepsis, trauma, burn 
injury or major surgery) coupled with a biologically valid secondary infective challenge (mimicking HAI). We 
believe this model will allow us to compile a compendium of information that will provide the most complete 
description of CIIID to date. In particular it will uniquely allow exploration of inflammation-induced 
alterations in defence function over time and in different body compartments – the blood and skin. 

Current systems for exploring CIIID are inadequate, relying on increasingly repudiated animal models or 
observational human data. In contrast this model will provide a controlled, safe, adaptable platform upon 
which to accurately dissect the cause of CIIID in humans. The study aims to identify viable 
pharmacological opportunities that both reduce susceptibility to HAI in the ICU population and work 
synergistically with antibiotics to promote the clearance of infection. Additionally, biomarkers potentially 
predictive of HAI risk (reflecting immune impairment) may be identified. Sub-classification of the critically ill 
population using measures of immune function to monitor disease progress and individualize treatment 
regimens, dictating what drugs should be given and when, have recently been shown to be effective. We 
propose, the therapeutic challenge of two immunosuppressive pathways in humans using commonly used 
drugs to mechanistically test the contribution of prostaglandin E2 and aspirin-triggered lipoxin. 
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B2 
 

Briefly characterise in simple prose the research protocol, type of procedure and/or research methodology (e.g. 
observational, survey research, experimental).  Give details of any samples or measurements to be taken (max 500 words). 

2 studies are proposed. Both involve the same participant population, methodology, procedures and 
measurements. The first will examine the nature and time-course of inflammation-induced immune 
(defence) dysfunction, the second will employ two drugs (ibuprofen and aspirin) to mechanistically explore 
the contribution of two inflammation-regulating chemicals (prostaglandin E2 and aspirin-triggered lipoxin) to 
observed defects. Participants will be randomly allocated to two groups of pre-determined size in both 
studies, reflecting time-point of secondary immune measurement (Study 1) or drug allocation (Study 2). 
The model will combine two previously employed safe, validated, standardised techniques (endotoxemia 
and skin-window formation) to achieve our objectives. 

Healthy male volunteers aged 18 to 50 will be recruited. Enrollment will involve undergoing a medical 
screening assessment to ensure participant safety. Exclusion criteria include acute or chronic illness, 
regular prescribed medication use, abnormal physical examination, electrocardiogram or blood results, 
drug or alcohol misuse, and recent vaccination or transfusion within 3months. Each participant may be 
enrolled in one of the studies only once. All phases of the study will be conducted in the Clinical Research 
Facility (CRF), UCL/UCLH. Completion of the full protocol will involve 7 visits to the CRF and a total 
20hours of participant’s time over 3weeks. 

Immune function will be assessed before (baseline) and after (experimental) systemic inflammation 
(repeated-measures design). Samples will be taken from two body compartments: blood (systemic) and 
skin (local). In Study 1 local immune function will be assessed either on day 3 or day 7 post-inflammation 
(determining timecourse). In Study 2 this will occur on day 3 however participants will have consumed 
either aspirin or ibuprofen during the intervening period (determining mediator effect). Systemic 
assessment will be constant throughout (blood sampling on day 1, 3, 7, 14 post-inflammation) 

Intravenous injection of endotoxin (National Institute of Health, E.coli O:113 EC-6 2ng/kg), a sterile 
bacterial product, will be used to induce inflammation. Participants will be monitored (standard observation 
set) by a doctor for 10 hours post-injection, blood being drawn from an in-dwelling venous line (to avoid 
repeated stab) every 1-2 hours (re: systemic immune assessment). A self-assessed symptom score will be 
undertaken bi-hourly. A fluid drip will be given to counter physiological changes.  

Local immune assessment will be a (gram-positive) sterile bacterial challenge to suction-blister induced 
‘skin windows’ (streptokinase and heat-killed S.aureus labeled with a dye, replicating peripheral venous 
access or wound infection). Blisters will be formed using pre-established protocols using aseptic technique. 
A specially developed ‘exudate-collecting chamber’ (ECC, see PIL) will hold participant-derived 
(autologous) serum, containing the reagents, over the ‘windows’. Samples will be aspirated at 2 time-points 
within 12 hours, to assess the kinetics of the immune response. Participants will be ambulant in-between.  

Both blood and local samples will contain two key elements. Plasma/exudate (acellular) will be used to test 
concentrations of chemicals/mediators. Cellular material will be employed to look at changes in gene 
expression caused by inflammation. Crucially the ECC will allow functional analysis of the inflammatory 
and immune response in a biologically valid, ‘real-life’ setting (in-vivo). 

  
Attach any questionnaires, psychological tests, etc. (a standardised questionnaire does not need to be attached, but please provide 
the name and details of the questionnaire together with a published reference to its prior usage). 

 

B3 
 

Where will the study take place (please provide name of institution/department)?  
If the study is to be carried out overseas, what steps have been taken to secure research and ethical permission in the study country? 
Is the research compliant with Data Protection legislation in the country concerned or is it compliant with the UK Data Protection Act 
1998?  

University College London (UCL)/University College London Hospital (UCLH) Clinical Research Facility 
(CRF) 
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B4 
 

Have collaborating departments whose resources will be needed been informed and agreed to participate?  
Attach any relevant correspondence. 

N/A 

 

B5 
 

How will the results be disseminated, including communication of results with research participants?  

Participants will be invited to return 2 days after the screening visit to be informed of the results of their 
medical screening. Any abnormal examination or test results will prompt exclusion from the study. If none 
are present enrollment will be confirmed and baseline immune assessment performed. Abnormalities will 
also, with the participant’s permission, be communicated to their general practitioner to determine the need 
for further investigation/medical intervention.   

Results will be disseminated via traditional scientific channels (peer-reviewed journal publications, 
conference presentation) and described on the Gilroy Group's open-access website. Participants will be 
offered the opportunity to receive copies of research output via email. 

 

B6 
 

Please outline any ethical issues that might arise from the proposed study and how they are be addressed.  Please note that 
all research projects have some ethical considerations so do not leave this section blank.  

Scientific importance: This proposed study provides a significant advance on current research 
methodology providing a construct upon which the cellular and signaling processes underlying CIIID may 
be explored and potential therapeutic interventions identified and tested. The proposal has been 
independently assessed and approved by the Wellcome Trust’s Research Training Fellowship Committee 
and Pfizer’s Anti-Infective Scientific Advisory Committee. 

Recruitment, consent and payment: Participants will be recruited by generic, un-selected internal UCL 
email. The Chief Investigator (CI) will assess capacity prior to recruitment and no vulnerable adults will be 
used in the study. Potential participants will be provided with a PIL at least 3 days in advance of the 
screening visit providing time to reflect on the protocol and desire to participate. The opportunity to ask 
questions/seek clarification will be provided. Written consent will be taken at the screening visit after verbal 
confirmation of understanding, and re-affirmed prior to each interventional procedure, participants being 
free to withdraw without penalty at any time.  

Organization and Management: All procedures will be performed at the University College London Hospital 
(UCLH)/University College London (UCL) National Institute of Health Research (NIHR) Clinical Research 
Facility (CRF), a 20-bed facility situated in a wing of UCLH. This facility represents a purpose-built 
environment for investigators to conduct pre-clinical research studies as safely, effectively and efficiently as 
possible. Specialized staff (nursing, pharmacy) for medication/treatment administration and equipment 
required to monitor/evaluate their effects (blood pressure, oxygen saturations etc.) are present along with 
dedicated laboratory facilities for sample processing. UCLH’s A&E, acute medical, surgical and intensive 
care facilities provide clinical support in the event of adverse reaction or un-expected events during the 
protocol.  

Effect on Participants: The protocol involves undertaking procedures on healthy volunteers, affords them 
no health benefit and may potentially cause harm. The steps taken to minimize this are detailed in D4. The 
techniques/procedures involved are well established with known safety profiles, the novelty of the research 
residing in their combination. 

Sample Storage and Data Protection: Participant data will be quasi-anonymised with allocation and use of 
a study number throughout. Only the CI and PI will have access to this code. No personal details will be 
retained aside from age, confirmation of normal health status (results from screening visit) and contact 
details (email address). All information will be recorded in a password-protected UCL-database. Only the 
research team and regulatory bodies (UCL R&D, UCL Research Ethics Committee) will have access to this 
database. Paper records will be kept in locked cabinets in the Rayne Institute, UCL. On completion of the 
study information linking participants to samples will be destroyed. 

All samples will be labeled with the study number and stored for a maximum of 10 years in locked freezers 
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within the Rayne Institute, UCL (or suitable location with a Human Tissue Act License). Participants will be 
made fully aware of the tests that will performed on their samples, including the retention of cellular 
material and that the results of the study are intended for public display as posters, presentation, and/or as 
a journal article. These will contain no identifiable information. Any future research on stored samples will 
require Research Ethics Committee approval. 

Funding and Conflict of Interest: All researchers taking part on the study can confirm they have no conflicts 
of interest.  

 

SECTION C DETAILS OF PARTICIPANTS 

 

C1 
 

Participants to be studied 

C1a. Number of volunteers: 35      

Upper age limit:  50   

Lower age limit:  18    
 
C1b. Please justify the age range and sample size: 

Calculations independently performed by Mr Paul Bassett (Statistician, UCL Joint Research Office)  

Overall: Study 1: 12 participants are required. Study 2: 16 participants are required 

With an estimated 'drop-out'/non-completion rate of 15-20% it is estimated that 15 and 20 participants will 
have to be recruited to each study respectively - 35 in total. 

Study 1 (Primary end-point): The sample size was calculated on the primary outcome measure, alteration 
in ex-vivo whole blood stimulated TNF-α production and selected to obtain a precise estimate of TNF-α 
concentration at day 3 (first group) or day 7 (second group). TNF-α will be expressed as the percentage 
reduction from baseline, with levels at day 3 estimated to be 50% of those at baseline. Based on previous 
published data[20] and preliminary work in the Gilroy group, the standard deviation of the percentage 
reduction is estimated to be 15%. In order to obtain an estimate of the mean percentage reduction that is 
correct to within 12% of the true population value using a 95% confidence level, it is calculated that 6 
subjects are required. As each group will be considered separately a total of 12 subjects are needed. It is 
anticipated that not all participants enrolled will complete the full study protocol (drop-out/excluded). 
Recruitment will continue until target numbers are reached. With an estimated 15-20% drop-out/exclusion 
rate a maximum of 15 participants will need to be enrolled. The 12% cut-off was selected as sufficient to 
achieve a scientifically meaningful answer to the question whilst not involving un-neccessary recruitment. 
Alternative cut-offs and numbers of subjects required to achieve these are listed at the bottom of this 
section. 

Study 2 (Secondary end-point): The sample size was based on a comparison in the percentage increase in 
whole blood stimulated ex-vivo TNF-α production from inflammation-induced nadir towards baseline in 
patients plasma treated or not with cyclooxygenase inhibitor/prostaglandin antagonists. Based on previous 
studies[20] and group data, the standard deviation of the percentage reduction is estimated to be 15%. A 
difference in the percentage reduction between groups of 25% would be considered to be a clinically 
important difference. Using a 5% significance level and 90% power, it is calculated that 8 subjects per 
group, 16 in total, are required for the study. As in study 1 if a 15-20% drop-out/exclusion rate is allowed 
for it is expected that a maximum number of 20 participants will have to be enrolled to achieve this target. 

Addendum: Alternative Study 1 'cut-off' values: 20% in each direction of the true value would need 2 
subjects; 18% in each direction of the true value would need 3 subjects; 16% in each direction of the true 
value would need 4 subjects; 14% in each direction of the true value would need 5 subjects; 12% in each 
direction of the true value would need 6 subjects; 10% in each direction of the true value would need 9 
subjects; 8% in each direction of the true value would need 14 subjects; 6% in each direction of the true 
value would need 24 subjects  
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C2 
 

If you are using data or information held by a third party, please explain how you will obtain this. You should confirm that 
the information has been obtained in accordance with the UK Data Protection Act 1998. 

N/A 

 

C3 
 

Will the research include children or vulnerable adults such as individuals with  
mental health problems or with learning disabilities, the elderly, prisoners or young offenders?   Yes     No 

                                                                                                                          
How will you ensure that participants in these groups are competent to give consent to take part in this study? If you have relevant 
correspondence, please attach it. 

     

 

 

C4 
 

Will payment or any other incentive, such as gift service or free services, be made to any research participant?  
 
  Yes     No 
             
If yes, please specify the level of payment to be made and/or the source of the funds/gift/free service to be used. 

Max £200/participant (see below). Funding is derived from the Dr James Fullerton's Wellcome Trust 
Research Training Fellowship. 

 

Please justify the payment/other incentive you intend to offer. 

£200 will be allocated to each volunteer for the study, payable upon completion of all procedures (final visit, 
day 14 post-endotoxemia). This is considered suitable to compensate for the mild discomfort associated 
with interventional procedures, travel expenses, and the inconvenience of lifestyle modification.The study 
is expected to take around 20 hours of participants time and reflects a rate of £10/hour. Partial completion 
will lead to incremental payment so as not to compel/coerce participants to complete all aspects of the 
protocol should they wish to withdraw. £50 will be paid for baseline immune assessment, £100 for 
undergoing endotoxin injection and monitoring.  

 

C5 
 

Recruitment 
(i) Describe how potential participants will be identified: 

Self-identification. An advertising email (attached) will be sent to UCL staff and students describing the 
study in brief and stating eligibility criteria. 

(ii) Describe how potential participants will be approached: 

Contact details of study investigators are included in the advertising email and will be used by prospective 
recruits to contact the investigators if they consider themselves eligible and are interested in participating. 

(iii) Describe how participants will be recruited: 

Once contact with the investigators is made and initial eligibility ascertained, a Participant Information 
Leaflet will be distributed and the opportunity to discuss the study in detail (phone, email and/or meeting) 
provided (min period 3 days) before consent is sought. All aspects of the study including design, timelines, 
potential side effects, required commitment, and the right not to participate and to withdraw at any time 
without penalty will be fully explained. 
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Attach recruitment emails/adverts/webpages. A data protection disclaimer should be included in the text of such literature.   

 

C6 
 

Will the participants participate on a fully voluntary basis?    Yes   No 
 
Will UCL students be involved as participants in the research project?  Yes  No 
 
If yes, care must be taken to ensure that they are recruited in such a way that they do not feel any obligation  
to a teacher or member of staff to participate. 
 
Please state how you will bring to the attention of the participants their right to withdraw from the study without penalty? 

The right to withdraw will be emphasised verbally in advance of, and during, the consenting process, as 
well as in writing. A copy of the signed consent form will be provided to participants. The right to withdraw 
is also explicitly stated in written form in the Participant Information Leaflet.  

 

C7 
 

CONSENT 
Please describe the process you will use when seeking and obtaining consent. 

Potential participants who reply to the email advertisement will have their initial eligibility confirmed. If 
eligible they will be provided with a Participant Information Leaflet and given a minimum period of 3 days to 
decide whether they wish to enrol. During this period they will be free to contact the investigators to clarify 
any elements of the study. Timelines, visits to UCL, requirement of the participant to comply with the study 
protocol, as well as potential for harm will be discussed. Voluntary entry and withdrawl without penalty will 
be reaffirmed. If happy to proceed consent will be taken by the applicant prior to any study intervention, 
understanding being confirmed verbally prior to written consent being sought.  

 

A copy of the participant information sheet and consent form must be attached to this application. For your convenience proformas 
are provided in C10 below. These should be filled in and modified as necessary.  
 
In cases where it is not proposed to obtain the participants informed consent, please explain why below. 

N/A 

 

 

C8 
 

Will any form of deception be used that raises ethical issues?  If so, please explain. 

 No   
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C9 
 

Will you provide a full debriefing at the end of the data collection phase?     Yes     No 

 If ‘No’, please explain why below. 

Participants will be offered the opportunity to have the final scientific output forwarded to them along with a 
lay summary. Initial data is not likely to be of interest to most of our volunteers in this study. 

 

 

 

C10 
 

Information Sheets And Consent Forms   

A poorly written Information Sheet(s) and Consent Form(s) that lack clarity and simplicity frequently delay ethics approval of 
research projects.  The wording and content of the Information Sheet and Consent Form must be appropriate to the age and 
educational level of the research participants and clearly state in simple non-technical language what the participant is agreeing to.  
Use the active voice e.g. “we will book” rather than “bookings will be made”.  Refer to participants as “you” and yourself as “I” or “we”.  
An appropriate translation of the Forms should be provided where the first language of the participants is not English.  If you have 
different participant groups you should provide Information Sheets and Consent Forms as appropriate (e.g. one for children and one 
for parents/guardians) using the templates below.  Where children are of a reading age, a written Information Sheet should be 
provided.  When participants cannot read or the use of forms would be inappropriate, a description of the verbal information to be 
provided should be given.  Please ensure that you trial the forms on an age-appropriate person before you submit your application. 

 
 
Both the Participant Information Leaflet and Consent Forms are provided as separate documents 
 
 

 

SECTION D DETAILS OF RISKS AND BENEFITS TO THE RESEARCHER AND THE RESEARCHED 

 

D1 
 

Have UCL’s Risk Assessment Procedures been followed?            Yes      No 
 
If No, please explain. 

     

 

 

D2 
 

Does UCL’s insurer need to be notified about your project before insurance cover can be provided?        Yes      No 
 

The insurance for all UCL studies is provided by a commercial insurer. For the majority of studies the cover is automatic. However, for 
a minority of studies, in certain categories, the insurer requires prior notification of the project before cover can be provided. 
 
If Yes, please provide confirmation that the appropriate insurance cover has been agreed. Please attach your UCL insurance 
registration form and any related correspondence. 
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D3 
 

Please state briefly any precautions being taken to protect the health and safety of researchers and others associated with 
the project (as distinct from the research participants).  

Interventional procedures (blister formation, venepuncture, venous cannula insertion) will only be 
performed by appropriately trained, clinically qualified and experienced investigators. Investigators have 
gained experience using the blister equipment in Prof. Arne Akbar's Lab (Division of Infection and 
Immunity).   

All study procedures will take place in the Clinical Research Facility, a purpose built and designed facility. 
Investigators performing tasks which risk exposure to bodily fluids will have appropriate immunization 
records. UCL Occupational Health will provide support in the un-likely event of needle-stick etc. There is 
also rapid access to the accident and emergency department at University College London Hospital if a 
health problem becomes manifest during the study    

 

D4 
 

Will these participants participate in any activities that may be potentially stressful or harmful in connection with this 
research?                Yes  No 
 
If Yes, please describe the nature of the risk or stress and how you will minimise and monitor it. 

Medical Screening: Medical screening may detect previously un-diagnosed conditions. It may also flag up 
false positives (where the test indicates an abnormality however there is no underlying medical problem), 
causing un-necessary concern. To maximize safety and minimize the risk of false-positives only tests felt 
to directly impact on risk of undergoing the study will be performed. Any abnormalities discovered will 
either be discussed directly with the subjects General Practitioner after gaining consent, or provided to the 
participant so they may discuss them with their GP. The GP will determine the need for further 
investigation or medical care not a member of the investigative team. 

Interventional Procedures 

1) Skin window formation: Blister formation requires participants to remain relatively still for around 1-
1.5hours and is associated with a mild tingling/tugging sensation but is not painful. Subjects are free to 
read, listen to music etc. during this procedure and will have an investigator with them throughout, 
monitoring the process. De-roofing is associated with mild discomfort. There is a very small risk of 
infection. This will be minimized by meticulous attention to aseptic technique throughout including skin 
cleansing with 70% isopropyl alcohol solution and the use of sterile, one-use razors to remove any hairs. 
The investigators have considerable experience in performing this process. 

Blister formation can lead to temporary skin marking which usually clears after 4-6 weeks, but may persist 
for longer on darker skin. Unusually it may take several months to clear. Participants will be provided with 
images of the blister, skin windows and their healing over time in the Participant Information Leaflet to 
facilitate informed choice on their desire to undergo this procedure. Skin care advice will be offered. 

2) Exudate Collecting Chamber (ECC): The ECC and associated accessories have been specifically 
designed and manufactured for this project. The ECC consists of a single-use silicone structure cast from 
a 3D-printed mould, which matches the formed skin-windows and is secured to the forearm via a ‘bezel’ 
and strap (see images in the Participant Information Leaflet). The silicone employed is NuSil MED 6015, 
supplied by Polymer Systems Technology Ltd. (UK), an optically clear elastomer that has been approved 
for medical use, including implantation. Dr Richard Day (Senior Lecturer, UCL Applied Biomedical 
Engineering Group) is responsible for manufacture. A transparent silicone has been employed so that any 
signs of spreading erythema (potentially signifying infection and/or adverse reaction) may be observed. 
The ECC will be sterilized prior to application and participants asked to report any adverse symptoms to 
the investigators whilst wearing the device. The investigative team will be contactable at all times 
throughout this procedure. The ECC strap exerts a pressure similar to that of a watch strap and the whole 
device will be protected by a comfortable dressing. 

Autologous serum will be employed in the wells of the ECC. Subjects will be exposed to streptokinase 
twice as a gram-positive stimulant. The risk of sensitization is felt to be very low due to dose and site 
(200units in contact with dermal capillaries). Previous severe reactions have been associated with use of 
streptokinase as a thrombolytic (dose 1.5million units, intravenous).   
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3) Endotoxaemia: Intravenous (IV) injection of endotoxin is a safe, accepted and well-characterized model, 
which has previously been performed at UCL. The endotoxin used will be supplied by the National Institute 
of Health, USA (EC-6, E.Coli O:113) where it’s use, dose and safety profile has been validated and 
verified. EC-6 is manufactured in accordance with GMP procedures. It will be stored and re-constituted by 
trained Investigational Pharmacists in the Clinical Research Facility, and the dose adjusted to participant 
weight (2ng/kg) to ensure a consistent, equivalent response between participants. 

ET at the dose specified elicits flu-like symptoms including high temperature, shivering/chills, headache, 
back pain, nausea and muscle ache that resolve within 4-6 hours. Physiological changes include increased 
heart rate and core temperature (1-4C). Blood pressure (BP) may fall but infrequently to clinically 
significant levels. Features of systemic inflammation generally subside by 6-8 hours. The ET itself is 
undetectable in the blood within 30-60minutes.  

Safety will be ensured by several measures: Prior medical screening; Location: the UCL/UCLH Clinical 
Research Facility (CRF) is specifically designed to conduct such pre-clinical research with appropriate 
monitoring and resuscitation facilities. The CRF is attached to UCLH, a large teaching-hospital; Staff: a 
medically qualified investigator will be present throughout, supported by research nurses as required; Dose 
of Endotoxin: 2ng/kg is at the lower end of the range known to elicit systemic inflammation, and half the 
upper-limit; Monitoring: standard clinical monitoring will be employed (as stated) to ensure no significant 
physiological deterioration takes place; Fluids: Intravenous fluids (a drip) will be given over the first 6 hours 
post-endotoxin injection to counter-act endotoxin-induced physiological alterations; Time: 10 hours of 
monitoring will be performed in the CRF with subjects asked not to leave the building. This exceeds the 
expected duration of endotoxin-induced physiological effects. If at the end of this monitoring period clinical 
observations remain deranged this will be extended. In the highly un-likely event of significant physiological 
disturbance independent clinical assessment at UCLH will be sought. All participants will have 24-hour 
telephone access to the CI if they have concerns or become un-well post-procedure. 

4) Blood Sampling: Venous blood samples will be taken throughout the study as detailed in the protocol. In 
total, venepuncture will take place 8 times. An experienced practitioner maintaining aseptic technique 
throughout will minimize the risk of infection and/or bruising. During endotoxaemia a venous cannula will 
be placed in the anti-cubital fossa (front of elbow) and blood drawn from this to avoid repeated stabs. All 
participants will be made fully aware of the investigations that will be performed on the samples. 

Cyclooxygenase suppression: In Study 2 aspirin or ibuprofen will be employed to manipulate the 
downstream products of cyclooxygenase and lipoxyganse – prostaglandins and lipoxins. Participants will 
start taking their allocated study drug the evening after undergoing endotoxemia, and continue till the 
evening of day 2 (the day before Investigative Immune Assessment). This will comprise 7 doses of 
ibuprofen 400mg, taken three-times a day or 3 doses of aspirin 75mg taken once a day. These drugs are 
extremely safe when administered on such short-term basis, having a minimal side-effect profile. They are 
consequently available over-the-counter without prescription. Participants describing previous allergy, 
adverse reaction or intolerance or these or related drugs or clinical features that suggest high-risk of 
experiencing side effects will be excluded. Participants will also be asked to contact the investigative team 
or seek medical assistance if they experience any adverse events whilst taking the drugs. Both ibuprofen 
and aspirin will be supplied by the UCLH Pharmacy who will issue dosing and safety advice. 

 

 

 
 

D5 
 

Will group or individual interviews/questionnaires raise any topics or issues that might be sensitive, embarrassing or 
upsetting for participants?  
 
If Yes, please explain how you will deal with this. 

No 
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D6 
 

Please describe any expected benefits to the participant.  

No benefits for participants is expected. Previously un-diagnosed medical conditions may be detected by 
screening investigations/examination. 

 

D7 
 

Specify whether the following procedures are involved: 

Any invasive procedure(s)  Yes  No    

Physical contact       Yes  No 

Any procedure(s) that may cause mental distress   Yes     No 
  

Please state briefly any precautions being taken to protect the health and safety of the research participants. 

Standard hand hygiene procedures and aseptic non-touch technique will be employed throughout. The 
option of a chaperone being present during physical examination will be provided    

 

 
D8 

 

Does the research involve the use of drugs?    Yes        No 
 
If Yes, please name the drug/product and its intended use in the research and then refer to Appendix I    

EC-6 Clinical Reference Centre Endotoxin (CCRE), National Institute of Health (USA). 2ng/kg, IV, bolus) 

Ibuprofen (400mg, TDS, PO, total 7doses)  

Aspirin (75mg, OD, PO, total 3 doses) 

 

Does the project involve the use of genetically modified materials?  Yes    No             

If Yes, has approval from the Genetic Modification Safety Committee been obtained for work?  Yes  No      

If Yes, please quote the Genetic Modification Reference Number: 

     

 

 

D9 
 

Will any non-ionising radiation be used on the research participant(s)?  Yes  No 

If Yes, please refer to Appendix II. 
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CHECKLIST 

 
Please submit ether 12 copies (1 original + 11 double sided photocopies) of your completed application form for full 
committee review or 3 copies (1 original + 2 double sided copies) for chair’s action, together with the appropriate supporting 
documentation from the list below to the UCL Research Ethics Committee Administrator. You should also submit your 
application form electronically to the Administrator at: ethics@ucl.ac.uk 
 

Documents to be Attached to Application Form (if applicable) Ticked if Tick if 
 attached not relevant 

Section B: Details of the Project  

• Questionnaire(s) / Psychological Tests   
• Relevant correspondence relating to involvement of collaborating   

department/s and agreed participation in the research.   

Section C: Details of Participants 

• Parental/guardian consent form for research involving participants under 18     
• Participant/s information sheet    
• Participant/s consent form/s   
• Advertisement   

Section D: Details of Risks and Benefits to the Researcher and the Researched 

• Insurance registration form and related correspondence    

Appendix I: Research Involving the Use of Drugs 

• Relevant correspondence relating to agreed arrangements for dispensing                                
with the pharmacy 
 

• Written confirmation from the manufacturer that the drug/substance has                                  
has been manufactured to GMP 
  

• Proposed volunteer contract    
• Full declaration of financial or direct interest   
• Copies of certificates: CTA etc…   

  

Appendix II: Use of Non-Ionising Radiation  

 

 
Please note that correspondence regarding the application will normally be sent to the Principal Researcher and copied to 
other named individuals. 



UCL RESEARCH ETHICS COMMITTEE 

 
 

IMPORTANT: ALL FIELDS MUST BE COMPLETED. THE FORM SHOULD BE COMPLETED IN PLAIN 
ENGLISH UNDERSTANDABLE TO LAY COMMITTEE MEMBERS. 
SEE NOTES IN STATUS BAR FOR ADVICE ON COMPLETING EACH FIELD. YOU SHOULD READ THE 
ETHICS APPLICATION GUIDELINES AND HAVE THEM AVAILABLE AS YOU COMPLETE THIS FORM. 

APPLICATION FORM 

SECTION A  APPLICATION DETAILS 

 

A1 
 

Project Title: LPS-Stimulated Whole Blood Cytokine Release: Comparison of Different 
Methodologies 
 

Date of Submission:   19/08/2015 
 
  

Proposed Start Date: 1/09/2015 

UCL Ethics Project ID Number: 4332/001 Proposed End Date:  29/02/2016 

If this is an application for classroom research as distinct from independent study courses, please provide  
the following additional details: 

Course Title: N/A  Course Number: N/A 

 

A2 
 

Principal Researcher  
Please note that a student – undergraduate, postgraduate or research postgraduate cannot be the Principal Researcher for Ethics 
purposes. 

Full Name:  Professor Derek. W Gilroy   Position Held: Professor of Experimental Immunology 
and Welcome Trust Senior Research Fellow. 

Address:  Centre for Clinical Pharmacology, 
Division of Medicine 
Rayne Building 
5 University Street 
LONDON WC1E6JF 

Email:   

Telephone:   

Fax:   

Declaration To be Signed by the Principal Researcher  

§ I have met with and advised the student on the ethical aspects of this project design (applicable only if the 
Principal Researcher is not also the Applicant). 

§ I understand that it is a UCL requirement for both students & staff researchers to undergo Disclosure and 
Barring Service (DBS) Checks when working in controlled or regulated activity with children, young people or 
vulnerable adults. The required DBS Check Disclosure Number(s) is: N/A    

§ I have obtained approval from the UCL Data Protection Officer stating that the research project is compliant 
with the Data Protection Act 1998. My Data Protection Registration Number is: Z6364106/2013/09/08   

§ I am satisfied that the research complies with current professional, departmental and university guidelines 
including UCL’s Risk Assessment Procedures and insurance arrangements. 

§ I undertake to complete and submit the ‘Continuing Review Approval Form’ on an annual basis to the UCL 
Research Ethics Committee. 

§ I will ensure that changes in approved research protocols are reported promptly and are not initiated without 
approval by the UCL Research Ethics Committee, except when necessary to eliminate apparent immediate 
hazards to the participant. 

§ I will ensure that all adverse or unforeseen problems arising from the research project are reported in a timely 
fashion to the UCL Research Ethics Committee. 

§ I will undertake to provide notification when the study is complete and if it fails to start or is abandoned. 
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SIGNATURE:  DATE: 19/08/2015 

           

 

A3 Applicant(s) Details (if Applicant is not the Principal Researcher e.g. student details): 

Full Name:  Dr James Fullerton 

Position Held: Wellcome Trust Research Training Fellow (PhD Student) 

Address: Clinical Pharmacology 
Rayne Building 
5 University Street 
WC1E 6JF 

Email:   

Telephone:  

Fax:   

Full Name:   
Position Held: 

     

 

Address: 

     

 Email:  

     

 

Telephone:   
Fax:  

     

 

 

A4 
 

Sponsor/ Other Organisations Involved and Funding  

a) Sponsor:  UCL   Other institution  
If your project is sponsored by an institution other than UCL please provide details:       

 

b) Other Organisations: If your study involves another organisation, please provide details. Evidence that the relevant authority has 
given permission should be attached or confirmation provided that this will be available upon request. 

     

 
c) Funding: What are the sources of funding for this study and will the study result in financial payment or payment in kind to the 

department or College? If study is funded solely by UCL this should be stated, the section should not be left blank. Wellcome 
Trust Research Training Fellowship awarded to Dr James Fullerton 

 

A5 
 

Signature of Head of Department or Chair of the Departmental Ethics Committee 
(This must not be the same signature as the Principal Researcher) 

I have discussed this project with the principal researcher who is suitably qualified to carry out this 
research and I approve it.  The project is registered with the UCL Data Protection Officer, a formal 
signed risk assessment form has been completed, and appropriate insurance arrangements are in 
place. Links to details of UCL's policies on data protection, risk assessment, and insurance arrangements can be found at: 
http://ethics.grad.ucl.ac.uk/procedures.php 
UCL is required by law to ensure that researchers undergo a Disclosure and Barring Service (DBS) 
Check if their research project puts them in a position of trust with children under 18 or vulnerable 
adults.  
 

*HEAD OF DEPARTMENT TO DELETE BELOW AS APPLICABLE* 

 I am satisfied that checks: ( 1 ) have been satisfactorily completed 
 ( 2 ) have been initiated 
 ( 3 ) are not required 

If checks are not required please clarify why below. 

     

 

 

 

Chair’s Action Recommended:  Yes       No 

A recommendation for Chair’s action can be based only on the criteria of minimal risk as defined in the Terms of Reference of the UCL 
Research Ethics Committee. 



 
PRINT NAME: Prof Raymond MacAllister 

SIGNATURE:   
 
 
 

DATE: 19/08/15 

SECTION B  DETAILS OF THE PROJECT 

 

B1 
 

Please provide a brief summary of the project in simple prose outlining the intended value of the project, giving necessary 
scientific background (max 500 words). 

Lipopolysaccharide (LPS, a bacterial product) stimulated whole blood tumour necrosis factor alpha (TNF-a,  
a pro-inflammatory mediator) release is a key marker of immune competence in humans. In septic patients 
and those suffering trauma or burn injury TNF-a release is reduced, correlating with adverse outcomes 
including acquisition of hospital-acquired infection and mortality. Despite this no standardised method of 
undertaking the assay has been described with varying types of LPS, concentrations, anti-coagulants etc. 
being employed, hindering comparability and reproducability. 

This study seeks to explore the effect of these variables on the LPS-stimulated whole blood cytokine  
release assay, highlighting their impact and suggesting an optimal method for implementation by the 
research and clinical community. 

 

B2 
 

Briefly characterise in simple prose the research protocol, type of procedure and/or research methodology (e.g. 
observational, survey research, experimental).  Give details of any samples or measurements to be taken (max 500 words). 

A pool of 15 healthy, non-smoking male and female volunteers aged 18 to 50 will be recruited. Exclusion 
criteria will be acute or chronic illness, regular prescribed medication use, and drug or alcohol misuse.  

From the pool of recruited volunteers a number (1-10) will be asked to donate blood (between 10 to 30mL) 
either as a single event or as part of a multi-day sequence (maximum 3 consequtive days) dependent on 
experimental protocol. Whole blood will be stimulated ex-vivo with lipopolysacharide (a bacterial product) 
and incubated for 30minutes to 24hours, centrifuged and the resultant supernatant stored at -80C. This will 
be assayed for pro-inflammatory cytokines (predominatly) tumour-necrosis factor-alpha at a later time 
point. 

Blood will be collected using a 21 gauge butterfly needle using full aseptic non-touch technique and drawn 
into BD or Grenier BioOne vacutainers. No cellular material will be stored and samples pseudo-
anonymised, all volunteers being allocated a study number known only to the research team. 
Attach any questionnaires, psychological tests, etc. (a standardised questionnaire does not need to be attached, but please provide 
the name and details of the questionnaire together with a published reference to its prior usage). 

 

B3 
 

Where will the study take place (please provide name of institution/department)?  
If the study is to be carried out overseas, what steps have been taken to secure research and ethical permission in the study country? 
Is the research compliant with Data Protection legislation in the country concerned or is it compliant with the UK Data Protection Act 
1998?  

All samples will be drawn, stored and processed at the Rayne Building, Division of Medicine, UCL. 

 

 

B4 
 

Have collaborating departments whose resources will be needed been informed and agreed to participate?  
Attach any relevant correspondence. 

N/A 
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B5 
 

How will the results be disseminated, including communication of results with research participants?  

Scientific findings will be disseminated by standard research methods (presentation at conferences, 
publication). All volunteers will be offered the opportunity to receive the collated results and to discuss the 
findings with the research team.   

 

B6 
 

Please outline any ethical issues that might arise from the proposed study and how they are be addressed.  Please note that 
all research projects have some ethical considerations so do not leave this section blank.  

Recruitment, consent and payment: Participants will be recruited by word of mouth. The research team will 
assess capacity prior to recruitment and no vulnerable adults will be used in the study. Written consent will 
be taken and verbal confirmation of understanding,re-affirmed prior to each interventional procedure, 
participants being free to withdraw without penalty at any time. Subjects will be offered no financial 
reimbursement for their participation.   

Effect on Participants: The protocol involves venupuncture alone and as such no serious adverse events 
are anticipated. The maximum amount of blood taken per week/volunteer will be <100mls and as such 
does not represent a physiologically significant burden.  

Sample Storage and Data Protection: Participant data will be quasi-anonymised with allocation and use of 
a study number throughout. Only the CI and PI will have access to this code. No personal details will be 
retained. 

All samples will be labelled with the study and volunteer number and stored for a maximum of 1 year in 
locked freezers within the Rayne Institute, UCL. After this time they will be destroyed. Participants will be 
made fully aware of the tests that will performed on their samples. Any data disseminated will contain no 
identifiable information. Any future research on stored samples distinct from that described here will require 
separate Research Ethics Committee approval. 

Funding and Conflict of Interest: All researchers taking part on the study can confirm they have no conflicts 
of interest.  

 

SECTION C DETAILS OF PARTICIPANTS 

 

C1 
 

Participants to be studied 

C1a. Number of volunteers: 15     

Upper age limit:  50   

Lower age limit:  18    
 
C1b. Please justify the age range and sample size: 

The age range was selected to include the normally working-age population, with an upper cut-off 
designed to exclude any age-related changes in physiology. The pool of 15 volunteers was deemed 
sufficient such that enough volunteers may be able to attend on any given day to meet experimental 
criteria.   

 

C2 
 

If you are using data or information held by a third party, please explain how you will obtain this. You should confirm that 
the information has been obtained in accordance with the UK Data Protection Act 1998. 

N/A 
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C3 
 

Will the research include children or vulnerable adults such as individuals with  
mental health problems or with learning disabilities, the elderly, prisoners or young offenders?   Yes     No 

                                                                                                                          
How will you ensure that participants in these groups are competent to give consent to take part in this study? If you have relevant 
correspondence, please attach it. 

     

 

 

C4 
 

Will payment or any other incentive, such as gift service or free services, be made to any research participant?  
 
  Yes     No 
             
If yes, please specify the level of payment to be made and/or the source of the funds/gift/free service to be used. 

     

 

 

Please justify the payment/other incentive you intend to offer. 

     

 
 

C5 
 

Recruitment 
(i) Describe how potential participants will be identified: 

Researchers, staff and students working in the Division of Medicine will be offered the opportunity to join 
the pool of volunteers. 

(ii) Describe how potential participants will be approached: 

Individuals in the Rayne Building will be approaced by the CI (JNF) and asked whether they wish to 
participate. 

(iii) Describe how participants will be recruited: 

All aspects of the study including design, required commitment, and the right not to participate and to 
withdraw at any time without penalty will be fully explained. If happy to join the volunteer pool individuals 
will be asked to sign a consent form. 

 
Attach recruitment emails/adverts/webpages. A data protection disclaimer should be included in the text of such literature.   

 

C6 
 

Will the participants participate on a fully voluntary basis?    Yes   No 
 
Will UCL students be involved as participants in the research project?  Yes  No 
 
If yes, care must be taken to ensure that they are recruited in such a way that they do not feel any obligation  
to a teacher or member of staff to participate. 
 
Please state how you will bring to the attention of the participants their right to withdraw from the study without penalty? 

The right to withdraw will be emphasised verbally in advance of, and during, the consenting process, as 
well as in writing. A copy of the signed consent form will be provided to participants.  
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C7 
 

CONSENT 
Please describe the process you will use when seeking and obtaining consent. 

All aspects of the study including design, required commitment, and the right not to participate will be fully 
explained. The ability to voluntarily withdrawl without penalty will be reaffirmed. If happy to proceed 
consent will be taken by the applicant prior to any study intervention, understanding being confirmed 
verbally prior to written consent being sought.  

 

A copy of the participant information sheet and consent form must be attached to this application. For your convenience proformas 
are provided in C10 below. These should be filled in and modified as necessary.  
 
In cases where it is not proposed to obtain the participants informed consent, please explain why below. 

N/A 

 

 

C8 
 

Will any form of deception be used that raises ethical issues?  If so, please explain. 

 No   

 

 

 

C9 
 

Will you provide a full debriefing at the end of the data collection phase?     Yes     No 

 If ‘No’, please explain why below. 

Participants will be offered the opportunity to have the final scientific output forwarded to them along with a 
lay summary 

 

 

 

C10 
 

Information Sheets And Consent Forms   

A poorly written Information Sheet(s) and Consent Form(s) that lack clarity and simplicity frequently delay ethics approval of 
research projects.  The wording and content of the Information Sheet and Consent Form must be appropriate to the age and 
educational level of the research participants and clearly state in simple non-technical language what the participant is agreeing to.  
Use the active voice e.g. “we will book” rather than “bookings will be made”.  Refer to participants as “you” and yourself as “I” or “we”.  
An appropriate translation of the Forms should be provided where the first language of the participants is not English.  If you have 
different participant groups you should provide Information Sheets and Consent Forms as appropriate (e.g. one for children and one 
for parents/guardians) using the templates below.  Where children are of a reading age, a written Information Sheet should be 
provided.  When participants cannot read or the use of forms would be inappropriate, a description of the verbal information to be 
provided should be given.  Please ensure that you trial the forms on an age-appropriate person before you submit your application. 
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Information Sheet for Participants in Research Studies 
                                                            
 
You will be given a copy of this information sheet. 

Title of Project: LPS-Stimulated Whole Blood Cytokine Release: Comparison of Different Methodologies 

This study has been approved by the UCL Research Ethics Committee (Project ID Number): 4332/001 

Name Professor Derek W Gilroy 

Work Address Centre for Clinical Pharmacology, Rayne Building, 5 University Street 

Contact Details   

Introduction  

We are recruiting healthy, non-smoking volunteers aged 18-50 for this research project and we would like to invite you 
to participate. You should only participate if you want to; choosing not to take part will not disadvantage you in any way. 
Before you decide whether you want to take part, it is important for you to read the following information carefully and 
discuss it with others if you wish. It is important for you to understand why it is being done and what it will involve, so 
please take the time to read the following information 

Why is this study being done? 
Medical conditions associated with overwhelming inflammation such as sepsis, trauma and burn injury are known to 
reduce the body’s ability to defend itself and leave patients susceptible to infections. One way of measuring immune 
competence (the strength of the body’s defences) is to take blood from these individuals and ‘challenge’ it with a 
bacterial product (lipopolysaccharide) in a test tube. A poor reaction by the blood, releasing low levels of anti-infective 
chemicals (cytokines), is predictive of vulnerability to secondary infections and has previously been linked with 
increased risk of in-hospital death. Despite the importance of this test no standard means of performing it has been 
selected, different institiutions using different volumes of blood, bacteria, length of time before it is interpreted etc. This 
study will investigate the importance of these different technical factors on the reaction of blood taken from healthy 
volunteers and attempt to determine an optimal, reproducible method to measure immune competence. 

What does it involve for me? 
We are looking to recruit 15 people like you who are prepared to give a small volume of blood on days when you are 
asked and you are free to donate. On each occasion we will take between 10-30mls of blood (around one egg cup full). 
On certain occasions we will ask, if you are able, to give blood on consequtive days (maximum 3). All blood taking will 
be performed by an experienced clinican using appropriate aseptic technique. It is anticipated that the study will be 
completed in a period of 1-2 months. 
 
After being taken your blood will be challenged with bacterial product for a period ranging from 1hour to 24hours in a 
variety of conditions and its response (cytokine release) measured, before being discarded. No cells or DNA containing 
material will be retained. 

Will this study help me? 

This study will not benefit you directly. However, it will allow us to refine an important, simple test of immune function. 

Could I come to any harm if I take part in this study? 
There is a minimal risk of bruising and infection from taking blood. It may also cause slight discomfort. Aseptic 
technique will be used throughout to minimize the risk of infection. 
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Are there any factors that would exclude me from taking part in the study? 
You will not be able to take part in this study if you have any acute or chronic medical conditions, or take regular 
prescribed or over-the-counter medication. You should not take part in this study if you are already involved in another 
study. 

What are the arrangements for compensation? 
No financial remuneration will be provided for taking part in this study. 

Do I have to take part in this study? 
You do not have take part in this study if you do not want to. If you decide to take part you may withdraw at any time 
without giving a reason and without any penalty. If you decide, now or at a later date that you do not wish to participate 
in this research project, it is entirely your right.  

Whom do I speak to of a problem arises? 
If you have any complaint about the way in which this research project has been, or is being conducted, please, in the 
first instance discuss them with the researcher. If the problems are not resolved or you wish to comment in any other 
way, please contact Professor Derek Gilroy or Dr. James Fullerton. Centre for Clinical Pharmacology, The Rayne 
Institute (UCL), 5 University Street, London WC1E 6JJ. 

Who is organising and funding the research? 
The research is organised by the Centre for Clinical Pharmacology, UCL. The study is being funded by the Wellcome 
Trust. 

How will confidentiality be protected? 
No personal information aside from age, sex and health status will be collected or retained. You will be assigned a study 
number and all samples and records labelled with this. Only the investigators will have access to this code and the data-
files. All information generated in the course of the study is confidential and will be kept in a locked room and on 
password-secured UCL computers.  

What happens if anything goes wrong? 
We believe that the study is very low risk. However, we carry insurance to make sure that if your health does suffer as a 
result of being in this study, then you will be compensated. In such a situation, you will not have to prove that the harm 
or injury which affects you is anyone’s fault. If you are not happy with any proposed compensation, you may have to 
pursue your claim through legal action. 

Finally: you do not have to join this study. You are free to decide not to be in this trial or to drop out at any time. 
If you decide not to be in the study, or drop out, there will be no penalty involved. This will not put at risk your 
ordinary medical care or benefits you are otherwise entitled.  
 
Please discuss the information above with others if you wish or ask us if there is anything that is not clear or if you would 
like more information. It is up to you to decide whether to take part or not; choosing not to take part will not 
disadvantage you in any way. If you do decide to take part you are still free to withdraw at any time and without giving a 
reason.  If you decide to take part, you will be given this information sheet to keep and be asked to sign a consent form. 
All data will be collected and stored in accordance with the Data Protection Act 1998. 

Details of how to contact the researchers 
 
You can contact 

Professor Derek Gilroy on  

Dr. James Fullerton on     

 

Thank-you for taking your time to read this information leaflet. If you have any further questions please do not hesitate to 
contact the researchers using the above details. 
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Informed Consent Form for Participation in Research Studies 
                                                                          

Please complete this form after you have listened to an explanation about the research.  

Title of Project: LPS-Stimulated Whole Blood Cytokine Release: Comparison of Different Methodologies 

This study has been approved by the UCL Research Ethics Committee (Project ID Number): 4332/001 

 
Thank you for your interest in taking part in this research. Before you agree to take part, the person organising the research must explain 
the project to you. 

If you have any questions arising from the explanation already given to you, please ask the researcher before you to decide whether to 
join in.  You will be given a copy of this Consent Form to keep and refer to at any time.  

Participant’s Statement  
 
I 

     

 
 
• have read the notes written above and understand what the study involves. 

• understand that if I decide at any time that I no longer wish to take part in this project, I can notify the researchers 
involved and withdraw immediately.  

• consent to the processing of my personal information for the purposes of this research study. 

• understand that such information will be treated as strictly confidential and handled in accordance with the provisions 
of the Data Protection Act 1998. 

• agree that the research project named above has been explained to me to my satisfaction and I agree to take part in 
this study.  

 

Signed:         Date: 

     

 

 
 

SECTION D DETAILS OF RISKS AND BENEFITS TO THE RESEARCHER AND THE RESEARCHED 

 

D1 
 

Have UCL’s Risk Assessment Procedures been followed?            Yes      No 
 
If No, please explain. 
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D2 
 

Does UCL’s insurer need to be notified about your project before insurance cover can be provided?        Yes      No 
 

The insurance for all UCL studies is provided by a commercial insurer. For the majority of studies the cover is automatic. However, for 
a minority of studies, in certain categories, the insurer requires prior notification of the project before cover can be provided. 
 
If Yes, please provide confirmation that the appropriate insurance cover has been agreed. Please attach your UCL insurance 
registration form and any related correspondence. 

     

 

 

D3 
 

Please state briefly any precautions being taken to protect the health and safety of researchers and others associated with 
the project (as distinct from the research participants).  

Venepuncture will only be performed by appropriately trained, clinically qualified investigators with 
complete vaccination records.  

 

D4 
 

Will these participants participate in any activities that may be potentially stressful or harmful in connection with this 
research?                Yes  No 
 
If Yes, please describe the nature of the risk or stress and how you will minimise and monitor it. 

     

 

 

D5 
 

Will group or individual interviews/questionnaires raise any topics or issues that might be sensitive, embarrassing or 
upsetting for participants?  
 
If Yes, please explain how you will deal with this. 

No 
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D6 
 

Please describe any expected benefits to the participant.  

No benefits for participants is expected. 

 

D7 
 

Specify whether the following procedures are involved: 

Any invasive procedure(s)  Yes  No    

Physical contact       Yes  No 

Any procedure(s) that may cause mental distress   Yes     No 
  

Please state briefly any precautions being taken to protect the health and safety of the research participants. 

Standard hand hygiene procedures and aseptic non-touch technique will be employed throughout.  

 

 
D8 

 

Does the research involve the use of drugs?    Yes        No 
 
If Yes, please name the drug/product and its intended use in the research and then refer to Appendix I    

     

 

 

Does the project involve the use of genetically modified materials?  Yes    No             

If Yes, has approval from the Genetic Modification Safety Committee been obtained for work?  Yes  No      

If Yes, please quote the Genetic Modification Reference Number: 

     

 

 

D9 
 

Will any non-ionising radiation be used on the research participant(s)?  Yes  No 

If Yes, please refer to Appendix II. 
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CHECKLIST 

 
Please submit ether 12 copies (1 original + 11 double sided photocopies) of your completed application form for full 
committee review or 3 copies (1 original + 2 double sided copies) for chair’s action, together with the appropriate supporting 
documentation from the list below to the UCL Research Ethics Committee Administrator. You should also submit your 
application form electronically to the Administrator at: ethics@ucl.ac.uk 
 

Documents to be Attached to Application Form (if applicable) Ticked if Tick if 
 attached not relevant 

Section B: Details of the Project  

• Questionnaire(s) / Psychological Tests   
• Relevant correspondence relating to involvement of collaborating   

department/s and agreed participation in the research.   

Section C: Details of Participants 

• Parental/guardian consent form for research involving participants under 18     
• Participant/s information sheet    
• Participant/s consent form/s   
• Advertisement   

Section D: Details of Risks and Benefits to the Researcher and the Researched 

• Insurance registration form and related correspondence    

Appendix I: Research Involving the Use of Drugs 

• Relevant correspondence relating to agreed arrangements for dispensing                                
with the pharmacy 
 

• Written confirmation from the manufacturer that the drug/substance has                                  
has been manufactured to GMP 
  

• Proposed volunteer contract    
• Full declaration of financial or direct interest   
• Copies of certificates: CTA etc…   

  

Appendix II: Use of Non-Ionising Radiation  

 

 
Please note that correspondence regarding the application will normally be sent to the Principal Researcher and copied to 
other named individuals. 


