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In the digital era, it is crucial to explore how digital technologies can be successfully 
integrated in the mathematics classroom and what their potential impact on learning 
is. This paper presents some reflections based on data gathered as part of the MiGen 
project (www.migen.org1) from studies aimed to investigate ways to support the 
transition to formal Algebra, through the use of a constructionist learning 
environment and carefully designed ‘bridging’ activities that consolidate, support 
and sustain students’ algebraic ways of thinking. Our claim is that explicit links need 
to be made to Algebra through those specially designed activities so that such a 
digital tool can support students’ learning of formal Algebra in order to be 
successfully integrated in the mathematics classroom. 
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INTRODUCTION 
In the last few decades, the number of appearances of digital technologies designed 
for mathematics learning keeps growing. Relevant research (e.g., EACEA Eurydice 
Report, 2011), though, has shown that these technologies are not always used to their 
full or intended potential and also, students rarely use ideas, concepts or strategies 
they seem to have acquired through their interactions with such technologies. For 
example, Gurtner (1992), referring to the Logo environment, demonstrated that the 
tool’s features which are designed to support students when faced with complex 
mathematical problems may impede them from making connections between their 
work in Logo and any mathematical or geometrical ideas they are already familiar 
with and use when problems seem less complex. Also, the lack of information on 
why and how to build bridges to formal maths, which were not often made in 
standard Logo situations, led to the lack of connections to formal maths (Gurtner, 
1992). In this paper, we discuss our approach to support students’ transition of 
moving back and forth from paper-and-pencil to interacting with digital tools and 
therefore consider ways of facilitating the integration of digital technologies in the 
maths classrooms. In particular, our focus is on the transition to formal Algebra and 
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how students ‘transfer’ their knowledge from their interactions with a digital tool, 
namely eXpresser, specially designed to support and address students’ difficulties 
with learning algebra, to paper-and-pencil (PaP) activities. 
There is a lot of research on the issue of ‘transfer’ (e.g., DiSessa & Wagner, 2005). 
Our interpretation is closely aligned with Beach (2003) who has argued that the 
metaphor should be viewed as transition instead of transfer. Crossing boundaries 
from one location to another is in fact a process of transition and therefore people are 
the ones who move and not knowledge or learning. In the case of Logo, Gurtner 
(1992) considered “the type of connections generally expected, and very seldom 
observed, between Logo practice and mathematics” (p. 247) as transfer and 
suggested that there is a need for a long period of practicing in Logo, especially one 
which is rich in reflection, so that some transfer to mathematics can happen.  
Going back to our focus on Algebra, the transition to formal Algebra has been 
investigated by various authors (e.g., Radford, 2014) and the literature is replete with 
examples of student difficulties (e.g., Stacey & Macgregor, 2002). Students struggle 
to understand the idea behind using letters to represent any value (Duke & Graham, 
2007) and are inexperienced with mathematical vocabulary. Even students capable of 
expressing a general rule through the use of words, like ‘always’ or ‘every’, struggle 
to use letters and symbols and form algebraic expressions. 
Similarly to Radford (2014), who claimed that there is a need for specially designed 
classroom activity to support students’ developmental path to formal Algebra, and to 
Gurtner (1992), who suggested presenting structured tasks, using appropriate 
microworlds and making explicit interventions during students’ interactions, we 
claim that a digital tool specially designed to support the development of algebraic 
ways of thinking (AWOT) together with carefully designed bridging activities should 
‘smoothen’ the transition to formal algebra without rendering it impossible for 
students to reach the mathematical ‘bank of algebra’. Besides ‘learning’ the tool and 
developing expertise in using it, students should make the connections to the maths. 
The issue is to find out ways for supporting students to make such connections. 
EXPRESSER AND THE TRANSITION TO ALGEBRA 
The MiGen system is a pedagogical and technical environment that improves 11-14 
year-old students’ learning of algebraic generalisation. Its core component consists of 
a microworld, eXpresser, which has been specially designed to help students develop 
AWOT through a series of generalisation tasks (Noss et al., 2012). In eXpresser, 
students construct figural patterns by expressing their structure through repeated 
building blocks of square tiles, and articulating the rules that underpin the calculation 
of the number of tiles in the patterns. A typical activity in eXpresser asks students to 
reproduce a dynamic model (or part of it) presented in a window that appears on the 
side of the activity screen. 
Figure 1 shows a model where a row of red tiles is surrounded by grey tiles. Students 
are asked to construct a model that works for any number of red tiles, and find a rule 



  
for the total number of tiles surrounding the red tiles. They can test generality by 
animating the model: that is, by letting the computer change the number of red tiles at 
random. The design of eXpresser capitalises on animated feedback and on the 
simultaneous representation of a specific and general model (‘My Model’ and 
‘Computer’s Model’ in Figure 2), built by combining patterns and on the close 
alignment of the symbolic expression, the Model Rule and the structure of the model. 
All numbers in eXpresser are constants by default, referred to as ‘locked’ numbers. 
When the user ‘unlocks a number’, it is possible to change its value; it becomes a 
variable. In the Computer’s Model, a value of the variable (‘Num of Red Tiles’ in 
this example) is chosen automatically at random (it is ‘10’ in Figure 2) which will 
generally be different from that in the specific model (‘6’ in Figure 2). So the 
Computer’s Model indicates to students whether their constructions are structurally 
correct for the different values of the variable(s). Students also construct a model rule 
for the total number of tiles, and validation of its correctness is made evident by 
colouring: tilings are only coloured if the rule for the number required is correct. 
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Figure 1: A model for 8 
red tiles surrounded by 
grey tiles. Students must 
construct a general model 
and find the general rule 

Figure 2: The eXpresser screen showing the general and 
specific models (Computer’s Model on the left, and My 
Model on the right), and a correct rule for the total 
number of surrounding tiles. The task goals are shown in 
the "Activity window" (lower left-hand corner). 

To make connections to formal Algebra feasible and support the transition from 
interactions with the eXpresser tool to PaP Algebra, we had to consider what 
characterizes formal Algebra and more specifically AWOT. Algebra involves a 
number of mathematical concepts, from numbers, to variables, from numerical 
expressions to expressions that involve the use of ‘unknown’ numbers and functions. 
Various authors have characterised algebra as ‘generalised arithmetic’ (e.g., Kieran & 
Chalouh, 1993). For example, Sfard and Linchevksi (1994) distinguished between the 
operational phase, where “the focus is on numerical processes and there is no hint of 
abstract objects rather than numbers” (p. 197) and the structural phase, which 
involves processes of manipulations of symbols. They argued, therefore, that there 
are “two crucial transitions: from the purely operational algebra to the structural 



  
algebra ‘of a fixed value’ (of an unknown) and then from here to the functional 
algebra (of a variable)” (p. 191). Leading on from these distinctions, Radford (2014) 
considered three conditions that characterise algebraic thinking: (i) indeterminacy, 
which is about recognising the use of ‘unknown’ values in the form of variables, 
parameters, etc.; (ii) denotation, involving the symbolisation of the undetermined 
values of the problem in question that can include the use of natural language, 
gestures, signs, as well as a mixture of these or symbols and (iii) analyticity, 
involving the skill of manipulating the indeterminate quantities like known values. 
In the case of the eXpresser tool in our previous work (Mavrikis, et al., 2013), we 
have identified two AWOT. The first one is:(i) Perceiving structure and exploiting its 
power, which is about noticing what stays the same and what is repeated in a figural 
sequence so as to understand how the sequence is ‘structured’, supporting therefore 
“the development of structural reasoning” and the habits of “breaking things into 
parts” by identifying “the building blocks of a structure” (Cuoco, Goldenberg & 
Mark, 1996, p. 69). This AWOT, especially as it is operationalized in eXpresser that 
encourages students to construct what they perceive and manipulate the various 
properties of their constructions, could relate to Radford’s (2014) indeterminacy and 
analyticity conditions, but also to the initial transition from the operational to the 
structural algebra of a fixed value of an unknown as described by Sfard and 
Linchevski (1994) above. The second AWOT is: (ii) Recognising and articulating 
generalisations, including expressing them symbolically, which is the process of 
translating the observed structure in an algebraic expression, using formal algebraic 
notation to write general rules for numerical sequences. This AWOT can be linked to 
Radford’s (2014) denotation condition as well as the second transition from the 
structural algebra to the more functional algebra of a variable (Sfard & Linchevski, 
1994), as its focus is on the production of formal algebraic expressions.  
BRIDGING ACTIVITIES 
We designed a sequence of activities both to help students become familiar with the 
tool but also to facilitate the transition to algebra. The sequence starts with 
introductory and practice tasks that ask students to construct figural models. It 
continues with individual activities, such as the one described above (see figure 1). 
Students were asked to construct the task model in eXpresser using different patterns 
and combinations of patterns, depending on their perceptions of the task model’s 
structure and derive a general rule for the number of square tiles needed for any 
Model Number. In our initial studies, students were presented with off-computer 
tasks, immediately after the final eXpresser task in an effort to reveal their strategies 
on solving similar tasks on paper and whether eXpresser had an impact on those 
strategies or not. In later studies, though, and after close collaboration with teachers, 
we recognised the need of activities, which promote students’ reflections upon 
mathematical concepts and problem-solving strategies they used throughout their 
interactions with eXpresser and not just at the end. These we referred to as 
consolidation tasks. So, throughout their interactions with eXpresser and immediately 



  
afterwards, students were presented with four types of bridging activities (examples 
are given in Figure 3), which are designed to support their transition to paper-and-
pencil tasks: (i) Consolidation tasks, which are usually short tasks that are used to 
intervene and encourage students to reflect on their interactions with eXpresser 
throughout a sequence of eXpresser tasks, (ii) Collaborative tasks, which are 
presented at the end of an eXpresser task and focus on students’ justification 
strategies regarding rule equivalence, (iii) eXpresser-like paper tasks, which are 
figural pattern generalisation tasks on paper, and (iv) text-book or exam like tasks, 
which are the traditional generalisation tasks given to students on paper. 

 
Figure 3: Examples of Bridging Activities. 

STUDENT DATA 
Over the past 7 years, we have carried out studies in 6 different schools in London, 
worked with 11 maths teachers and collected data from 553 students aged 11-14 
years old. Each study was carried out over the course of four consecutive lessons, 
during which students became familiarised with the tool through some simple tasks, 
worked on one or two main activities and then were given bridging activities. A 
sample of students was interviewed at the end of their interactions with eXpresser. 
All students had been introduced to Algebra at school before their interactions with 
eXpresser, but of course their experience varied based on their age. Our data 
comprise one-to-one and small groups of students’ and teachers’ interviews and 
transcripts, video and audio files from interviews, one-to-one, small groups and 
classroom observations, detailed logs from students’ interactions in the form of a 
database and bridging activities. Results from our studies are presented in a number 



  
of papers (e.g., Mavrikis et al., 2013; Noss et al., 2012; Geraniou et al., 2011). In this 
paper, we focus on the data collected from the bridging activities students worked on 
independently (or in pairs/groups of 3 for the collaborative tasks) during, but mostly 
after their final interaction with eXpresser. Using the two AWOT described in 
Mavrikis et al. (2013), as an analytical framework for interpreting students’ 
strategies, we present our initial results under those two headings. 
(i) Perceiving structure and exploiting its power. For the consolidation tasks, which 
were used with 175 students as their necessity was identified later in our studies, most 
of the 175 students demonstrated on the model figures presented on paper how they 
visualised the structure of the given model. In Figures 4, 5, 6 and 7, we present some 
examples of students’ answers on the four bridging activities presented in Figure 3. 
Students clearly marked the different parts that would remain the same in any 
instance of the pattern and the parts, which, repeated every time, create the different 
instances of the pattern. Especially for the collaborative task, students verbally 
identified their building blocks in their models and rules and compared them to 
conclude about their equivalence. An example of two students’ collaboration and its 
outcome is presented in Figure 5. Students demonstrated a variety of ways to 
visualise the task patterns and it was evident how influenced they were by the 
eXpresser’s features as they were using the eXpresser terminology, e.g., number of 
building blocks or models. For example, in Figures 6 [F], [G] and [H], students drew 
the 2 building blocks that they could use if they were solving this task in eXpresser, 
that of a column of 3 square tiles and that of an ‘L’- shaped one of 5 tiles. For 
example, Janet named her independent variable as “number of red BBs” (BBs stands 
for Building Blocks), and even though Nancy, named hers as ‘Nancy’, she used 
eXpresser’s terminology in her discussions with Janet.  

[A]  

[B]  
[C]  

Figure 4. 13 year-old students’ answers on the Train-track consolidation activity. 

(ii) Recognising and articulating generalisations, expressing them symbolically. 
Students seemed to rely on the structure of the given task model in order to articulate 
a general rule. Most of them provided clear explanations to justify their derived rules.  



  

 Figure 5. 12 year-old students’ discussion on the Collaborative bridging activity.  

Figure 6. 12 year-old students’ work on the eXpresser-like Bridges bridging activity. 

Their work revealed some fluency in using the formal algebraic language. They 
identified what stayed the same and translated that into a constant in their rule. For 
example, in Figure 6 [H], the student annotated their rule (5xM)+3 and showed that 
the coefficient 5 is the number of repeated building blocks in their second building 
block. The constant 3 is the number of tiles in their first building block, which is not 
repeated. Similarly, the student in Figure 6 [G] successfully identified 2 building 

Janet:  

 

Nancy:  

 

  
4n + 3(n+1) + 2x1 7n + 5x1 

Nancy:        Yeah it’s one red building block plus one blue building block so that would 
actually kind of make the… 

Janet:   yeah, it would make the same shape... 

Nancy:        because one red building block added to one blue building block… 

Janet:   and that’s the same as one of my green building blocks. 

 

[D]  [G]  

[E]  

[H]

 
[F]  



  
blocks, that produce the task model, and indicated which building block stays the 
same and which is repeated.  

Figure 7. 12 year-old students’ work on Tables and Chairs textbook-like activity. 

Students’ answers revealed their ability to articulate general statements, such as “with 
every new model, another 7 is added and if there’s ‘M’ amount of models, it should 
be (7xM)+5” (Figure 4[A]) or “there is always 2 chairs to the ends of the single 
tables, then 2 chairs on the end of all tables put together” (Figure 7[I]). But the 
crucial step was their ability to translate that generalisation in parallel to their 
visualised structures into general rules and argue about similarities (or differences) 
between their models and derived general rules, when discussing rule equivalence 
(e.g., Figure 5). Most students used the eXpresser language and terms such as ‘model 
number’ to represent the variable in their rule (e.g., “5xwhatever model number n 
is+3”, Figure 6[D]), as an intermediate step before expressing their derived rules in a 
formal algebraic expression (e.g., “(5xM)+3”, Figure 6[H]). During collaboration, 
most students seemed to reach similar conclusions. Janet and Nancy for example 
recognized that the simplified general rule for their models is 7n+5 and that ‘n’ 
represents any model number. eXpresser seems to have played a crucial role in this 
outcome, as it encourages students to name their variables (‘unlocked’ numbers) 
based on what their values represent and therefore allows students to give meaning to 
that variable, thus easing students’ transition to formal algebraic language. 
Even though the bridging activities have been carefully designed to prevent students 
from looking for the term-to-term rule in a sequence, there were some students, 
especially in the text-book like bridging activities, who reverted to their past 
experiences and worked out the answers for each consecutive term in a sequence. For 
example, in Figure 7 [L], the student calculates the number of chairs when having 1 
table, 2 tables, 3 tables, etc. Despite, their focus on the term-to-term rule, they spotted 
the correct general rule and wrote “Chairs=tablesx2+4”. Such an outcome though 
may be ephemeral and more work is needed to support the sustainability and 
longevity of any AWOT formed soon after interacting with eXpresser. 

[I]  [J]  

[K]  [L]  



  
CONCLUSION 
When solving problems, mathematicians do not need to stop and think, but instead 
get into a “mechanical mode” (Sfard & Linchevski, 1994). Similarly, students who 
become experts in a digital tool may learn how to interact with it procedurally and 
provide right answers, but not necessarily reflect on and consolidate their knowledge 
during their interactions. Consequently, they may fail in developing a robust 
understanding of the mathematical concepts (and procedures) the tool was designed 
to help them with and may not be able to offer mathematically valid justifications for 
their actions. Such an outcome can discourage teachers from using digital tools in 
their mathematics lessons, as they are not convinced of their value. 
In the case of eXpresser, the examples presented above reveal how students seem to 
successfully cross the ‘bridge’ from eXpresser algebra to formal algebra. Students 
demonstrated a conceptual understanding behind the development of general rules 
and generalised and adopted AWOT when solving PaP generalisation tasks. 
eXpresser, through the use of its language, supported students in their transition from 
numbers to ‘unknown’ numbers and variables and made the transition to symbolic 
thinking successful. In our experience, for such transitions to be successful, there is a 
need for bridging activities making the connections to algebra explicit. Their need 
and value have been mentioned by Gurtner (1992) too, who argued that ‘the do-math-
without-noticing-it’ philosophy of Logo can be abandoned in favour of techniques 
that explicitly present looking for connections” (p. 253). We also recognised, 
similarly to Gurtner’s (1992) research that “In contrast to the more classical transfer 
model […] useful bridges can be built from the beginning, as soon as work has 
started in both domains” (p. 265). This was addressed by the consolidation tasks. 
There also seems to be the need for a long period of practice with eXpresser, rich in 
reflection and consolidation, before transfer to mathematics can be possible. 
We have investigated the initial transition from a constructionist learning 
environment to the PaP algebraic generalisation tasks, and we have only started 
looking at the further transition to tasks that focus on abstract algebra, as described by 
Sfard and Linchevski (1994). The main concern is to identify and make more explicit 
the residual knowledge that gets noticed particularly by the interaction with 
constructionist learning environments. A successful integration in our view involves 
the successful transition from interacting with a digital tool to the awareness of the 
knowledge that can potentially be transferred to PaP activities and identifying ways 
to encourage the sustainability of such knowledge. Our aim remains to investigate 
further the issues of ‘Transfer’ and ‘Bridging’ and support the implementation of 
digital tools in the classroom through carefully designed and innovative bridging 
activities that consolidate and sustain students’ mathematical ways of thinking. 
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