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Mutations  in  �-glucocerebrosidase  (encoded  by GBA1)  cause  Gaucher  disease  (GD),  a lysosomal  stor-
age disorder,  and  increase  the  risk  of  developing  Parkinson  disease  (PD).  The  pathogenetic  relationship
between  the two  disorders  is unclear.  Here,  we  characterised  Ca2+ release  in fibroblasts  from  type  I GD  and
PD patients  together  with  age-matched,  asymptomatic  carriers,  all with  the common  N370S  mutation  in
�-glucocerebrosidase.  We  show  that  endoplasmic  reticulum  (ER)  Ca2+ release  was  potentiated  in GD  and
PD patient  fibroblasts  but  not  in cells  from  asymptomatic  carriers.  ER  Ca2+ signalling  was  also  potenti-
ated  in  fibroblasts  from  aged  healthy  subjects  relative  to younger  individuals  but  not  further  increased  in
ndoplasmic reticulum
ysosomes
arkinson disease
aucher disease

aged PD  patient  cells.  Chemical  or  molecular  inhibition  of �-glucocerebrosidase  in fibroblasts  and  a  neu-
ronal  cell  line  did  not  affect  ER Ca2+ signalling  suggesting  defects  are  independent  of  enzymatic  activity
loss.  Conversely,  lysosomal  Ca2+ store  content  was reduced  in  PD  fibroblasts  and  associated  with  age-
dependent  alterations  in  lysosomal  morphology.  Accelerated  remodelling  of  Ca2+ stores  by  pathogenic
GBA1  mutations  may  therefore  feature  in  PD.

ublis
©  2015  The  Authors.  P

. Introduction

Changes in the concentration of cytosolic Ca2+ form the basis of
 ubiquitous signalling pathway [1]. Ca2+ signals derive not only
rom the extracellular space, but also from Ca2+ stores, within the
ell, through the opening of intracellular Ca2+-permeable channels
2]. The best characterised Ca2+ store is the ER which houses IP3-
nd ryanodine-sensitive Ca2+ channels. The latter are activated by
he second messenger cyclic ADP-ribose [3]. Ca2+ pumps (such as
ERCA), exchangers and buffers act to temper Ca2+ increases in
 highly regulated Ca2+ network [2]. It is becoming increasingly
lear that lysosomes and other acidic organelles such as lysosome-
elated organelles, endosomes, secretory granules and the Golgi

Abbreviations: ER, endoplasmic reticulum; cADPR, cyclic ADP-ribose;
ERCA, sarco-endoplasmic reticulum Ca2+ ATPase; PD, Parkinson disease; GD,
aucher disease; ASX, asymptomatic; CBE, conduritol B epoxide; GPN, glycyl-l-
henylalanine 2-naphthylamide; LAMP, lysosome associated membrane protein;
C3, microtubule-associated protein 1A/1B-light chain 3.
∗ Corresponding authors.

E-mail addresses: bethan.kilpatrick.10@ucl.ac.uk (B.S. Kilpatrick),
atel.s@ucl.ac.uk (S. Patel).

ttp://dx.doi.org/10.1016/j.ceca.2015.11.002
143-4160/© 2015 The Authors. Published by Elsevier Ltd. This is an open access article u
hed  by Elsevier  Ltd. This  is an open  access  article  under  the  CC BY  license
(http://creativecommons.org/licenses/by/4.0/).

complex are also integral sources of Ca2+ [4,5]. Lysosomes are
thought to drive global Ca2+ signals by providing a “trigger” release
of Ca2+ which is then amplified by Ca2+ channels on the ER, pos-
sibly through recently described membrane-contact sites between
the two  organelles [6]. ER and lysosomal Ca2+ stores are thus func-
tionally and physically coupled similar to coupling between the ER
Ca2+ stores and mitochondria/plasma membrane [7].

Gaucher disease (GD) is the most common of the lysosomal
storage disorders [8]. It results due to recessive mutations in
GBA1 which encodes the lysosomal enzyme �-glucocerebrosidase
responsible for hydrolysis of glucocerebroside to glucose and
ceramide. Type I GD (often associated with the N370S mutation) is
traditionally considered non-neuronopathic whereas types II and
III are associated with neurodegeneration. But both type I GD suf-
ferers and carriers of GBA1 mutations are up to 20 times more
likely to develop Parkinson disease (PD). Mutations in GBA1 are
therefore one of the highest known risk factors for this neurode-
generative disorder [9]. Genetic associations between PD and GD

add to a body of literature implicating lysosomal dysfunction in the
pathogenesis of PD [10,11], which likely occurs upstream of estab-
lished mitochondrial dysfunction [12]. The mechanism by which
GBA1 mutations mediate PD pathogenesis remains undefined. It

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ay  involve the unfolded protein response and ER stress as a conse-
uence of mutant protein trapping or interactions with �-synuclein
etabolism leading to Lewy body formation [13]. However, not all

BA1 carriers develop PD suggesting additional pathogenic mech-
nisms are involved.

De-regulated Ca2+ signalling is established in a number of
athologies and has been implicated in both GD and PD as well
s ageing, a major risk factor for neurodegenerative disease [7,14].
R Ca2+ stores appear to be hypersensitive to ryanodine receptor
ctivation in a pharmacological neuronal model of GD result-
ng in sensitisation to cell death [15]. Whether lysosomal Ca2+

tores are affected in the disease is not known, although lysoso-
al  Ca2+ content is reduced in Niemann–Pick type C1 disease [16],

 distinct lysosomal storage disorder also potentially linked to PD
17]. In PD, attention has focussed mainly on Ca2+ influx since
he affected dopaminergic neurons of the substantia nigra pars
ompacta exhibit unusual pace-making activity associated with
nflux of Ca2+ through L-type voltage-sensitive Ca2+ channels [18].
he resulting oscillations in cytosolic Ca2+ are thought to impose
etabolic stress on the mitochondria [19,20]. The role of ER and

ysosomal Ca2+ stores in PD is largely unexplored.
In the present study, we identify age-dependent reciprocal

hanges in ER and lysosomal Ca2+ homeostasis in patient fibro-
lasts from GD and GBA1-linked PD sufferers. These data point to
ltered Ca2+ signalling in GBA1-disease and in ageing as possible
ontributors to PD pathology.

. Methods

.1. Patient fibroblasts

Primary fibroblast cultures were generated from skin biop-
ies as described in [21]. GD (type I) and PD patients carried the
utant allele encoding the N370S variant in �-glucocerebrosidase.

he GD patient was a compound heterozygote with an additional
263del55 mutation. For simplicity, these genotypes are referred
o as GBA1mut/mut GD and GBA1wt/mut PD, respectively. Cultures were
lso established from asymptomatic (ASX) non-manifesting N370S
BA1 carriers (GBA1wt/mut ASX). Thus, all lines had the same mutant
llele to facilitate comparison. For control purposes, fibroblasts
ere acquired from age-matched, apparently healthy individuals

GBA1wt/wt). The fibroblasts were categorised according to age. The
young” cohort were obtained from individuals under the age of
0 whereas the “aged” cohort were derived from individuals over
0 years old (exact age denoted in subscripts). A summary of fibro-
lasts used in this study is provided in Table S1.

.2. Cell culture

Fibroblasts were maintained in DMEM.  SH-SY5Y cells were
aintained in a 1:1 mixture of DMEM:Ham’s F12 media and 1%

v/v) non-essential amino acids (all from Invitrogen). SH-SY5Y cells
ith stable knock down of �-glucocerebrosidase were described in

22]. Media were supplemented with 10% (v/v) heat inactivated FBS,
00 units/ml penicillin and 100 �g/ml streptomycin. Cells were cul-
ured at 37 ◦C in a humidified atmosphere with 5% CO2. In some
xperiments, cells were cultured for 7–11 days with the irreversible
-glucocerebrosidase inhibitor, conduritol B epoxide (CBE, 10 �M;
igma–Aldrich). Media, containing CBE, was replenished every 5
fibroblasts) or 2–3 (SH-SY5Y) days. All cultures were analysed in
arallel and fibroblast cultures differed by no more than 2 passages.

rior to experimentation, cells were plated onto glass coverslips
for Ca2+ imaging and immunocytochemistry) or directly into tis-
ue culture flasks (for western blotting). For SH-SY5Y cells, glass
overslips were coated with 20 �g/mL poly-l-lysine.
cium 59 (2016) 12–20 13

2.3. Ca2+ imaging

Ca2+ imaging was performed using the fluorescent Ca2+ indica-
tor Fura-2 as described in [6] using HEPES-buffered saline (HBS)
consisting of 10 mM HEPES, 2 mM MgSO4, 156 mM NaCl, 3 mM KCl,
2 mM CaCl2, 1.25 mM KH2PO4 and 10 mM glucose (pH 7.4). Cells
were stimulated with thapsigargin (Merck), cADPR-AM, synthe-
sised as described previously [23] and GPN (glycyl-l-phenylalanine
2-naphthylamide, SantaCruz Biotech). Where indicated, extracellu-
lar Ca2+ was replaced with 1 mM EGTA.

2.4. Western blotting

Western blotting was performed as described in [24]. Blots were
incubated with either mouse anti-�-glucocerebrosidase (overnight
at 4 ◦C, diluted 1:500, EMD  Millipore), mouse anti-LAMP1 (1 h at
RT, diluted 1:500, Santa Cruz Biotechnology) or rabbit-anti-LC3II
(overnight at 4 ◦C, diluted 1:1000, Cell Signalling) primary anti-
bodies. Blots were stripped and re-probed with a goat anti-actin
(1 h at RT, diluted 1:500, Santa Cruz Biotechnology) primary anti-
body. Anti-mouse (Santa Cruz Biotechnology), anti-rabbit (Bio-Rad)
or anti-goat (Santa Cruz Biotechnology) IgG conjugated to horse-
radish peroxidase were used as the secondary antibodies (1 h at RT,
1:2000).

2.5. Other methods

�-Glucocerebrosidase and �-hexosaminidase enzyme activities
were measured using 4-methylumbelliferyl-�-d-glucopyranoside
and 4-methylumbelliferyl-N-acetyl-glucosaminide, respectively as
described in [22]. Immunocytochemistry using primary antibodies
raised to LAMP1 (mouse, 1 h at 37 ◦C; diluted 1:10, Developmen-
tal Studies Hybridoma Bank H4A3 clone supernatant) or LAMP2
(mouse, 1 h at 37 ◦C, diluted 1:100, Santa Cruz Biotechnology),
LysotrackerTM Red staining and confocal microscopy were per-
formed as described in [24,25].

2.6. Data analysis

The magnitude of Ca2+ release was calculated by subtracting the
basal Fura-2 fluorescence ratio prior to stimulation (60 s of data
acquisition) from the peak response. The area under the curve was
estimated by summating the increases in fluorescence ratio follow-
ing stimulation over a given period. For thapsigargin, the periods
were 750 s and 400 s for fibroblasts and SH-SY5Y cells, respec-
tively. For GPN, the period was  400 s. These analyses were done
at the individual cell level over the entire field of view (typically
15 cells). Data were derived from the number of passages stated in
the figure legends, averaged over multiple fields of view (n, stated
in the figure panels) and presented as mean ± standard error of
the mean. Statistical analyses were performed using Minitab 17.
Independent-samples t-tests were applied and in the case of mul-
tiple comparisons, ANOVA analysis followed by a post hoc Tukey
test. p < 0.05 was considered statistically significant.

3. Results

3.1. ER Ca2+ release is disrupted in GD and PD fibroblasts

To examine whether GD and PD pathology is associated with
impaired Ca2+ signalling, cytosolic Ca2+ levels were measured

in age-segregated, passage-matched patient fibroblasts carrying
the N370S mutation (see Section 2). In the first set of experi-
ments, cultures from the younger cohort were used. We  estimated
ER Ca2+ content by challenging cells with the SERCA inhibitor
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Fig. 1. Pathogenic GBA1 disrupts ER Ca2+ release. (A–D) ER Ca2+ release in GBA1wt/wt
55, GBA1mut/mut

55
GD and GBA1wt/mut

55
PD cells (young cohort). (A) Cytosolic Ca2+ recordings

from  individual fibroblasts challenged with thapsigargin (1 �M)  from the indicated representative populations. Experiments were performed in the absence of extracellular
Ca2+. (B) Summary data (mean ± SEM) quantifying the magnitude of thapsigargin-evoked Ca2+ signals in the indicated number of fields of view. Results are from 5 to 9
independent passages analysing 154–367 cells. (C) Cytosolic Ca2+ recordings from individual fibroblasts stimulated with cADPR-AM (25 �M).  Experiments were performed in
the  presence of extracellular Ca2+. (D) Summary data quantifying the percentage of cells responsive to cADPR. Results are from 2 to 3 independent passages analysing 39–75
cells. (E) Similar to A except thapsigargin-evoked Ca2+ release was assessed in GBA1wt/wt

55, GBA1wt/mut
58

ASX and GBA1wt/mut
55

PD cells. (F) Summary data from 4 independent
p 2+

 was a wt/wt wt/mut ASX wt/mut PD

f  0.001

t
C
a
m
T
t
f

assages analysing 46–127 cells. (G) Similar to C except cADPR-evoked Ca release
rom  3 to 6 independent passages analysing 73–257 cells. *p < 0.05, **p < 0.01, ***p <

hapsigargin (1 �M)  in Ca2+-free medium. Thapsigargin-evoked
a2+ release was significantly elevated in GD (GBA1mut/mut

55
GD)

nd PD (GBA1wt/mut
55

PD) cells when compared to cells from an age-
wt/wt
atched (55 year old) healthy individual (GBA1 55) (Fig. 1A).

hese differences were quantified by measuring the magnitude of
he response (Fig. 1B) or the area under the curve (Fig. S1A). To
urther examine ER Ca2+ release, fibroblasts were stimulated with
ssessed in GBA1 55, GBA1 58 and GBA1 55 cells. (H)  Summary data
, ns, not significant.

a cell-permeable derivative of the intracellular Ca2+-mobilising
messenger cyclic-ADP ribose (cADPR-AM) [23]. cADPR-AM (25 �M)
evoked Ca2+ signals in a proportion of fibroblasts (Fig. 1C). The

percentage of cells that responded to cADPR-AM was significantly
increased in GBA1wt/mut

55
PD fibroblasts compared to fibroblasts

from an age-matched healthy individual (Fig. 1D). These data iden-
tify defects in ER Ca2+ release in both GD and GBA1-linked PD.
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Fig. 2. ER Ca2+ defects are age-dependent. (A) Cytosolic Ca2+ recordings from individual fibroblasts challenged with thapsigargin (1 �M) from representative populations of
GBA1wt/wt

78 and GBA1wt/mut
75

PD cells (aged cohort). (B) Summary data 3 independent passages analysing 112–117 cells. (C) Similar to A except, ER Ca2+ release was assessed in
GBA1wt/wt

82 and GBA1wt/mut
80

ASX cells. (D) Summary data from 3 independent passages analysing 131–134 cells. (E) ER Ca2+ release from GBA1wt/wt fibroblasts with increasing
a . (G) 

e
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ge.  (F) Summary data from 1 to 14 independent passages analysing 30–483 cells
xperiments were performed in the absence of extracellular Ca2+.

A significant number of individuals with heterozygous muta-
ions in GBA1 never develop neurological conditions [9]. ER Ca2+

elease was therefore assessed in asymptomatic individuals with
eterozygotic mutations in GBA1. Although thapsigargin-evoked
a2+ release appeared more heterogeneous in GBA1wt/mut

58
ASX

hen compared with control GBA1wt/wt
55 fibroblasts (Fig. 1E), the

ean amplitude of the Ca2+ elevations and the area under the curve
id not differ between these cultures and those from an additional
symptomatic individual (GBA1wt/mut

59
ASX; Fig. 1F, Fig. S1A). Sim-

larly, as shown in Fig. 1G-H, cADPR-AM-evoked Ca2+ release in

BA1wt/mut

58
ASX fibroblasts was not significantly different to con-

rol GBA1wt/wt
55 fibroblasts. These data suggest that disrupted Ca2+

omeostasis correlates with PD in the same GBA1 genetic back-
round.
Magnitude of ER Ca2+ release versus age for both the young and aged cohort. All

3.2. ER Ca2+ defects are age-dependent

ER Ca2+ release in PD was further examined using fibro-
blasts from the aged cohort. Unlike the younger GBA1wt/mut

55
PD

fibroblasts, thapsigargin-evoked Ca2+ release in GBA1wt/mut
75

PD

fibroblasts was  similar to fibroblasts from the age-matched healthy
control (GBA1wt/wt

78) (Fig. 2A and B, Fig. S1A). However, we
noted that thapsigargin-evoked Ca2+ release in fibroblasts from
both GBA1wt/wt

78 and GBA1wt/mut
75

PD was kinetically irregular and
larger than Ca2+ release evoked in fibroblasts from younger con-

trol subjects (compare with Fig. 1A). To investigate the effect of
age on ER Ca2+ release, we examined the effects of thapsigargin in
fibroblasts from healthy individuals of increasing age. As shown
in Fig. 2E and F, thapsigargin-evoked Ca2+ release increased in
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Fig. 3. Inhibition of �-glucocerebrosidase does not affect ER Ca2+ release. (A) Cytosolic Ca2+ recordings from individual control GBA1wt/wt fibroblasts challenged with thapsi-
gargin  (1 �M)  from a representative population treated with 10 �M CBE for 8 days. (B) Summary data from 2 independent treatments analysing 87–90 cells. (C–F) Cytosolic
Ca2+ recordings from individual SH-SY5Y cells challenged with thapsigargin (1 �M) from a representative population treated with 10 �M CBE for 10–11 days (C) or stably
expressing either scrambled shRNA (GBA1+/+) or shRNA targeting GBA1 (GBA1−/−) (E). Summary data from 3 independent treatments analysing 117–204 cells (D) and 3
i d in th
a g) from

a
i
i
G
w
o

3
a

m
t
e
c
p
c
�
i
t
s

ndependent passages analysing 150–143 cells (F). All experiments were performe
ntibodies to �-glucocerebrosidase (top) or actin (bottom) and homogenates (14 �

n age-dependent manner in fibroblasts from control (GBA1wt/wt)
ndividuals. Thapsigargin responses in the oldest fibroblasts exam-
ned (GBA1wt/wt

82), closely resembled those from the younger
BA1wt/mut

55
PD fibroblasts (Fig. 2G). Such findings are consistent

ith the idea that some features of PD simulate an accelerated form
f ageing [26].

.3. ER Ca2+ defects are independent of ˇ-glucocerebrosidase
ctivity loss

Whether pathogenic effects of GBA1 are due to loss of enzy-
atic function or gain of toxic function is debated [27]. To probe

he mechanism of how mutant GBA1 disrupts ER Ca2+ release, the
ffects of thapsigargin were examined in fibroblasts from healthy
ontrols by reducing the activity of �-glucocerebrosidase using
harmacological and molecular means. Fibroblasts were chroni-
ally treated with conduritol B epoxide (CBE, 10 �M),  an inhibitor of

-glucocerebrosidase, which reduced �-glucocerebrosidase activ-

ty to 6 ± 0.03%. Thapsigargin-induced Ca2+ release after exposure
o CBE was unchanged (Fig. 3A and B, Fig. S1B). To extend these
tudies to a more neuronal context, we examined the effect of
e absence of extracellular Ca2+. ns, not significant. Inset (F) is a Western blot using
 SH-SY5Y cells treated with the indicated shRNA.

CBE on dopaminergic SH-SY5Y cells. As in fibroblasts, thapsigargin-
evoked Ca2+ release was  not different following CBE treatment
(Fig. 3C and D, Fig. S1B) despite substantial reduction in �-
glucocerebrosidase enzyme activity to 8 ± 0.4%. To probe further
the role of �-glucocerebrosidase, we  examined the effect of thap-
sigargin upon stable knockdown of GBA1 [22]. Reducing the levels
of �-glucocerebrosidase did not affect thapsigargin-evoked Ca2+

release (Fig. 3E and F, Fig. S1B). Taken together, these data show that
reducing �-glucocerebrosidase enzyme activity, under our experi-
mental conditions, appears not to induce ER Ca2+ dysfunction.

3.4. Lysosomal morphology and Ca2+ content is disrupted in GD
and PD fibroblasts

Lysosomes are increasingly implicated in PD pathogenesis
[10,11]. We  recently identified lysosome morphology defects in
LRRK2-PD fibroblasts which we  correlated with lysosomal Ca2+
defects [24]. We  therefore probed potential physical and functional
lysosome alterations in GBA1-PD fibroblasts. Using an antibody
raised to the late endosome/lysosome marker LAMP1, lysosome
morphology was compared in the fibroblasts from the young and
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Fig. 4. Pathogenic GBA1 disrupts lysosomal morphology. (A–H) Representative confocal fluorescence images of LAMP1 staining (white) in the indicated fibroblasts from the
young  (A–D) and aged (E–H) cohort. Nuclei were stained with DAPI (blue). Zoomed images are displayed in the right panels. Scale bars, 10 �m.  (I) Summary data quantifying
LAMP1  intensity as a percentage of the indicated age-matched control (82–654 cells). (For interpretation of the references to color in this figure legend, the reader is referred
t
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o  the web version of this article.)

ged cohorts (Fig. 4). Lysosome morphology was altered in the
BA1mut/mut

55
GD fibroblasts (Fig. 4B) compared to age-matched

ontrol fibroblasts (GBA1wt/wt
55; Fig. 4A). Lysosome morphology

as also altered in GBA1wt/mut
55

PD fibroblasts (Fig. 4C). In both
ases, lysosomes appeared enlarged and clustered. Similar mor-
hological alterations were apparent in the GD and PD cells using

n antibody raised to LAMP2 (Fig. S2A–C and F) and in live cells
abelled with the acidotrope, Lysotracker (Fig. S2D–F). There was
ittle change in LAMP1 protein levels quantified by Western blot-
ing in either GD or PD fibroblasts consistent with our previous
analysis [21], although levels of the autophagic marker LC3II were
increased (Fig. S2G).

Morphological alterations to the lysosomal system were
also found in asymptomatic GBA1 carriers (GBA1wt/mut

58
ASX and

GBA1wt/mut
59

ASX) but to a lesser extent than in GD and PD
fibroblasts (Fig. 4D and data not shown). Importantly, lysosome

morphology did not differ in healthy, PD and asymptomatic carri-
ers from the aged cohort (Fig. 4E–H). These data are summarised
in Fig. 4I. Thus, similar to ER Ca2+ defects, lysosome morphology
defects are age-dependent.
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Fig. 5. Pathogenic GBA1 disrupts lysosomal Ca2+ content. (A–D) Cytosolic Ca2+ measurements from individual fibroblasts stimulated with GPN (200 �M). Experiments were
performed in the presence of extracellular Ca2+ and following a 12.5 min pre-treatment with 100 �M 2APB prior to recording. (A) Recordings from a representative population
of  GBA1wt/wt

55, GBA1mut/mut
55

GD and GBA1wt/mut
55

PD cells. (B) Summary data from 2 independent passages analysing 72–88 cells. (C) Recordings from a representative
p D) Sum
n
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opulation of control GBA1wt/wt fibroblasts treated with 10 �M CBE for 7–9 days. (
ot  significant.

To estimate lysosomal Ca2+ content, we challenged cells with
he lysosomotropic agent GPN (200 �M)  which induces leak of low

olecular weight solutes (<10 kDa) in fibroblasts upon hydroly-
is by the lysosomal protease, cathepsin C [28]. GPN stimulated
omplex cytosolic Ca2+ increases, as reported previously [6], and no
ifferences were observed across the GBA1wt/wt

55, GBA1mut/mut
55

GD

nd GBA1wt/mut
55

PD fibroblast cultures (Fig. S3A and B). Potential
ifferences in lysosomal Ca2+ content may  have been masked due
o recruitment of ER-localised receptors upon lysosomal destabili-
ation [6]. Indeed, in human fibroblasts we have previously shown
hat lysosomal Ca2+ release triggers Ca2+ responses through IP3,
ut not ryanodine, receptors [6]. We  therefore isolated lysosomal
a2+ release by blocking IP3 receptors with 2-APB prior to GPN
hallenge. Under these conditions, GPN-evoked Ca2+ release was
argely monotonic and reduced in GBA1wt/mut

55
PD fibroblasts rel-

tive to controls (Fig. 5A and B, Fig. S1C). This reduction was not
ue to differences in cathepsin C activity/lysosomal permeabili-
ation because the rate of fluorescence loss in cells loaded with
ysotracker in response to GPN, was similar between fibroblasts
ultures (Fig. S3C and D). Activity of �-hexosaminidase was  also
nchanged in GD and PD cells (106 ± 10% and 103 ± 3% of control,
espectively). Similar to our ER Ca2+ estimates, reducing the activity
f �-glucocerebrosidase with CBE had little effect on GPN-evoked
a2+ release in fibroblasts from healthy controls (Fig. 5C and D). We
herefore identify Ca2+ defects at the lysosomal level in PD that are
ikely independent of �-glucocerebrosidase activity loss.

. Discussion

Ca2+ stores represent a major source of Ca2+ signals but their
ole in PD is largely unknown. In the present study, we  identify
ge-dependent changes in ER Ca2+ release in both type I GD and

BA1-linked PD fibroblasts. Additionally, we report disturbances in

ysosomal morphology and lysosomal Ca2+ content in these cells.
Patient fibroblasts represent a robust, tractable system for dis-

ase study. They harbour cumulative damage for a given subject,
mary data from 2 independent treatments analysing 43–72 cells. ***p  < 0.001. ns,

perhaps particularly relevant to late onset neurodegenerative dis-
ease. Nevertheless, a limitation of fibroblasts is their non-neuronal
nature. Our data demonstrating exaggerated ER Ca2+ release in
GBA1-PD fibroblasts however is consistent with a recent report
using induced pluripotent stem cell-derived dopaminergic neurons
which showed enhanced Ca2+ release to the ryanodine receptor
agonist, caffeine [29]. In that study, lines were derived from patients
with an L444P mutation in GBA1 and asymptomatic carriers were
unavailable. Defects reported here were not manifest in asymp-
tomatic carriers and presented only in the younger patients. We
interpret the defect as being “non-additive” with ageing which
we report is also associated with similar perturbations in ER
Ca2+ signalling. Notably, strategies that increase ER Ca2+ content
improve mutant �-glucocerebrosidase folding [30]. Enhanced ER
Ca2+ content, although beneficial with respect to protein folding,
may  render cells more sensitive to apoptotic stimuli and thus link
Ca2+ disturbances to cell death.

Reduced lysosomal Ca2+ content in GBA1-PD fibroblasts is
similar to that reported in Niemann–Pick type C1 diseased fibro-
blasts [16] and Presenilin-1 knockout mouse embryonic fibroblasts
[31,32]. Functionally, reduced lysosomal Ca2+ content might affect
Ca2+-dependent membrane trafficking events within the endo-
lysosomal system [33], thereby accounting for altered lysosome
morphology. Similar lysosome morphology alterations have been
reported in fibroblasts from patients with mutations in ATP13A2
(PARK9) [34], a lysosomal ATPase and LRRK2 (PARK8) for which
evidence of an endolysosomal locus of action continues to accrue
[24,35–37].

How mutant GBA1 disposes to PD is unclear. Both loss- and
gain-of function models have been proposed [27]. For-example,
knock-down of �-glucocerebrosidase in mouse models is asso-
ciated with increases in the substrate glucocerebroside which
stabilises �-synuclein, a component of Lewy bodies characteris-

tic of the disease [38]. Concomitantly, �-synuclein also reduces
trafficking of �-glucocerebrosidase to the lysosome pointing
to a positive feedback loop triggered by a reduction in �-
glucocerebrosidase activity that might precipitate disease [38].
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owever, increases in �-synuclein levels do not always correlate
ith �-glucocerebrosidase activity [27]. Notably, the E326K muta-

ion in �-glucocerebrosidase, which is linked to early onset PD, has
 more modest effect on �-glucocerebrosidase activity than other
utations and does not cause Gaucher disease [39]. Furthermore,
e have shown that substrate does not accumulate in the brains

f GBA1 carrier-PD patients [40] despite demonstrable reduction
n �-glucocerebrosidase activity [41]. That many mutant forms
f �-glucocerebrosidase accumulate in the ER supports the alter-
ative gain-of function mechanism for toxicity [27]. Our findings
eported here, showing that neither ER nor lysosomal defects were
ecapitulated upon inhibiting/depleting �-glucocerebrosidase,
upport such a gain-of-function mechanism for pathogenic GBA1.
owever, we cannot rule out that residual �-glucocerebrosidase
ctivity (albeit modest) is sufficient to maintain homeostasis.

PD has a complex aetiopathogenesis, which likely results from
nterplay between genetic and environmental cues. Although it is
stablished that mutations in GBA1 substantially increase risk of
eveloping PD not all carriers succumb. These data strongly suggest
hat pathology is not a sole consequence of the mutant GBA1 allele.

e  show here that ER Ca2+ and lysosomal morphology defects
dentified in PD cells are not present in asymptomatic GBA1 car-
iers. Thus, defects correlate with pathology despite similar GBA1
tatus. It remains to be established whether these phenotypes
re contributing causal factors for the disease or a consequence.
evertheless, disruptions in fibroblast Ca2+ store homeostasis and

ysosomal morphology described here might serve as biomarkers
or GBA1-linked PD given incomplete penetrance in GBA1 carriers.
urther work, however, is required using additional patient cell
ines to validate our findings.

In summary, we identify age-dependent disturbances in both ER
nd lysosomal Ca2+ stores of potential relevance to the pathology
f PD and GD.
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