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Title: 

Do prevalence expectations affect patterns of visual search and decision-making in CT 

colonography? 

 

Abstract 

Objectives: To assess the effect of expected abnormality prevalence on visual search and 

decision-making in CT Colonography (CTC). 

Methods: Thirteen radiologists interpreted endoluminal CTC fly-throughs of the same group 

of ten patient cases, three times each.  Abnormality prevalence was fixed (50%) but readers 

were told, before viewing each group, that prevalence was either 20%, 50% or 80% in the 

population from which cases were drawn. Infra-red visual search recording was used.  

Readers indicated seeing a polyp by clicking a mouse.  Multilevel modelling quantified the 

effect of expected prevalence on outcomes. 

Results: Differences between expected prevalences were not statistically significant for time 

to first pursuit of the polyp (median 0.5s, each prevalence), pursuit rate when no polyp was 

on-screen (median 2.7s-1, each prevalence) or number of mouse clicks (mean 0.75/video 

(20% prevalence), 0.93 (50%), 0.97 (80%)).  There was weak evidence of increased tendency 

to look outside the central screen area at 80% prevalence, and reduction in positive polyp 

identifications at 20% prevalence. 

Conclusions: This study did not find a large effect of prevalence information on most visual 

search metrics or polyp identification in CTC.  Further research is required to quantify 

effects at lower prevalences and in relation to secondary outcome measures. 
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Advances in Knowledge: Prevalence effects in evaluating CTC have not previously been 

assessed.  In this study, providing expected prevalence information did not have a large 

effect on diagnostic decisions or patterns of visual search. 

 

Keywords 

Colon; Colonic Polyps; Colonography, Computed Tomographic; Diagnosis, Computer-

Assisted; Visual Perception 

 

Abbreviations and acronyms 

CI: Confidence Interval 

CTC: CT Colonography 

HR: Hazard Ratio 

OR: Odds Ratio 

REC: Research Ethics Committee 

ROI: Region of Interest  
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Introduction 

If we are expecting an event, we are more alert to it and more likely to react when it occurs 

(1).  We might expect that radiologists are more alert to the presence of an abnormality 

when given an indication that prevalence is particularly high and, conversely, be less alert 

when the chance of encounter is believed to be low, as in screening. 

 

Interpretation of medical imaging occurs in three environments: the symptomatic 

population, the asymptomatic/screening population and the research setting.  Expected 

levels of abnormality vary considerably between these settings and between different 

medical specialties (2).  It follows that the effect of varying prevalence of abnormality on 

image interpretation is crucial to our understanding of how diagnostic accuracy and 

interpretative performance might change across reporting environments. 

 

In 2011, a systematic review (3) found only three medical imaging studies (4-6) that 

assessed the impact of experimentally-modified prevalence on reader diagnosis. 

Subsequent studies have been published (7-10), but the relationship between prevalence 

and interpretation accuracy remains unclear.  Some studies report increased false negatives 

or reduced diagnostic confidence at lower prevalence levels, for example for interpretation 

of pulmonary arteriograms (4), mammograms (8, 11) or ankle trauma radiographs (7).  This 

‘rare target’ effect has also been reported in non-clinical scenarios, such as baggage 

scanning (12, 13) and artificial target search experiments (14).  In contrast, in chest 

radiography the evidence for a prevalence effect on diagnostic accuracy is weaker (5, 9), 

although two studies that used eye tracking to monitor visual search of experienced readers 
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suggested a possible association between increased prevalence and the duration and 

pattern of image scrutiny (10, 15). 

 

Despite increasing use of CT Colonography (CTC) in routine practice, there is little research 

describing the effect of abnormality prevalence on diagnostic performance (3). This is 

surprising because CTC is commonly applied across a wide range of expected prevalences, 

from asymptomatic screenees (16-18) to symptomatic and high-risk patients (19-21). 

Establishing the presence or absence of a prevalence effect on reader attention, visual 

search and diagnostic performance is important both in understanding how CTC should be 

used in clinical practice and for designing future research studies.  

 

The purpose of this study was to assess the effect of expected abnormality prevalence on 

visual search and decision-making in CTC.   
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Materials and Methods 

 

Research Ethics Committee (REC) approval was obtained to record eye tracking data from 

consenting observers in this prospective study.  Institutional Review Board and REC approval 

was granted to use anonymous CTC data collated in previous studies (22, 23). 

 

Participants and Cases 

Thirteen radiologists (readers) were recruited from a UK training hospital over two days in 

July 2012.  All provided written, informed consent.  Readers (6/13 male; mean age 32, range 

27-36 years) were trainees with 1-7 years experience as a radiologist and at most 50 cases 

CTC experience. 

 

Ten CTC endoluminal fly-through videos lasting 30s each were generated (EH, PP) with 

dedicated CTC software on a medical imaging workstation (Vitrea, Vital Images, Minnesota, 

USA) and exported for viewing.  Navigation speed was fixed at approximately 1.5cm/s.  Five 

videos depicted a single colorectal polyp (‘true positive’, 5-8mm maximal transverse 

dimension), verified by three radiologists with more than 200 cases experience (23).  To 

counteract recall, cases were excluded if they contained polyps within five seconds 

navigation of the cecal pole, rectal ampulla or insufflation catheter, or contained other 

distinctive characteristics, assessed by a radiologist with six years experience (EH). Polyps 

were onscreen for between 2.4 and 11.1s.  The remaining five videos (‘true negative’) were 

selected from different sections of colon, containing no polyps, in the same patient group. 
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The sample size was based on practical considerations: the number of readers available and 

the number of cases that could be assessed comfortably in one sitting.  As the primary 

outcome measures have not been used before in this context, no power calculation was 

performed. 

 

Data Collection 

The group of ten videos was presented to each reader three times in one sitting, with an 

optional break between groups.  The order of cases was randomized for each reader.  

Before viewing each group, readers were told that the videos in that group came from a 

population with known prevalence of abnormality – 20%, 50% or 80%.  The ordering of the 

three prevalence scenarios was varied between readers using block randomization.  Readers 

were not told that the three groups actually contained the same ten videos repeated three 

times, and were therefore unaware that the true prevalence was identical (50%) and the 

declared 20% and 80% prevalence levels were incorrect.  Information given to readers was 

worded as: 

“We are going to show you 3 groups of 10 videos in a random order. 

Each group is taken from a different population, each with a different prevalence of 

abnormality. 

Before each group we will tell you the population prevalence, either 80%, 50% or 

20%.” 

 

Readers were asked to hold a computer mouse throughout and indicate with a click (‘polyp 

identification’) when they saw a lesion they considered highly likely to represent a real polyp 

or cancer.  Readers were not required to specify polyp location and could not pause, rewind 



9 
 

or re-view videos. They were not told which videos contained polyps and were given no 

feedback about their performance.  Data collection took 20-30 minutes per reader. 

 

Viewing Conditions 

Reading was conducted in a quiet room with constant, ambient light.  A liquid-crystal display 

monitor, 1280x1024 pixel resolution, was used (SyncMaster 971P: Samsung, Suwon, South 

Korea; Fujitsu E19-5: Fujitsu, Tokyo, Japan; 1 pixel=0.29mm).  The screen was positioned 

60cm in front of the reader.  Videos measured 512x512 pixels (14.8x14.8cm), representing a 

visual angle of 14.1°.  Eye position of readers was recorded using a Tobii X50 or X120 eye 

tracker (Tobii Technology AB, Danderyd, Sweden), sampling at 50Hz or 60Hz respectively, 

positioned beneath the screen.  No head-rest was used.  Readers wore glasses or contact 

lenses as normal.  They performed a nine-point calibration procedure prior to data 

collection and were excluded if this could not be completed.  They then viewed a 

supplemental warm-up video prior to data collection. They were not asked to fixate a 

particular point before each video. 

 

Data Preparation 

Eye position data were prepared for analysis as described elsewhere (24); a summary 

follows.  True positive polyps were approximated using a circular region of interest (ROI), 

manually overlaid onto each video frame-by-frame by a medical image perception scientist 

(PP).  The center and radius of this ROI were adjusted manually to match the polyp’s 

transition across the screen.  Within each frame, the perpendicular distance between the 

recorded eye position and the edge of the ROI was calculated and used in outcome 

measures described below.  Eye gaze falling within a 50-pixel acceptance radius from the 
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edge of the ROI was considered to be within high visual acuity.  For periods when no polyp 

was visible, the (x,y)-eye position coordinates were retained for analysis.  Coordinates 

located more than 100 pixels outside the screen area were excluded as recording errors. 

 

Outcome Measures 

Eye coordinate data were used to derive three primary and six secondary pre-specified 

outcomes (‘metrics’); see Table 1.  Figure 1 shows an example eye tracking trace (distance 

between eye position and ROI over time) to illustrate metric definitions.  Detailed 

information about metric derivations has been reported previously (25).  Metrics reflected 

three aspects of reader behavior: eye position when a polyp was onscreen; eye position 

when no polyp was onscreen; and frequency and accuracy of polyp identifications.  Primary 

outcomes were: time to first pursuit of the ROI; pursuit rate in the absence of an ROI; total 

number of polyp identifications.  The ‘screen coverage’ measure was defined by the 

proportion of eye gaze falling into three regions: within, above or below a 256x256-pixel 

square at the center of the screen.  ‘Any correct identification’ and the ‘polyp on screen’ 

metrics are defined only for true positive videos.  ‘Any incorrect identification’ is defined 

only for the period before any polyp appeared, to prevent readers who delayed their 

decision after seeing a polyp being misclassified as making a false positive identification. 

 

Statistical Analysis 

Metrics were analyzed using multilevel modelling, incorporating independent random 

intercepts for reader and video, including prevalence level as a factor.  Effects of prevalence 

expectation were expressed relative to the true 50% prevalence category.  In a planned 

sensitivity analysis, to test whether results were altered by the order (first, second or third 
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viewing) in which the prevalence categories were presented, this order was included as an 

additional factor variable. 

 

Within this multilevel framework, proportional hazards, logistic and Poisson models were 

used, as appropriate for the data type.  As most viewings had at least one missing eye 

position data point, short missing data runs were imputed, based on the recorded eye 

coordinates immediately before and after, and adding random measurement error.  

Estimates were combined using multiple imputation methods with ten imputations (26).  

Cases with more than 50% missing values or more than 50 consecutive missing values were 

examined individually by two authors (TF, AP) and removed if deemed likely to make the 

metric calculation highly unreliable. The Electronic Supplementary Material contains more 

details. 

 

A different approach was adopted only for pursuit rate, which has no generally agreed 

definition (27). We used the number of pursuits calculated by Tobii Studio version 1.7.2 (50-

pixel dispersion, 100ms minimum time threshold) throughout the period when no polyp was 

onscreen, divided by the duration of this period. Time-points when the Tobii software failed 

to identify whether a coordinate belonged to any particular pursuit were excluded, and the 

time denominator adjusted accordingly. Cases with more than 50% missing values of the 

pursuit classifier were excluded from analysis. 

 

Results are presented as point estimates with 95% confidence intervals (95%CI) and p-

values.  A 5% significance level was used, unadjusted for multiple testing. 
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Statistical analysis used Stata 12.1 for Windows (StataCorp, College Station, TX) and R 

version 3.1.1 (28). 

 

Results 

Eye tracking was successful and 389 of the intended 390 viewings were completed.  Seven 

(1.8%) of these were omitted from the analysis of one or more metrics (with the exception 

of pursuit rate) because patterns of missing data made calculation unreliable.  For pursuit 

rate, 37 (9.5%) of the viewings were excluded. 

 

Table 2 summarizes metrics across all readers within each prevalence scenario.  Of the 

videos that contained a polyp, readers made at least one pursuit of the polyp for 185 of the 

190 (97%) viewings with reliable data. 

 

There were no statistically significant differences between expected prevalence levels in any 

metric relating to visual search while the polyp was visible (Table 3).  In each prevalence 

scenario, readers took approximately half a second on average to direct their gaze to the 

ROI after the polyp appeared (hazard ratio (HR) 1.32 (95%CI 0.95 to 1.93, p=0.14) for 20% 

versus 50% prevalence; HR 0.95 (95%CI 0.64 to 1.40, p=0.79) for 80% versus 50% expected 

prevalence; Tables 2 & 3, Figure 3).  Average Total assessment time span, Assessment 

pursuit time and Assessment pursuit rate were also similar in the three prevalence scenarios 

(Tables 2 & 3). 

 

During the period when the polyp was not on screen, the average pursuit rate was 

approximately 2.7 pursuits per second at each of the three prevalence levels (Table 2), with 
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no statistically significant differences (Table 3).  There was a tendency for readers’ gaze to 

fall inside the central region of the screen less often at the 80% prevalence level than at the 

50% prevalence level (odds ratio (OR) 0.82 (95%CI 0.72 to 0.95, p=0.008), Table 3), with a 

concomitant increase in the upper region.  This effect however was small, with on average 

82% of gaze points falling in the central region at 80% prevalence compared to 84% at 50% 

prevalence (Table 2). 

 

There were no statistically significant differences with respect to expected prevalence 

regarding the total number of identifications (Table 3).  As expected, the average number of 

identifications was higher for videos that contained polyps than for those that did not (1.3 

versus 0.4, Table 2).  The sensitivity, or probability of a polyp being correctly identified, was 

higher at 50% prevalence (86%) than at 20% prevalence (71%).  This difference was 

statistically significant (p=0.01, Table 3) but the trend did not persist at the 80% prevalence 

level (75%).  This metric was subject to an extremely high case-specific effect (Figure 4), as 

in three videos (1, 2 and 4) almost every reader identified the polyp at each prevalence 

level; the other two videos (3 and 5), for which the polyp was superficially more difficult to 

identify, are therefore likely primarily responsible for the differences in rates of correct 

identification. 

 

The probability of an incorrect identification (‘false positive’) ranged from 30% at 20% 

prevalence to 39% at 80% prevalence; this difference was also not statistically significant 

(Table 3).  On average, incorrect identifications occurred with similar frequency for videos 

that contained no polyps and for videos that contained polyps during periods when the 

polyp was not visible, although there was considerable variability between cases (Figure 4).  
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Some false positive features were identified with a mouse click by several readers (e.g. Case 

3 at 5 seconds, Figures 4 and 5). 

 

In sensitivity analysis, including as an extra factor variable the order in which the prevalence 

scenarios were presented did not affect the prevalence effect sizes shown in Table 3. 

 

Discussion 

This study investigated the effect on visual search and decision-making for CTC of providing 

readers with substantially different expectations of the likely prevalence of abnormality in 

the population from which cases were drawn. We did not demonstrate a strong link 

between prevalence expectation and the pattern of search or decision-making. 

 

Our conclusion differs from those of several studies using scenarios other than CTC that 

found increased false negative rate at lower prevalence levels (8, 12-14).  Our study showed 

a statistically significant increase in the proportion of polyp identifications between 20% and 

50% expected prevalence, but for three reasons this finding should be treated cautiously.  

First, it did not extend to the highest prevalence level, for which the proportion was similar 

to that at 20%, and a non-monotonic relationship seems implausible.  Second, the effect 

was driven by an increased true positive rate in just two of the five cases with polyps: a 

consistent increase across all cases, which would have provided more convincing evidence, 

was not observed.  Third, this was just one of several secondary analyses performed, and so 

it may be a chance result.   
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The existence of a prevalence effect is not a universal finding in image interpretation 

studies.  For example, Gur et al. (5) found that varying prevalence levels between 2%-21% 

did not affect the diagnostic accuracy of chest radiograph assessment.  Likewise, we did not 

find a prevalence effect for our three primary outcomes, which were chosen to represent 

visual search and decision-making.  Modality may therefore be an important determinant of 

prevalence effects. 

 

We have shown previously that time to first pursuit of the polyp changes with reader 

experience and the presence of a computer-aided detection marker (29, 30); in the present 

study this metric was unchanged across prevalence scenarios. When no polyp was visible, 

readers tended to spend more time, proportionally, looking at peripheral screen regions in 

the 80% prevalence condition, but this effect is small and is not supported by changes in 

other visual search metrics. However, the finding requires further investigation as our 

measure is based on a simple square at the center of the screen area, which may not 

adequately capture gaze narrowing effects. 

 

We used a common set of cases for each of the prevalence conditions to directly observe 

the effect of disclosing different prevalence information, as opposed to the effect of the 

true case-mix.  Lau et al. (31) claim that the latter may have a larger effect on decision-

making, but testing this was not our objective.  Indeed, it would have been infeasible for 

readers to make an assessment of the true underlying prevalence within a realistic time-

frame.  It is possible that some readers realized that they had viewed videos more than 

once, but this is unlikely to have a major effect on our findings: the order in which the 

prevalence conditions were presented was determined randomly, and this order was not 



16 
 

strongly associated with outcomes.  Enabling all cases to be viewed with comfort in a single 

sitting was an important practical consideration in our choice of the number of cases used.  

Despite the number of cases being moderately small, repeated viewings of the same case 

under different prevalence conditions enabled quantities of interest to be estimated with 

acceptable precision. 

 

Future studies should assess further the possibility of a threshold effect in CTC.  It is possible 

that the expected prevalence level needs to be lower than 20% for an effect to be visible, as 

is usually the case in everyday clinical practice except in very high-risk patient groups such 

as those examined following a positive fecal occult blood test (21).  Evans et al. (8) found a 

marked reduction in sensitivity for breast cancer diagnosis using mammography during 

screening when the prevalence was extremely low (0.3%).  Whether a similar effect applies 

to CTC remains unknown.  Additionally, prevalence effects may vary according to the ease of 

visualization and identification of the cases chosen. 

 

This study has limitations. This study was exploratory in nature, and therefore we may not 

have used enough cases for subtler prevalence effects to be detected.  Endoluminal fly-

through view was presented in automatic mode only, so readers could not adjust navigation 

speed as in usual practice.  We were therefore unable to assess the effect of prevalence on 

the time the reader would spend scrutinizing each video; from laboratory experiments and 

some clinical studies, there is evidence that assessment time is affected by prevalence in 

static viewing modes (15, 32).  Mouse clicks are not synonymous with definitive decisions 

about the presence of polyps, and thus can only be regarded as proxy measures of 

diagnostic accuracy.  Readers were not asked to identify polyp locations and so, even with 
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eye tracking data, it is impossible to state with certainty the cause of any particular click. 

Readers were inexperienced in CTC, and so our findings are not directly generalizable to 

experienced radiologists using CTC in day-to-day clinical practice.  Finally, we did not assess 

the effect of providing information about the spectrum of disease severity, since readers 

received prevalence information alone. 

 

In summary, CTC readers were provided with different estimates of the prevalence of 

abnormalities from which cases were drawn, and study results did not demonstrate a strong 

link between prevalence information and the pattern of visual search or decision-making.  

Further research should investigate effects at lower prevalence levels, such as might be 

present in asymptomatic populations. 
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* primary outcome 

Table 1: Metric definitions.  The identifying letters A, B, etc. refer to time points indicated in Figure 1. 

 

Group Name Definition 

Polyp on screen Time to first pursuit* Time between appearance of polyp (A) and start of first pursuit of polyp (B) 

 Total assessment time span Time between start of first pursuit of polyp (B) and polyp identification (E) 

 Assessment pursuit time Cumulative time in pursuit of polyp before polyp identification (B to C and D to 

E), expressed as a proportion of the total time the polyp was visible (A to G) 

 Assessment pursuit rate Number of separate pursuits of polyp before polyp identification, divided by the 

total time the polyp was visible before polyp identification (A to E) 

Polyp off screen Pursuit rate* Number of distinct eye pursuits, divided by the total time when the polyp was 

off screen 

 Screen coverage Proportion of eye coordinates falling in to each of three regions of the screen 

display, ‘upper’, ‘central’ and ‘lower’; see Figure 2 

Polyp identification Total number of identifications* Number of identifications recorded over whole video 

 Any correct identification Binary indicator of whether an identification occurred while the polyp was 

visible (a reaction time of 0.5s after the polyp left the screen was allowed) 

 Any incorrect identification Binary indicator of whether an identification occurred before the polyp was 

visible (or at any time, for true negative videos) 
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Metric 20% prevalence 50% prevalence 80% prevalence 

At least one pursuit of polyp 63/63 (100%) 61/64 (95%) 61/63 (97%) 

Immediate pursuit 

Time to first pursuit (s) * 

5/63 (8%) 

0.45 [0.26, 0.65] 

4/64 (6%) 

0.52 [0.28, 0.82] 

10/63 (16%) 

0.52 [0.37, 0.95] 

Total assessment time span (s) * 2.45 [1.33, 5.96] 1.75 [1.00, 3.49] 2.19 [1.15, 5.76] 

Assessment pursuit time (%) 24% [14%, 34%] 21% [13%, 33%] 18% [12%, 33%] 

Assessment pursuit rate (s
-1

) 0.59 [0.42, 0.79] 0.56 [0.42, 0.83] 0.69 [0.45, 0.85] 

Pursuit rate (s
-1

) 2.69 [2.19, 3.09] 2.67 [2.23, 3.02] 2.71 [2.26, 3.11] 

Screen coverage 

   Upper 

   Central 

   Lower 

 

6% [3%, 13%] 

87% [77%, 92%] 

7% [4%, 12%] 

 

7% [5%, 12%] 

84% [77%, 90%] 

8% [5%, 13%] 

 

9% [5%, 15%] 

82% [73%, 89%] 

8% [6%, 13%] 

Total number of identifications 

   Videos with polyps 

   Videos without polyps 

0.75 (0.82) 

1.17 (0.80) 

0.34 (0.59) 

0.93 (0.90) 

1.38 (0.90) 

0.49 (0.66) 

0.97 (1.07) 

1.43 (1.16) 

0.51 (0.73) 

Any correct identification 46/65 (71%) 55/64 (86%) 49/65 (75%) 

Any incorrect identification 

   Videos with polyps 

   Videos without polyps 

39/130 (30%) 

21/65 (32%) 

18/65 (28%) 

48/129 (37%) 

22/64 (34%) 

26/65 (40%) 

51/130 (39%) 

25/65 (38%) 

26/65 (40%) 

Table 2: Summary of metrics by prevalence level (number (%) or median [inter-quartile 

range] except for total number of identifications: mean (standard deviation)). 

* Kaplan-Meier estimate, calculated without allowing for clustering, excluding viewings with immediate pursuit 
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Metric Measure 20% versus 50% 

prevalence 

80% versus 50% 

prevalence 

  Effect size  

[95%CI] 

p Effect size 

[95%CI] 

p 

Time to first pursuit HR 1.32 

[0.95, 1.93] 

0.14 0.95 

[0.64, 1.40] 

0.79 

Total assessment 

time span  

HR 0.74 

[0.50, 1.12] 

0.15 0.83 

[0.56, 1.24] 

0.37 

Assessment pursuit 

time 

OR 1.27 

[0.87, 1.84] 

0.22 0.90 

[0.62, 1.32] 

0.60 

Assessment pursuit 

rate 

RR 0.91 

[0.70, 1.18] 

0.47 1.07 

[0.83, 1.37] 

0.60 

Pursuit rate RR 1.01 

[0.98, 1.05] 

0.39 1.03 

[1.00, 1.07] 

0.06 

Screen coverage      

   Upper OR 0.93 

[0.78, 1.12] 

0.45 1.28 

[1.07, 1.53] 

0.007 

   Central OR 1.06 

[0.92, 1.23] 
0.39 0.82 

[0.72, 0.95] 

0.008 

   Lower OR 0.96 

[0.81, 1.13] 

0.63 1.11 

[0.94, 1.31] 

0.22 

Total number of 

identifications 

RR 0.81 

[0.62, 1.06] 

0.12 1.04 

[0.81, 1.34] 

0.75 

Any correct 

identification 

OR 0.24 

[0.08, 0.73] 

0.01 0.37 

[0.12, 1.11] 

0.08 

Any incorrect 

identification 

OR 0.66 

[0.37, 1.19] 

0.17 1.11 

[0.63, 1.97] 

0.71 

   Videos with polyps OR 0.86 

[0.35, 2.11] 

0.75 1.29 

[0.54, 3.10] 

0.57 

   Videos without      

   polyps 

OR 0.53 

[0.24, 1.17] 

0.11 1.00 

[0.47, 2.13] 

1.00 

 

Table 3: Comparison of metrics between prevalence levels: hazard ratio (HR), odds ratio 

(OR) or rate ratio (RR), as appropriate, with 95%CI and p-value. 
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Table and Figure Legends 

Table 1: Metric definitions.  The identifying letters A, B, etc. refer to time points indicated in 

Figure 1. 

 

Table 2: Summary of metrics by prevalence level (number (%) or median [inter-quartile 

range] except for total number of identifications: mean (standard deviation)). 

 

Table 3: Comparison of metrics between prevalence levels: hazard ratio (HR), odds ratio 

(OR) or rate ratio (RR), as appropriate, with 95%CI and p-value. 

 

Figure 1: Illustration of distance between eye position and polyp (edge of ROI) over time for 

a single video viewing.  Letters used in explanation of metric definitions, A: polyp becomes 

visible, B to C: first eye pursuit of ROI, D to F: second eye pursuit of ROI, E: polyp 

identification (indicated by dotted line), G: polyp disappears from view.  Note short periods 

of missing data at 17.7 and 19.7 seconds.  The horizontal line at distance 0 represents the 

edge of the ROI, and the horizontal line at distance 50 pixels the high visual acuity region 

within which eye pursuits of the ROI may occur. 

 

Figure 2: Illustration of the screen coverage metric, showing the division of the screen area 

into Upper, Central and Lower regions (dashed lines). The Central region occupies a 

256x256-pixel square at the center of the 512x512-pixel screen area (solid line).  An 

additional 100-pixel margin (shown by the outer bounding box) was allowed for gaze points 

measured outside the screen area; this was incorporated into the Upper or Lower region, as 

appropriate.  Superimposed is the pattern of gaze over the entire video duration for a single 
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reader (Reader 11) viewing the same case (Case 3) under different prevalence conditions: 

20% (left panel), 50% (middle panel) and 80% (right panel). 

 

Figure 3: Kaplan-Meier curves showing time to first pursuit in the three prevalence 

conditions.  The vertical axis shows the proportion of viewings for which a pursuit has 

occurred prior to the times shown on the horizontal axis.  Below the plot, the number of 

viewings per group for which a pursuit has not yet occurred is shown. 

 

Figure 4: Time points within each video at which polyp identifications occurred.  Prevalence 

conditions are indicated by different colors.  Cases that contain a polyp are labelled 1 to 5, 

and the red bar indicates the period during which the polyp was visible on the screen.  Cases 

with no polyps are labelled 6 to 10. 

 

Figure 5: Screen-capture from one of the displayed videos (Case 3, at around 5 seconds) 

showing a feature provoking a false-positive, in this case a mildly bulbous but normal fold 

(arrow). 
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Appendix A 

Additional Details of Statistical Analysis 

 

The multilevel model used for the primary analysis incorporated independent random 

intercepts for reader and video and included prevalence level as a factor.  If the standard 

deviation of either of the random effect distributions was estimated to be zero, the model 

was refitted with this random effect term removed to ensure that the estimates of the fixed 

effects and their standard errors were stable.  A table of estimated standard deviations of 

the random effects is included as Supplemental Material. 

 

The exact form of the model depended on the data type.  A proportional hazards model was 

used for two metrics (Time to first pursuit and Total assessment time span), as these are 

time-to-event variables, measuring periods of time until an identification of the polyp 

occurs.  Only the first ‘event’ (pursuit of ROI, or polyp identification) was used for these 

variables: any events occurring subsequently, such as a duplicate identification of the same 

polyp or to indicate a different polyp, were discarded in the analysis of these two metrics.  

Cases for which no event occurred were regarded as censored at the time the polyp left the 

screen.  Events that occurred at time zero, such as a reader’s gaze falling within the ROI at 

the instant the polyp became visible, were excluded from the analysis as they do not 

contribute to the likelihood under the standard proportional hazards model and such events 

are assumed to have occurred only because of chance.  The proportional hazards 

assumption was checked graphically using a log-log survival plot.  Results are presented as 

hazard ratios. 

 



28 
 

Logistic models were used for variables that were binary (Screen coverage, which was 

analyzed as three separate binary categories, Any correct identification and Any incorrect 

identification).  The metric ‘Any incorrect identification’ was analyzed separately for all 

videos, for videos with polyps and for videos without polyps.  This analysis was pre-

specified.  The metric ‘Assessment pursuit time’, which is expressed as a proportion of the 

time the polyp is visible, was also analyzed using a logistic model after first logit-

transforming the variable (a small positive value was added to observations of zero).  

Results are presented as odds ratios. 

 

Poisson models were used for the three remaining metrics (Assessment pursuit rate, Pursuit 

rate and Total number of identifications).  The raw counts from which ‘Assessment pursuit 

rate’ was calculated showed substantial overdispersion, but this was reduced markedly by 

including the appropriate time denominator as an offset, so the results are presented based 

on a Poisson rather than a negative binomial model.  The model for ‘Total number of 

identifications’ included an adjustment for whether the case included a polyp or not, 

although the size of the prevalence effect was relatively unaffected by this adjustment. 
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Appendix B 

Table: Estimated standard deviations (SD) of the case and reader random effect 

distributions 

Metric SD case SD reader 

Time to first pursuit 0.31 0.12 

Total assessment time span  0.80 0.09 

Assessment pursuit time 0.31 0.38 

Assessment pursuit rate 0.13 0 

Pursuit rate 0.15 0.20 

Screen coverage 

    Upper 

    Central 

    Lower 

 

0.42 

0.29 

0.29 

 

0.58 

0.54 

0.47 

Total number of identifications 0.24 0.31 

Any correct identification 3.03 0.28 

Any incorrect identification 

    Videos with polyps 

    Videos without polyps 

0.92 

1.24 

0.59 

0.78 

1.06 

0.66 
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Figure 1 

 

 

Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 

 


