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ABSTRACT

Touch is a primary nonverbal communication channel used
to communicate emotions or other social messages. Despite
its importance, this channel is still very little explored in
the affective computing field, as much more focus has been
placed on visual and aural channels. In this paper, we inves-
tigate the possibility to automatically discriminate between
different social touch types. We propose five distinct feature
sets for describing touch behaviours captured by a grid of
pressure sensors. These features are then combined together
by using the Random Forest and Boosting methods for cat-
egorizing the touch gesture type. The proposed methods
were evaluated on both the HAART (7 gesture types over
different surfaces) and the CoST (14 gesture types over the
same surface) datasets made available by the Social Touch
Gesture Challenge 2015. Well above chance level perfor-
mances were achieved with a 67% accuracy for the HAART
and 59% for the CoST testing datasets respectively.
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1. INTRODUCTION

Touch is an important channel for affective communication
and experience, as such interactive embodied technology
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should be endowed with the capabilities to interpret it. De-
spite this growing interest in various disciplines, and clear
opportunities for affective-touch aware technology, this af-
fective modality is still very little explored in the affective
computing community where the focus has been on other
affective modalities ( [40] [23] [2]. The Social Touch Gesture
Challenge 2015 is timely attempting to stimulate interest
and lead to the development of social touch automatic clas-
sification systems as the community has done for the other
modalities.

Humans communicate emotions and other social messages
through touch. We explore and appreciate objects through
touch. The emerging understanding of the physiological and
neural mechanisms at the basis of affective touch [9],[37] has
led to a growing interest in investigating how we communi-
cate or express affect through touch. Studies on multimodal
communication, have shown that touch amplify the intensity
of an emotion conveyed by the face and through the voice
[24]. Burgoon [5] showed that touch itself can convey more
complex social feelings such as trust and affection. Herten-
stein et al. [17] [16] contributed to this body of work by
showing that through touch we do not only communicate
the intensity of an emotion, but also its valence and that
we are able to discriminate between at least nine discrete
emotions from touch behaviour alone. Their work identifies
a set of touch gestures and kinematics that are used in social
interaction.

Social touch gestures have been investigated in the field of
Human-Computer Interaction as a way to build intimacy
and facilitate distance relationships. For example, Park et
al. [30] have shown that, when given an haptic channel, peo-
ple develop haptic codes to communicate at distance with
their partners. In human-robot interaction, social touch has
been shown to increase bond and trust in various therapeu-
tically applications ( [32] [33] [19]). In the commercial and
design settings, [1] has shown that we use different types
of touches not only to understand the characteristics of an
object (textile in this case) but also the affective sensations
it provokes in us. This is further supported by [31], where it



is shown that, during creative design sessions, designers use
affective touch to stimulate their creative processes. They
also discuss how designers observe the hands of their cus-
tomers touching a product to understand what they feel. In
more general terms, [20] and [3] discuss the importance and
the possibilities that affective touch offers to evaluate the
user experience in human-computer interaction contexts.

Initial work towards building systems for the automatic de-
tection of affective touch are summarised in Gao et al. [12].
Through their study, the authors also shows that the kine-
matics of strokes during a touch-based computer games on
smartphone allow the detection of how a player feels ob-
taining very high performances. However, each of these
works focus on one affective/social touch type at the time
(e.g., tapping, stroking). Discriminating between different
social touch gestures is also very important, as shown by
Hertenstein [16]. In addition, for affective and social touch
to be ubiquitous, it is important that the ability to clas-
sify it is independent of the type and shape of the sur-
face being touched. This capability has become very criti-
cal as embedding touch sensors in any type of mobile sur-
face is now achievable at a relatively low cost. Hence, it
is mandatory that this channel is investigated beyond the
flat surface of touch-based displays. The Social Touch Ges-
ture Challenge 2015 answers to all these needs by providing
two touch behaviour datasets: the ‘Human-Animal Affec-
tive Robot Touch’(HAART) dataset [10] and the ‘Corpus of
Social Touch’ (CoST) [22]. These datasets provide a wide
range of type behaviour on surfaces of different shapes and
consistencies embedded with pressure sensors. Our paper
responds to this challenge by proposing a way to describe
the types of touch gestures tracked by the sensors and by
proposing an ensemble of machine learning methods to dis-
criminate between the different types of touch behaviour.

The rest of the paper is organized as follows. Section 2
provides an overview of related works. Afterwards, Section
3 illustrates the methodology of our proposed approach in-
cluding the description of the feature sets and classification
methods. Section 4 presents the experimental results on
the challenge datasets. The possible influencing factors for
different performance indicators are discussed in Section 5
together with future directions.

2. RELATED WORKS

Human-Robot interaction is possibly one of the more active
areas where researchers have been investigating how to cre-
ate touch sensing capabilities. A typical approach is to cover
a robot with an artificial skin that simulates human touch
sensory system [8] [29] [39] [34] [36]. An indirect way to
give robots the capability to sense touch is instead to embed
them with sensors that measure temperature, proximity and
pressure [38] [18] [28] [42] [7] . Works using these two types
of approaches are discussed below.

The earliest work on artificial skin is in 1999 [29], where
a robot was covered with gridded pressure-sensitive con-
ductive ink sheets . Five different touch gestures (‘pat’,
‘scratch’; ‘slap’, ‘stroke’ and ‘tickle’) were performed on the
sensor sheet. Absolute pressure values and temporal differ-
ence between pressure values were used as features to dis-
criminate between these different types of touch.

Silvera-Tawil et al [39] developed further the concept of ar-
tificial skin by using the principle of electrical impedance
tomography (EIT). This innovation enabled to cover larger
areas of a robot and allowed to extract information such
as location, duration, displacement and intensity of touch.
‘Pat’, ‘push’, ‘stroke’, ‘slap’ and ‘tap’ gestures were investi-
gated and the LogitBoost algorithm was used for classifica-
tion purpose. In a follow-up study, Silvera-Tawil et al [34]
successfully implemented an artificial skin to cover the arm
of a full-size mannequin. Increasing the number of touch
gestures by adding ‘pull’, ‘slap’ and ‘squeeze’, they com-
pared the classification accuracy obtained with the Logit-
Boost algorithm (71%) with human recognition (90%). Fur-
ther experiments were shown in [35] by interpreting social
touch on the same artificial skin. Up to 90% accuracy were
achieved using Logitboost algorithm for both emotions and
social messages, similar with human recognition.

The second approach simulates touch perception capabilities
by using sensors. This approach has been extensively used in
social robotics: Shibata’s baby seal Paro [32] [33], SONY’s
dog, Aibo [11], Stiehl’s teddy bear the Huggable [38], Saldien
and Goris’s elephant-like creature Probo [14] [13], and the
latest one is a furry artificial lap-pet called Haptic Creature
[6] [42] [10]. Apart from robot-animal like form, other types
of interface such as Emoballon [28], TaSSt project [18] can
enable remote communication. We cover below some of the
more significant differentiating factors in relation to these
robots or interfaces.

The Huggable [38] is a robotic companion with the form of
a teddy bear, equipped with a combination of temperature,
electric field, and QTC force sensors intended to facilitate
affective haptic communication between two people. Nine
touch gestures (‘contact’, ‘pat’, ‘pet’, ‘poke’; ‘rub’, ‘scratch’,
‘slap’, ‘squeeze’ and ‘tickle’) were performed on an arm of
the robot, and features such as change in direction of motion,
average sensor value and the number of sensors active among
others, were extracted from the sensors.

Probo [14] [13] is an elephant-like social robot equipped with
a large variety of sensors. Probo can recognize whether it
is being hugged, scratched, or hurt. The robot is used to ad-
dress anxiety in hospitalized children. Similarly, Paro [32] [33],
the famous robot seal, responds to being touched, differen-
tiates between being stroked and hit, and tries to amend its
own behaviour accordingly, repeating actions that have been
rewarded with stroking, and avoiding actions that have led
to being hit.

The Haptic Creature, developed by Yohanan and his col-
leagues [41] [42], is a furry lap-sized social robot that com-
municates with the world through touch. By expressing it-
self through ear stiffness modulations, breathing rate, and
purring patterns, the Haptic Creature aims to create a com-
forting experience through touch-based interactions by sens-
ing and responding to human touch. The first experiments
with the Haptic Creature investigated the recognition of four
touch gesture types - ‘pat’, ‘stroke’, ‘slap’, ‘poke’- by attach-
ing force sensitive resistors all over its body [6]. These four
gestures were differentiated with an average of 77% accuracy,
depending on the sensor density of where it was touched.
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Figure 1: Overview of the proposed social touch ges-
ture recognition system (a) CoST (b) HAART (c)
SD (d) BMH (e) MSD (f) SMMHH (g) LBPTOP
(h) Random Forest (i) Boosting.

Taking one step further, Yohanan and Maclean [42] exam-
ined how humans express their feelings for the Haptic Crea-
ture by means of touch gestures. Based on these reports,
Yohanan and MacLean compiled a touch dictionary, also
called the Yohanan’s dictionary. Their findings inspired [10]
and [22] to create two datasets containing labelled pres-
sure sensor data of social hand touch gestures: HAART
and CoST. The aim of these datasets is to challenge the
creation of automatic affective touch classification systems
by providing a large variety of touch behaviour types and
kinematics as well as surfaces of different shapes and con-
sistencies. We aim to advance the work already carried out
on these datasets by proposing new touch features to better
capture the characteristics (including shapes and dynamics)
of the behaviour and new machine learning approaches to
address the complexity of the mapping.

3. METHODOLOGY

This section introduces the two datasets of touch types used
in this study, the set of features proposed to describe the
touch instances and the methods to classify them. The over-
all system is shown in Fig 1.

3.1 Touch Gesture Capture
This research is based on the two datasets provided by the
Social Touch challenge 2015: HAART and CoST.

3.1.1 HAART dataset

HAART [10] contains 7 touch gestures, performed by 10 sub-
jects on an 8-by-8 grid of pressure sensors, where each sensor
is approximately 1 square inch wide. The touch behaviour
was recorded at 54 Hz with 64 sensors of data cell per frame.
The sensors return integer values ranging between 0 and 972.
Each subject performed each gesture under different combi-
nations of substrates and different cover conditions with the
sensor lying between the substrate and the surface cover.
These are summarized in Table 1.

Table 1: HAART dataset: 7 touch gestures with
different substrates and covers.
Substrate | Cover | Gesture

CURVE Fur constant, no touch,
FOAM Long | pat, rub, tickle,
NONE None | scratch, stroke

Table 2: COST dataset: 14 touch gestures.

1 2 3 4 5 6 7
grab | hit |massage | pat | pinch |poke [press
8 9 10 11 12 13 14
rub |[scratch | slap [stroke [squeeze |tap [tickle

3.1.2 CoST dataset

CoST [22] contains 14 types of touch gestures (see Table 2).
The touch gestures were performed by 31 subjects on a 8-
by-8 grid of pressure sensors wrapped around a mannequin
arm. The gestures were recorded with a frame rate of 135
Hz with 64 channels per frame. The values obtained from
each channel are integers ranging between 0 and 1023. Each
participant performed each gesture 6 times with 3 variations:
gentle, normal and rough. More details on the data can be
found in [22].

3.2 Touch Feature Extraction

The original recording of the touch sensors provided by the
Social Touch Gesture Challenge 2015 needed to be trans-
formed into high-level features, to gain more meaningful
descriptions of the touch behaviour. The aim is to de-
velop general features that are as independent as possible of
the surface considered and of the kinematics of the gesture
type. Parameters tuning is used to optimize their discrimi-
native power to the different recording settings used for the
two dataset but not between surfaces within the HAART
dataset. Five sets of features are proposed.

3.2.1 Statistical distribution (SD) of pressure surface

We aimed to identify how much surface area (i.e., the num-
ber of sensor cells) is either not touched, touched (i.e., we
are sure the area is touched and it is not noise) or touched
with high pressure. The values used to capture these three
conditions are represented in Table 3. For the no-touch and
high-pressure conditions, we computed two features for each
dataset: one using values computed at gesture level and one
using values computed at frame level. For the touched con-
dition, the median pressure value was used as a threshold
indicating that the surface had been touched. In the case of
the CoST, an analysis of the data, revealed that a pressure
value of 100 was also a good threshold for capturing when
the surface had been touched.

For each gesture instance and for each pressure value/range
(Table 3), we computed the underlying distribution of the
number of sensor cells per frames having such value/range.
The MATLAB ‘histcounts’ was used to this purpose. In or-
der to normalize the length of these features within a dataset
(given that gestures had different frame numbers), appro-
priate bin widths and edges (see Table 4) were set to fit all
instances. These parameters were estimated using the same
Matlab function. An example of resulting feature (repre-



Table 3: Pressure values per datset

CoST

HAART

At frame level

At gesture instance level | At frame level | At gesture instance level

no touch = min. pressure

= min. pressure

= min. pressure = min. pressure

touched -

>= median pressure; -
>= 100

>= median pressure

high pressure | >= (max. pressure - 100)

>= (max. pressure - 100)

= maxX. pressure = Imax. pressure

Sensor area distribution for 'touched' condition (i.e. pressure >= 100)
for a 'grab' instance in the CoST dataset
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Figure 2: An example of a sensor area distribution
feature for the ‘touched’ condition for a ‘grab’ in-
stance using the MATLAB function histcounts and
the relevant parameters listed in Table 4.

Figure 3: CoST dataset: Binary Motion History im-
ages: (from Left): Grab, Pinch, Poke, Rub, Tickle,
and Pat.

sented by a histogram) is provided in Fig 2.

Table 4: Parameters computed for the MATLAB
function ‘histcount’

CoST HAART
bin bin edges bin bin edges
width [leading, trailing [width [leading, trailing
Nnotouch| 1 -0.5, 11.5 5 -0.5, 55.5
htouched 10 -0.5, 80.5 5 -0.5, 65.5
Nhighpre| 10 -0.5, 100.5 5 -0.5, 55.5

3.2.2 Binary Motion History (BMH)

This set of features aims to capture the ‘shape’ of a ges-
ture by computing a binary motion history (BMH) for each
gesture instance. For each instance, an 8 by 8 matrix rep-
resenting the sensor grid is created. A cell of the matrix
is set to 1 if, throughout the gesture instance, the corre-
sponding sensor cell was touched at least once with high
pressure (CoST: pressure >= (maximum — 100); HAART:
pressure >= (maximum — 5)), 0 otherwise. Fig. 3 shows
examples of BMH for CoST gestures: ‘grab’, ‘pinch’, ‘poke’,
‘rub’, ‘tickle’, and ‘pat’ instances (in order from left to right).
These examples illustrate how the BMH features provide an
intuitive description of the different shapes from the types
of the various gestures.

3.2.3 Motion statistical distribution (MSD)

A third set of features aimed to capture the main trends
of the pressure behaviour. Twelve statistic features are ex-
tracted from each sensor sequence F' = (f1, f2, -, fr) in-
cluding minimum, maximum, mean, first quartile, median,
third quartile, area, total variation, interquartile range, vari-
ance, skewness and kurtosis on the changing information for
each sensor. ‘L’ is the number of the frame. ‘area’ is the sum
of all values of each sensor in all frames; ‘total variation’ is
computed as the sum of changes in values for each sensor in
all frames. The number of frames for the dataset is fixed as
432 frames, but the number of frames for the CoST dataset
varies between instances. The extracted features are based
on the whole gesture movement of each sensor independently
of the number of frames.

3.2.4  Spatial Multi-scale Motion History Histogram
(SMMHH) on touch dynamic

To provide more fine descriptions of the touch dynamics of
the recording, the data was also treated as a video. On each
frame, 8-by-8 sensors were treated as 8-by-8 pixels. Motion
History Histogram (MHH) is a method used for temporal-
based motion analysis, detecting pixel movements from a
temporal domain and summarizing them as patterns in a
spatial domain. This method was first developed for hu-
man action recognition by Meng et al.[26] to discriminate
between several motion gestures such as walking, boxing,
jumping etc. (for further details see [25] and [27]). A vari-
ation of the MHH method, called 1-D Motion History His-
togram, was suggested by Jan et al. to apply this concept
onto a 1-dimensional feature space [21], which looks for bi-
nary patterns within the feature vector sequence.

We propose a new variation of the original Motion His-
tory Histogram (MHH) algorithm, with two concepts that
have been applied to alter the MHH feature. The first con-
cept is the Multi-Scale Motion History Histogram (MMHH)
achieved by introducing a new dimension to MHH and by
skipping a fixed range of 1 to 5 frames during the motion
detection process. By comparing frame n with n 4+ 2 : 6 in-
stead of n + 1, the motion is greatly amplified by the visual
differences across the short time range, resulting in captur-
ing motion at different speeds. This gives a more dynamic
feature than the original MHH feature, providing a different
viewpoint for each gesture as shown in Fig. 4.

The second concept uses the average spatial-pooling on the
reshaped data. This allows to extract the motion informa-
tion from the different scales in a similar way of the convo-
lution neural networks of deep learning.

For the touch challenge, we applied Spatial Pooling three
times, producing 4 videos (including the original one) of:
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Figure 4: Overview of the Spatial Multi-Scale Mo-
tion History Histogram (SMMHH) on Touch Dy-
namic. Average pooling is applied on the video data
and then the Multi-Scale Motion History Histogram
is used to capture the motion data across different
scales of time.

8x8, 4x4, 2x2 and 1x1 sensors resolutions per gesture. On
each of the videos we then extract the Multi-Scale MHH fea-
ture with appropriate thresholds. All the features produced
are then resized and concatenated together making a feature
vector with the dimension of:

D> (S x M x P) = 2125 (1)

i=1

where i refers to each of the Spatially pooled videos, P; is
the total number of pixels in a frame for each video i, S =5
is the size of the Multi-Scale dimension, which has been set
from 2:6 and M =5 is the MHH pattern sequence size [26].

3.2.5 Local Binary Pattern on Three Orthogonal Planes

(LBPTOP) on touch dynamic
Similar to the SMMHH feature where touch recording data
was treated as a video, the popular video dynamic feature
LBPTOP [43] is extracted. The aim of the LBPTOP is to
capture the distribution of local pressure patterns as the
dynamics.

3.3 Touch Gesture Recognition

One of the goals of this challenge was to build an automatic
social touch gesture recognition systems. Due to multiple
distinct feature sets, ensemble learning methods were cho-
sen in order to combine these features in an optimised way.
Within ensemble learning, Random Forest [4] and Boosting
methods have been selected for the classification process.

3.3.1 Random Forest

The Random Forest (RF) algorithm was selected given its
popularity and its generally good performance in solving
classification problems. The main idea behind this algorithm
is to form a forest by training and combining different kinds
of decision trees, and the final classification result is decided
through a voting over these trees. The method combines the
‘bagging’ idea and the random selection of features. Detailed
information can be found in [4].

3.3.2  Boosting Algorithm
The Boosting algorithm is another ensemble learning method
that can convert a weak learner into a strong one. It gives

different weights to different features and combines all dis-
tinct features together in an optimized way. The boosting
implementation algorithm here is called Stage-wise Additive
Modelling [15]. The Boosting algorithm was used here in a
way similar to Adaboost, but the difference is in how the
error rate is computed.The Boosting algorithm gives to er-
roneously classified data more weight.

4. EXPERIMENTAL RESULTS

The experiments adhered to the Social Touch Gesture Chal-
lenge 2015 protocol using the training and testing subsets
provided. The models were firstly trained on the training
subset and evaluated using a 10 fold cross-validation process.
This process was also used for optimizing the parameter set
for the feature extraction and for building the models. Once
the optimization was completed, the parameters were fixed
and the models were tested on the testing subsets by the
challenge’s organizer (i.e., the labels of the testing datasets
were unknown to us). Both HAART and CoST datasets
were used.

The Random Forest and the Boosting learning methods were
used for the gesture recognition in the testing. For RF,
1000 trees were used. In the Boosting implementation, the
Random Forest was used as the weak leaners. 500 iterations
were used in all experiments. Both are implemented using
Weka software. Accuracy was used as performance measure,
that is the percentage of testing samples correctly classified
with respect to the true class.

4.1 HAART

In the training subset, only the data from 7 subjects out of
10 subjects were given for a total of 578 gesture instances.

Table 5 shows the experimental results for both the individ-
ual feature sets and for the combination of all the feature
sets. In the training sets, the average results of 10 fold cross
validation were being used as an evaluation purpose to take
advantage of all available data. When considering only in-
dividual features, MSD, SMMHH and LBPTOP obtained
higher recognition rates. However, the combination of all
the features led to significant improvement for the training
subset, giving 76.7% accuracy on RF and 77.7% for Boost-
ing. Using the combination of features, the networks were
trained on all sets of training data and testing on separate
sets of testing data. The effect of modelling all training data
together decreases accuracy to 66.5% for RF and 64.5% for
Boosting. However, despite the drops in recognition accu-
racy on the testing data, it still shows consistent results
across both classifiers.

The confusion matrices, shown respectively in in Table 6 and
Table 7, allows us to compare the results of each of the touch
gestures. Despite the decreasing accuracy in testing data,
both classifiers are still able to model the gestures quite well
even if differences apply. Among all the gestures, ‘tickle’ is
the most difficult to classify, showing obvious confusion with
scratch, for both classifiers. It is partly because these two
gestures are performed in a similar manner, making the dis-
crimination particularly hard on complex surfaces. It should
also be noted that the number of instances for ’tickle’ is quite
small compared to the other gestures. Finally, the choice of



RF as the best reported models are consistent with [10],
further showing the power of RF on combined datasets [10]

The results for the HAARTS testing set! are illustrated by
the confusion matrices for both Random Forest and Boost-
ing classifiers on the combined features presented in Table 6
and Table 7 respectively.

Table 5: HAART dataset: Gesture recognition rates

on different feature sets

Data Set | Feature Set | Random Forest | Boosting

SD 36.17% 33.50%

BMH 22.67% 22.34%

Training MSD 54.82% 53.61%

SMMHH 65.66% 60.84%

LBPTOP 53.01% 54.82%

Combined 76.65% 77.67%

Testing" | Combined 66.53% 64.54%

Table 6: HAART testing dataset: Confusion ma-
trix for the Random Forest classifier with an average
recognition rate of 66.53%

constant notouch [pat [rub [scratch [stroke [tickle
constant| 34 0 0 [0 0 0 0
notouch 1 36 0 [0 1 0 0
pat 0 0 30 |0 1 0 2
rub 0 0 1 |16 2 13 0
scratch 0 0 3 |17 26 3 24
stroke 0 0 1 2 0 18 3
tickle 0 0 1 |1 6 2 7

Table 7: HAART testing dataset: Confusion matrix
for the Boosting classifier with an average recogni-
tion rate of 64.54%.

constant motouch [pat [rub [scratch [stroke tickle
constant| 34 1 0 [0 0 0 0
notouch 1 35 0 [0 0 0 0
pat 0 0 19 | 2 2 0 3
rub 0 0 0 |14 2 4 0
scratch 0 0 6 |12 26 1 20
stroke 0 0 8 |7 2 30 9
tickle 0 0 3 |1 4 1 4
4.2 CoST

Table 8: CoST dataset: Gesture recognition accura-

cies for different feature sets

Data Set | Feature Set | Random Forest | Boosting

SD 41.24% 41.31%

BMH 27.55% 28.88%

Training MSD 44.82% 44.93%

SMMHH 52.68% 52.56%

LBPTOP 45.65% 46.36%

Combined 64.52% 64.44%

Testing Combined 58.67% 58.19%

Tt should be noted that the results were re-calculated by the
organizer for our submissions due to a mistake in converting
the required format of the labels.

For the CoST dataset, the data from 21 out of 31 subjects
were provided for the training, and the remaining were used
by the challenge organizers for the testing. There were a
total of 3524 and 1679 samples in the training and test-
ing set respectively. The results for both training and test-
ing experiments are shown in Table 8. Similar to HAART,
the use of combined features leads to higher accuracy for
the training data compared to individual features. It yields
64.5% accuracy in RF and 64.4% in Boosting. In the testing
dataset, the classification of 14 gesture classes achieved ac-
curacy of 58.7% using RF and 58.2% using Boosting, which
is four percent higher than the one reported in Jung et al [22]
(Bayes: 54%; SVM: 53%) for the same database. However,
direct comparison is not possible since Jung et al use a leave-
one-subject-out cross-validation approach instead of a split
training-testing evaluation process as in our case.

The confusion matrices in Table 9 and Table 10 respectively
show that ‘massage’, ‘pinch’, ‘poke’, ‘press’, and ‘stroke’ are
easier to recognize by both classifiers than the other ges-
tures. It can be noted that ’tickle’ is better recognized in
COST than in HAARTS. This could be due to the fact that
in COST the surface is always the same and it is more con-
stant. The most frequent confusion was between the follow-
ing gestures: ‘hit with slap’, ‘rub with scratch’ and ‘stroke;
squeeze with grab’. These findings resemble those previous
reported on this dataset [22].

S.  CONCLUSION AND DISCUSSION

In this paper, we investigate how to automatically discrimi-
nate between different touch behaviour types that are char-
acteristic of social affective interaction. The HAART and
the CoST datasets were used for this investigation. They
consist of various types of touch behaviour (e.g., patting,
tapping) captured using multiple pressure sensors in a grid
setting integrated into different types of substrates. Five sets
of high-level features were proposed to provide a rich descrip-
tion of each touch gesture over time. Beyond simple trends
captured by statistical features, we proposed features that
capture the shape and the dynamic of the touch behaviour
at different level of temporal and spatial granularity. These
features were inspired by features used in image and video
analysis.

Both individual features and combined set of features were
evaluated using the training dataset by cross-validations with
the ensemble of learning methods Random Forest and Boost-
ing. Within these five sets of features, the video based fea-
ture set achieved best performance on both datasets. How-
ever, the combination of all features led to better perfor-
mances possibly by complementing the fine video-based de-
scriptors with more coarse description of the behaviour.

Whilst the results are well beyond chance level, various as-
pects could be further investigated. 1) The selection of the
features and their tuning process (e.g., thresholds) could be
optimized to the type of touch surface, i.e., its substrate
and its cover. 2) Feature selection could be done on each
set of feature in order to maximize its discriminative power.
3)Rather than using a low-level features fusion, models could
be built on each set of features separately and then fused at
decision level. This would allow a better exploitation of
the different nature of the features and touch characteristics



Table 9: CoST testing datset: Confusion matrix for the Randon Forest classifier with a recognition accuracy

of 58.7%.
grab | hit | massage | pat | pinch | poke | press | rub | scratch | slap | squeeze | stroke | tap | tickle
grab 84 0 3 0 3 0 13 2 0 0 57 0 0 0
hit 0 57 0 19 0 3 0 0 0 27 0 0 22 0
massage 1 0 88 0 1 0 1 13 8 0 1 0 0 1
pat 0 0 0 41 1 1 0 0 0 0 0 1 18 5
pinch 1 2 4 2 91 4 9 0 1 0 8 3 1 5
poke 0 10 0 4 9 104 5 0 0 2 1 0 18 4
press 0 0 0 3 6 0 84 5 0 0 0 0 3 0
rub 3 0 5 0 0 0 0 37 1 0 0 13 0 0
scratch 4 0 12 2 0 0 0 23 72 0 0 2 0 29
slap 0 46 0 25 2 0 0 0 0 87 0 9 24 0
squeeze 26 0 3 1 7 0 7 4 2 0 52 0 0 0
stroke 1 0 3 2 0 0 1 27 10 0 0 80 0 2
tap 0 5 0 20 0 8 0 0 1 4 0 0 34 0
tickle 0 0 2 1 0 0 0 9 25 0 0 12 0 74

Table 10: CoST testing dataset: Confusion matrix for the Boosting classifier with a recognition accuracy of

58.2%.
grab | hit | massage | pat | pinch | poke | press | rub | scratch | slap | squeeze | stroke | tap | tickle

grab 93 0 1 0 4 0 14 2 0 0 73 0 0 0
hit 0 71 0 24 1 1 0 0 0 42 0 0 29 0
massage 4 0 94 0 1 0 1 20 13 0 1 0 0 9
pat 0 1 0 52 2 2 0 0 1 0 0 1 23 6
pinch 0 1 3 3 83 4 4 0 1 1 6 1 2 3
poke 0 9 0 3 9 101 2 0 0 3 1 0 14 1
press 2 3 0 8 14 2 92 6 1 2 2 2 7 0
rub 3 0 5 0 0 0 0 28 3 0 0 9 0 2
scratch 2 0 5 1 0 0 0 17 53 0 0 1 0 15
slap 0 24 0 13 0 0 0 0 0 68 0 5 10 0
squeeze 16 0 4 0 6 0 6 3 1 0 36 0 0 0
stroke 0 0 5 2 0 0 1 32 15 0 0 94 0 5
tap 0 11 0 14 0 10 0 0 0 3 0 0 34 1
tickle 0 0 3 0 0 0 0 12 32 1 0 7 1 78

each captures (e.g., its shapes and its dynamics). In partic- [4] L. Breiman. Random forests. Machine Learning,

ularly, it would be interesting to explore how their different
levels of granularity in capturing the spatial (3D) and tem-
poral dynamics of the gestures contribute to the recognition
process. Finally, whereas this work has focused on detecting
touch types, the next step would be to model their relation
with the affective or social message conveyed. This step
may require integrating the modelling of types behaviour
with more detailed kinemtics [16, 12].
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