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Abstract

We study the extent to which the weak Euclidean and stably free cancellation
properties hold for rings of Laurent polynomials A[t1, t

−1
1 , . . . , tn, t

−1
n ] with

coefficients in an Artinian ring A.
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Recall that a module S over a ring Λ is said to be stably free when S ⊕ Λa ∼= Λb

for some positive integers a, b. We say that Λ has stably free cancellation (= SFC)
when any stably free Λ-module is free. Elementary duality considerations show this
property is left-right symmetric. We show that Artinian rings have the SFC property.
More generally, we study the extent to which the SFC property holds for the rings

Ln(A) = A[t1, t
−1
1 , . . . , tn, t

−1
n ]

of Laurent polynomials in n variables t1 . . . , tn with coefficients in an Artinian ring A.
Here we do not assume that A is commutative but we do require that the variables ti
commute both amongst themselves and with the coefficients in A. When A is Artinian
the Jacobson radical rad(A) is nilpotent ([9], p.81) and the quotient A/rad(A) is
isomorphic to a product of matrix rings

(*) A/rad(A) ∼= Md1(D1)× . . .×Mdm(Dm)

where D1, . . . , Dm are division rings and d1, . . . , dm are integers ≥ 1. The Artinian
ring A is said to satisfy the Eichler condition (cf [11], pp. 174-175) when in the
decomposition (*) above, Di is commutative whenever di = 1. We strengthen this
condition as follows; say that A is strongly Eichler when in (*) above each division
algebra Di is commutative; then we have:

Theorem I: If the Artinian ring A is strongly Eichler then Ln(A) has property SFC
for all n ≥ 1.

There is a corresponding property which has strong stability implications for au-
tomorphisms of free modules. A ring Λ is weakly Euclidean(1) (cf [6] Chap.1) when
for all d ≥ 2, any X ∈ GLd(Λ) can be written as a product

X = E1 · · · · · En ·∆d(λ)

(1) The terminology arises from the classical theorem of H.J.S. Smith [10] which we may state as

saying that an integral domain with a Euclidean algorithm is weakly Euclidean.
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where each Ei is an elementary transvection and ∆d(λ) is an elementary diagonal
matrix with λ ∈ Λ∗. Here Λ∗ denotes the group of invertible elements in the ring Λ.
We say that the Artinian ring A is very strongly Eichler when in the decomposition
(*) above each Di is commutative and in addition each di ≥ 2:

Theorem II: If the Artinian ring A is very strongly Eichler then Ln(A) is weakly
Euclidean for all n ≥ 1.

Both Theorem I and Theorem II would seem to be best possible. In relation to
Theorem I, a result of Ojanguren and Sridharan [8] shows that, for n ≥ 2, Ln(D)
fails to have the SFC property whenever the division ring D is noncommutative. As
regards Theorem II, when n ≥ 2 the so-called ‘Cohn matrix’ (cf [2], p.26)(

1 + t1t2 −t22
t21 1− t1t2

)
∈ GL2(L2(F))

fails to decompose as a product of elementary matrices over any field F. A direct proof
of this result may be found on p.54 of Lam’s book [7]. When n = 1 we nevertheless
obtain the following useful result.

Theorem III : If the ring A is Artinian then L1(A) is weakly Euclidean; further-
more, if A also satisfies the Eichler condition then L1(A) has property SFC.

Finite rings are Artinian and strongly Eichler; thus we have:

Theorem IV : If the ring A is finite then

(i) Ln(A) has property SFC for all n ≥ 1; moreover

(ii) L1(A) is weakly Euclidean.

The results proved here all continue to hold if the rings Ln(A) are replaced by the
standard polynomial rings Pm(A) = A[s1, . . . , sm] or even by rings of mixed type
A[s1, . . . sm, t1, t

−1
1 , . . . tn, t

−1
n ]. However, as rings of the form Ln(A) occur naturally as

group rings F[Φ×Cn
∞] when Φ is finite, the construction Ln(A) seems more relevant

to applications in non-simply connected homotopy theory (cf [6], Chap.11).
We wish to thank the referee whose careful observations have helped to clarify a

number of statements.

§1 : The weak Euclidean property for L1(A) :

Given a ring Λ and integer d ≥ 2 there is a canonical Λ-basis {ε(d)(r, s)}1≤r,s≤d for
the ring of d× d matrices Md(Λ) given by

ε(d)(r, s)tu = δrtδsu;

that is, ε(d)(r, s) is the d× d matrix with ‘1’ in the (r, s)th position and ‘0’ elsewhere.
By an elementary matrix of Type I in Md(Λ) we mean one of the form

E(r, s;λ) = Id + λε(d)(r, s) (r 6= s, λ ∈ Λ).
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By an elementary matrix of Type II in Md(Λ) we mean one of the form

∆d(λ) =


λ 0 . . . 0 0
0 1 . . . 0 0

. . .
. . .

0 0 . . . 0 1

 (λ ∈ Λ∗)

Formally we have ∆d(λ) = Id + (λ− 1)ε(d)(1, 1) where λ ∈ Λ∗. We say that Λ is
weakly Euclidean when for d ≥ 2 each invertible matrix X ∈ GLd(Λ) can be written
in the form

X = E ·∆d(λ)

where E is a product of elementary matrices of type I over Λ and λ ∈ Λ∗. A ring
homomorphism ϕ : A→ B has the lifting property for units when the induced map
φ∗ : A∗ → B∗ is surjective. We say ϕ has the strong lifting property for units(2)

when in addition the following holds for α ∈ A;

α ∈ A∗ ⇐⇒ ϕ(α) ∈ B∗.

It is straightforward to see that:

(1.1) Let ϕ : A → B be a surjective ring homomorphism; if Ker(ϕ) is nilpotent
then ϕ has the strong lifting property for units.

Elsewhere ([6], Prop. 2.43, p.21) we have shown:

(1.2) Let ϕ : A → B be a surjective ring homomorphism where B is weakly Eu-
clidean; if ϕ has the strong lifting property for units then A is also weakly Euclidean.

Thus we have:

(1.3) Let ϕ : A→ B be a surjective ring homomorphism with nilpotent kernel; if
B is weakly Euclidean then A is also weakly Euclidean.

Proposition 1.4 : Let D1, . . . , Dm be (possibly noncommutative) division rings;
then Md1(D1[t, t

−1]) × . . . × Mdm(Dm[t, t−1]) is weakly Euclidean for any positive
integers d1, . . . , dm.

Proof : If Di is a division ring then Di[t, t
−1] is a (possibly noncommutative) integral

domain which admits a Euclidean algorithm (cf [3]). It is now straightforward to
see that matrix rings Mdi(Di[t, t

−1]) are also weakly Euclidean. (cf.[6] p.22). The
required conclusion now follows as the class of weakly Euclidean rings is closed under
finite direct products. 2

(2) The referee points out that the strong lifting property for ϕ may be re-stated as saying that ϕ

has the lifting property and is a local morphism in the sense of Camps and Dicks [1].
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Theorem 1.5: Let A be an Artinian ring; then A[t, t−1] is weakly Euclidean.

Proof: The radical rad(A) of the Artinian ring A is nilpotent (cf [9] p, 81). Conse-
quently rad(A)[t, t−1] is a nilpotent ideal in A[t, t−1]. Moreover

A/rad(A) ∼= Md1(D1)× . . .×Mdm(Dm)

for some division rings D1, . . . , Dm so that

A[t, t−1]/rad(A)[t, t−1] ∼= Md1(D1[t, t
−1])× . . .×Mdm(Dm[t, t−1]).

The desired conclusion now follows from (1.3) and (1.4). 2

§2 : Suslin’s Theorem and proof of Theorem II :
We shall use the following theorem of Suslin ([7], [12]):

Theorem 2.1: Let F be a field and let k ≥ 3; then any X ∈ GLk(Ln(F)) can be
written in the form

X = E1 · · ·Em ·∆k(λ)

where λ ∈ Ln(F)∗ and each Ei ∈ GLk(Ln(F)) is an elementary matrix of type I.

We note that the unit group Ln(F)∗ consists simply of elements of the form α · teii
where α ∈ F∗ and ei is an integer ([6], Appendix C).

Fixing a ring Λ and an integer q ≥ 2, we study elementary matrices over the rings
Ω = Md(Mq(Λ)). Write

E(i, j)kl = δikδjlIq

where Iq is the identity matrix inMq(Λ); then {E(i, j)}1≤i,j≤d is a basis forMd(Mq(Λ))
over Mq(Λ). When Mq(Λ) is considered as the base ring we write ‘•’ for matrix prod-
uct over Mq(Λ). Then elementary matrices of Type I in GLd(Mq(Λ)) take the form

E(i, j;Z) = Ĩ + Z • E(i, j)

where Ĩ denotes the identity matrix in Md(Mq(Λ)) and Z ∈Mq(Λ). Likewise elemen-
tary matrices of type II in GLd(Mq(Λ)) take the form

∆d(Z) =


Z 0 . . . 0 0
0 1 . . . 0 0

. . .
. . .

0 0 . . . 0 1


where Z ∈ GLq(Λ) = Mq(Λ)∗. In the special case where Z ∈ GLq(Λ) is itself an
elementary matrix of Type II over Λ

Z = ∆q(λ) =


λ 0 . . . 0 0
0 1 . . . 0 0

. . .
. . .

0 0 . . . 0 1


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with λ ∈ Λ∗ we write ∆d,q(λ) = ∆d(∆q(λ)) ∈ GLd(Mq(Λ)).
When d ≥ 2 there is a mapping, ‘block decomposition’, ν : Mdq(Λ)→Md(Mq(Λ))

defined as follows: if X = (xrs)1≤r,s≤dq ∈Mdq(Λ) and 1 ≤ i, j ≤ d then

ν(X) = (X(i, j))1≤i,j≤d

where X(i, j) ∈Mq(Λ) is given by X(i, j)kl = xq(i−1)+k, q(j−1)+l ; moreover:

(2.2) For any ring Λ, ν : Mdq(Λ)→Md(Mq(Λ)) is a ring isomorphism.

To record the relationship between the various elementary matrices under block
decomposition we first observe that there are unique functions

υ : {1, . . . , dq} → {1, . . . , d} ; ρ : {1, . . . , dq} → {1, . . . , q}

defined by the requirement t + q = qυ(t) + ρ(t) for 1 ≤ t ≤ dq. It is
straightforward to verify that:

(2.3) ν(ε(dq)(r, s)) = ε(q)(ρ(r), ρ(s)) • E(υ(r), υ(s)).

The inverse relation is perhaps clearer, namely:

(2.4) ν−1(ε(q)(a, b) • E(i, j)) = ε(dq)(q(i− 1) + a, q(j − 1) + b).

From (2.3) we note that:

(2.5) ν(E(r, s;λ)) = E(υ(r), υ(s); λ ε(ρ(r), ρ(s))) (λ ∈ Λ).

Likewise we have :

(2.6) ν(∆dq(λ)) = ∆d,q(λ) (λ ∈ Λ∗).

We first consider the rings Ln(F) = F[t1, t
−1
1 , . . . , tn, t

−1
n ] where F is a field.

Theorem 2.7: Let d, q ≥ 1 be integers such that dq ≥ 3. If X ∈ GLd(Mq(Ln(F))
then X can be expresssed as a product

X = E1 • . . . • Em •∆d,q(δ)

where E1, . . . , Em ∈ GLd(Mq(Ln(F))) are elementary of Type I and δ ∈ Ln(F)∗.

Proof : Put Λ = Ln(F). If X ∈ GLd(Mq(Λ)) put X̂ = ν−1(X) ∈ GLdq(Λ). By

Suslin’s Theorem, X̂ can be expressed as a product

X̂ = E1 · · ·Em ·∆(λ)

where λ ∈ Ln(F)∗ and each Ei ∈ GLdq(Ln(F)) is an elementary matrix of type I.
Thus

ν(X̂) = ν(E1) • . . . • ν(Em) • ν(∆(λ))
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so that, writing Ei = ν(Ei) we have X = E1 • . . . • Em •∆d,q(δ). 2

Corollary 2.8 : If F is a field then Mq(Ln(F)) is weakly Euclidean for each q ≥ 2.

The weak Euclidean property is preserved under finite direct products. Moreover
the construction Ln commutes with both direct products and with the functor Λ 7→
Mq(Λ); hence we have:

Corollary 2.9 : Ln[Mq1(F1) × . . . . . . ×Mqm(Fm)] is weakly Euclidean whenever
F1, . . . ,Fm are fields and q1, . . . , qm are integers ≥ 2.

Theorem 2.10: If the Artinian ring A is very strongly Eichler then Ln(A) is weakly
Euclidean for n ≥ 2.

Proof : Write A/rad(A) ∼= Mq1(F1) × . . . ×Mqm(Fm) for some fields F1, . . . ,Fm

and integers q1, . . . , qm ≥ 2. Then Ln(rad(A)) is a nilpotent ideal in Ln(A) and

Ln(A)/Ln(rad(A)) ∼= Ln[Mq1(F1)× . . . . . .×Mqm(Fm)].

The desired conclusion now follows from (1.3) and (2.9). 2

Theorem II is now the conjunction of (1.5) and (2.10).

§3: Proof of Theorems I, III and IV:
The following is a straightforward deduction from Nakayama’s Lemma (cf [6] pp.

170-171).

Proposition 3.1 Let ϕ : Λ → Ω be a surjective ring homomorphism such that
Ker(ϕ) is nilpotent; if Ω satisfies SFC then so also does Λ.

Suppose that A is an Artinian ring such that

A/rad(A) ∼= Md1(D1)× . . .×Mdm(Dm)

where D1, . . . , Dm are division rings. We shall apply (3.1) in the case Λ = Ln(A),
Ω = Ln(A)/Ln(rad(A)) and ϕ is the natural mapping. Then

Ω ∼= Md1(Ln(D1))× . . .×Mdm(Ln(Dm)).

We showed in [5] that Ω has property SFC provided each Di is commutative; that
is, provided A is strongly Eichler. Thus from (3.1) we obtain:

Proposition 3.2 : If the ring A is Artinian and strongly Eichler then Ln(A) has
property SFC.

As we observed in the Introduction, Ojanguran and Sridharan proved in [8] that
Ln(D) fails the SFC property whenever n ≥ 2 and the division ring D is noncom-
mutative. However, in the case n = 1 one may show that L1(D) = D[t, t−1] has
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SFC regardless of whether the division ring D is commutative or not. Indeed, in
that case, D[t, t−1] is projective free (cf [4] or [5] Prop 2.9). Now the SFC property
is preserved under finite direct products and passage to matrix rings ([6] p. 171-173).
Thus Md1(L1(D1))× . . .×Mdm(L1(Dm)) has property SFC. From (3.1) we get:

Proposition 3.3 : If the ring A is Artinian then L1(A) has property SFC.

The conjunction of (3.2) and (3.3) is Theorem I of the Introduction.

Any finite ring A is trivially Artinian so that A/rad(A) ∼= Md1(D1)×. . .×Mdm(Dm)
where D1, . . . , Dm are finite division rings. However, a celebrated theorem of Wed-
derburn (cf [13] p.1) now shows that each Di is commutative; that is :

(3.4) Any finite ring is Artinian and strongly Eichler.

Thus from (1.5), (3.2) and (3.4) we have:

Corollary 3.5 : Let A be a finite ring ; then

(i) Ln(A) has property SFC for all n ≥ 1;

(ii) L1(A) is weakly Euclidean.

We may regard the coefficient ring A as a degenerate case A = L0(A). Thus sup-
pose that A is Artinian and write A/rad(A) ∼= Md1(D1) × . . . ×Mdm(Dm) where
D1, . . . , Dm are division rings. Then each Md1(D1) is weakly Euclidean and has
property SFC. As both these properties are closed under finite direct products then
A/rad(A) is weakly Euclidean and has property SFC. However, rad(A) is nilpotent
so that, from (1.3) and (3.1), we conclude the following which should be well known
but is difficult to locate explicitly in the literature.

(3.6) Any Artinian ring is weakly Euclidean and has property SFC.
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