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It is widely accepted there was something exceptional about human cognitive evolution. 

Among extant primates we are behaviourally and cognitively distinct (Laland & Brown, 

2011). This distinction evolved during our descent from an ape-like ancestor, was shaped by 

natural selection, and must have a proximate basis in neural adaptation and specialisation. 

Identifying these adaptations has long been a goal of evolutionary biologists (Striedter, 2005). 

An often-cited candidate is the expansion of the frontal regions of the neocortex which, it has 

been argued, became exceptionally large during human evolution (Rilling, 2006). Recent 

work, however, suggests that this is not the case (Barton & Venditti, 2013). 

Previous claims for a human-specific enlargement of the frontal lobes have, in fact, 

been inconsistent (see Rilling, 2006). Some studies have claimed there was global expansion 

of the frontal lobe, whilst others argued for a specific expansion of particular regions (e.g. 

prefrontal cortex), tissue types (e.g. white matter), or hemispheres. Some showed the pattern 

was human-specific, others a characteristic of great apes, or even apes in general. Barton and 

Venditti (2013) argue this ambiguity is a product of using different measures of frontal lobe 

size, including some that do not appropriately correct for the pattern of allometry between the 

frontal lobes and the rest of the brain. The whole neocortex becomes disproportionately large 

as brain size increases because white matter, which contains nerve fibres connecting different 

structures, expands much more rapidly than grey matter or neuron number. Although the 

ballooning of white matter probably reflects size-related constraints on maintaining 

connectivity, it can produce the appearance that the cortex – or a specific cortical region - is 



selectively enlarged when viewed as a proportion of total brain size (Barton & Venditti, 

2013).  

A second problem affecting some previous studies is the failure to acknowledge the 

shared evolutionary history of living species. Shared ancestry leads to the expectation that 

more closely related species should resemble each other more than more distant relatives, and 

renders comparative data non-independent. Using comparative methods that correct for this 

non-independence, Barton and Venditti re-visit several datasets to address the issue of 

allometry and resolve the debate over the size of the human frontal lobes (Barton & Venditti, 

2013). To do so they examine the relationship between the size of frontal and non-frontal 

structures across non-human primates and assess whether humans fall within the 95% 

confidence limits of these relationships. In contrast to the previous inconsistencies, their 

results are remarkably unambiguous. Regardless of the region or tissue type used as the focal 

trait, be it whole frontal cortex, prefrontal cortex, prefrontal white matter, or limbic frontal 

cortex, humans scale just like any other primate. The same is true when the taxonomic net is 

spread to apes; they too have frontal lobes that scale like those of other primates.  

 Perhaps though there is something peculiar about the rate at which the frontal lobes 

evolved in humans? Evolutionary rates can be used as an indicator of the strength of 

selection, so to test this hypothesis Barton and Venditti apply a model of evolution that 

estimates the rate of phenotypic evolution along different branches in a phylogeny to identify 

upwards shifts indicative of changes in selection pressure (Venditti et al., 2011). But again, 

there is nothing to indicate that the evolutionary trajectory of humans, or apes, was 

exceptional. Although the human lineage has the highest rate of evolution for absolute frontal 

lobe size, when the allometric relationship with other brain structures is accounted for, the 

human branch is unremarkable. 

 These combined results imply that the size of the frontal lobes in humans is as would 

be expected for a primate with our brain size. Indeed a growing number of studies have found 

a similar conclusion. Beyond volumetric scaling, for example, the human cortex has the same 

number of neuronal and non-neuronal cells as predicted by their allometric scaling rules in 

primates (Azevedo et al., 2009). This conserved volumetric and cellular scaling suggests 

some underlying constraint, either functional or developmental, which our species adheres to. 

Nonetheless, evidence that the human frontal lobe does not depart from allometry, and 

is therefore no more functionally derived than expected, has previously been met with some 



opposition, and the debate will most likely rumble on. Several authors (e.g. Deacon, 1990; 

Passingham, 2002; Striedter, 2005; Rilling 2006; Dunbar and Schultz, 2006) have noted that 

even if the human frontal lobes are not relatively large, because they scale hyper-

allometrically with the rest of the brain, as they increase in volume they become 

disproportionately large – that is, they occupy an increasing percentage of the brain’s total 

volume. This fact alone, it is argued, could lead to increased functional capacity without 

shifts in relative size (Deacon, 1990; Striedter, 2005). The logic of this hypothesis is that 

large structures are expected to be more connected to others, and therefore an increase in 

proportional size may involve changes in the connections the frontal lobe makes with other 

structures, allowing them to exert a greater influence on other brain regions (Striedter, 2005). 

Other authors dismiss this idea on the grounds that it requires special pleading in favour of 

the frontal lobes, conflates volume with computation capacity when other traits which scale 

in different ways, such as neuron or synapse number, may be more relevant, requires a grater 

cognitive output per gram of primate frontal lobe than that of a cetaceans or elephants, and 

fails to dismiss the null hypothesis that shared allometries reflect shared constraints (Barton 

& Venditti, 2013).  

 Emphases on either changes in relative size or changes in proportional size as the 

ecologically or cognitively pertinent trait make different assumptions about how selection 

and constraints act on brain structure. Unfortunately these assumptions are rarely discussed. 

Further confusion is caused by the ease with which proportional and absolute size are 

conflated, and differing uses of ‘adaptation’ and ‘adaptive change’.  

Relative brain size is measured as the departure in the size of a trait from the 

allometric relationship predicted from related taxa. Brain structures which deviate from 

allometry have been shown to be associated with various ecological traits (see Striedter, 

2005; Healy & Rowe, 2007 for reviews). A common interpretation of this pattern is that 

allometry between two structures represents a conserved function or functional constraint 

(Barton & Harvey, 2000), in which case changes in size without deviation from the predicted 

allometric pattern are still adaptive because they serve to maintain a vital function. In 

contrast, deviation from this pattern may reflect a new adaptation, that is, an adaptive change 

in function. For example, if two correlated structures increase in size, either due to selection 

on the overall size of the system or one particular component of it, the relative size of each 

structure will remain constant, as this is necessary to maintain the basic co-functionality 

between the two structures. If alterations in function are shaped by selection, the relationship 



between the two structures may change, and this would bring about a change in the relative 

size of both. 

Under the view above, changes in proportional size are also adaptive, as they are 

products of an allometry imposed by functional constraint, so an increase in proportional size 

serves to maintain the basic functional relationship, perhaps by maintaining or changing the 

underlying functional connectivity. However, the change in proportional size would not 

represent a new adaptation in itself because it is one component of a functionally connected 

system. In the absence of changes in relative size, for changes in proportional size to 

represent a new adaptation that was specifically selected for, the underlying constraints must 

be quite different; the coevolution between two structures cannot reflect strong functional 

constraints, because the change in size must produce an additional volume of tissue that is not 

necessary to maintain the ancestral functional.  

Instead, we could invoke a strong developmental constraint as the cause of the 

allometric relationship, such that it is easier for selection to bring about changes in the size of 

suites of structures, rather than individual ones (Finlay & Darlington, 1995). In this case 

allometry does not necessarily reflect an adaptive co-functionality. Under this assumption 

selection on the overall size of the system could produce some functional redundancy in one 

or more components, particularly in the presence of hyper-allometry. This “excess” could 

then become the fodder for secondary selection to act upon and ultimately bring about 

changes in the substructure, connections or function of one or both components. If selection 

acts on the volume of a specific structure, then developmental constraints may bring about 

increased volumes of associated structures which are then reshaped by positive selection or 

lost by negative selection, for example by targeted apoptosis or changes in the later stages of 

development. In the case of the latter, which may be more likely if the excess tissue imposes 

a significant energetic cost, there could be a secondary change in relative size. In these 

scenarios, changes in the proportional (or perhaps absolute) size of a structure under direct 

selection could be regarded as an adaptation, if it is associated with evolutionary changes in 

function, and may or may not be associated with changes in relative size. 

 My presentation of these arguments is over-simplified, but it encourages more 

exploration of the assumptions that underpin different interpretations of the importance of 

size. For changes in the proportional size of the frontal lobes to be adaptively significant in 

the absence of changes in relative size, we would expect there to be weak functional 



constraints but strong developmental constraints between the frontal lobes and their 

correlated structures. We could also argue that selection may have been initially acting on the 

overall size of the system, and that any functional changes in the frontal lobe are the product 

of secondary selection. 

The nature of the constraints acting on brain architecture is a long running debate. In 

mammals the relatively conserved developmental timing of brain components and the 

allometric relationships between them has been interpreted as evidence for substantial 

developmental constraints (Finlay & Darlington, 1995). Although this approach does suggest 

the presence of strong constraints, it does not necessarily demonstrate that they are 

developmental in nature. Furthermore, there is strong evidence that allometric deviations or 

shifts in brain structure are possible, both at a coarse (Barton & Harvey, 2000) and finer scale 

(Barton, 2007). To identify the nature of genetic/developmental constraints one promising 

route is the adoption of a quantitative genetics approach. A recent study by Hager et al. 

(2012) found little evidence for genetic correlations between different brain components in 

lab strains of the house mouse suggesting the absence of either pleiotropic effects of genetic 

changes, or shared developmental mechanisms between brain components (see Vallender, 

2013 for commentary). Studies in lab mice have garnered criticism as being removed from 

real fitness effects and previous quantitative genetic studies of brain:body allometry produced 

varied results in different lab strains (e.g. Atchley et al., 1984; Belknap et al., 1992), but 

Hager et al.’s results are in line with quantitative genetic studies in pedigrees of primates. For 

example, Fears et al. (2009) found that after including total brain volume as a covariate the 

volume of the cerebrum, cerebellum, hippocampus and corpus callosum all have a significant 

genetic component suggesting each phenotype is highly heritable independently of total brain 

size. Intra-specific studies such as these suggest the developmental constraints acting on brain 

components are not necessarily sufficiently strong to restrict the action of selection, or drift, 

from altering allometry. Pinpointing the nature of constraints on a macroevolutionary scale is 

challenging, but the fact that coevolution between brain components closely mirrors the 

functional connections between them implies some level of functional constraint (Barton & 

Harvey, 2000).  

My own reading of the literature therefore suggests that developmental constraints 

may be insufficiently strong and functional constraints not sufficiently weak to render likely 

the scenario necessary for proportional size to be viewed as an adaptation. Of course, others 



may come to different conclusions. Regardless, when making arguments about different 

measures of size we must be explicit about the functional and developmental consequences 

these arguments invoke. To resolve the debate a greater understanding of the nature of the 

constraints that produce allometric relationships between brain components is clearly needed, 

along side further data on the functional consequences of changes in absolute or proportional 

size. Of course, even when armed with this information, the identification of one particular 

region of the brain as exceptional requires a full assessment of the functional significance of 

other correlated structures (Barton, 2012). In this sense understanding how selection acts on 

functionally linked components of distributed neural networks, how these produce complex 

behaviour, and how selection acted on different networks in different groups of animals will 

play a vital role in understanding the evolution of the human brain. 
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