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NONLINEAR DYNAMICS AND WALL TOUCH-UP IN UNSTABLY
STRATIFIED MULTILAYER FLOWS IN HORIZONTAL CHANNELS

UNDER THE ACTION OF ELECTRIC FIELDS∗
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PETROPOULOS§ , AND JEAN-MARC VANDEN-BROECK¶

Abstract. This study considers the nonlinear dynamics of stratified immiscible fluids when
an electric field acts perpendicular to the direction of gravity. A particular setup is investigated
in detail, namely, two stratified fluids inside a horizontal channel of infinite extent. The fluids are
taken to be perfect dielectrics, and a constant horizontal field is imposed along the channel. The
sharp interface separating the two fluids may or may not support surface tension, and the Rayleigh–
Taylor instability is typically present when the heavier fluid is on top. A novel system of partial
differential equations that describe the interfacial position and the leading order horizontal velocity
in the fluid layers is studied analytically and computationally. The system is valid in the asymptotic
limit of one layer being asymptotically thin compared to the second fluid layer, and as a result
nonlocal electrostatic terms arise due to the multiscale nature of the physical setup. The initial
value problem on spatially periodic domains is solved numerically, and it is shown that a sufficiently
strong electric field can linearly stabilize the Rayleigh–Taylor instability to produce nonlinear quasi-
periodic oscillations in time that are quite close to standing waves. In situations when the instability
is present, the system is shown to generically evolve to touch-up singularities with the interface
touching the upper wall in finite time while the leading order horizontal velocity blows up. Accurate
numerical solutions allied with asymptotic analysis show that the terminal states follow self-similar
structures that are different if surface tension is present or absent, but with the electric field present.
In the presence of surface tension, the touch-up is found to take place with bounded interfacial
gradients but unbounded curvature, with electrostatic effects relegated to higher order. If surface
tension is absent, however, the electric field supports touch-up with a local cusp structure so that the
interfacial gradients themselves are unbounded. The self-similar solutions are of the second kind and
extensive simulations are used to extract the scaling exponents. Distinct and independent methods
are described and implemented, and agreement between them is excellent.

Key words. singularity formation, similarity solutions, finite time singularity, touch-up singu-
larity, Rayleigh–Taylor instability, electric fields, asymptotic behavior, Fourier analysis
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1. Introduction. Rayleigh–Taylor instability is a fundamental phenomenon in
fluid dynamics, and it occurs when a heavier fluid lies above a lighter fluid in the
presence of a constant gravitational field [30, 35]. Interest in this problem stems
from its importance to a wide variety of applications such as oceanography, mixing
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SINGULARITY FORMATION IN UNSTABLY STRATIFIED FLOWS 93

([2] and references therein), thermal convection [10], finger selection in splashes [17],
inertial confinement fusion [39, 31, 3], and other natural phenomena and technical
applications [32]. When fluids are immiscible, a sharp interface exists between them
and any perturbation of the interface causes formation of a pattern of rising bubbles
of lighter fluid and falling spikes of heavier fluid. As the lighter and heavier fluids pass
by each other, a strong shearing flow develops on the sides of the spike. This part of
the interface is then susceptible to the Kelvin–Helmholtz instability. For inviscid and
incompressible fluids, the shear region and the interface coincide and the interface can
be modeled as a vortex sheet with the strength changing by the baroclinic generation
of vorticity [4]. The growth rate in the Kelvin–Helmholtz instability is higher than
than in Rayleigh–Taylor instability. The Kelvin–Helmholtz instability dominates and,
as a result, the vortex sheet rolls up. The type of subsequent roll-up may be related to
the type of singularity developed by the interface. It is believed that these singularities
immediately precede the rollup of the interface and determine the rate of mixing in the
flow [4, 33]. A recent review of theoretical modeling approaches of Rayleigh–Taylor
instability and turbulent mixing is provided by [1].

Singularity formation in interfacial flows has received considerable attention due
to the fact that singularities, if encountered, are important mathematically and phys-
ically. The singularities considered here are different from those found in vortex sheet
or Rayleigh–Taylor problems (see, for example, [24, 4, 23, 8, 37]). Instead of a curva-
ture singularity, the confining geometry in the present study induces fluid-structure
interaction and touch-up singularities in finite time. The behavior is more reminiscent
of the dynamics of liquid layer flows as in [27, 36] for inviscid electrified flows, and
[38, 40] for viscous electrified flows. The physical origin of the instabilities is different,
however, but the mathematical singularities after finite time are analogous to those
described here. In the liquid layer problem in [27], gravity is stabilizing, but a vertical
electric field induces instability that manifests itself nonlinearly by a touchdown in
finite time with corner singularities in the presence of surface tension. The liquid
sheet study in [36] has an electric field parallel to the undisturbed sheet surface, and
gravitational forces are absent; the flow is linearly stable but can be pushed to rupture
by a sufficiently large initial condition—surface tension is present and corner singu-
larities emerge once more. Both of these cases are analogous to the present study
when surface tension is present. The problem where surface tension is absent but an
electric field is used to stabilize the system has not been studied previously and in
fact is shown to produce stronger spatial singularities in the sense that the interface
touches the wall with a cusp form locally. From a physical perspective, it is useful
to identify the type of emerging short-scale structures because they affect the rate at
which the electric field becomes singular. Large electric fields can in turn produce
dielectric breakdown, a phenomenon that is quite complex to model accurately.

Linearly, Rayleigh–Taylor instability in ideal fluids has short waves growing the
fastest (see Chandrasekhar [11]). These can be dispersively regularized by the inclu-
sion of surface tension, and the flow can be followed into the nonlinear regime (see, for
example, the models, analysis, and computations in [29, 5, 7, 12]). However, in general
situations surface tension is not sufficient to completely suppress the Rayleigh–Taylor
instability, which is still dominant in the long wave regime. In this paper, we inves-
tigate the effects of horizontally applied electric fields that have been shown to also
induce a dispersive regularization but in particular can completely suppress Rayleigh–
Taylor instability in the linear regime at least [14, 22, 13, 20]. Nonlinear studies were
considered in [6], and direct numerical simulations of the Navier–Stokes equations cou-
pled to electrostatics have been carried out in [13]. The latter paper also demonstrates
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how the electric field can be used (by on-off switching) to generate sustained periodic
interfacial oscillations that can be useful in mixing. The nonlinear study [6] excludes
Kelvin–Helmholtz instability and shows that a horizontal electric field can completely
suppress Rayleigh–Taylor instability in bounded two-fluid systems. The related study
[20] considers a hanging film wetting the underside of a horizontal dielectric slab; be-
neath the film there is an unbounded hydrodynamically passive dielectric (e.g., air)
and the effect of the solid dielectric slab is taken into account, i.e., the electric field
is solved for in that region also to provide a nonlocal effective boundary condition for
the field at the horizontal fluid-solid interface. It is shown that the electric field can
suppress the gravitational instability in agreement with the present model. However,
if surface tension forces and/or electric fields are weak, the interface is expected to
develop a singularity after a finite time, and the detailed mathematical structures of
such solutions are the subject of the present work.

The paper is organized as follows. In section 2, we briefly formulate the problem
and derivation of evolution equations for thin upper layers. Linear stability results are
presented in section 3 to demonstrate that both surface tension and/or the electric
field can completely suppress Rayleigh–Taylor instability. Representative numerical
solutions in stable and unstable regimes are shown in section 4. They indicate that
when surface tension and/or the electric field are not strong enough, the instability
develops after a finite time with the interface touching the wall and velocity blowing
up. Section 5 is devoted to the construction of similarity solutions that describe such
terminal singular states. The singularity is shown to be of the second type and the
exponents depend on a parameter α. Three different methods to estimate the value of
α are presented. They are based either on temporal or spatial structure of singularity
and produce accurate approximations of α with an excellent agreement. The cases
when surface tension is present or absent are considered separately since scalings are
different. Section 6 provides our conclusions.

2. Mathematical model.

2.1. Governing equations and boundary conditions. We consider a two-
dimensional system of two immiscible, inviscid, irrotational, and incompressible fluids
with densities ρ1, ρ2 that are bound together in an infinite horizontal channel of depth
Du and separated by an interface given by y = H(x, t) in a Cartesian coordinate
system with t being time. The schematic of the problem is shown in Figure 1. The
fluids are assumed to be perfect dielectrics that have electrical permittivities ϵ1 and
ϵ2, and the surface tension coefficient between them is σ. The lower fluid is located
in region 1 given by 0 < y < H(x, t) and the upper fluid occupies region 2 given
by H(x, t) < y < Du. A uniform electric field E0 = E0î = V0

D î acts horizontally
with respect to the undisturbed configuration, with V0 the characteristic voltage drop
and D the undisturbed depth of the lower layer. Gravity acts in the negative y-
direction with acceleration g. The hydrodynamic equations are derived from Euler’s
equations, which can be represented in terms of harmonic fluid potentials φ1 and
φ2, say, with the fluid velocity fields given by u1,2 = ∇φ1,2. The electrodynamic
equations are obtained from the electrostatic limit of Maxwell’s equations. Since the
induced magnetic fields are negligible, Faraday’s law becomes ∇ × E1,2 = 0, where
E1,2 is the electric field in each region. Therefore, we can introduce voltage potentials
V1,2 such that E1,2 = −∇V1,2. In addition, because there are no volumetric charge
concentrations in the fluids, Gauss’s law reads ∇ · (ϵ1,2E1,2) = 0. Combining this with
Faraday’s law, we get that V1 and V2 are also harmonic functions. The field equations
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Fig. 1. Schematic of the problem.

are, then,

∆φ1,2 = 0, ∆V1,2 = 0,(2.1)

where ∆ ≡ ∂
∂x2 + ∂

∂y2 . The boundary conditions at y = H(x, t) are the kinematic
conditions, continuity of normal stresses, continuity of the normal component of the
displacement field ϵE, and continuity of the tangential component of the electric field:

Ht + φ1xHx − φ1y = 0, Ht + φ2xHx − φ2y = 0,(2.2)

[n ·T · n]12 = σ∇s · n,(2.3)

[ϵE · n]12 = 0, n× [E]12 = 0,(2.4)

where [·]12 denotes the jump in the quantity as the interface is crossed from the lower

to the upper fluid, and n = (−Hx,1)
(1+H2

x)
1/2 , t =

(1,Hx)
(1+H2

x)
1/2 are the unit normal (pointing out

of region 1) and tangent to the interface, respectively. The stress tensor T is defined
by

(2.5) Tij = −pδij + ϵ

(
EiEj −

1

2
|E|2δij

)
,

where the first term represents the inviscid hydrodynamic contribution while the
second term is the Maxwell stress—for more details see Jackson [21, Chapter 6].
The boundary conditions on the channel walls are a no penetration condition for the
hydrodynamics and zero vertical component of the electric field for the electrostatics
(physically this models electrically insulating walls)

(2.6) φ1y = V1y = 0 at y = 0, φ2y = V2y = 0 at y = Du.

Far away from any interfacial disturbances, the electric field tends to its unperturbed
value so that

(2.7) Vjx → −E0, as |x| → ∞, j = 1, 2.

Variables are nondimensionalized by scaling lengths with D, fluid potentials with
D(gD)1/2, time with (D/g)1/2, and voltages with V0. Such choice of scalings retains
gravitational effects in the model and allows one to switch surface tension and electric
field effects on or off directly. The problem then has the following dimensionless
groups:

(2.8) ρ =
ρ2
ρ1

, ϵp =
ϵ2
ϵ1
, Eb =

ϵ1V 2
0

ρ1gD3
, We =

σ

ρ1gD2
, H0 =

Du

D
,

which represent the density and permittivity ratios, an electric Weber number Eb

D
ow

nl
oa

de
d 

03
/3

1/
16

 to
 1

44
.8

2.
10

8.
12

0.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

96 BARANNYK, PAPAGEORGIOU, PETROPOULOS, VANDEN-BROECK

measuring the strength of the electric field, an inverse Weber number We based on the
velocity (gD)1/2 (it is the ratio of surface tension forces to gravitational forces—this
is also an inverse Bond number), and the dimensionless channel height H0. In what
follows, the same symbols are used for dimensionless quantities as before. Changing
to dimensionless variables we find that (2.1) and boundary conditions (2.2) and (2.6)
are unchanged, while (2.4) becomes

V1xHx − V1y = ϵp (V2xHx − V2y) at y = H(x, t),(2.9)

V1x + V1yHx = V2x + V2yHx at y = H(x, t).(2.10)

The dynamic boundary condition at y = H(x, t) is derived as follows. First, the x-
and y-momentum equations of the Euler equations are written in terms of the flow
potentials φ1,2 in each respective region. Then they are integrated with respect to x
and y, respectively, and evaluated at the interface in order to obtain an expression for
the pressure jump across the interface in terms of φ1,2 and their derivatives. Using
the normal stress balance (2.3) to eliminate the pressure jump yields the dynamic
boundary condition, which involves electrical, surface tension, and gravitational effects
(for more details see [15, 6]), and yields

φ1t +
1

2
(φ1x)

2 +
1

2
(φ1y)

2 − ρ

(
φ2t +

1

2
(φ2x)

2 +
1

2
(φ2y)

2

)
− (ρ− 1)H

= We
Hxx

(1 +H2
x)

3/2
− Eb

2
(V 2

1x − V 2
1y)

H2
x − 1

1 +H2
x
+
ϵpEb

2
(V 2

2x − V 2
2y)

H2
x − 1

1 +H2
x

+2Eb
Hx

1 +H2
x
V1xV1y − 2ϵpEb

Hx

1 +H2
x
V2xV2y + K̄p,(2.11)

where the constant of integration K̄p = −(ρ − 1) − Eb
2 (1 − ϵp) has been determined

by evaluating (2.11) at the steady-state H = 1, V1,2 = x, φ1,2 = 0. It can be seen
from (2.11) that the electric field or surface tension contributions can be removed by
selecting Eb or We to vanish, respectively. The linear stability was considered in [6],
where it was shown that the system is susceptible to Rayleigh–Taylor instability when
ρ > 1. More importantly, it was shown that even in the absence of surface tension
(We = 0), the electric field is capable of stabilizing the Rayleigh–Taylor instability for
all wavenumbers. If surface tension is also present, the stability is enhanced further.

2.2. Nonlinear dynamics for thin upper layers. The nonlinear moving
boundary problem posed in section 2.1 is not directly amenable to analysis, and
we proceed by considering a physically relevant case when the upper layers are thin.
A detailed derivation can be found in [6], but we sketch the derivation for complete-
ness. If ϵ is the undisturbed thickness of the upper layer, we assume that interfacial
waves have amplitudes of order O(ϵ) and order one wavelengths (i.e., of comparable
length with the lower layer depth). Vertical scales are separated by introducing a new
upper layer variable ζ given by y = 1 + ϵ − ϵζ. The disturbed interface is written as
H(x, t) = 1 + ϵS(x, t), where S(x, t) is to be found, and time is scaled according to
τ = ϵ1/2t to keep nonlinearity in Bernoulli equation. The fluid and voltage potentials
are expanded as

φ1 = ϵ1/2
(
φ(0)1 + ϵ2φ(2)1 + · · ·

)
, φ2 = ϵ1/2

(
φ(0)2 + ϵ2φ(2)2 + · · ·

)
,

V1 = x+ ϵV (1)
1 + · · · , V2 = x+ ϵV (1)

2 + · · · ,(2.12)

where the x terms in (2.12) represent the background voltage potentials.
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Solving the problem in the film region, we find φ(0)2 = B(x, τ) and φ(2)2 = − ζ2

2 Bxx,
where B(x, τ) is to be determined. The electric potential V2 has the leading order so-

lution V (1)
2 = C(x, τ) with C(x, t) to be determined. The second kinematic condition

(2.2) becomes

(2.13) Sτ + ((S − 1)Bx)x = 0.

In the lower layer, the fluid potential leading order term reduces to φ(0)1 ≡ const.
This simplifies significantly the dynamic boundary condition (2.11), which after using
electric field boundary conditions becomes, to the leading order,

(2.14) −ρ
(
φ(0)2τ +

1

2
(φ(0)2x )

2

)
− (ρ− 1)S = WeSxx + Eb(1− ϵp)Cxx.

Solving the harmonic problem for V (1)
1 in Fourier space, we are able to express C(x, τ)

in terms of S(x, t) as

Ĉ = i(1− ϵp)(coth k) Ŝ.(2.15)

Introducing new variables η(x, τ) = 1−S(x, τ), u(x, τ) = Bx(x, τ), where η represents
the scaled upper layer thickness and u the horizontal velocity at the interface and using
t instead of τ , transforms (2.13)–(2.15) into the following nonlocal model system

ηt + (ηu)x = 0,(2.16)

ρ (ut + uux)− (ρ− 1)ηx = Weηxxx + Ēb Lηxx,(2.17)

where Ēb = (1 − ϵp)2Eb ≥ 0 and the linear operator L is known through its Fourier
spectrum

(2.18) L̂η = i(coth k) η̂.

The system (2.16)–(2.18) is solved as an initial value problem with periodic boundary
conditions in x, η(x+ 2π, t) = η(x, t), u(x+ 2π, t) = u(x, t). Numerical solutions are
considered later; first, we present the linear aspects of the system.

3. Linear theory. We begin by considering the linear stability of the full prob-
lem stated in section 2.1. The dispersion relation has been given in [6], and we
include it here for completeness in order to identify various limits. Linearizing about
the exact solution u1,2 = 0, H = 1, V1,2 = x (flat interface, quiescent flow, and uni-
form electric field) and introducing normal modes into the perturbations, i.e., writing
φ1,2(x, y, t) = φ̂1,2(y) eikx+ωt +c.c., etc., provides a system of ODEs in y; these can
be solved in closed form, and on use of the boundary conditions at the walls and the
linearized interfacial conditions, the following dispersion relation is obtained:

(3.1)
ω2

k

(
coth k − ρ

coshk − tanh(kH0) sinh k

sinh k − tanh(kH0) coshk

)
− (ρ− 1) = −Wek

2

+
Ēbk [coshk − tanh(kH0) sinh k]

−(1− ϵp) sinh k − ϵp tanh(kH0) coshk + tanh(kH0)
sinh2 k
cosh k

.

Surface tension and electric field effects enter through the first and second terms on
the right-hand side of (3.1), respectively. When both of these terms are absent, the
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flow is unstable if ρ > 1 as expected (the heavier fluid is on top). As a check, we note
that (3.1) recovers the result in [28], once gravity and the effect of the upper fluid are
removed along with the upper wall position sent to infinity, H0 → ∞.

To better understand the stabilizing effect of the electric field, we take H0 > 1
and consider (3.1) in the short-wave limit, k ≫ 1, to find

ω2 =
ρ− 1

ρ+ 1
k −We

k3

ρ+ 1
− Eb(1− ϵp)2

(ρ+ 1)(1 + ϵp)
k2, k ≫ 1.(3.2)

The electric field term is negative for all k and hence provides an additional dispersive
regularization to that of surface tension. In particular, if surface tension is absent
(We = 0), we see from (3.2) that the electric field is capable of stabilizing short waves.
This novel physical regularization of Rayleigh–Taylor instability was also found in
Kelvin–Helmholtz instability [16]. Furthermore, a sufficiently large electric field can
completely stabilize Rayleigh–Taylor instability at all wavenumbers, and this follows
from a long wave limit of (3.1). In what follows, we analyze this limit in the context
of our thin upper layer model. Writing H0 = 1 + ϵ with 0 < ϵ ≪ 1, expanding (3.1)
in ϵ, and taking into account the time rescaling t → ϵ1/2t that dictates the rescaling
of w → ϵ1/2w yields to leading order

(3.3) ω2ρ = (ρ− 1)k2 −Wek
4 − Ēbk

3 coth k,

which in the long-wave regime (k ≪ 1) reduces to

ω2ρ = (ρ− 1)k2 −Wek
4 − Ēbk

2.

Equation (3.3) is, in fact, the dispersion relation of the model equations (2.16)–(2.18)
and can be derived directly from those equations by linearizing about η = 1 and
u = 0. The result (3.3) indicates that the nonlocal system (2.16)–(2.18) is dispersive
if Ēb is sufficiently large.

When surface tension and electric fields (if present) are weak, the interface can
become unstable. Numerical solutions presented in the next section suggest that in
this case the interface develops a touch up singularity, corresponding to η → 0, after a
finite time ts with the velocity u blowing up at that time. Different terminal structures
are found depending on whether We is zero or not. In the former case, we must have
Eb ̸= 0 to ensure that the problem is not short-wave unstable. On the other hand,
if We and/or Eb are sufficiently large to provide linearly stable solutions (according
to (3.3), for instance), the solutions undergo persistent oscillations (typically quasi-
periodic in time) for fairly general and moderately large initial conditions.

4. Numerical solutions to initial value problems. In this section we solve
the evolution equations (2.16)–(2.18) subject to prescribed initial conditions on spa-
tially periodic domains, and for various values of the dimensionless parametersWe, Ē,
and ρ. We implement pseudospectral methods in space and a four-stage Runge–Kutta
method in time (as in [36]). The solution is spectrally interpolated to increase spatial
accuracy, when the amplitude of any of the last 20% of the modes exceeds a chosen
tolerance level. The tolerance depends on the number of modes N , and typically in-
creases as N increases. In our simulations, N varies from 29 to 215 and the tolerance
level varies from 10−12 with N = 29 to 10−5 with N = 215. The time step is also
adaptive and is decreased as N increases. To maintain numerical stability, we require
a time step ∆t to satisfy k2∆t < ν, where ν = 10−3 and k is the largest wave number
retained in the calculations. The restriction on the time step comes from the linear
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Fig. 2. Evolution of η (left panel) and u (right panel) with We = 1, ρ = 3, Ēb = 3.

Fig. 3. Evolution of the energy norms of η (left panel) and u (right panel) with We = 1, ρ = 3,
Ēb = 3.

dispersion relation for large wave numbers. For details, please see [36]. In addition,
we use the smooth spectral filtering proposed by Hou and Li [19] in order to remove
any aliasing errors and smooth the highest Fourier modes. We found that the fil-
ter suppresses high frequency instability and allows us to compute accurate solutions
close to the singular time.

4.1. Linearly stable regime with surface tension and electric field
present: Nonlinear dynamics. As seen from (3.3), sufficiently large values of
We and Ēb render the flat state linearly stable. In this section we consider nonlinear
perturbations that are outside the realm of linear theory but for linearly stabilizing
values of We and Ēb. We illustrate such dynamics through numerical solutions of
(2.16)–(2.18) for We = 1, ρ = 3, Ēb = 3, along with the initial condition

(4.1) η(x, 0) = 1− 1

4
cosx, u(x, 0) = 0.

Figure 2 shows the spatiotemporal evolution of η(x, t) (left panel) and the correspond-
ing horizontal velocity u(x, t) (right panel) over a time interval of approximately 50
time units. The solutions are standing waves that in fact undergo quasi-periodic os-
cillations in time. At the nodes of η (these are at x = π/2, 3π/2), the velocity has
its maximum magnitude, whereas at the nodes of u (at x = 0, π), η takes on its
maximum values as expected physically. The corresponding energy norms of η and u
are shown in Figure 3. We define the energy norm ||f || or L2-norm of a function f(x)

with x ∈ [0, 2π] as ||f ||2 =
∫ 2π
0 f2dx =

∑∞
n=−∞ |cn|2 ≈

∑N/2
n=−N/2+1 |cn|

2, where cn
are Fourier coefficients of f(x), and N is the number of Fourier coefficients we retain.
The time oscillations in the energy norms are similar with the most energetic frequency
being the same; the signals are, however, quasi-periodic (and different)—in both cases
lower incommensurate frequencies enter to modulate the dynamics. Poincaré sections
can be used to confirm torus-like dynamics—see, for example, [18] for such numerical
constructions in a different problem. It is clear from these results that the solutions
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Fig. 4. Evolution of η (left panel) and u (right panel) with We = 0, ρ = 2, Ēb = 1. Note that
dynamics in this case is very similar to the case in Figure 2 when surface tension is present. As we
show later, the structure of singular solutions with and without surface tension, however, is not the
same.

Fig. 5. Evolution of η (left panel) and u (right panel) with We = 1, ρ = 4, Ēb = 1.

enter a persistent time oscillatory nonlinear motion that appears to be quasi-periodic.
The absence of damping guarantees that these oscillations are self-sustaining and the
solution remains smooth as long as the initial amplitude is not too large—in this
example, it is a quarter of the undisturbed fluid layer depth.

We also note that similar behavior is found if either of We or Ēb is zero, and the
other is sufficiently large. We include results for the case We = 0, ρ = 2, Ēb = 1, i.e.,
when surface tension is absent and the stabilization of the Rayleigh–Taylor instability
is completely due to the electric field. The spatiotemporal evolution of η and u are
depicted in Figure 4, which is seen to be analogous to Figure 2.

4.2. Linearly unstable regime: Nonlinear evolution and finite-time sin-
gularities. When We and Ēb are chosen so that the flow is unstable to linear distur-
bances, the nonlinear dynamics are quite different and generically lead to singularity
formation in finite time. The interface touches the wall, and the local fluid velocity
becomes unbounded. There are two canonical cases: first when surface tension is
present and We ̸= 0 (with Ēb arbitrary including Ēb = 0), and second when surface
tension is absent and We = 0 but in the presence of electric field regularizing effects,
Ēb ̸= 0. In what follows, we illustrate the dynamics with sample numerical compu-
tations and in subsequent sections consider in detail the structure of the singularities
in each canonical case.

We begin with surface tension and electric fields being present and solve numeri-
cally the initial value problem (with initial condition in (4.1)) with We = 1, ρ = 4, and
Ēb = 1. The evolution of the interfacial shape η and corresponding velocity u is given
in Figure 5. The results strongly indicate that the interface touches up in finite time,
which corresponds to η approaching 0 (there are two symmetrically placed touch-up
points), and the corresponding velocity in the vicinity of touch-up grows unbounded
with fluid being pushed into the main central drop. The velocity is negative in the
vicinity of the rightmost touch-up point and positive near the left one. Additional
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Fig. 6. Evolution of η (left panel) and u (right panel) with We = 0, ρ = 3, Ēb = 1.

evidence is provided by the evolution of the energy norms of both η and u (graphs are
not shown), which, unlike the linearly stable cases, do not oscillate quasi-periodically
but instead they grow monotonically with a suggestion that they become infinite in
finite time. More detailed analysis of the singularities is presented later.

The next set of results removes surface tension and retains electric fields. The
parameters used are We = 0, ρ = 3, and Ēb = 1. The dispersion relation (3.3)
indicates that the short-wave regularization is different depending on whether We is
zero or not, and we expect the nonlinear dynamics and, in particular, the structure
of terminal singular structures to also be different. Before analyzing such aspects, we
illustrate the dynamics in Figure 6 that depict the spatiotemporal evolution of η and
u. We also investigated the evolution of the corresponding energy norms. The overall
qualitative features of the results are similar to those having We ̸= 0, but we note the
presence of sharper features in the touch-up and velocity profiles when We = 0. It
is important, therefore, to quantify these differences mathematically by considering
the solutions near the singularity in more detail. We note that the scaled interfacial
profiles η in Figures 5 and 6 remain bounded throughout their evolution. Given that
the position of the interface is S(x, t) = 1+ ϵ− ϵη(x, t), we conclude that the interface
does not penetrate into the lower region 1 by more than a distance of order ϵ, and so
we do not obtain penetrating fingers of length comparable to the channel height.

5. Finite-time singularities and self-similar solutions. The numerical re-
sults of section 4 indicate that the evolution equations (2.16)–(2.18) possess singu-
larities with the interface vanishing at a point(s) and the local velocity blowing up
there after a finite time. We are interested in quantifying such terminal states and
establishing the dominant solutions at breakup by performing a local analysis and
constructing self-similar solutions. The similarity solutions that emerge are of the
second kind and involve an exponent that cannot be fixed by an order-of-magnitude
analysis but must be determined through careful numerical experiments. In what
follows, we address the description of local structures at breakup. We derive self-
similar scalings and investigate the spatial and temporal structure of the singularity
in the model given by (2.16)–(2.18). The scalings for the case when surface tension is
present are different from the case without it since the leading order contributions to
the singular solutions are different. Details are considered next.

5.1. Singularities and self-similar solutions when surface tension is
present, We ̸= 0. Consider the system (2.16)–(2.18) and assume that the inter-
face vanishes at a point(s) x = xs and the velocity blows up there after a finite time,
ts, say. We look for self-similar solutions for τ = ts − t ≪ 1 by writing

(5.1) η(t, x) = τaf(ξ), u(t, x) = τbg(ξ), ξ =
x− xs

τα
,
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where the constants a > 0, b < 0 (in accordance with the numerical evidence of
section 4), and α are to be determined. Balancing terms in (2.16) as τ → 0 gives
u ∼ τα−1. A balance of terms in (2.17) shows that surface tension dominates over
the gravity and electric field terms at touch-up, and to leading order we obtain u

τ ∼
u2

|x−xs| ∼ η
|x−xs|3 , which in turn leads to η ∼ τ4α−2 and u ∼ τα−1. Hence, the

similarity solutions have the following form:

(5.2) η = (ts − t)4α−2f(ξ), u = (ts − t)α−1g(ξ), ξ =
x− xs

(ts − t)α
.

For the interface to touch up with η → 0 and u blow up, we must have 4α − 2 > 0
and α− 1 < 0, i.e., 1/2 < α < 1 is necessary.

Substituting the ansatz (5.2) into (2.16)–(2.18) and retaining leading order terms
gives the following equations for the scaling functions f and g:

(5.3) −(4α− 2)f + αξf ′ + (fg)′ = 0, −(α− 1)g + αξg′ + gg′ =
We

ρ
f ′′′.

The behavior of the scaling functions f and g for large ξ can be found by noticing
that at leading order (5.3) yields

(5.4) −(4α− 2)f + αξf ′ = 0, −(α− 1)g + αξg′ = 0 for |ξ| ≫ 1

with solutions

(5.5) f ∼ |ξ|4− 2
α , g ∼ |ξ|1− 1

α as |ξ| ≫ 1.

Note that these scalings could have been anticipated by using the fact that the solution
far from the singular point is quasi-static, to leading order, and hence the behavior of
f and g must have the algebraic forms (5.5) to cancel out the time dependent scaling
factors τ4α−2 and τα−1, respectively. For details, see section 5.1.3.

To numerically validate the self-similar scalings, we observe that according to
(5.2), the maximum curvature |ηxx| and the maximum of u2 over the 2π-periodic
domain have the asymptotic behavior

max
0<x≤2π

|ηxx| ∼ (ts − t)2α−2, max
0<x≤2π

u2 ∼ (ts − t)2α−2,

and these quantities are therefore proportional to each other. This is useful since
plots of max |ηxx| against max u2, with time as a parameter, are expected to give a
straight line as the singularity is approached. Numerical results are shown in Figure 7
for two sets of parameters: (i) We = 1, ρ = 4, Ēb = 1 and (ii) We = 3, ρ = 5, Ēb = 0.
We see clearly that in both cases (whether the electric field is present or not) the plots
produce straight lines and hence corroborate the self-similar scalings (5.2).

Plots of other quantities that are of the same order have also been tested with
equally good results. The value of α remains undetermined, however, and we turn
our attention to this next.

We have numerically estimated α using three methods. The first two methods
are based on the temporal structure of singularity: one method relies on knowing
ts accurately (this again must be estimated from the numerical solutions), and the
other does not require ts. The third method, described in section 5.1.3, allows one
to estimate α by analyzing the spatial structure of singularity. In what follows, we
present these approaches and compare their performance.
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Fig. 7. Evolution of max of |ηxx| vs. max of |u|2 with t being a parameter when We ̸= 0. Left
panel: We = 1, ρ = 4, Ēb = 1. Right panel: We = 3, ρ = 5, Ēb = 0.

Fig. 8. Left panel: Graph of ηmin with superimposed fitted curve (ts − t)0.75722 in the case
We = 1, ρ = 4, Ēb = 1. We find ts = 3.148313. Right panel: umax and fitted curve (ts − t)−0.311 .

5.1.1. Estimation of ts and calculation of α. According to (5.2), the mini-
mum layer thickness and corresponding maximum velocity have the form

(5.6) ηmin ∼ (ts − t)4α−2, umax ∼ (ts − t)α−1.

In order to estimate the value of α, we monitor ηmin(t) and umax(t) as a singularity is
encountered and apply data fitting techniques to find α and ts. For accurate results,
we calculate ηmin and umax at a given time by performing polynomial interpolation
(typically quadratic) on the grid in the vicinity of the local minimum or maximum.
Our computations for the case We = 1, ρ = 4, Ēb = 1 show that ηmin approaches
zero as (ts − t)0.75722 as t approaches ts ≈ 3.148313. To illustrate how the exponents
are extracted, in Figure 8 we present plots of the evolution of ηmin and umax (solid
curves) and superimpose best fit curves (dash-dot curves). The fits are obtained by
starting with the asymptotic behavior (5.6) and noting, for example, that for the
linear relation ln ηmin = C + (4α − 2) ln(ts − t) (an analogous expression holds for
lnumax), the least squares method can be used to estimate the constant C, the slope
(4α−2) and the singular time ts. We find ts ≈ 3.148313 and α ≈ 0.6893, and these are
fully consistent with the corresponding results from the least squares fit of the umax

data. The latter yield umax ≈ (ts − t)−0.30902, and hence α ≈ 0.6910. Both estimates
of α agree well. The difference is 1.7× 10−3, or less than 0.25%. For completeness, in
Figure 9 we include the logarithmic plots of the evolution of ηmin and umax together
with superimposed least squares fits used to estimate the slopes near the singularity.
For comparison, we also plot ηmin ≈ (ts − t)0.756 and umax ≈ (ts − t)−0.311, whose
exponents are obtained using an alternative method based on the temporal structure
of singularity as well but it allows one to estimate α without a priori knowledge of ts.
The details of the method are given in section 5.1.2.

We have also confirmed the similarity scalings (5.2) when the electric field is not
present. In particular, we set Ēb = 0 and carried out two runs for We = 1, ρ = 3, and
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Fig. 9. Case We = 1, ρ = 4, Ēb = 1. Left panel: Log-log plot of ηmin with superimposed fitted
curve (ts − t)0.75722 and curve (ts − t)0.756 . The latter exponent is obtained using an alternative
approach described in section 5.1.2. Right panel: Log-log plot of umax with respective superimposed
curves.

Table 1
Comparison of approximations of α obtained from ηmin and umax for different sets of We, ρ

and Ēb, starting from the initial condition η(x, 0) = 1 − 0.25 cos x, u(x, 0) = 0. The simulations
were terminated when ηmin(t) = 10−3.

We ρ Ēb α from ηmin α from umax ts

1 4 1 0.6893 0.6910 3.148313

1 3 0 0.6898 0.6903 2.671165

3 5 0 0.6891 0.6931 2.526857

We = 3, ρ = 5. In both sets of computations, we estimated values of α independently
by fitting the ηmin and umax evolution as described above. For the case We = 1, ρ = 3,
we find α ≈ 0.6898 and α ≈ 0.6903, respectively, while for We = 3, ρ = 5, we obtain
α ≈ 0.6891 and α ≈ 0.6931, respectively. The difference between the obtained values
of α is at most 4 × 10−3 and less than 1%. The results are summarized in Table 1,
and agreement is very good.

5.1.2. Calculation of α without estimation of ts. In this section we present
an alternative way to estimate the conjectured scaling exponents found from the order-
of-magnitudes arguments. This method has an advantage that one does not need to
know the numerical estimate of ts explicitly, and hence provides an independent test
of the self-similar ansatz. The self-similar solutions (5.2) are asymptotically valid in
the limit 0 < ts − t ≪ 1, and hence we can express the quantities M1(t) = ln(umax),
M2(t) = ln(ηmin) and M3(t) = ln(|ux|max) as

M1(t) = (α− 1) ln(ts − t) +K1(t), M2(t) = (4α− 2) ln(ts − t) +K2(t),

M3(t) = − ln(ts − t) +K3(t),

where K1,2,3(t) are corrections that diminish in size as t → ts−. Forming the ratios
of these functions yields

lim
t→ts−

M1

M3
= 1− α, lim

t→ts−

M2

M3
= 2− 4α, lim

t→ts−

M1

M2
=

α− 1

4α− 2
.(5.7)

It follows (by solving for α in each of the ratios in (5.7)) that the quantities φ13(t) =

1−M1(t)
M3(t)

, φ23(t) = 1
4 (2−

M2(t)
M3(t)

), φ12(t) = (2M1(t)
M2(t)

− 1)/(4M1(t)
M2(t)

− 1) should all converge
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Fig. 10. Evolution of functions φ13(t), φ23(t), and φ12(t) as t approaches t−s . Thicker curves
represent numerical data, while thinner dotted curves are obtained from fitting to a quadratic poly-
nomial. Left panel: Case We = 1, ρ = 4, Ēb = 1. Extrapolated curves intersect at t ≈ 3.149. Right
panel: Case We = 3, ρ = 5, Ēb = 0. Curves intersect at t = 2.5275. In both cases, the vertical
coordinate of the point of intersection of extrapolated curves is α ≈ 0.689.

to α in the limit, i.e., limt→ts− φ13 = limt→ts− φ23 = limt→ts− φ12 = α. The evolution
of these three functions φ13, φ23, and φ12 is shown in Figure 10 for two runs with
parameters We = 1, ρ = 4, Ēb = 1 (left panel) and We = 3, ρ = 5, Ēb = 0
(right panel), respectively. The latter set of parameters has the electric field switched
off. The curves beyond the times of the simulation (indicated by dotted curves)
are obtained by using a quadratic polynomial extrapolation to find their point of
intersection. For the results corresponding to the first set of parameters shown in
the left panel of Figure 10, the prediction is a time of intersection at t = ts ≈ 3.149
(the abscissa) with a value of α ≈ 0.689 (the corresponding ordinate). For the second
set of parameters (right panel) of Figure 10, the point of intersection is found to be
t = ts ≈ 2.5275 with the corresponding ordinate giving an independently estimated
value of α ≈ 0.689. We see that agreement between the two values of α is excellent,
and note that agreement is also very good with the values of α found in section 5.1.1
with an alternative method. The method of this section will be used in the rest of the
paper since it involves less fitting and does not rely on accurate a priori estimates of
ts. The horizontal coordinate (the time ts) of the point of intersection of these three
curves depends on the fitting functions used, but the vertical coordinate (the value
of α) can be obtained very robustly, primarily because the function φ12 is essentially
constant for times close to ts. In fact, it is sufficient to monitor the evolution of φ12
alone to obtain a good estimate for the value of α, but for completeness we have
included the other two ratios also. We can conclude, therefore, that α can be found
more accurately using the present method, whereas it is preferable to estimate the
value of ts using extrapolation of ηmin to 0, as was done in section 5.1.1.

5.1.3. Spatial structure of singularity in the presence of surface tension,
We ̸= 0. To obtain the leading order spatial structure of the singularity (and hence
predict theoretically the form of the spectrum of the solutions as the singular time
is approached), it is sufficient to consider the asymptotic forms of the self-similar
solutions of (5.3) for large |ξ|. This in turn provides a third independent way of
estimating the scaling parameter α, as we describe next.

The leading order behavior (5.5) can also be seen by noting that away from the
touch-up region, the solutions are quasi-static and, hence, independent of τ , to leading
order (see [25, 26] for a related problem). Assuming the asymptotic forms

(5.8) f(ξ) ∼ |ξ|p, g(ξ) ∼ |ξ|−q, p, q > 0

and expressing the solutions in terms of the outer variable x− xs (see (5.1)) yields

(5.9) η ∼ τ4α−2|ξ|p = τ4α−2−αp|x− xs|p, u ∼ τα−1|ξ|−q = τα−1+αq |x− xs|−q.

D
ow

nl
oa

de
d 

03
/3

1/
16

 to
 1

44
.8

2.
10

8.
12

0.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

106 BARANNYK, PAPAGEORGIOU, PETROPOULOS, VANDEN-BROECK

Fig. 11. Log-log plots of |η̂(k, t)| (left panel) and |û(k, t)| (right panel) at times close to ts for
the case We = 1, ρ = 4, Ēb = 1. Black straight lines are results of a fit of magnitudes of Fourier
coefficients to linear functions of ln k to estimate the decay rates β and γ, respectively.

Solutions (5.9) are independent of τ if p = 4 − 2
α , q = 1−α

α , in complete agreement
with (5.5). It follows that the leading order singular behavior of the solutions in terms
of the outer physical variable x (this is what is seen in the computations) takes the
form

(5.10) η(t, x) ∼ |x− xs|p, u(t, x) ∼ |x− xs|−q, as |x− xs| ≪ 1.

We will use computations to estimate p and q according to the predictions (5.10), and
then in turn obtain two numerical estimates for α given by

(5.11) α ∼ 2

4− p
, α ∼ 1

1 + q
.

Note that we also have p = 2(1− q), and this provides an additional accuracy check
on the numerics and the emergence of self-similar structures.

To extract information about the spatial structure of our singular solutions, we
consider the asymptotic behavior of the Fourier coefficients as the singular time is
approached. For a function

(5.12) f(x, t) ≈ (x− (x0 + iδ(t)))β(t)−1

that has a branch point of order β(t) − 1 > −1 at x0 + iδ(t), the k ≫ 1 behavior of
the Fourier coefficients follows the Laplace formula [9, p. 255]

(5.13) |f̂(k, t)| ∼ k−β(t) e−kδ(t) .

As time evolves, the singularity traces out a curve in the complex plane [34], and the
vanishing of δ at t = ts corresponds to the loss of analyticity for real x at this time.
Since

(5.14) ln |f̂(k, t)| ∼ −β(t) ln k − δ(t)k,

we can estimate β(t) and δ(t) by log-log or log-linear plots, respectively, utilizing the
middle part of the spectrum for the former and the large k part of the spectrum for the
latter—[34]. The evolution of such log-log spectral plots at times close to ts for the case
We = 1, ρ = 4, Ēb = 1 is plotted in Figure 11. It can be seen that the Fourier spectra
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Fig. 12. Left panel: Evolution of δ in the case We = 1, ρ = 4, Ēb = 1. The data at times
close to ts were fit to a cubic polynomial and then extrapolated to find ts = 3.148338975 when δ = 0.
Right panel: Evolution of max0≤x<2π{u2} versus max0≤x<2π{|ηx|} in the case We = 0, ρ = 3,
Ēb = 1.

do not decay monotonically, and this suggests that there is a modulation caused by the
presence of additional singularities that interfere with each other as found in different
problems, e.g., [34, 29]. Due to this lack of monotonicity, we estimated slopes of the
spectra by using the envelope formed by local maxima of the Fourier coefficients as
shown by the straight lines just above the plots. The middle part of the spectrum
[kstart, kend] is used with kstart not too small and kend not too large; for example,
for the results in Figure 11, the number of modes is N = 214 = 16384 and typical
appropriate values for the fit are kstart = 50 and kend = 1000. For t close to ts, the
spectra of η and u can be written as (see (5.12) and (5.13))

(5.15) ln |η̂| ∼ −β(t) ln k ∼ −(p+ 1) ln k, ln |û| ∼ −γ(t) lnk ∼ (q − 1) lnk,

where k ∈ [kstart, kend]. Beginning with η, β(t) is estimated as described above for
numerous times t close to ts. These estimates of β are then fitted to a cubic polynomial
and then extrapolated to ts = 3.148313 (this was estimated in section 5.1.1) to provide
β(ts) = βs ≈ 2.1073 (i.e., p ≈ 1.1073), and this in turn enables the estimation of
α ≈ 0.69138 from the first of relations (5.11). Note that even though the values
of β(t) appear to lie on a straight line, we found it better to fit them to a cubic
polynomial to capture their dynamics at times close to ts. In a similar way, the
Fourier coefficients û are used to estimate γ(t) as t approaches ts. Extrapolating to
ts, we obtain γs ≈ 0.53988 (i.e., q ≈ 0.46012), and, hence, α ≈ 0.68487 by the second
relation in (5.11). We also mention that we investigated the sensitivity of computing
βs, γs, and, hence, α, on the choice of kstart, kend and the order of fitting polynomials
(up to the third order). As expected, small values of kstart, e.g., kstart < 20, and
large values of kend, e.g., kend > 2000, do not provide accurate results. In addition,
fitting to second or third order polynomials provides more accurate results than with
a linear fit—we believe that this is due to a better capture of the nonlinear dynamics
of the decay rates as t approaches ts.

For completeness, in the left panel of Figure 12 we also present the evolution
of δ(t) as t approaches ts. As expected, δ(t) → 0 as t → ts, suggesting the loss of
analyticity at ts. The values of δ were estimated by considering the form (5.14) and
producing log-linear plots as k becomes large in order to obtain a straight line, to
leading order, with slope −δ. The values of δ for times close to ts are fit to a cubic
polynomial and then extrapolated to find the time ts when δ = 0—the extrapolating
polynomial is shown by the dashed line. We find ts ≈ 3.148339, which agrees very
well with the singular time computed previously using other approaches.
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In summary, then, the forms (5.10) along with the estimates p ≈ 1.1 and q ≈ 0.46
indicate that as touch-up takes place, we have, to leading order,

(5.16) η ∼ |x− xs|1.1, u ∼ |x− xs|−0.46.

This implies that the interface touches the wall with bounded slope but with an infinite
curvature (ηxx becomes unbounded). At the same time, however, the corresponding
horizontal velocity becomes singular as touch-up takes place, due to the squeezing of
fluid away from the touch-up region. The long-wave models are no longer valid at
touch-up and should be viewed as providing an outer picture of the dynamics—as
shorter length-scales develop, all terms in the Euler equations must enter to provide
a new asymptotic regime. Such analysis is left for future work.

5.2. Singularities and self-similar solutions in the absence of surface
tension but with electric fields present: We = 0, Eb ̸= 0. In the absence
of surface tension, a touch-up singularity still occurs (as indicated in Figure 6, for
example), but the scalings are different since the highest derivative in the system
(2.16)–(2.18) is due to the nonlocal term Lηxx rather than the capillary term ηxxx.
The key in balancing terms as a singularity is approached and as spatial length scales
shorten follows from the observation that short scales in real space correspond to large

values of the wavenumber k in Fourier space. Hence, the large k behavior of L̂ηxx is
relevant and we see from the definition (2.18) that

(5.17) L̂ηxx = −ik2 coth k η̂(k) ∼ −i sgn(k)k2η̂(k) = −Ĥ[ηxx],

where we have introduced the Hilbert transform and used its properties and symbol
in Fourier space,

(5.18) H[χ(x)] =
1

π
−
∫ ∞

−∞

χ(y)

x− y
dy, Ĥ[χ(x)] = −i sgn(k) χ̂(k).

Proceeding as in section 5.1, we balance terms in (2.16)–(2.18) as a singularity is
approached, and assuming that the local length scale of the touch-up region is of
order (ts − t)α, the following scalings are suggested:

(5.19) η = (ts − t)3α−2f(ζ), u = (ts − t)α−1g(ζ), ζ =
x− xs

(ts − t)α
.

Since the interface η touches up with η → 0 and u blows up as t → ts−, we have
3α − 2 > 0, α < 1, and hence the bounds 2/3 < α < 1. As in the We ̸= 0 case,
the exponent α is left undetermined since the self-similar solutions are again of the
second kind. We will determine its value numerically and also confirm the self-similar
structures posed by (5.19).

Substituting the ansatz (5.19) into the governing equations (2.16)–(2.18) and
using the property (5.17), we obtain the following similarity equations for the scaling
functions f and g:

−(3α− 2)f + αξf ′ + (fg)′ = 0, −(α− 1)g + αξg′ + gg′ = − Ēb

ρ
H(f ′′).

Note that the gravity term has been dropped since it is asymptotically small compared
to the terms retained. As in the nonzero surface tension case, we can find the behavior
of f and g for large |ζ|,

f ∼ |ξ|3− 2
α , g ∼ |ξ|1− 1

α for |ξ| → ∞,
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Fig. 13. Numerical results for We = 0, ρ = 3, Ēb = 1 for t close to ts = 3.0333. Left panel:
Log-log plots of ηmin versus ts − t with superimposed fitted function (ts − t)0.39994 and function
(ts − t)0.394 . The exponent 0.394 is obtained using a method for capturing temporal structure of
singularity without a priori knowledge of ts. Right panel: umax and corresponding superimposed
fitted function (ts − t)−0.20312 and the function (ts − t)−0.202 found without a priori knowledge
of ts.

as well as the corresponding spatial structure of the singularity suggested by the
analysis,

(5.20) η ∼ |x− xs|
3α−2

α , u ∼ |xs − x|
α−1
α .

To validate the similarity assumptions when t is close to ts, we note that

(5.21) max
0≤x<2π

{|ηx|} ∼ τ2α−2, max
0≤x<2π

{
u2

}
∼ τ2α−2, as t → ts−,

implying that max {|ηx|} and max
{
u2

}
are proportional to each other as the singu-

larity is approached and their values become unbounded. This is in contrast to the
We ̸= 0 case, where we found that max {|ηxx|} and max

{
u2

}
being proportional near

the singular time. Numerical results confirming (5.21) for the case ρ = 3 and Ēb = 1
(recall that We = 0 throughout this section) are given in the right panel of Figure 12,
and the proportionality of the two quantities as they grow is clearly seen, providing
strong support for the self-similar ansatz (5.19).

The scalings (5.19) suggest that as t → ts− and touch-up takes place, the min-
imum layer thickness ηmin and the corresponding maximum horizontal fluid velocity
umax have the following behavior:

(5.22) ηmin ∼ (ts − t)3α−2, umax ∼ (ts − t)α−1.

Following the ideas from section 5.1.1, we have used the computations for the case
We = 0, ρ = 3, Ēb = 1 in order to find best numerical fits for ηmin and umax and hence
estimate ts and α (see section 5.1.1 for details). We find that ηmin approaches zero
as (ts − t)0.39994 and umax blows up as (ts − t)−0.20312, with the singular time being
ts ≈ 3.0333. Scalings (5.22) then imply that α ≈ 0.8 or α ≈ 0.7969, respectively,
and these approximations of α agree with an error of less than 0.4%. The results of
the numerical fitting are included in Figure 13, which shows log-log plots of ηmin and
umax versus ts − t, along with superimposed linear fits utilized to extract α.

An estimation of α without the need to know ts numerically, analogous with that
of section 5.1.2, where We ̸= 0, has also been considered. Introducing the functions
M1 = ln(|u|max) = (α−1) ln(ts−t)+K1(t), M2 = ln(ηmin) = (3α−2) ln(ts−t)+K2(t),
and M3 = ln(|ux|max) = − ln(ts − t) +K3(t), we have for t close to ts,

(5.23) M1 ∼ (α− 1) ln(ts − t), M2 ∼ (3α− 2) ln(ts − t), M3 ∼ − ln(ts − t).

As the computation evolves, the functions ψ13 = 1− M1
M3

, ψ23 = 1
3 (2−

M2
M3

), and ψ12 =
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Fig. 14. Evolution of functions ψ13, ψ23, ψ12 that tend to α as t → ts in the case We = 0,
ρ = 3, Ēb = 1. We find α ≈ 0.798.

Fig. 15. Extrapolation of the decay rates β (left panel) and γ (right panel) of the Fourier spectra
(−β and −γ are plotted) to ts ≈ 3.0333 for the case We = 0, ρ = 3, Ēb = 1. We find β = 1.5193
and γ = 0.7506, and, hence, α ≈ 0.80624 and α ≈ 0.80038, respectively.

(−1 + 2M1
M2

)/(3M1
M2

− 1) should approach α when t gets close to ts. The evolution

of ψ13, ψ23, ψ12 for the case We = 0, ρ = 3, Ēb = 1 studied numerically in this
section is shown in Figure 14. Extrapolating the curves using quadratic polynomials
gives α = 0.798 in excellent agreement with the values of α obtained above using a
different fitting method. This value of α implies that ηmin ≈ (ts − t)0.394 and umax ≈
(ts − t)−0.202 as t → ts. To illustrate the robustness of the fitting approach requiring
ts (section 5.1.1) with that of the ratios of the functions (5.23) (see section 5.1.2 for
details), we have superimposed ηmin ≈ (ts − t)0.394 and umax ≈ (ts − t)−0.202 with the
fitting approach results in Figure 13, and agreement is seen to be excellent.

For completeness, we carry out an estimate of α using the spectra of the solutions
to infer the spatial structure of the singularity. According to the self-similar solutions,
we expect the theoretical results (5.20) to hold. Assuming that the numerical solutions
provide the structures η ∼ |x−xs|p and u ∼ |x−xs|−q with p, q > 0, we estimate p and
q using the methods described in section 5.1.3, and hence obtain two independently
derived values of α given by

(5.24) α =
2

3− p
, α =

1

1 + q
,

or in terms of the decay rates β(t) and γ(t) of the Fourier spectra of η and u (see
(5.15)), we have α = 2

4−β , α = 1
2−γ as t → ts. Extrapolating β(t) and γ(t) to

ts ≈ 3.0333 as shown in Figure 15, we obtain βs = 1.5193 and γs = 0.7506, which
imply that α ≈ 0.80624 or α ≈ 0.80038, respectively. Both obtained values of α
agree well with the value α = 0.798 found earlier and other previously computed
approximations of α.

Given the calculated value of α ≈ 0.8 (and equivalently the values p ≈ 0.5 and
q ≈ 0.25 from (5.24)), the spatial structure of the singularity in the absence of surface
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tension becomes

(5.25) η ∼ |x− xs|0.5, u ∼ |xs − x|−0.25.

These terminal states are quite distinct from those with surface tension (see (5.16));
the singularity when a field is present terminates in a cusp with unbounded slopes
(i.e., much sharper than when surface tension is present), while the fluid velocity is less
singular (the exponent is −0.25 rather than −0.46 when surface tension is present).
Once again the long wave models break down in the vicinity of touch-up, and the full
Euler equations need to be considered to construct an inner nonslender region.

In the above numerical experiments, we considered the initial condition (4.1)
with the stable or unstable wavenumber k = 1 depending on which values of We,
ρ, and Ēb were used. We also studied other sets of parameters We, ρ, and Ēb that
support several unstable modes, so we could in turn use a k ̸= 1 mode as an initial
condition to follow the dynamics to the singular states. In particular, we took the
case with We = 1, ρ = 17, and Ēb = 0, for which linear theory predicts the most
unstable wavenumber kmax ≈ 2.82 and a cutoff wavenumber kc = 4 (i.e., all waves
with k > kc are stable). Using the initial condition η(x, 0) = 1− 1

4 cos(3x) corresponds
to a 2π

3 -periodic perturbation. Moreover, this initial condition is close to the most
unstable wave. In this case, the interface evolves to touch the wall at six positions
while the velocity blows up at these points, as expected. Analyzing the singularity
similarly as for the other initial condition, we obtained almost the same value for the
exponent α. Agreement improves as we get closer to the singularity—in our runs
with ηmin ≈ 0.0123 the difference between the two values of α was less than 3%. This
suggests that the local singular structures described in the paper are not expected to
depend on initial conditions.

6. Conclusions. We studied singularity formation in a two fluid system in an
infinite channel with an electric field imposed in the horizontal direction and in the
plane of the undisturbed fluid interface. The fluids can have different densities and
electric permittivities. Gravity and surface tension are taken into account. Of partic-
ular interest is the case with the heavier fluid lying initially above the lighter fluid (in
the present case, air). The system of evolution equations for the interface and hori-
zontal velocity in the case when the upper layer is thin was derived by the authors in
[6], where it was also shown that a strong enough electric field can completely sup-
press the Rayleigh–Taylor instability. When the electric field is weak or absent, the
equations encounter a finite-time singularity at t = ts with the interface touching the
upper wall at a point(s) x = xs and the velocity becoming unbounded at xs. We study
possible similarity solutions of the system when the critical time ts is approached and
find that the singularity is of the second type since the order of magnitude analy-
sis cannot determine the exponents uniquely—they depend on a parameter α that
needs to be determined numerically. The initial value problem, subject to periodic
boundary conditions, is solved for various sets of the physical parameters to obtain
numerical solutions at times close to ts. Three different approaches are used to esti-
mate α and ts. The first two are based on the temporal structure of singularity: one
of the methods requires an accurate approximation of ts to estimate α, and another
does not require a priori knowledge of ts to find α. The third approach employs the
spatial structure of the singularity and allows us to approximate α by extracting the
rates of decay of Fourier coefficients of the solutions at times close to ts. All three
approaches produce accurate and robust approximations of α.

We find that when surface tension is present, α ≈ 0.689 and ηmin ∼ (ts− t)4α−2 ≈
(ts − t)0.7560 and umax ∼ (ts − t)α−1 ≈ (ts − t)−0.3110 for times t near ts. The spatial
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structure of the singularity indicates that the leading order singular behavior of the
solution near xs is η ∼ |x − xs|1.1, u ∼ |x − xs|−0.46, i.e., the interface touches
the wall with bounded slope but an infinite curvature, while the horizontal velocity
blows up. In the presence of surface tension, the electric field term does not enter
the leading order asymptotic balances that provide the local self-similar solution.
Consequently, in the absence of surface tension the self-similar structures are different
and are driven by the electric stresses. In this case, we find α ≈ 0.798 and ηmin ∼
(ts − t)3α−2 ≈ (ts − t)0.3940 and umax ∼ (ts − t)α−1 ≈ (ts − t)−0.2020 near the singular
time. The terminal spatial states of the singular solutions now become η ∼ |x−xs|0.5,
u ∼ |x − xs|−0.25, which implies that in the absence of surface tension but with the
electric field present, the interface develops a cusp at touch-up with unbounded slopes
in contrast to the surface tension case. At the same time, the horizontal velocity is
less singular as compared to the surface tension case.

In the solutions described here, viscosity has been ignored throughout. It is
reasonable to expect viscous effects to enter as the interface gets close to the upper
wall, and the solutions found here would provide the appropriate outer problem to
be matched onto a viscously dominated region. We note that viscous hanging films
that are Rayleigh–Taylor unstable but which also support strong surface tension that
regularizes short waves have been studied in detail in [38]. In fact, those authors
also include vertical electric fields that enhance the gravitational destabilization. It
is found (both analytically and computationally) that the film does not drain to zero
thickness in finite time (i.e., the interface does not touch the wall), but instead the
thickness decreases to zero algebraically with time, as time tends to infinity. We
surmise, therefore, that analogous behavior could be encountered if viscous effects
are sufficiently strong. Such analysis is beyond the scope of the present work and is
a very challenging multiscale analytical and computational problem that is left for
future studies.
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