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Abstract 

Williams syndrome (WS) is a rare genetic disorder. At a cognitive level, this 

population display poor visuo-spatial cognition when compared to verbal ability. 

Within the visuo-spatial domain, it is now accepted that individuals with WS are able 

to perceive both local and global aspects of an image, albeit at a low level. The 

present study examines the manner in which local elements are grouped into a global 

whole in WS. Fifteen individuals with WS and 15 typically developing controls, 

matched for non-verbal ability, were presented with a matrix of local elements and 

asked whether these elements were perceptually grouped horizontally or vertically. 

The WS group were at the same level as the control group when grouping by 

luminance, closure, and alignment. However, their ability to group by shape, 

orientation and proximity was significantly poorer than controls. This unusual profile 

of grouping abilities in WS suggests that these individuals do not form a global 

percept in a typical manner. 
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Perceptual Grouping Ability in Williams Syndrome: Evidence for Deviant Patterns of 

Performance 

 

Introduction 

Williams syndrome (WS) is a rare genetic disorder, which, amongst other 

characteristics, displays an unusual cognitive profile. Individuals with WS have an 

approximate IQ of 60, which comprises significantly higher levels of verbal compared 

to visuo-spatial ability (e.g. Udwin & Yule, 1991). 

Visuo-spatial processing in WS has predominantly been explored in relation to 

the local processing bias hypothesis, i.e. a preference to process the parts of an image 

at the expense of attending to the global form (e.g. Bellugi, Sabo, & Vaid, 1988). 

Further investigation has since demonstrated that this is true for drawing and 

construction tasks (e.g. Bihrle, Bellugi, Delis, & Marks, 1989; Rossen, Klima, 

Bellugi, Bihrle & Jones, 1996), but not for perceptual tasks; the pattern of local and 

global processing on perceptual tasks resembles that of typically developing (TD) 

controls (e.g. Farran, Jarrold, & Gathercole, 2001; 2003). Given that global 

processing is available to individuals with WS, the present study aimed to determine 

how this is achieved, by examining perceptual grouping.  

Perceptual grouping is the process in which local elements within a visual 

field are perceptually grouped together into global wholes (e.g. Kohler, 1929; 

Wertheimer, 1923). This was once thought to be a single mechanism. However, 

behavioural (e.g. Ben-Av & Sagi, 1995) and neuroanatomical (e.g. Altmann et al., 

2003; Kourtzi et al., 2003) evidence from the typical population have since 

demonstrated differential processing across grouping types. This differentiation in 
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processing, and evidence from the WS literature reviewed below, raise the possibility 

that the profile of perceptual grouping abilities in WS may be atypical. 

Pani et al. (1999), in a visual search task, showed that WS and control groups 

were more influenced by the grouping of stimuli (grouped by „good form‟: elements 

that form a regular/ predictable spatial arrangement), than the number of elements. 

This suggests that, as in typical development, perceptual grouping has an influence on 

performance in WS. Overall level of performance was significantly poorer in the WS 

group than controls. However, the control group were typical adults, thus it is not 

possible to know whether the level of performance of the WS group was 

commensurate with their non-verbal mental age. 

Wang, Doherty, Rourke, and Bellugi (1995) employed the Gestalt Closure 

subtest of the Kaufman Assessment Battery for Children (Kaufman & Kaufman, 

1983), the Mooney faces test (Mooney, 1957), and the anomalous contours test 

(Hamsher, 1978). Performance on these measures of grouping by closure (elements 

which form closed units) was comparable between a WS group and a Down syndrome 

(DS) group (Wang et al., 1995). Individuals with DS are not an ideal comparison 

group as they have an unusual cognitive profile (Klein & Mervis, 1999). However, 

performance on the Gestalt closure task was compared to norms; both groups 

performed within the range expected for young school-aged children, which is 

considerably below their chronological age (mean 15.7 years). 

Grice et al. (2003) presented participants with Kanizsa squares (figures with 

illusory contours; Kanizsa, 1978) and measured grouping by closure behaviourally 

and at a neurophysiological level using ERPs. Individuals with WS could group by 

closure to perceive illusory contours. However, this ability was associated with 
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deviant neural processing in the temporal-occipital areas; controls, but not individuals 

with WS, showed a larger N1 amplitude for illusory compared to non-illusory stimuli. 

Atkinson  et al. (1997) employed motion and form coherence tasks as 

respective measures of dorsal stream (occipital lobe to the parietal lobe) and ventral 

stream (occipital lobe to the inferior temporal lobe) functioning. In the motion 

coherence task, a proportion of elements within a target rectangle oscillate in the 

opposite direction to the background elements. Success relies on grouping by 

common fate. In the form coherence task, a proportion of line segments are arranged 

into concentric circles, whilst the remaining elements are randomly oriented. Success 

is dependent on grouping by similarity. The pattern of WS performance revealed a 

relative deficit in motion coherence, compared to form coherence. Overall level of 

ability was also poor in WS, with higher threshold values than controls on both tasks. 

However, controls were not matched to the WS group.  

Neuroanatomical studies appear to indicate abnormalities in WS in areas 

implicated in perceptual grouping. The neural substrates common to all forms of 

perceptual grouping are early visual areas V1 and V2 (Kapadia, Westheimer, & 

Gilbert, 1998; Ross, Grossberg, & Mingolla, 2000). Galaburda and Bellugi (2000) 

reported a well-differentiated area V1 in their autopsy study of 4 WS brains. Further 

investigation of the layers of V1 (Galaburda, Holinger, Bellugi, & Sherman, 2002) 

showed abnormalities such as areas of increased cell packing and neuronal size 

differences in WS brains, compared to control brains. 

MRI studies showed increased gyrification (cortical folding) in WS in the 

right parietal and occipital lobes (Schmitt et al., 2002), disproportionate reduction in 

parietal-occipital regions and a left dominance of occipital lobe in WS relative to 

controls (Reiss et al., 2000). These abnormalities are also consistent with activation 
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during perceptual grouping in the typical population: ERP recordings have shown that 

grouping by proximity in the typical population activated from striate (V1) or 

prestriate cortex to medial occipital and parietal cortex, whilst grouping by shape 

similarity activated occipitotemporal areas (Han et al., 1999). Thus, although precise 

predictions cannot be made, brain abnormalities clearly predict that perceptual 

grouping in WS may be atypical. 

One cannot investigate visuo-spatial perception in WS without alluding to a 

second predominant hypothesis within the WS literature, that this population have a 

dorsal stream deficit (Atkinson et al., 1997). The dorsal stream was initially thought 

(Ungerleider & Mishkin, 1982) to be responsible for processing spatial properties, 

whilst the ventral visual stream processed visual object properties. Despite the 

predictive value of this differentiation for perceptual grouping performance in WS, a 

dorsal deficit is not explored in the present study for the following reasons. As 

observed above, neuroanatomical support for a dorsal deficit in WS is mixed. 

Furthermore, Atkinson and colleagues have recognised that the circuits activated 

when processing motion and form coherence are not “… strictly „dorsal‟ and 

„ventral‟…” (Braddick, Atkinson and Wattam-Bell, 2003, p. 1774, also see Braddick 

et al., 2001), and that weaker motion than form coherence is not specific to WS 

(Braddick et al., 2003). A dorsal stream deficit in WS can therefore be discounted, at 

least as an explanation for the characteristic WS visuo-spatial cognitive profile. 

Moreover, the Ungerleider and Mishkin (1982) model is no longer tenable (Milner 

and Goodale, 1995; Goodale and Milner, 2004). A comparison between spatial and 

visual grouping abilities cannot therefore inform dorsal and ventral functioning. 

Nevertheless, it can speak to the monolithic view of perception (Ungerleider & 

Mishkin, 1982). 
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The standard procedure for investigating perceptual grouping is to present a 

matrix of elements grouped into rows or columns. Investigations of the onset of 

perceptual grouping in infancy suggest that grouping by luminance is the most robust 

form of similarity grouping (Bremner, 1994); it has been shown at 3 months (Quinn, 

Burke, & Rush, 1993) and in newborns (Farroni, Valenza, Simion, & Umilta, 2000). 

In contrast, grouping by shape similarity is available at 7 months (Quinn, Bhatt, 

Brush, Grimes, & Sharpnack, 2002). Studies with typical adults assume that grouping 

which occurs in a short space of time represents a computationally simpler perceptual 

mechanism (Han et al, 1999; Kurylo, 1997). Grouping by proximity (elements that are 

close together) occurs before grouping by closure, orientation (elements of the same 

orientation) (Chen, 1986), luminance (Ben-Av and Sagi, 1995), shape (X and L 

shapes; Ben-Av and Sagi, 1995; Han et al., 1999; 2001), and alignment (Kurylo, 

1997). Closure is available earlier than grouping by orientation (Chen, 1986), and 

there is no difference in availability between grouping by luminance and shape (Ben-

Av & Sagi, 1995). One could predict that individuals with WS will show a profile 

which favours more robust or less computationally demanding grouping types with 

strengths, therefore, in grouping by luminance and/or proximity. 

Behavioural and neuroanatomical studies indicate that types of grouping are 

operated by separate mechanisms: differentiation is observed between similarity 

grouping and spatial grouping, as well as within these categories. As such in the 

present study, four types of similarity grouping and two forms of spatial grouping 

were investigated in WS. Participants were shown a matrix of elements and asked 

whether they are grouped into rows or columns. The strength of each grouping 

category was manipulated systematically as each condition progressed to determine 

threshold levels of ability. 
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Method 

Participants 

Fifteen individuals with WS were recruited from the records of the Williams 

Syndrome Foundation, UK. All individuals had been positively genetically diagnosed 

with WS by a Fluorescent in-situ Hybridisation (FISH) test. This checks for the 

deletion of elastin on the long arm of chromosome 7, a deletion common to 

approximately 95% of individuals with WS (Lenhoff, Wang, Greenberg & Bellugi, 

1997). Elastin is responsible the heart problems associated with WS. Therefore, in 

addition to genetic information, diagnosis is also based on phenotypic information. 

All 15 individuals had been clinically diagnosed using phenotypic and genetic 

information. The WS group were matched individually to 15 typically developing 

(TD) children. As the profile of abilities is not uniform in WS, it would be 

inappropriate to match by general mental age. Equally, if matched by verbal ability, 

the WS group would display inferior non-verbal performance relative to the control 

group. The groups were therefore matched by their score on the Ravens Coloured 

Progressive Matrices (RCPM; Raven, 1993). This is a recognised non-verbal measure 

of fluid intelligence (Woliver & Sacks, 1986) and thus gives a general measure of 

non-verbal ability, which also avoids the problem of matching away any group 

differences. Table 1 illustrates the RCPM scores, and Chronological ages of each 

group. 

Design and Procedure 

Each task was presented on a computer monitor. The individual was presented 

with a grid containing an arrangement of 49 elements in a 7 by 7 formation (with the 

exception of the proximity task, in which the number of elements varied with changes 
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in proximity). They were asked to press one of two response buttons, which were 

labelled with a horizontal or vertical two-headed arrow, to indicate whether the 

stimuli were grouped horizontally or vertically. Stimuli remained on the screen until a 

correct response had been made to provide participants with feedback. The stimulus 

was then replaced by a 500 ms. mask before the next trial began. For both participant 

groups, in order to ensure that the individual could understand the procedure, the 

experimenter demonstrated vertical and horizontal using visual cues such as their 

hand or by drawing an imaginary line down the monitor screen. The participant was 

asked: “Do you think they (pointing at the image elements) are lined up this way 

(vertical visual cue) or this way (horizontal visual cue)? They were then shown which 

button to press to indicate their response. All children were able to grasp this 

procedure during the practice trials.  

Grouping by similarity. 

Grouping was based on four dimensions of similarity: shape, luminance, 

orientation, or closure. The spatial position of each element remained constant, thus 

grouping was defined by the visual identity of each of the elements. The four 

grouping categories: shape, luminance, orientation, and closure, were tested within 

one task, as four counterbalanced blocks of grouping type (see Figure 1). 

Closure: This is not strictly a measure of grouping by closure. It is a form of grouping 

by shape similarity (see below), but introduces topological properties to the stimulus 

array, as in typical closure tasks (e.g. Kanizsa illusion; Kanizsa, 1978). The shapes 

used were a triangle with 3 sides depicted (closed) versus a triangle with 2 sides 

depicted (open). 

Shape: Elements were either squares or circles, thus grouping was based on shape 

similarity. 
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Luminance: Elements were all circles. These were either black or white. 

Orientation: Single lines were presented. These were either at 0 degree orientations 

(vertically upright) or slanted 30 degrees clockwise.  

The task commenced with 8 practice trials, two from each visual category. The 

experimental trials were in 4 blocks, one for each grouping category. In each block, 

trial difficulty was increased in order to obtain threshold values. This occurred 

sequentially by introducing distracter elements which conflicted with the grouping of 

the remaining elements (see Figure 1). In each grouping block, the initial 8 trials had 

no distracting stimuli (level 1), the remaining 12 trials consisted of levels of difficulty 

in which 0 to 6 distracting elements were present, one of each grouped by rows or by 

columns respectively. These were divided into level 2 (1 to 3 distracting elements) 

and level 3 (4 to 6 distracting elements). Excluding the practice trials, there were 20 

experimental trials for each grouping type. Counterbalancing was carried out by 

employing two different orders of block presentation, which were each presented to 

half of the participants. These were: closure, orientation, shape, luminance; or shape, 

luminance, closure, orientation. 50% of trials were grouped vertically and 50% 

showed horizontal grouping of elements. 

Spatial grouping. 

Alignment: Individuals were presented with a grid of 7 by 7 (49) unfilled circles. They 

were asked to indicate whether the elements were aligned in a straight line 

horizontally or vertically. Each circle had a diameter of 20 pixels, and when aligned, 

circles were spaced by a 20 pixel gap. Task difficulty increased sequentially 

according to the extent to which the elements were misaligned. It was ensured that 

along each column or row, 4 or 3 elements were misaligned in the same direction, 

whilst the remaining elements did not change position. Approximately 50% of the 49 
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elements were misaligned (24 or 25 elements). In the first 8 trials, misalignment was 

by 9 pixels. The data from this set is recorded as level 1. As these were the first trials, 

the initial 2 were disregarded as practice trials, leaving 6 trials. The remaining trials 

were presented in a further two blocks. Block two was the easier block, in which 

misalignment varied from 9 to 5 pixels, and in block three, misalignment was from 4 

to1 pixels. Each increment of misalignment was displayed twice, once as a row, and 

once as a column, thus there were 10 trials in block two and 8 trials in block three. 

There were 24 experimental trials in total. These were divided into 5 levels in order to 

obtain threshold values; level 1, misalignment by 9 pixels (6 trials), level 2, 

misalignment by 9 to 7 pixels (6 trials), level 3 was by 6 to 5 pixels (4 trials), level 4, 

misalignment from 4 to 3 pixels (4 trials), level 5, misalignment by 2 to1 pixels (4 

trials). Examples of stimuli are shown in Figure 2. 

Proximity: Participants were shown a grid of unfilled circles, 20 pixels in diameter 

(see Figure 3). These were grouped together horizontally or vertically by proximity. 

Arrangements were a standard 7 circles, 20 pixels apart in one dimension, horizontal 

or vertical, but were more proximal in the opposing dimension. In the first 8 trials, 

circles were 5 pixels apart in the more proximal dimension. There were 10 circles in 

this dimension to maintain the overall „squareness‟ of the arrangement. These data 

were scored as level 1, with the first two trials disregarded as practice trials. The 

remaining trials were presented in a further two blocks, each increment of proximity 

displayed as a column and as a row. In block two, circles were proximal by 5 to 11 

pixels in one dimension. The number of circles in the more proximal dimension 

varied to maintain overall squareness. This was 10 circles for proximity of 5 to 7 

pixels (level 2, 6 trials) and 9 circles for proximity of 8 to 11 pixels apart (level 3, 8 

trials). Block 2 was harder, with proximity in one dimension by 13 to 19 pixels, 
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compared to 20 pixels in the opposing dimension. The number of circles in the more 

proximal dimension was 8 circles for proximity of 13 to 15 pixels (level 4, 6 trials), 

and 7 circles for proximity of 16 to 19 pixels (level 5, 8 trials). There were 34 

experimental trials in total. 

 

Results 

Results are reported according to thresholds values for grouping. A threshold 

is the point at which the grouping of stimuli, based on visual or spatial attributes, 

becomes apparent. Differences between stimuli below the grouping threshold are too 

similar across dimensions (horizontal and vertical) to elicit a grouping effect, and thus 

performance is at chance. In this experiment, thresholds were ascertained by 

observing the proportion of correct responses of each individual, at each level of 

difficulty. The threshold value is the difficulty level reached previous to the level at 

which performance is at chance (equal or less than 50% accuracy). 

The performance at each threshold level, for each grouping type, was also 

compared to ceiling performance (100% accuracy). One-sample t-tests revealed that 

performance was consistently significantly different from ceiling in both groups  

(p<0.05 for all). 

Grouping by similarity 

 Individuals‟ threshold values were analysed using a mixed design ANOVA 

with 2 factors; grouping type (4 levels: luminance, orientation, shape, closure), and 

group (2 levels: WS, TD). Results are illustrated in Figure 4. These showed a main 

effect of group, F(1, 28)=10.36, p=0.003, partial 2
= .27, due to higher thresholds in 

the WS than the TD group. There was a main effect of grouping type, F(3, 84)=2.85, 

p=0.04, partial 2
=.09. Paired samples t-tests revealed that this was due to superior 

performance in the ability to group by luminance compared to grouping by shape 
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(t(29)=2.06, p=0.05) and closure (t(29)=3.17, p=0.004). The interaction between 

grouping type and group was also significant, F(3, 84)=2.71, p=0.05, partial 2
= .09. 

Independent samples t-tests showed that this was due to significantly poorer 

performance in the WS group compared to the controls in grouping by shape 

(t(28)=3.00, p=0.01) and orientation (t(23.54)=3.86, p=0.001). There was no group 

difference in the ability to group by luminance (t(28)=1.37, p=0.18) and closure 

(t(28)=1.32, p=0.20). 

Spatial grouping 

The data from one individual with WS were lost due to computer error. 

Therefore their matched control was taken out of the analyses, leaving 14 participants 

in each group. A mixed design ANOVA was carried out, with grouping task (2 levels: 

proximity, alignment) and group (2 levels) as factors (see Figure 5). This revealed a 

main effect of group, F(1, 26)=4.99, p=0.03, partial 2
=.16 (WS<TD). The main 

effect of grouping type was not significant, F(1, 26)=3.11, p=0.09, partial 2
=.11. 

There was a significant interaction between grouping type and group, F(1, 26)=11.16, 

p=0.03, partial 2
=.17. Independent samples t-tests revealed that this was due to a 

significant group difference on the proximity task only (proximity, t(26)=2.76, 

p=0.01, WS<TD; alignment, t(26)=.29, p=0.77). 

Comparison across tasks 

Having established that the performance of the WS group overall differed 

from that observed in typical development, we were interested in how this difference 

varied across tasks. A direct comparison of threshold values is not appropriate as it 

would be difficult to compare the extent to which any differences in the absolute level 

of ability reflected impaired or unimpaired performance. Therefore, threshold values 

of the WS group were transformed for each task into z-scores on the basis of the 



Perceptual grouping 14 

performance of controls, as this partials out any difference in the relative difficulty 

across the tasks that occur in typical development (see Figure 6). A one-way ANOVA 

was carried out on the z-scores of the WS group with one within-participant factor of 

grouping type (6 levels). The main effect of grouping type was significant, F(5, 

65)=5.92, p<.001, partial 2
=.31. Paired t-tests revealed that this was due to 

significantly higher levels of ability in grouping by alignment task relative to 

grouping by proximity (t(13)=2.88, p=0.01), shape (t(13)=3.99, p=0.002), and 

orientation (t(13)=3.85, p=0.002). Grouping by closure was significantly stronger than 

grouping by shape (t(13)=3.44, p=0.004) and by orientation (t(13)=3.47, p=0.004). 

Grouping by luminance and proximity was also significantly higher than grouping by 

orientation (luminance and orientation, t(13)=2.58, p=0.02, proximity and orientation, 

t(13)=2.32, p=0.04). 

Discussion 

Previous studies suggest that individuals with WS can process perceptual 

stimuli at both local and global levels (Farran et al., 2001; 2003). The aim of this 

study was to investigate how global processing is achieved in WS. The WS group 

were matched individually to the TD controls by performance on the RCPM. One can 

assume, therefore, that the two groups had comparable levels of visuo-spatial ability. 

This enables one to determine the level of ability of the WS group on each task 

relative to their general level of visuo-spatial ability. 

Performance on four similarity grouping tasks indicated that the WS group‟s 

ability to group by luminance and closure was at the same level as the control group 

i.e. commensurate with their general level of visuo-spatial cognition. In contrast, the 

ability to group by shape and orientation was significantly poorer than that of the 

controls. Spatial grouping performance was also atypical in the WS group: whilst they 
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were able to group by alignment at the same level as the controls, the ability to group 

by proximity was significantly poorer in the WS group than the control group. 

The profile of performance across all tasks showed that, relative to the 

controls, grouping by alignment, luminance and closure were the strongest in WS, 

followed by grouping by proximity, then shape, and finally orientation. This 

demonstrates that individuals with WS do not form a global percept in a typical 

manner. It is therefore possible that this population rely on their stronger grouping 

abilities, alignment, luminance, and closure, when creating a global percept for object 

recognition. The use of a restricted set of grouping principles could explain why 

visuo-spatial perceptual abilities are poor in WS. 

As discussed in the introduction, the results of this study cannot speak directly 

to Atkinson et al.‟s (1997) suggestion of a dorsal stream deficit in WS, since the 

Ungerleider and Mishkin „what‟ versus „where‟ conception is not nowadays regarded 

as tenable (Milner and Goodale, 1995; Goodale and Milner, 2004). However, the 

present results do add support to the argument against the Underleider and Mishkin 

(1982) model of perception. Differentiation in grouping ability was seen in WS within 

both spatial and similarity domains. This is inconsistent with a generalised monolithic 

model, which would predict a universal deficit across a whole domain. 

The ability of the WS participants to group by alignment is consistent with the 

results of Pani et al.‟s (1999) visual search task in which individuals were able to 

group by a similar spatial mechanism, good form. Relative to the performance of the 

control group, the ability to group by alignment in WS was significantly better than 

grouping by proximity. This indicates deviant processing, as adult participants show 

patterns of spatial grouping abilities in the opposite direction, i.e. a superior ability to 

group by proximity compared to alignment (Kurylo, 1997). This dissociation in WS 
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does not, therefore, support the notion that less computationally demanding types of 

grouping might be relatively superior in WS. However, it is possible that, in light of 

their poor perceptual grouping abilities overall, the WS group sought alternative 

strategies where possible. The alignment task has this potential as participants could 

observe a single row or column of the display to judge alignment, rather than the 

overall gestalt form. Such a strategy would not be possible on the proximity task, 

which could explain the relatively elevated performance of the WS group on the 

alignment task. It is unlikely that the control group would look for alternative 

strategies, as they show little difficulty in using perceptual grouping. 

Differences in completion strategy do not appear to account for the differences 

in similarity grouping ability in WS. The relative strength in grouping by luminance is 

consistent with the notion that this may be one of the more robust forms of grouping 

(Bremner, 1994). Individuals with WS are born with atypical brain structure, thus the 

developmental process of their brain is also atypical. It is possible that this robust 

form of grouping is less vulnerable to faulty development than other forms of 

grouping, which would explain the relatively superior level of performance on this 

task in WS. In addition, if luminance grouping is present at birth, it may develop in a 

more typical manner in WS than later emerging grouping abilities. This could be 

investigated by establishing the developmental time points of the emergence of 

grouping abilities in WS. However, this would be difficult to assess, as most 

individuals with WS are not diagnosed until late infancy at the earliest. 

A relative strength in grouping ability in the closure task is also observed in 

WS. The ability to group by closure is consistent with the results of Wang et al., 

(1995) and Grice et al. (2003) (although note that the closure task here is strictly a 

similarity task with the topological properties of a closure task). Given the presence of 
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topological properties in the closure task only, it is possible that the ability to group 

by topological properties is a relative strength in WS. Further investigation could 

compare grouping by closure to other forms of topological grouping properties, such 

as uniform connectedness. This is the principle that connected elements with uniform 

visual properties tend to be grouped together (Palmer & Rock, 1994). If elevated 

performance were also seen in WS on this task, this would support this suggestion of 

a relative strength in grouping by topological properties in WS. 

The ability to group by orientation similarity is particularly poor in WS 

relative to the other forms of grouping measured. This could be due to a weak ability 

to discriminate between orientations. The Benton Line Orientation test (Benton et al., 

1978) has been used to assess orientation discrimination ability in WS (Bellugi et al., 

1988; Rossen et al., 1996; Wang et al., 1995). Results are generally reported to be at 

floor on this test. Thus, although a test that measured performance at the appropriate 

level would be more informative, these results appear to be consistent with the results 

of the present study, suggesting difficulty in processing orientation in WS. 

The deviance in perceptual grouping ability demonstrated by the present study 

might also go some way to explain the global impairments experienced in image 

production (drawings or construction tasks) in WS.  It would be interesting to 

systematically assess the nature of the global impairments in production in WS, 

according to the properties assessed in this study. This would determine the effect of 

deviant perceptual grouping abilities on their ability to produce images. 

In summary, the present study showed an uneven profile of perceptual 

grouping abilities in WS. This is consistent with ERP evidence for unusual neural 

processing of perceptually grouped stimuli in WS (Grice et al., 2003). These results 
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suggest that although individuals with WS are able to process images at the global 

level, this is not achieved in a typical manner. 
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Table 1: Participant details  

Group CA RCPM score 

 Mean (S.D.) Mean (S.D.) Range 

WS 21;4 (11;8) 16.07 (5.60) 6-25 

TD 5;2 (0;5) 16.33 (5.14) 9-26 
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 Figure 1: Similarity grouping types and difficulty levels 

      

         

a. Category: Orientation    b. Category: luminance 

Grouping: Vertical     Grouping: Horizontal 

Level 1: 0 distracter elements    Level 1: 0 distracter element 

     

c. Category: Closure     d. Category: Shape 

Grouping: Horizontal     Grouping: Vertical 

Level 2: 1 to 3 distracters     Level 3: 4 to 6 distracters 
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Figure 2: Alignment: levels of difficulty 

    

a. Grouping: Horizontal b. Grouping: Vertical          c. Grouping: Vertical  

Level 1   Level 3   Level 5  

Misalignment: 9 pixels Misalignment: 5 pixels Misalignment: 3 pixels 
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Figure 3: Proximity: levels of difficulty 

     

a. Grouping: Horizontal b. Grouping: Horizontal   c. Grouping: Vertical 

Level 1: 5 pixels apart             Level 3: 9 pixels apart      Level 5: 16 pixels apart 
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Figure 4: Similarity grouping threshold values (mean and standard error) 
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Figure 5: Spatial grouping threshold values (mean and standard error) 
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Figure 6: Profile of perceptual grouping abilities in WS (z-score mean and standard 

error) 
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