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Abstract
Histone deacetylases (HDACs), HDAC2 in particular, have
been shown to regulate various forms of learning and memory.
Since cognitive processes share mechanisms with spinal
nociceptive signalling, we decided to investigate the HDAC2
expression in the dorsal horn after peripheral injury. Using
immunohistochemistry, we found that spinal HDAC2 was
mainly seen in neurons and astrocytes, with neuronal expres-
sion in na€ıve tissue 2.6 times greater than that in astrocytes.
Cysteine (S)-nitrosylation of HDAC2 releases HDAC2 gene
silencing and is controlled by nitric oxide (NO). A duration of
48 h after intraplantar injection of complete Freund’s adjuvant,
there was an ipsilateral increase in the most important NO-
producing enzyme in pain states, nitric oxide synthase
(nNOS), accompanied by an increase in HDAC2 S-nitrosyla-
tion. Moreover, a subset of nNOS-positive neurons expressed

cFos, a known target of HDAC2, suggesting that derepression
of cFos expression following HDAC2 S-nitrosylation might
occur after noxious stimulation. We saw no change in global
HDAC2 expression in both short- and long-term pain states.
However, HDAC2 was increased in astrocytes 7 days after
neuropathic injury suggesting that HDAC2 might inhibit astro-
cytic gene expression in neuropathic pain states. All together,
our results indicate that the epigenetic regulation of transcrip-
tional programmes in the dorsal horn after injury is cell
specific. Moreover, the prominent role of NO in persistent pain
states suggests that HDAC2 S-nitrosylation could play a
crucial role in the regulation of gene expression leading to
hypersensitivity.
Keywords: astrocyte, Epigenetic, HDAC2, nitrosylation,
nNOS, pain.
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Background

The modulation of transcriptional programmes is a critical
step for the plasticity mechanisms crucial to cognitive
processes and also for nociceptive signalling (G�eranton and
Tochiki 2015a,b). It is achieved by alterations in chromatin
compaction through changes in histone modification at the
N-terminal tail and is often accompanied by the recruitment
of transcription factors to plasticity-related genes. Histone
deacetylases (HDACs) promote chromatin compaction and
silencing of gene transcription by removing acetyl groups on
histone tails. Another main function of HDACs is to maintain
a low level of acetylation in primed genes to constrain their
promoter in an inactive state but getting it ready for future
rapid activation (Wang et al. 2009). HDACs have been
shown to negatively regulate various forms of learning and
memory (Penney and Tsai 2014). Furthermore, while
synaptic plasticity and memory-inducing paradigms promote
histone acetylation in multiple brain regions, HDAC

inhibitors improved cognitive performances in animal studies
(Penney and Tsai 2014).
HDAC2, a class I HDAC, in particular, has been shown to

play a central role in cognitive processes (Gr€aff et al. 2012;
Penney and Tsai 2014). Deletion of HDAC2 in mice
enhanced hippocampal plasticity and cognitive function
indicating that HDAC2 negatively regulated memory forma-
tion (Guan et al. 2009). Crucially, HDAC2 binds the
promoter and inhibits the acetylation of a number of
plasticity-related genes such as BDNF, Fos and GluR1. This
process is modulated by cysteine nitrosylation (S-nitrosyla-
tion), a signal particularly important in neurons where it can
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be regulated by the brain-derived neurotrophic factor
(BDNF) and neuronal nitric oxide synthase (nNOS) (Nott
et al. 2008). While S-nitrosylation of HDAC2 does not affect
the deacetylase activity of HDAC2, it inhibits its association
with its target genes, which leads to increased histone
acetylation and possibly gene expression (Nott et al. 2008).
Levels of HDAC expression and histone acetylation have

recently been the focus of a few studies in the context of
spinal pain processing (G�eranton and Tochiki 2015a,b). The
reported changes are very complex and heterogeneous, but
spinal level administration of inhibitors of class I HDACs
(HDAC1, 2, 3 and 8) have temporarily reduced the
hypersensitivity that develops after injection of complete
Freund’s adjuvant (CFA) in the hindpaw and nerve injury
(Bai et al. 2010; Denk et al. 2013). These reports suggest
that HDACs might play a role in the development and
maintenance of long-term pain states. HDAC2 is a key
modulator of memory formation and therefore a likely
regulator of nociceptive processing. Unfortunately, no
HDAC2-specific inhibitor exists, mainly because HDAC2
is structurally nearly identical to HDAC1 (Brunmeir et al.
2009; Haberland et al. 2009). Moreover, only small changes,
if any, in spinal HDAC2 global levels have been reported
following noxious stimulation (Bai et al. 2010; Tochiki
et al. 2012; G�eranton and Tochiki 2015a). Here, we have
used a cell-specific approach to investigate changes in
HDAC2 expression in the superficial dorsal horn in a range
of pain models and explored changes in spinal HDAC2 S-
nitrosylation.

Methods

Animals

Adult male Sprague–Dawley rats weighing 230–250 g at the time of
surgery and obtained from the Biological Services Unit at University
College London were used for all experiments. Rats were kept in
their home cages in a temperature-controlled (20 � 1°C) environ-
ment, with a light–dark cycle of 12 h (light on at 7:30 a.m.), water
and food were provided ad libitum. All efforts were made to
minimise animal suffering and to reduce the number of animal used.
All procedures were licensed under the United Kingdom Animals
(Scientific Procedures) Act 1986.

Animal models

CFA induced ankle joint inflammation
Inflammation was induced by injection of complete Freund’s
Adjuvant (CFA, Sigma, Dorset, UK; 10 lL) in the left ankle joint,
under isoflurane anaesthesia induced in a chamber delivering 2%
isoflurane combined with 100% O2 and maintained during injection
via a face mask. The needle entered the ankle joint from the anterior
and lateral posterior position, with the ankle kept in plantar flexion
to open the joint. Sham treatment consisted of anesthetizing the
animals. Sham animals are called ‘control’ animals throughout the
manuscript.

CFA induced hindpaw inflammation
CFA (50 lL) was injected using a Hamilton syringe with a 27-gauge
needle subcutaneously into the plantar surface of the left hindpaw of
rats. Rats were maintained under isoflurane anaesthesia during the
injection. Sham treatment consisted of anesthetizing the animals.
N.B.: sham animals did not receive any injection of vehicle. Sham
animals are called ‘control’ animals throughout the manuscript.

Neuropathic model; spared nerve injury
The spared nerve injury (SNI) was performed according to Decosterd
and Woolf (Decosterd and Woolf 2000). Briefly, under isoflurane
anaesthesia, the skin on the lateral surface of the thigh was incised and
a section made directly though the biceps femoris muscle exposing
the sciatic nerve and its three terminal branches: the sural, the
common peroneal and the tibial nerves. The common peroneal and
tibial nerves were tight ligated with 5–0 silk and sectioned distal to the
ligation. Great care was taken to avoid any contact with the spared
sural nerve. Complete haemostasis was confirmed and the wound was
sutured. Sham treatment consisted of exposing the sciatic nerve only.

Western blot

Rats were deeply anesthetized with pentobarbital at 48 h post CFA
injection. Spinal cord dorsal horn quadrants of the lumbar area (L4–
L6) were dissected out, frozen on dry ice and kept at �80°C until
further processing. For protein extraction, samples were each added
to 250 lL lysis buffer (20 mM Tris-HCl pH7.4, 150 mM NaCl,
1 mM EDTA, 1% Nonidet P-40, in the presence of 1 mM
phenylmethylsulfonyl fluoride and protease and phosphatase
inhibitors). Samples were homogenized with a tissue disruptor
(FastPrep FP120, ThermoSavant, GMI, Ramsey, Minnesota, USA),
sonicated for 2 9 10 s, then left to incubate on ice for 30 min.
Samples were centrifuged for 15 min, 14 000 rpm at +4�C, then
supernatant was collected. Concentration of extracted protein lysates
was determined using Bicinchoninic Acid protein assay (ThermoS-
cientific). Samples were resolved on polyacrylamide gel (Biorad
Criterion-XT precast gel) and transferred onto polyvinylidene
fluoride membrane (Bio-Rad Laboratories, Hercules, CA, USA).
After blocking for 1 h at 20–21 �C in 4% milk/0.1% phosphate-
buffered saline-Tween20, the membranes were incubate with
primary antibody (anti-nNOS 1 : 2000, Cell Signalling, Danvers,
MA, USA; Anti-HDAC2 1 : 2000, Abcam, Cambridge, UK) O/N at
4�C. After several washes, an appropriate Horseradish Peroxidase-
conjugated secondary antibody was applied for 1 h at 20–21 �C.
Blots were visualized with chemiluminescent enhanced chemilumi-
nescence solution (Amersham Pharmacia Biotech, Piscataway, NJ,
USA) or SuperSignal West Pico solution (Thermo Scientific) using
BioRad ChemiDoc MP. Anti-Calnexin antibody (1 : 1000, BioVi-
sion, San Francisco, CA, USA) was used as loading control. The
membranes were visualized by BioRad ChemiDoc MP and signal
intensity analysis was performed using ImageJ software (NIH,
Bethesda, MD, USA). For quantitative analysis, the signal of each
sample was normalized towards the corresponding Calnexin signal.

Immunohistochemistry

For immunohistochemistry, rats were deeply anesthetized with
pentobarbital and perfused transcardially with saline containing
5000 IU/mL heparin followed by 4% paraformaldehyde in 0.1 M
phosphate buffer (PB). Lumbar spinal cords were dissected out, post-
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fixed in the same paraformaldehyde solution for 2 h, and transferred
into a 30% sucrose solution in PB containing 0.01% azide at +4°C, for
a minimum of 24 h. Spinal cords were cut on a freezingmicrotome set
at 40 lm. Sections were left to incubate with primary antibody O/N at
20–21 �C (anti-HDAC2, 1 : 10 000 for Tyramide Signal Amplifica-
tion (TSA) and 1 : 1000 for direct protocol, Abcam (ab32117),
Cambridge, UK; or 1 : 5000 for TSA, Santa Cruz Biotechnology, sc-
7899, for Fig. S2 only; anti-nNOS, 1 : 1000 for TSA, 1 : 2000 for
diaminobenzidinetetrahydrochloride (DAB) peroxidase substrate and
1 : 500 for direct protocol, Cell Signalling; anti-cFos, 1 : 1000, for
TSA protocol Millipore, Darmstadt, Germany; anti-NeuN 1 : 1000
for direct protocol, Millipore, Darmstadt, Germany; anti-Glial
Fibrillary Acidic Protein (GFAP) 1 : 4000 for direct protocol,
DAKO, Cambridgeshire, UK; anti-Iba1, 1 : 2000 for direct protocol,
Wako, Osaka, Japan). For the direct protocol, direct secondary
antibodywas used at a concentration of 1 : 500 (Alexa Fluor, Thermo
Fisher Scientific, Waltam, MA, USA). For TSA protocol, appropriate
biotinylated secondary antibody was used at the concentration of
1 : 400 and left for 90 min. Sections were then incubated with avidin
biotin complex (1 : 250 Vectastain A plus 1 : 250 Vectastain B;
ABC Elite, Vector Lab, Peterborough, UK) for 30 min followed by a
signal amplification step with biotinylated tyramide solution (1 : 75
for 7 min: Perkin Elmer, Wellesley, MA, USA). Finally, sections
were incubated with FITC avidin for 2 h (1 : 600). To label nuclei,
DAPI and TO-PRO (Molecular Probes, Eugene, OR, USA) were used
at concentrations recommended by the manufacturer. Sections were
left to incubate for 10 min and 1 h, respectively, in PB solution at the
end of the protocol. All fluorescent sections were coverslipped with
Gel Mount Aqueous Mounting Medium (Sigma) to protect the
fluorescence from fading and stored in dark boxes at +4°C. We ran
controls when a double or triple stain was completed with two
antibodies of the same host. A negative control eliminating the second
primary always confirmed no cross-reactivity of the secondary
antibodies (Fig. S1). For the DAB protocol, sections were left to
incubate with primary antibody overnight at 20–21 �C (anti-nNOS,
1 : 2000, Cell Signalling) followed by conventional DAB protocol.

Immunoprecipitation

Immunoprecipitation was carried out as described in Colussi et al.
(2008). Briefly, samples were taken as described above and were each
added to 250 lL immunoprecipitation buffer (20 mM Tris-HCl
pH7.4, 150 mM NaCl, 1 mM EDTA, 1% Nonidet P-40, in the
presence of 1 mM phenylmethylsulfonyl fluoride and protease and
phosphatase inhibitors) and 10 lysing matrix-D beads (MP Biomed-
icals, MP Biomedicals, Santa Ana, TX USA). A quantity of 75 lg
protein lysates were incubated with 0.75 lL anti-S-nitrosylated
cysteine (Cat#: NISC11-A; Alpha Diagnostic, San Antonio, TX
USA) antibody for 2 h at 20–21 �C. Magnetic protein-A Bioadem-
beads (Ademtech, Pessac, France) were pre-washed in the immuno-
precipitation buffer described above; 20 lL of washed beads were
added to each lysate sample and left to bind for another 2 h. Beads
were washed several times before the protein was eluted in 13 lL
PAG elution buffer (Ademtech). These samples were run on a western
blot as described above and hybridized with anti-HDAC2 antibody.

Confocal imaging

All images of double and triple stained tissue were acquired by
confocal microscopy using a laser-scanning microscope (Leica TCS

NT SP). Sequential laser channel acquisition was used to prevent the
generation of false positives by ‘bleed through’ of immunofluores-
cence from one channel to the other. Images obtained were either
single focal planes or Z-stack series. For quantitative analysis of cell-
specific expression of HDAC2, a Z-stack of four images taken across
a 8 lm thick section (data presented in Fig. 2 and Fig. 3) or a Z-stack
of six images taken across a 10 lm thick section (data presented in
Fig. 4) were acquired with an ACS APO 40.0 9 oil objective.
Images were always taken from paired ipsilateral and contralateral
sides. For the analysis of HDAC2 expression in neurons and
astrocytes (Fig. 2 and Fig. 3), a single picture per section side was
taken spanning lamina I to III. For the analysis of HDAC2 expression
in nNOS-expressing neurons (Fig. 4), two pictures were taken: one
covering the superficially expressed nNOS neurons in Lamina II and
one covering the deeper nNOS-positive neurons in Lamina 4. Offset
and gain were fixed for sets from the same experiment. If in the
process of acquisition, the intensity signal from some HDAC2 nuclei
were saturated, the section was discarded from the analysis. A range
of 4–6 dorsal horn sections were imaged per animal. Laser strength of
each scan was not changed throughout the imaging.

Fiji analysis

Fiji software (Schindelin et al. 2012) was used to quantify HDAC2
expression in the nuclei of neurons and astrocytes. To measure
HDAC2 expression in neurons, the NeuN stain was used to create a
mask of neuronal nuclei using fixed particle size and threshold across
each study. HDAC2 immunohistochemical signal was measured
within the NeuN mask. To measure the nNOS-positive neurons, we
created a mask of nNOS nuclei using the cytoplasmic stain obtained
with the nNOS antibody, making sure to fill the hole because of the
absence of nNOS stain in the nucleus. To measure the expression of
HDAC2 in non-nNOS-positive neurons, the nNOS mask was
subtracted from the NeuN mask. Since GFAP is not expressed within
the nucleus of astrocytes, a very conservative method was followed to
identify astrocytic nuclei. After excluding all neuronal nuclei from the
image, only nuclei that were unequivocally concluded to be astrocytic
after observation of the composite image of the Z-stackweremanually
selected. Both for neuronal (including nNOS-positive) and astrocytic
HDAC2, HDAC2 intensity was recorded from a mask of HDAC2
nuclei created using fixed particle size and threshold across each
study. The output measure from Fiji used for further analysis was the
integrated density of theHDAC2 nuclei, which gave themost accurate
representation of total HDAC2 expression per nucleus.

Statistical analysis

All statistical analysis was performed using IBM SPSS Statistic 20.
Data were analysed using repeated measures one- or two-way
ANOVA, as relevant, and post hoc analysis was carried out with one-
way UNIVARIATE analysis.

Results

HDAC2 is mainly expressed in neurons and astrocytes in the

superficial dorsal horn of na€ıve rats

Using immunohistochemistry, we found strong expression of
HDAC2 in dorsal horn neurons, labelled with NeuN (Fig. 1a,
d1 and d2), and astrocytes, labelled with Gfap (Fig. 1b, d1
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and d2). However, we could not detect any HDAC2
expression in dorsal horn microglia labelled with IBa1
(Fig. 1c). To confirm the validity of our findings, we

repeated these stains with a different antibody (see Methods).
Again, we found that HDAC2 was strongly expressed in
neurons, to a lesser extent in astrocytes and was never seen in

NeuN
HDAC2

NeuN

Gfap

Gfap

Iba1

HDAC2

HDAC2

HDAC2

TO-PRO

Dapi

(a1)

(b1)

(c1)

(d1) (d2)

(c2)

(b2) (b3)

(a2)

NeuNGfap
HDAC2

TO-PRO

Dapi

Dapi

Fig. 1 Rat spinal histone deacetylases (HDAC)2 is mainly found in
neurons and astrocytes. HDAC2 expression in the rat superficial dorsal

horn was investigated using immunohistochemistry. (a1–2) Expression
of HDAC2 (green) in dorsal horn neurons (labelled with NeuN, red).
Dapi (blue stain) was used to label nuclei. Coexistence is seen in

yellow. All neurons were expressing HDAC2. (b1–3) Expression of
HDAC2 (green) in dorsal horn astrocytes (labelled with Gfap, red).
Since Gfap does not stain the astrocytic nucleus, there is no overlap

between the two stains. Dapi (blue stain) was used to label nuclei. (c1–

2) Expression of HDAC2 (green) in dorsal horn microglia (labelled with
Iba1, red). Dapi (blue stain) was used to label nuclei. There was no

obvious expression of HDAC2 in microglia. (d1–2) Expression of
HDAC2 (green) in dorsal horn neurons (blue) and astrocytes (red). TO-
PRO (cyan stain) was used to label nuclei. Scale bar: a1, b1, c1:

20 lm; a2, b2, b3, c2, d1, d2: 5 lm. Arrows in A point at HDAC2
expressed in neuronal nuclei. Arrows in b and d point at HDAC2
expressed in astrocytic nuclei. Arrow head in C points at the absence

of HDAC2 stain in microglial nuclei.
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microglia (Fig. S2). We next quantified HDAC2 expression
in neurons and astrocytes using triple labelling. We found
that HDAC2 expression in the superficial dorsal horn of
na€ıve rats was 2.6 times greater in neuronal nuclei than in
astrocytic nuclei (Fig. 2).

HDAC2 S-nitrosylation increases in the dorsal horn 48 h

following CFA injection in the hindpaw

We then explored the possibility that spinal HDAC2
underwent S–nitrosylation following noxious stimulation.
S-nitrosylation is controlled by nitric oxide (NO) and nNOS
is the most important NO-producing enzyme in the spinal
cord during the development and maintenance of persistent
pain states (Tao et al. 2004; Chu et al. 2005; Boettger et al.
2007; Guan et al. 2007). Increased expression of nNOS had
been reported in the dorsal horn within 48 h of noxious
stimulation (Herdegen et al. 1994; Yonehara et al. 1997;
Maih€ofner et al. 2000; Chu et al. 2005). We found a
significant increase in the number of nNOS-positive cells on
the ipsilateral side following intraplantar CFA injection using
DAB immunostaining technique (Fig. 3a and b), but we did
not find any significant increase in nNOS levels using
western blot analysis (Fig. 3c and d). Moreover, we did not
measure any difference in HDAC2 expression in the dorsal
horn using western blot analysis (Fig. 3c and e). However,
we investigated changes in HDAC2 S–nitrosylation using
immunoprecipitation and found that 48 h following CFA
injection in the ankle joint, there was a significant global
increase in HDAC2 S–nitrosylation in the ipsilateral dorsal
horn (Fig. 3f and g). Using immunohistochemistry and a cell

specific analysis, we found that HDAC2 expression was
significantly up-regulated 48 h following intraplantar CFA in
nNOS+ neurons in lamina II (Fig. 3h, i, j and k). However,
there was no change in HDAC2 expression in other neuronal
cells analysed as a single group. Finally, HDAC2 has been
shown to regulate the expression of the immediate early gene
Fos (Penney and Tsai 2014) and a subset of nNOS-positive
neurons have been shown to express cFos 2 h following
formalin injection (Polg�ar et al. 2013). We therefore
explored the possibility that HDAC2 regulation of cFos
expression could occur in nNOS-positive neurons. Two
hours and eight hours following CFA injection in the
hindpaw, we never saw more than 1 nNOS-positive cell
expressing cFos per 40 lm section and there was no
difference in the number of nNOS-expressing cells between
the ipsilateral and contralateral side (average of 27.1 nuclei
on the ipsilateral side and 26.9 nuclei on the contralateral
side; 23.6 nuclei on the ipsilateral side and 21.6 nuclei on the
contralateral side, at 2 h and 8 h respectively; n = 3/3;
Fig. L1, 2). However, 48 h following CFA injection in the
hindpaw, 7% of nNOS-positive neurons expressed cFos
(8.5% of cFos-expressing neurons expressed nNOS; average
of 18.2 cFos nuclei on the ipsilateral side and 6.4 nuclei on
the contralateral side; n = 2; Fig. L3).

There is no global change in neuronal HDAC2 expression in

the dorsal horn 7 days after CFA injection in the ankle joint

or 7 days following neuropathic injury

We used immunohistochemistry to investigate HDAC2
protein expression specifically in neurons, all subtypes
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neurons and astrocytes was investigated using immunohistochemical
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Fig. 3 48 h after intraplantar CFA injection, spinal Histone deacety-

lases (HDAC)2 S-nitrosylation increase. (a) Representative image of
nNOS expression visualized using diaminobenzidinetetrahydrochloride
(DAB) protocol in the rat dorsal horn. Note the nNOS-positive neurons in
lamina II (arrows) as well as the deeper neurons (arrow heads). Scale

bar: 50 lm. (b) Using FIJI particle analysis we found an up-regulation of
the number of nNOS-positive neurons per dorsal horn quadrant in the
ipsilateral side of the injection. ANOVA SIDE X TREAT: F(1,8) = 10.4,

p < 0.05; Post hoc analysis: CFA ipsi versus CFA contra: F(1,6) = 33.1,
p < 0.01; CFA ipsi versus control ipsi: F(1,8) = 6.9, p < 0.05. N = 7
(CFA)/3(control). (c and d) We found no significant increase in nNOS

expression in the dorsal horn using western blot analysis. Data
normalized to contra control (100%). N = 6/6. (c and e) Western blot
analysis of HDAC2 expression indicated no changes 48 h following

intraplantar CFA. Data normalized to contra control (100%). N = 6/6. (f)
Representative blots after immunoprecipitation with a nitro-cysteine
antibody. (g) Quantification of immunoprecipitation blots. There was a

significant increase in spinal HDAC2 nitrosylation 48 h after CFA

injection. ANOVA TREAT: F(1,17) = 7.1, p < 0.05. Post hoc analysis for ipsi
side: F(1,18) = 5.9; p < 0.05.N = 10/10. (h) Using FIJI analysis, we found
an up-regulation of HDAC2 expression ipsi versus contra in nNOS-
positive neurons located in lamina II. Data normalized to nNOS-positive

neurons contra deep (100%). ANOVA SIDE X HDAC2 EXPRESSION:
F(1,12) = 4.6, p < 0.05. Post hoc analysis paired t-test. N = 4. (i) nNOS
expression observed after immunohistochemistry following the TSA

amplification protocol. Note the nNOS positive neurons in the superficial
lamina II (arrows) as well as the deeper neurons (arrow heads). Scale
bar: 200 lm. (j–k) Representative images of nNOS (green), HDAC2

(red) and NeuN (blue) expression in (j), lamina II and (k), lamina IV-V.
Scale bar: 50 lm. (l1–3) cFos (green) and nNOS (red) positive neurons
in the superficial dorsal horn, 2, 8 and 48 h post CFA injection in the

hindpaw. Arrows point at nNOS nuclei positively labelled with cFos.
Scale bar: 25 lm. (b, d, e, g and h) Data show mean � SEM.
**p < 0.01; *p < 0.1. I, ipsi; C: contra; IP: immunoprecipitation.
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confounded, of the superficial dorsal horn in long-term
pain states. We found no global changes in HDAC2
expression in neurons 7 days after CFA injection in the
ankle joint (Fig. 4a) or 7 days following SNI surgery
(Fig. 4b).

Spinal HDAC2 expression changes in astrocytes after nerve

injury but not after ankle joint inflammation

We finally explored whether astrocytic expression of
HDAC2 might change in long-term pain states. We found
no changes in HDAC2 expression in astrocytes 7 days after
CFA injection in the ankle joint (Fig. 5a), but we found that
HDAC2 expression was increased in spinal astrocytes 7 days
following SNI surgery (Fig. 5b).

Discussion

While the inhibitory role of HDAC2 in cognitive processes
such as hippocampal-dependent memory formation has been
acknowledged for some time, its role in the plasticity
observed in the spinal nociceptive pathways following injury
has never been investigated. Here, we report that HDAC2
was clearly expressed in both neurons and astrocytes, with a
greater expression level in neurons. There was a global
increase in HDAC2 S-nitrosylation in the dorsal horn 48 h
post-CFA injection suggesting that HDAC2 repression of
gene expression was likely to be released. Global expression
of HDAC2 did not change in short-term or long-term pain
states, but HDAC2 expression in nNOS-positive cells and in
astrocytes increased 48 h after CFA and 7 days after SNI
surgery respectively. This suggested that regulation of gene
expression by spinal HDAC2 was cell specific and highly
complex.

First, we investigated the cell-specific expression of
HDAC2 in the rat superficial dorsal horn. HDAC2 is
generally thought to be ubiquitously expressed and we found
that HDAC2 was strongly expressed in spinal neurons and to
a lesser extent in spinal astrocytes. However, we never saw
any HDAC2 signal in microglial cells. This was somewhat
surprising as it has been shown that HDAC2 mRNA is
present in cortical microglia (Gosselin et al. 2014; Lavin
et al. 2014). However, our findings support data published
by others indicating that throughout the adult mouse brain,
HDAC2 was never observed in microglia (Yao et al. 2013),
which suggested that cortical HDAC2 mRNA might never be
translated. Another study in the murine brain also indicated
that while HDAC2 is initiated in neural progenitors and up-
regulated in post-mitotic neuroblasts and neurons, it is not
expressed in fully differentiated glia (MacDonald and
Roskams 2008). Interestingly, these studies did not detect
HDAC2 expression in astrocytes in adult murine brain. The
protocol of amplification used, however, was not as effective
as ours (TSA protocol), which could explain why they did
not detect lower expression levels of HDAC2. Another
reason could be that HDAC2 cell-specific expression in the
rodent brain differs from that in the spinal cord.
We then decided to investigate whether HDCA2 could be

S-nitrosylated following peripheral noxious stimulation. S-
nitrosylation is controlled by nitric oxide (NO), which is
produced at spinal level after noxious stimulation, and occurs
at Cys262 and Cys274 on HDAC2, promoting transcription
following HDAC2 dissociation from the DNA. nNOS is the
most important NO-producing enzyme in the spinal cord
during the development and maintenance of persistent pain
states (Tao et al. 2004; Chu et al. 2005; Boettger et al. 2007;
Guan et al. 2007). nNOS is expressed in the na€ıve rat
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(b) HDAC2 immunohistochemical
signal intensity in neuronal nuclei

7 d after SNI

Fig. 4 There is no change in global
neuronal histone deacetylases (HDAC)2
expression in long-term pain states.

HDAC2 expression in neurons was
investigated using immunohistochemical
triple labelling as in Fig.2. HDAC2
immunohistochemical signal intensity was

quantified using FIJI. (a) 7 days following
ankle joint inflammation, neuronal HDAC2
expression remained unchanged. Data

normalized to astrocytes contra control
(100%; Fig. 5a). N = 4/4. (b) 7 days post
spared nerve injury (SNI) surgery, neuronal

HDAC2 expression was the same as in
control treated animals. Data normalized to
astrocytes contra control (100%; Fig. 5b).

N = 4/4. Data show mean � SEM.

© 2016 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of
International Society for Neurochemistry, J. Neurochem. (2016) 10.1111/jnc.13621

Expression of histone deacetylase 2 in pain states 7



superficial dorsal horn and an increase in the number of
spinal nNOS-positive neurons during the development of
inflammatory pain states has been reported by a number of
studies (Herdegen et al. 1994; Yonehara et al. 1997;
Maih€ofner et al. 2000; Chu et al. 2005). Our experiments
suggested that the greatest up-regulation of nNOS-positive
cells in the superficial dorsal horn early after CFA injection
in the hindpaw was seen at 48 h. At this time point, we found
a significant increase in the number of nNOS-positive cells
on the ipsilateral side (Fig. 3b). Surprisingly, the difference
observed using western blot analysis did not reach statistical
significance, suggesting that the changes in nNOS expression
occurred in a small subset of spinal neurons. Western blot
analysis of a whole spinal cord quadrant would indeed not be
as sensitive as immunohistochemical analysis to detect small
changes. Nonetheless, this increase in nNOS expression was
accompanied by a significant increase in HDAC2 S-
nitrosylation. However, when the nNOS activity was inhib-
ited using the specific inhibitor N-[4-[2-[[(3-Chlorophenyl)
methyl]amino]ethyl]phenyl]-2-thiophenecarboxamide dihy-
drochloride (ARL) 17 477 at a dose that had been shown
to reduce hypersensitivity in rats (Coutinho and Gebhart
1999), there was no reduction in HDAC2 nitrosylation
(Fig. S3). Establishing the time of administration of the
nNOS inhibitor with respect to the time of CFA injection and
tissue dissection is challenging and it is likely that we did not
inhibit nNOS at the optimal time. However, other factors

such as BDNF (Nott et al. 2008) could also be responsible
for NO production and HDAC2 nitrosylation in the spinal
cord after injury. Regardless of the pathway involved, an
increase in HDAC2 nitrosylation following CFA injection
suggests that HDAC2 inhibition of gene expression was
released at least in a subset of cells. Interestingly, NO can
diffuse from its site of production and cross-membranes
(Namiki et al. 2005), and signal even to non-neuronal cells
(Garthwaite 2008). Altogether, this implies that the site or
cell specificity of HDAC2 S-nitrosylation is hard to identify.
Overall, animal studies have demonstrated a profound

pronociceptive role for NO in both inflammatory and
neuropathic pain (Chu et al. 2005; Guan et al. 2007;
Schmidtko et al. 2009) and we could hypothesize that up-
regulation of expression of pronociceptive genes following
HDAC2 S-nitrosylation might contribute to this process. For
example, it had been reported that a subset of nNOS-positive
inhibitory interneurons express cFos 2 h after intraplantar
formalin (Polg�ar et al. 2013). Here, looking 48 h after CFA
injection in the hindpaw, the optimal time point for spinal
nNOS increase, we found that 7% of nNOS-positive neurons
also expressed cFos. This observation suggests that release of
cFos inhibition by HDAC2 could contribute to cFos up-
regulation following noxious stimulation. It would be an
interesting advance to confirm that spinal cFos expression is,
at least partly, under the control of HDAC2. A number of
studies in the brain tissue and cultured cortical neurons have
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(a) HDAC2 immunohistochemical
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7 d after CFA
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7 d after SNI
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Fig. 5 Spinal histone deacetylases (HDAC) 2 expression changes in

astrocytes after nerve injury, but not after ankle joint inflammation.
HDAC2 expression in neurons was investigated using immunohisto-
chemical triple labelling as in Fig. 2. HDAC2 immunohistochemical

signal intensity was quantified using FIJI. (a) 7 days following ankle
joint inflammation, astrocytic HDAC2 expression remained
unchanged. Data normalized to astrocytes contra control (100%).

N = 4/4. (b) There was a significant increase in HDAC2 expression in

astrocytes when compared with control, 7 days post spared nerve
injury (SNI) surgery. Data normalized to astrocytes contra control
(100%). N = 4/4. ANOVA TREAT F(1,5) = 8.5, p < 0.05; Post hoc

analysis: for SNI only: F(1,3) = 14.4, p < 0.05 and SNI ipsi versus
control ipsi: F(1,5) = 10.5, p < 0.05. *p < 0.05. Data show
mean � SEM.
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already shown that inhibitors of Class I HDACs can indeed
potentiate cFos expression (Sng et al. 2005; Koppel and
Timmusk 2013; Wang et al. 2015). However, in the absence
of specific HDAC2 inhibitors, the particular role of HDAC2
in the regulation of cFos expression is more delicate to assess.
Finally, we observed an up-regulation of HDAC2 expression
specifically in nNOS-positive neurons, 48 h following CFA
intraplantar injection. This offers the interesting perspective
that modulation of gene expression by HDAC2 might be a
process tightly regulated by a negative feedback loop.
While HDAC activity can be modulated by a number of

post-translationalmodifications, including nitrosylation, phos-
phorylation, and SUMOylation (Segr�e and Chiocca 2011), the
level of expression of HDAC is also a key factor in HDAC-
dependent mechanisms. Indeed, HDAC2 was decreased in the
hippocampus of fear-conditioned rats after learning (Gupta-
Agarwal et al. 2012) and HDAC2-knockout mice showed
enhanced synaptic density and neuroplasticity (Guan et al.
2009). In contrast, over-expression of HDAC2 impaired
hippocampal-dependent memory formation, decreased CA1
spine density, and impaired hippocampal long-term potenti-
ation inmice (Guan et al. 2009).Moreover, increasedHDAC2
expression and decreased histone acetylation in plasticity-
related genes have been observed in memory centres in
Alzheimer disease (AD) and are believed to underlie the
cognitive decline observed in AD (Gr€aff et al. 2012). Inter-
estingly, the constrain in cognitive functions resulting from
HDAC2 build up is reversible, suggesting that the potential for
neuronal plasticity is not lost in severely degenerated brains
(Gr€aff et al. 2012). We saw no indication of global changes in
spinal HDAC2 expression after peripheral injury, but did
observe changes specifically in nNOS-positive neurons and
astrocytes, suggesting that the regulation of expression of
HDAC2 is a highly cell-specific process, at least at the spinal
level. It is interesting to note that the presence ofHDAC2 in the
blood might have contaminated the HDAC2 signal in our
westernBlot analysis,making the exact quantification of spinal
HDAC2 expression less sensitive than expected.
Our findings also suggest that HDAC2 might be important

for the regulation of gene expression in astrocytes in
neuropathic pain states. HDAC2 expression was indeed
increased in astrocytes on the ipsilateral side, 7 days
following nerve injury. Crucially, the role of astrocytes is
predominant in the maintenance phase of neuropathic pain
(Scholz and Woolf 2007). An increase in HDAC2 expression
in astrocytes at this time point would suggest that the
expression of a subset of astrocytic genes is inhibited.
Interestingly, down-regulation of the glial glutamate trans-
porters GLAST and GLT-1, which are both predominantly
expressed in astrocytes, has previously been reported in a
number of neuropathic models (Weng et al. 2005, 2014; Nie
and Weng 2010; Zhang et al. 2012). This down-regulation
was shown to cause glutamate to spill into the extra synaptic
space and activate postsynaptic glutamate receptors in spinal

sensory neurons, leading to increased dorsal horn excitability
which contributes to the development of persistent pain (Ren
and Dubner 2010). The possibility that HDAC2 directly
regulates astrocytic glutamate transporter expression should
therefore be explored.
While our data has clearly shown that peripheral injury

induces changes in HDAC2 expression and activity in the
dorsal horn that might regulate injury induced changes in
gene expression, the impact of HDAC2 activity on the
development of injury-induced hypersensitivity remains to
be explored. Intrathecal delivery of currently available non-
specific inhibitors of HDAC and histone acetyl transferase,
enzymes with opposite activity, have both been shown to
temporarily improve injury-induced mechanical hypersensi-
tivity in subsets of pain models (G�eranton and Tochiki
2015b). This clearly indicates that inhibitors that globally
affect the epigenetic landscape and might regulate the
expression of a large number of genes are not suitable to
explore the complexity of epigenetic programmes engaged
after injury and the role of individual HDAC in nociceptive
signalling. The findings reported here show that future
strategies to inhibit HDACs will not only have to be HDAC
specific but also target different cell types independently.

Conclusions

We have shown here that HDAC2 activity in the dorsal horn
was regulated by S-nitrosylation after injury. Considering the
prominent role of NO in persistent pain states, this modifi-
cation could be a key regulator of HDAC2 activity in the
superficial dorsal horn. Moreover, our cell-specific approach
has revealed a complex pattern of expression for spinal
HDAC2 following peripheral injury. There were no changes
in global HDAC2 expression after injury, but HDAC2 was
increased in nNOS-positive neurons after CFA and in
astrocytes after neuropathic injury. This indicated a cell-
specific epigenetic regulation of transcriptional programmes.
Finally, it has been shown that by regulating structural and
functional neuronal plasticity, not only can HDAC2 inhibit
cognitive processes but also paradoxically maintain memory
fidelity by preventing the modification of remote memory
(Gr€aff et al. 2014). It therefore appears crucial to explore the
possibility that HDAC2 could contribute to the maintenance
of the undesired long-term memory seen in chronic pain.
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