
1 
 

Molecular analysis of the LDLR gene in Coronary artery disease patients from 

the Indian population 

 

KN ArulJothi 1, RA Whitthall2, M Futema2, SE Humphries2, Melvin George3, Elangovan 

S3, Devi A1* 

1 Department of Genetic Engineering, SRM University, Chennai, India 

2Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College 

London, London, UK 

3 Department of Cardiology, SRM Medical College Hospital, Chennai, India 

*Correspondence to be sent – adevipradeep@gmail.com 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

ABSTRACT 

Background 

Cardiovascular disease is a leading cause of mortality in Indian population. Mutations in LDLR, 

APOB and PCSK9 genes may lead to Familial Hypercholesterolemia, an autosomal dominant 

disorder which in turn leads to cardiovascular diseases. The primary objective of this study is to 

analyze these genes in CAD patients of Indian population 

Methods  

A total of 30 patients were selected out of 300 CAD patients based on UK-SB criteria from South 

India. The gDNA was isolated by organic extraction method and the exons and exon-intron 

boundaries of LDLR gene, APOB (exon 26) and PCSK9 (exon 7) were screened by PCR - High 

resolution melt analysis. The amplicons showing shift in melting pattern were sequenced to find 

out the variation. 

Results  

This study reports three novel variations, an intronic deletion c.694+8_694+18del in intron 4, a 

synonymous variation c.966 C>T [p. (N322=)] in exon 7 and a deletion insertion 

c.1399_1340delinsTA [p. (T467Y)] in exon 10, two recurrent variations c.862 G>A [p. (E288K)] 

in exon 6 and a splice site variation c.1845+2 T>C in exon - intron junction 12 and PCSK9 gene 

had c.1180+17C>T change in intron 7. However there are no pathogenic variations in APOB and 

PCSK9 genes in Indian population. Insilico analysis predicted all the variations as pathogenic 

except the synonymous variation. 

Conclusion 

 This report adds five new variations to the spectrum of LDLR variations in Indian population. 

This study also suggests that UK Simon Broom criteria can be followed to categorize FH 

patients in Indian population. 
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1. Introduction 

 Familial Hypercholesterolemia (FH) is an autosomal dominant disorder characterized by 

elevated plasma LDL cholesterol (LDL-C) caused by mutations mainly in LDLR [1], APOB [2] 

and PCSK9 genes[3] and the FH condition may lead to cardiovascular diseases. In the general 

population the frequency of heterozygous FH is 1 in 500 and homozygous is 1 in a million. The 

estimate may vary with respect to the population, country and origin. Some countries have varied 

frequency distribution compared to the general distribution worldwide. Estimation of an accurate 

frequency distribution and recurrent mutations in a country may be helpful in the diagnosis and 

treatment of the disease. The Indian subcontinent has a diverged population with closed inbred 

communities and has a prevalence of consanguinity in most regions which indicates that 

extensive studies may be needed for a proper estimate of the distribution of mutations in FH 

associated genes. Earlier reports in Indian population illustrated that the mutations are commonly 

seen in exons 3, 4, 9 and 14[4].  There are no standard procedures or guidelines established for 

plasma LDL-C or TC levels for a clinical diagnosis of heterozygous FH in the Indian population.   

This is the first study to select subjects for a FH study based on UK Simon-Broome criteria and 

Dutch lipid Clinic score[5], which are standard guidelines for the clinical diagnosis of FH. 

The LDL receptor is involved in clearing LDL-C from the blood, ApoB and LDL form LDL-C 

particles which binds to LDL receptor and endocytosed through clathrin coated vesicles. The 

LDL-C is hydrolyzed further whereas the LDL receptor is recycled through vesicles to the cell 

surface for further uptake of LDL-C or degraded based on the need of cell [6]. A heterozygous 

mutation in the LDLR gene may lead to decreased uptake of LDL-C by liver cells and results in 

elevated plasma LDL-C, whereas homozygous mutation in the gene leads to severe FH due to 

lack of functional LDL receptors.   In the latter case the subjects may experience MI in their 

early ages compared HeFH individuals. There are more than 1100 variants found in the LDLR 

gene worldwide [7]. There are about 12 mutations in the LDLR gene reported in the Indian 

population [4], [8], [9] and [10] 

Apolipoprotein B aids in binding of LDL cholesterol to LDLR and the mutation in APOB gene 

causes defective receptor binding and leads to elevated plasma LDL cholesterol. Previous reports 

suggest that the mutation, p. (R3527Q) in exon 26, affects the functional binding domain leading 

to disease and emphasized the crucial role of arginine at this position for normal binding of LDL-

C to receptor [11]. There is no report, so far, of any mutation in the APOB gene in the Indian 

population.  

PCSK9 is involved in the degradation of LDL receptors [12] and, in turn, influences the LDL 

cholesterol level in plasma. Gain of function mutations in PCSK9 leads to uncontrolled 

degradation of LDLR and may result in severe FH whereas loss of function mutation leads to 

decreased levels of LDL-C [13] and [14]. Till date there are no reports of mutation in the PCSK9 

gene in the Indian population. 

This is the first study to screen for mutations in the LDLR, APOB and PCSK9 genes in CAD 

patients from the southernmost part of India, a region known for inbred communities and 
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consanguineous marriages. The mutations reported in this study have not been reported before in 

the Indian population but have been seen in other populations. 

 

2. Materials and methods 

2.1. Blood Sampling and DNA isolation 

Blood samples were collected from 300 unrelated South Indian CAD patients including patients 

with acute coronary syndrome and chronic stable angina as diagnosed by ACC/AHA guidelines 

from SRM Medical college hospital, Chennai, India after getting their written consent.  Lipid 

profiles of the 300 patients were analyzed with respect to UK Simon-Broome criteria for the 

diagnosis of FH and 30 patients with elevated levels of total cholesterol and LDL-C with 

possible FH were considered for the study (TC > 6.5 and LDL-C >4.0). Tendon Xanthoma was 

not observed in any of the patients considered in this study. DNA was isolated from whole blood 

by phenol chloroform extraction and quantified using the NanoDrop 8000 Spectrophotometer 

(Thermo Scientific). 

2.2. PCR - High Resolution Melt 

All the exons and exon–intron boundaries of LDLR gene, exon 7 of PCSK9 (p. (D374Y)) and a 

part of exon26 of the APOB gene (p. (R3527Q)) were screened through High Resolution Melt 

(HRM) analysis, as previously described [15], using the Rotorgene 6000 (Corbett/Qiagen).  

Accumelt HRM mix (Quanta Bioscience) was used to amplify the fragments in 10ul reactions 

with 7.5 ng of genomic DNA and 4 Pico moles of each respective primer.  

2.3. Restriction Fragment Length Polymorphism (RFLP) 

The polymorphisms in several exons were indicated by a shift in the HRM analysis which are 

characteristic of heterozygous genotype, which were genotyped using RFLP employing 

respective restriction enzyme to ensure that they are only known polymorphism not any other 

mutation. This also used to analyze the prevalence of the polymorphism in the population and to 

determine its significance. Few of them were sequenced further to confirm the obtained genotype 

result.      

2.4. Sequence analysis 

Samples with a shift in melt (HRM) were amplified using the same primers used for HRM15 and 

purified by a column purification method (GFX-kit, GE Healthcare). The purified products were 

sent to Eurofins or Source Biosciences for sequencing. 

2.5. In silico analysis  

Variations were analyzed using Polyphen2 [16], SIFT [17] and Mutation Taster [18] for 

pathogenicity prediction and Berkley Drosophila Genome Project (BDGP) [19], Human Splice 

Finder (HSF)20 and ESE Finder21 for splice site and silent mutation pathogenicity prediction. 
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3.  Results 

 In this study, of 300 CVD patients (baseline characters shown in Table.1), 30 were 

considered based on UK Simon-Broome criteria for FH setting threshold limits of TC>6.5 

mmol/L and LDLC>4.0 mmol/L (UK SB criteria are 7.5mmol/L and 4.9mmol/L respectively). 

Since there are no reports of lipid level criteria for FH diagnosis in the Indian population, SB 

criteria were lowered by 1 mmol/L so that we may not leave out any FH patients for screening.  

From our study, the subjects confirmed with a FH causing mutation had mean TC and LDLC 

levels of 7.73±0.39mmol /L and 5.9± 0.3 mmol/L respectively (Figure.1).  

3.1. LDLR Variations 

 This study unveiled five variations in the LDLR gene in the studied Indian population 

(Table.2). The HRM results of exon 6 of patient SIn FH 225 had a characteristic shift of 

heterozygous nature. It was further analyzed by sequencing and we found c.862 G>A p. (E288K) 

mutation. The splice site mutation c.1845+2 T>C was observed in patient SInFH 9, the HRM 

pattern and the sequencing results are shown in Figure.2. The splice site mutation was analyzed 

using in silico tools (Berkley Drosophila Genome Project (BDGP), Human Splice Finder20 

(HSF) to suggest whether the change affects splicing. BDGP predicted that there is a significant 

change in splice site score that may affect splicing (allele; wild type t = 0.5; mutant c = 0.0). HSF 

predicted that the donor splice site is broken if the mutant c-allele is present and aberrant splicing 

would be the result. 

Exon 10 of SInFH 258 was sequenced after having a characteristic double heterozygous type 

curve in HRM analysis (Figure. 2), we found a common polymorphism (c.1413 G>A rs5930)   

and a deletion-insertion of two bases (c.1399_1340delinsTA) that changes the amino acid at 

position 467 from threonine to tyrosine (Figure. 3). The mutation was predicted to be damaging 

by Polyphen2 and SIFT, while Mutation Taster predicted it as a polymorphism. According to 

two main LDLR databases UCL LDLR database 

(http://www.ucl.ac.uk/ldlr/LOVDv.1.1.0/index.php?select_db=LDLR) [22] and LDLR UMD 

(http://www.umd.be/LDLR/4DACTION/WS_SC1)23 this mutation has not been reported before 

in any population    SInFH 146 was found to have the mutation  c.694+8_694+18del, 11 bases 

are deleted in the intron 4 of LDLR gene. This mutation was analyzed using BDGP and HSF to 

see whether it affects splicing. BDGP predicted that the score is lower in the mutant compared to 

wild type (WT = 0.87, M = 0.6) and ESE finder predicts that the sites for SRSF1 and SRSF2 are 

lost (Figure.5). A novel silent variation c.966 C>T p. (N322=) was observed in SInFH 286 

(Figure. 3), polyphen2 and SIFT predicted no damage by the mutation whereas Mutation Taster 

predicted this mutation as disease causing mutation. Since it is a synonymous mutation we 

looked further to see whether splicing would be affected in any way, using BDGP and ESE tools. 

BDGP predicted that the synonymous change did not alter the acceptor splice site score 

compared to that of the wild type allele c = 0.39, t = 0.39. ESE predicted that the sites of SRSF1, 

SRSF6 and SRSF1 (IgM- BRCA1) is lost and SRSF5 site is gained in the mutant allele. 

3.2. PCSK9 and APOB variations 

http://www.ucl.ac.uk/ldlr/LOVDv.1.1.0/index.php?select_db=LDLR
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Exon 7 (including the intron/exon boundaries) of PCSK9 was screened by HRM, the sample 

SInFH 225, showed a shift and the sample was analyzed further by sequencing and found to have 

a c.1180+17C>T change in intron 7(Figure .4). The change was further analyzed using in silico 

tools, as before, and found this change does not affect splicing in any way (BDGP – no 

difference in donor site score, ESE predicted the sites of SRSF1, SRSF5 and SRSF1 (IgM- 

BRCA1) are lost in the mutant. A fragment in exon 26 of APOB was screened and no change 

was found.  

3.3. Lipid levels in the mutation carriers 

Table.1 shows the clinical features and lipid profile of the FH patients diagnosed with the 

mutations.  As can be seen in Figure.1, the subjects confirmed with an FH-causing mutation had 

mean TC and LDLC levels of 7.73±0.39mmol /L and 5.9± 0.3mmol/L respectively, which were 

significantly higher than the non-mutation group.  

 

4. Discussion 

The study was aimed at finding novel and recurrent mutations in LDLR, APOB and PCSK9 

genes of CVD patients from southern part of India. There are very few reports about the 

mutations in these genes in the Indian population, and the sample selection criteria or threshold 

limits for selection were also not scrutinized elsewhere.  Though this study started with 300 CVD 

patients, based on the UK SB criteria only 30 samples were screened for FH mutation testing in 

these three genes. An FH-causing mutation was found in four out of the 30 clinically classified 

FH patients, resulting in 13% mutation detection rate. The cut off values were lowered in the 

study and the average TC and LDLC were 6.53±0.9mmol /L and 4.9± 0.75 mmol/L respectively 

and the average TC and LDL-C levels of patients diagnosed for the FH causing mutation was 

7.73±0.39 mmol /L and 5.9± 0.3 mmol/L respectively. The patients diagnosed with an FH-

causing mutation had their cholesterol (TC and LDL-C) levels within the SB criteria, which 

suggests that the UK SB criteria can be followed to clinically diagnose FH in individuals from 

Indian Subcontinent. The sample size is too low to draw a conclusion on setting the cut off 

values to categorize patients, but the study suggests that the UK Simon Broome cut-offs can be 

considered for the Indian population to diagnose FH patients. 

The mutation detection rate was 13.3% after lowering the cut off points by 1mmol/L from SB 

criteria, the detection rate may increase considerably if the exact SB criteria is adopted to select 

patients for the diagnosis of mutation.  Whereas when the exact UK-SB (TC-7.5mmol/l and 

LDL-C-4.9mmol/L) criteria was applied, the mutation detection rate was 57.7% (4/7), which 

suggests it is an appropriate detection cut-off for FH for the Indian population. 

4.1. Detected Mutations 

The mutation c.862 G>A p. (E288K) observed in SInFH225 was not previously reported in the 

Indian population, but has been seen previously in European subjects (Germany, New Zealand 

and Netherland) [24], [25], [26].  The splice site mutation c.1845+2 T>C was previously 

reported in a Japanese patient and for the first time in Indian subjects. This mutation may result 
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in alternate splicing and the prediction made by in silico tool BDGP suggested that the mutant 

allele resulted in a significant change in the splice site score (allele; wild type T= 0.5; mutant C = 

0.0) that would affect splicing. 

The sample SInFH 258 had a novel insertion/deletion mutation (c.1399_1340delinsTA) that 

would result in threonine to tyrosine change at 467 position of the receptor. The patient also had 

features compatible with a diagnosis of heterozygous FH (TC = 8.07mmol/l, LDL C = 

6.44mmol/l), which supports the mutation as pathogenic. Since there are two base pairs altered in 

the same subject, we may expect a compound homozygous mutation whereas the clinical feature 

doesn’t show homozygous features.  

SInFH146 had mutation (c.694+8_694+18del) in the intron which is predicted to affect the splice 

site by the in silico tool ESE Finder (Figure.5). It was found that the proteins SRSF1 or 

ASF1/SF2 which is involved in discriminating the cryptic and authentic splice site  27and SRSF2 

that interacts with the splicing complex lose their binding site which is at closer proximity to the 

splice site28. The patient was clinically diagnosed with heterozygous FH and we did not find any 

other significant variation in LDLR, APOB and PCSK9 genes. Hence the heterozygous 

phenotype could be conferred by the above mentioned change. 

A novel silent mutation c.966C>T, p. (N322=) was found in the patient SInFH286, although 

synonymous variants are less likely to have an effect on the protein’s function, the Mutation 

taster predicted this variation to be “disease causing”. This nucleotide change does not insert any 

splice enhancing sites, according to the in silico tools used.  

There were no mutations observed in exon 7 of PCSK9 and exon 26 of APOB genes in the 

studied Indian population. No other reports have found any mutations in these genes in the 

Indian population supporting our findings. 

5. Conclusions 

Previous reports on Indian population suggested that the mutation were distributed mostly in 

exons 3, 4, 7, 8 and 14 with this study the distribution extends to exons 6, 10 and 12. These 

exons can also be given equal importance while screening for the LDLR mutations in the Indian 

population. The UK Simon Broome criteria can be recommended to screen the patients for FH in 

future studies. The principle limitation to this study is the relatively small sample size. It is also 

possible that the methods used to screen for FH-causing mutations may have missed some for 

technical reasons. 
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