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Background: Numerous germline single-nucleotide polymorphisms increase susceptibility to prostate cancer, some lying near
genes involved in cellular radiation response. This study investigated whether prostate cancer patients with a high genetic risk
have increased toxicity following radiotherapy.

Methods: The study included 1560 prostate cancer patients from four radiotherapy cohorts: RAPPER (n¼ 533), RADIOGEN
(n¼ 597), GenePARE (n¼ 290) and CCI (n¼ 150). Data from genome-wide association studies were imputed with the 1000
Genomes reference panel. Individuals were genetically similar with a European ancestry based on principal component analysis.
Genetic risks were quantified using polygenic risk scores. Regression models tested associations between risk scores and 2-year
toxicity (overall, urinary frequency, decreased stream, rectal bleeding). Results were combined across studies using standard
inverse-variance fixed effects meta-analysis methods.

Results: A total of 75 variants were genotyped/imputed successfully. Neither non-weighted nor weighted polygenic risk scores
were associated with late radiation toxicity in individual studies (P40.11) or after meta-analysis (P40.24). No individual variant was
associated with 2-year toxicity.

Conclusion: Patients with a high polygenic susceptibility for prostate cancer have no increased risk for developing late
radiotherapy toxicity. These findings suggest that patients with a genetic predisposition for prostate cancer, inferred by common
variants, can be safely treated using current standard radiotherapy regimens.
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Prostate carcinoma accounts for a quarter of cancer diagnoses in
men in the United Kingdom and is the fourth most common
cancer worldwide with an estimated 1.1 million men diagnosed in
2012 (Globocan, 2012; Cancer Research UK, 2014). It is estimated
that approximately a third of patients with localised or locally
advanced prostate cancer undergo external beam radiotherapy
(RT) with curative intent (Foroudi et al, 2003). The use of RT in
combination with androgen-deprivation prolongs survival (Martin
and D’Amico, 2014), and has contributed to the increase in 5-year
survival rate from 30% in the 1970s to 80% in 2009 (Cancer
Research UK, 2014). Because of increased cure rates, cancer
survivorship and late treatment toxicity have become increasingly
important issues in health-care provision (England, 2013).

Late toxicity following irradiation for prostate cancer includes
damage to the bladder, bowel and erectile function (Peeters et al,
2005). The median rates of late gastrointestinal (GI) and
genitourinary (GU) toxicity are reported to be 15% and 17%
respectively (Ohri et al, 2012). The rates of severe GI and GU
toxicity are reported to be 2% and 3% respectively (Ohri et al, 2012).
There is now supporting evidence that new techniques such as
intensity-modulated radiotherapy (IMRT) reduce rates of long-term
GI and GU side effects compared with 3D conformal RT, even with
dose escalation (Dolezel et al, 2015; Wilkins et al, 2015). Despite
these advances, approximately one in five patients will experience
some degree of late radiation toxicity (Dolezel et al, 2015).

Studies are attempting to identify the genetic variants that
increase an individual’s risk of radiation toxicity (Kerns et al, 2013;
Barnett et al, 2014; Fachal et al, 2014). This work has highlighted
the need to increase the statistical power to identify individual
common variants with small effects (Barnett et al, 2012a). To address
this need, the Radiogenomics Consortium (RGC) was established in
2009 to facilitate large-scale collaborative research with sufficient
power to detect genetic variants that predict a patient’s risk of
radiation toxicity (West et al, 2010). The RGC groups have
undertaken genome-wide association studies (GWASs) and are
starting to identify replicated variants that increase a prostate cancer
patient’s risk of toxicity (Fachal et al, 2014).

In the cancer predisposition field, GWASs have identified 76
common single-nucleotide polymorphisms (SNPs) associated with
prostate cancer susceptibility (Eeles et al, 2014). Although the
biologic role of these SNPs in the development of prostate cancer is
an area of on-going investigation, their proximity to genes that are
involved in DNA repair processes suggests that disruption of DNA
damage response and repair mechanisms may have a key role
(Eeles et al, 2014; Hazelett et al, 2014). If a patient has an inherent
compromised ability to repair DNA damage, they may be
predisposed to both prostate cancer and toxicity following RT, as
the same DNA repair pathways play a central role in cellular
response to radiation. In addition, recent epidemiological evidence
suggests that radiation exposure increases the risk of developing
prostate cancer (Myles et al, 2008; Schmitz-Feuerhake and
Pflugbeil, 2011; Kondo et al, 2013). Therefore, the hypothesis
underlying this study was that common genetic variants involved
in cancer predisposition may have roles in both tumour formation
and in the response of normal tissues to radiation-induced DNA
damage. The aim of this study was to investigate the association
between prostate cancer germline risk SNPs and likelihood of
developing late radiation toxicity.

MATERIALS AND METHODS

Patients. This prospective study involved four prostate cancer
radiotherapy cohorts: RAPPER (N¼ 533), RADIOGEN (N¼ 597),
GenePARE (N¼ 290) and CCI (N¼ 150). Informed consent was
obtained from all patients. RAPPER was approved by the

Cambridge South Research Ethics Committee (05/Q0108/365).
RADIOGEN was approved by the Galician Ethical Committee.
GenePARE was approved by the Mount Sinai Medical Center
Institutional Review Board. The CCI study was approved by the
Health Research Ethics Board of Alberta (Cancer).

The UK RAPPER study (UKCRN1471) recruited patients
who received neoadjuvant androgen suppression and external
beam radiotherapy (EBRT) from two clinical trials RT01
(ISRCTN47772397) and CHHiP (ISRCTN97182923). A full
description of the cohort is available elsewhere (Barnett et al,
2014). The RTO1 study was a randomised dose escalation study
using 3D conformal radiotherapy comparing 64 and 74 Gy in the
treatment of localised prostate cancer (Dearnaley et al, 2014). The
CHHiP study randomised between standard (74 Gy in 37 fractions)
and hypofractionated (60 Gy in 20 fractions or 57 Gy in 19
fractions) IMRT (Dearnaley et al, 2012).

RADIOGEN comprised patients who received 3D conformal
radical or post-prostatectomy EBRT at the Clinical University
Hospital of Santiago de Compostela, Spain. A total of 473 patients
had adjuvant hormone therapy. Patients received radical EBRT
using doses of between 70 and 76 Gy in 2 Gy per fraction. The
adjuvant EBRT doses used were 60–66 Gy in 2 Gy per fraction.
A full description of the cohort can be found elsewhere (Fachal
et al, 2012).

GenePARE patients received brachytherapy with/without
EBRT at the Mount Sinai Hospital, New York. Of the B800
patients included in the initial GenePARE study, 290 individuals
of European ancestry had high-quality genome-wide SNP
data available and were included in the present study.
Of these individuals, 147 received adjuvant hormone therapy.
The 125I (160 Gy; TG-43) was used in patients undergoing
brachytherapy alone and 103Pd (100 Gy) in patients also receiving
EBRT. The EBRT regimen was delivered using 3D conformal
technique using 24–50 Gy. External beam radiotherapy alone was
delivered using IMRT using 66.6–81 Gy, and further full details can
be found elsewhere (Kerns et al, 2014b).

The CCI cohort recruited patients from the Cross Cancer
Institute in Edmonton and the Tom Baker Cancer Centre in
Alberta, Canada. Patients underwent EBRT using a hypofractio-
nated (68 Gy in 25 fractions or 55 Gy in 16 fractions) or
conventional (72–82 Gy delivered in 2 Gy per fraction) schedule.
Approximately 50% of patients received androgen suppression.
Further treatment details can be found elsewhere (Kerns et al,
2013).

Assessment of late radiotherapy toxicity. Late toxicity data were
collected prospectively and assessed using standardised scoring
systems (Supplementary Table 1). Data collected at 2 years were
used as in other RGC studies (Andreassen et al, 2012; Dearnaley
et al, 2012; Kerns et al, 2013). For rectal bleeding in GenePARE, a
1–5-year window was allowed, because the scoring system assigns
grades based on whether rectal bleeding occurs as a single incident
or intermittent symptoms over time.

Decreased stream, urinary frequency and rectal bleeding data
were harmonised across the four cohorts to create comparable end
points (see Supplementary Table 2). Toxicity end points were
analysed as change from baseline rather than actual recorded grade
such that the toxicity captured was due to radiotherapy only.
Because of the low number of high-grade toxicities (X2) it
was only possible to analyse toxicities as grade 0 vs X1 (Table 1).
Scale-independent Standardised Total Average Toxicity (STAT)
scores were derived, as described previously (Barnett et al, 2012b),
from a range of individual toxicity end points to provide an overall
measure of 2-year toxicity that was comparable across the four
cohorts.

Genotyping, quality control and imputation. Samples were
genotyped as part of previously completed GWAS (Kerns et al,
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2013; Barnett et al, 2014; Fachal et al, 2014). Standard quality
control procedures were applied to remove variants that were
missing in 45% of samples, had a minor allele frequency (MAF)
o1% or displayed genotype frequencies deviating from those
expected under Hardy–Weinberg equilibrium (P-value o10� 6).
Samples that had 43% of all variants missing were removed. Allele
frequencies are known to vary by ancestral background, and hence
principle component analysis (PCA) was used to identify and
exclude individuals with non-European ancestry in order to avoid
false positive associations arising from population substructure
because of the small number of participants with other ethnicities.
Comparable sets of variants were produced through imputation
using SHAPEIT (Delaneau et al, 2012) and IMPUTE2 (Howie et al,
2011) with the 1000 Genomes Phase I reference panel (Abecasis
et al, 2010). Supplementary Table 3 lists the 76 known prostate
cancer susceptibility SNPs. Genotype dosages for the prostate
cancer risk alleles were extracted from the imputed data.

Statistical analysis. Polygenic risk scores were created to quantify
the patients’ genetic risk of prostate cancer. For each patient,
genotype dosages for the prostate cancer risk-increasing alleles
were calculated and then summed across all the variants. Two
types of risk score were calculated:

Non-weighted, for patient i: risk scorei¼
Pj

1
Gij

Weighted, for patient i: weighted risk scorei¼
Pj

1
bjGij

where j¼ variants 1.76
bj¼ the per-allele log-odds ratio for risk of prostate cancer

associated with variant j
G¼ risk allele dosage
The log-odds ratios used to weight the risk score were taken

from the review paper by Eeles et al (2014).
Within each cohort, logistic regression was used to test the

association between each individual toxicity end point and

polygenic risk score, adjusted for important nongenetic factors
identified by QUANTEC (Bentzen et al, 2010). Total biologically
effective dose (BED) was calculated for individuals in all four
studies as a measure of radiation dose exposure using an a/b¼ 3.
Other nongenetic risk factors included were age at treatment,
diabetes (rectal bleeding only), rectal volume (rectal bleeding only),
transurethral resection of the prostate (TURP) before radiotherapy
(urinary end points only) and baseline toxicity (Table 1). Linear
regression was used to test the association between STAT score and
polygenic risk score, adjusted for all the nongenetic factors above.
Logistic and linear regression was also used to test each genetic
variant individually. Regression coefficients and their standard
errors were then meta-analysed using standard inverse-variance
weighted fixed effects meta-analysis methods.

Power calculations. This study was well powered to detect
significant associations between prostate cancer polygenic risk
scores and common radiotherapy toxicity end points. Assuming a
moderate difference of 0.34 in mean polygenic risk score between
prostate cancer patients who experience toxicity and those who do
not, with a significance level of a¼ 0.05, the power to detect an
association between toxicity (grade X1) and polygenic risk score
would be 99% for a toxicity end point with 15% prevalence (grade
X1) and 96% for a toxicity end point with 6% prevalence (grade
X1). This difference in mean risk would be equivalent to a relative
risk of toxicity of 1.4 for the subset of patients with a higher mean
polygenic risk of prostate cancer.

RESULTS

The distributions of patient characteristics, toxicity end points and
STAT scores are summarised in Table 1. Of the 76 germline

Table 1. Distributions of patient characteristics and toxicity

RAPPER (N¼533) RADIOGEN (N¼597) GenePARE (N¼290) CCI (N¼150) P-valuea

Age
Mean (s.d.) 67.2 (5.7) 71.0 (6.5) 64.0 (7.5) 66.7 (7.4) Po0.00005

Diabetes
Yes, n (%) 39 (7.3) 144 (24.1) 16 (5.5) 24 (16.0) Po0.00005
No, n (%) 493 (92.5) 453 (75.9) 274 (94.5) 122 (81.3)
Missing, n (%) 1 (0.2) 0 0 4 (2.7)

Prior TURP
Yes, n (%) 56 (10.5) 45 (7.5) 6 (2.1) 6 (4.0) P¼ 0.0002
No, n (%) 472 ( (88.6) 552 (92.5) 284 (97.9) 144 (96.0)
Missing, n (%) 5 (0.9) 0 0 0

BED
Mean (s.d.) 120.5 (6.2) 120.5 (5.6) 191.9 (22.4) 125.5 (6.2) Po0.00005

STAT 2 years
Mean (s.d.) � 0.01 (0.5) 0.02 (0.8) 0.12 (0.7) �0.01 (0.7) 0.06

Decreased stream
Grade 0, n (%) 483 (90.6) 472 (79.1) 189 (65.2) NA Po0.00005
Grade X1, n (%) 29 (5.5) 6 (1.0) 66 (22.7) NA
Missing, n (%) 21 (3.9) 119 (19.9) 35 (12.1) NA

Urine frequency
Grade 0, n (%) 482 (90.5) 423 (70.9) 179 (61.7) 120 (80) Po0.00005
Grade X1, n (%) 45 (8.4) 54 (9.0) 76 (26.2) 30 (20)
Missing, n (%) 6 (1.1) 120 (20.1) 35 (12.1) 0

Rectal bleeding
Grade 0, n (%) 446 (83.7) 522 (87.4) 208 (71.7) 110 (73.3)
Grade X1, n (%) 81 (15.2) 74 (12.4) 82 (28.3) 40 (26.7) Po0.00005
Missing, n (%) 6 (1.1) 1 (0.2) 0 0
Abbreviations: BED¼biologically effective dose; NA¼ not available; STAT¼ Standardised Total Average Toxicity; TURP¼ transurethral resection of the prostate.
aP-value for test of heterogeneity across cohorts.
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Table 2. SNPs associated with prostate cancer

RAPPER RADIOGEN GenePARE CCI

SNP Chromosome Position
Alleles

major/minor MAF R2 a MAF R2 a MAF R2 a MAF R2 a

rs1218582 1 154834183 A/G 0.45 0.94 0.50 0.87 0.43 0.96 0.48 0.96

rs4245739 1 204518842 A/C 0.24 0.99 0.30 0.99 0.28 1 0.23 1

rs11902236 2 10117868 G/A 0.27 0.93 0.29 1 0.27 0.91 0.28 1

rs13385191 2 20888265 G/Ab 0.25 0.99 0.24 1 0.27 1 0.26 1

rs1465618 2 43553949 G/A 0.22 0.98 0.26 0.98 0.23 0.98 0.22 1

rs721048 2 63131731 G/A 0.22 1 0.22 1 0.18 0.94 0.17 0.93

rs10187424 2 85794297 A/G 0.37 1 0.44 0.99 0.42 0.99 0.42 1

rs12621278 2 173311553 A/G 0.04 0.97 0.04 1 — — — —

rs2292884 2 238443226 A/G 0.28 1 0.23 0.97 0.24 0.99 0.22 0.99

rs3771570 2 242382864 G/A 0.18 0.99 0.16 0.96 0.14 1 0.15 1

rs2660753 3 87110674 C/T 0.11 1 0.16 1 0.19 0.96 0.08 0.98

rs2055109 3 87467332 C/Tb 0.26 1 0.28 0.99 0.24 0.86 0.22 0.99

rs7611694 3 113275624 A/C 0.41 1 0.37 0.98 0.36 1 0.39 1

rs10934853 3 128038373 C/A 0.29 0.98 0.29 0.94 0.32 1 0.34 1

rs6763931 3 141102833 C/T 0.45 0.98 0.39 1 0.40 0.96 0.39 1

rs10936632 3 170130102 A/C 0.49 0.94 0.45 0.95 0.46 0.94 0.47 0.95

rs1894292 4 74349158 G/A 0.47 0.86 0.47 1 0.40 0.91 0.44 1

rs12500426 4 95514609 C/A 0.48 0.96 0.48 0.98 0.49 0.98 0.49 0.99

rs17021918 4 95562877 C/T 0.31 0.99 0.31 0.99 0.35 1 0.37 1

rs7679673 4 106061534 C/A 0.34 1 0.38 0.99 0.49 0.99 0.38 1

rs2242652 5 1280028 G/A 0.19 0.91 0.15 0.45 0.22 0.62 0.19 0.62

rs12653946 5 1895829 C/T 0.45 1 0.46 0.58 0.48 0.90 0.44 0.90

rs2121875 5 44365545 T/G 0.35 1 0.37 1 0.41 0.99 0.34 1

rs6869841 5 172939426 G/A 0.23 0.98 0.21 0.99 0.24 0.99 0.23 0.99

rs130067c 6 31118511 T/G 0.21 1 0.19 1 NA NA NA NA

rs3096702d 6 32192331 G/A 0.42 0.97 0.28 1 NA NA NA NA

rs1983891 6 41536427 C/T 0.29 0.95 0.35 0.98 0.31 1 0.31 1

rs2273669 6 109285189 A/G 0.15 0.99 0.16 0.97 0.12 0.97 0.14 0.99

rs339331 6 117210052 T/Cb 0.27 0.97 0.25 1 0.19 1 0.32 1

rs1933488 6 153441079 A/G 0.38 0.99 0.41 1 0.44 1 0.41 1

rs9364554 6 160833664 C/T 0.33 0.99 0.25 1 0.25 1 0.29 1

rs12155172 7 20994491 G/A 0.22 0.82 0.21 1 0.21 0.97 0.22 0.97

rs10486567 7 27976563 G/Ab 0.19 0.97 0.20 1 0.25 0.99 0.21 0.98

rs6465657 7 97816327 T/C 0.49 1 0.47 1 0.41 1 0.49 1

rs2928679 8 23438975 C/T 0.48 1 0.45 0.99 0.49 0.97 0.46 1

rs1512268 8 23526463 G/A 0.45 0.99 0.50 0.98 0.49 0.99 0.42 1

rs11135910 8 25892142 G/A 0.2 0.93 0.15 1 0.16 0.97 0.18 0.99

rs12543663 8 127924659 A/C 0.35 0.94 0.26 0.97 0.31 0.94 0.33 0.94

rs10086908 8 128011937 T/C 0.27 1 0.31 1 0.26 1 0.26 0.99

rs16901979 8 128124916 C/A 0.05 0.99 0.05 1 0.05 1 0.05 1

rs620861 8 128335673 C/T 0.34 1 0.36 0.99 0.36 0.99 0.31 0.99

rs6983267 8 128413305 G/Tb 0.43 0.95 0.40 1 0.48 0.98 0.45 1

rs1447295 8 128485038 C/A 0.14 0.97 0.07 1 0.09 0.99 0.10 0.99

rs817826 9 110156300 T/C 0.17 0.64 0.17 0.94 0.21 1 0.12 1

rs1571801 9 124427373 C/A 0.28 0.76 0.23 1 0.22 1 0.32 1

rs10993994 10 51549496 C/T 0.46 0.79 0.43 1 0.47 0.92 0.43 0.92

rs3850699 10 104414221 A/G 0.28 0.99 0.28 0.96 0.29 0.97 0.26 0.97

rs2252004 10 122844709 G/Tb 0.09 0.99 0.09 0.99 0.11 1 0.09 1

rs4962416 10 126696872 T/C 0.28 0.93 0.31 1 0.31 0.98 0.24 0.98
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prostate cancer risk SNPs, 75 were genotyped or imputed
successfully (R240.3; Table 2). Histograms of the polygenic risk
scores show an approximate normal distribution within each
cohort (Figure 1). Brachytherapy slightly increases urinary toxicity
compared with EBRT alone, explaining the higher urinary toxicity
in GenePARE (Sutani et al, 2015).

The results of the association analyses are shown in Table 3
and Supplementary Tables 4–7. Neither the non-weighted
nor the weighted polygenic risk score was associated with any
late radiotherapy individual toxicity end points or STAT score in
any of the individual studies or on meta-analysis (meta-analysis
P40.35 and P40.33 for non-weighted and weighted scores
respectively; Table 3). None of the individual SNPs were
associated with late radiation toxicity at 2 years at the
prespecified significance level of P-value o5� 10� 4 in any of
the individual studies or on meta-analysis (Supplementary
Tables 4–7). There was no statistical evidence of heterogeneity
between studies for any individual SNPs or the polygenic
risk score.

DISCUSSION

This study found no evidence that prostate cancer patients with a high
polygenic risk score for susceptibility to the disease have an increased
risk of developing late toxicity following RT. The study was well
powered to detect an association between prostate cancer polygenic risk
and radiotherapy toxicity end points with a prevalence X6% and a
moderate effect of RR¼ 1.4. There was also no evidence for individual
SNPs to be associated with risk of toxicity, although the study was not
sufficiently powered to detect associations with individual SNPs that are
each likely to carry a very small risk for radiotherapy toxicity. Rare,
highly penetrant variants like BRCA1, BRCA2 and HOXB13 were not
included in this analysis as they require sequencing in a much larger
number of patients and different statistical analysis methods.

The biggest nongenetic determinant of radiotherapy toxicity is
known to be dose (Kerns et al, 2015). In this study we calculated
BED to allow comparison across cohorts receiving external beam
therapy only (RAPPER, RADIOGEN and CCI) and those receiving

Table 2. ( Continued )

RAPPER RADIOGEN GenePARE CCI

SNP Chromosome Position
Alleles

major/minor MAF R2 a MAF R2 a MAF R2 a MAF R2 a

rs7127900 11 2233574 G/A 0.22 0.98 0.23 0.91 0.27 0.59 0.22 0.96

rs1938781 11 58915110 T/C 0.21 1 0.21 1 0.20 0.99 0.19 1

rs7931342 11 68994497 G/T 0.46 1 0.41 1 0.36 1 0.41 1

rs11568818 11 102401661 A/G 0.44 0.89 0.46 0.99 0.42 0.91 0.42 0.93

rs902774 12 53273904 G/A 0.16 0.98 0.14 1 0.17 0.99 0.18 1

rs1270884 12 114685571 G/A 0.48 0.93 0.49 0.98 0.48 0.98 0.48 1

rs10875943 12 49676010 T/C 0.32 0.86 0.28 1 0.32 0.93 0.29 0.95

rs9600079 13 73728139 G/T 0.46 0.86 0.47 1 0.43 0.89 0.46 0.95

rs8008270 14 53372330 G/A 0.15 1 0.19 0.99 0.19 1 0.16 1

rs7141529 14 69126744 G/Ab 0.47 1 0.45 1 0.46 0.99 0.49 0.99

rs4430796 17 36098040 G/A 0.47 0.94 0.49 0.88 0.49 0.90 0.45 0.93

rs7210100e 17 47436749 A/G — — — — — — — —

rs11649743 17 36074979 G/Ab 0.2 1 0.19 1 0.15 1 0.16 1

rs11650494 17 47345186 G/A 0.09 0.99 0.08 0.93 0.13 0.99 0.09 0.99

rs684232 17 618965 A/G 0.35 0.99 0.33 0.98 0.34 0.98 0.39 0.99

rs1859962 17 69108753 T/G 0.5 0.99 0.45 1 0.43 1 0.47 1

rs7241993 18 76773973 G/A 0.28 0.94 0.28 0.91 0.32 0.51 0.32 0.56

rs8102476 19 38735613 C/Tb 0.42 0.99 0.34 0.96 0.38 0.97 0.43 0.97

rs11672691 19 41985587 A/Gb 0.24 0.87 0.21 0.93 0.23 0.93 0.27 0.93

rs103294f 19 54797848 T/C 0.23 1 0.20 1 0.22 0.30 — —

rs2735839 19 51364623 G/A 0.12 1 0.15 1 0.17 0.93 0.16 0.97

rs2427345 20 61015611 G/A 0.35 0.99 0.35 0.37 0.39 0.91 0.40 0.96

rs6062509 20 62362563 A/C 0.32 1 0.26 0.99 0.27 0.98 0.28 0.98

rs5759167 22 43500212 G/T 0.47 1 0.45 0.90 0.46 0.80 0.47 1

rs2405942 23 9814135 A/G 0.17 1 0.20 0.95 0.21 0.94 0.23 0.93

rs5919432 23 67021550 A/G 0.14 0.98 0.18 1 0.21 1 0.18 1

rs5945619 23 51241672 T/C 0.41 0.92 0.44 1 0.38 1 0.33 1

Abbreviations: MAF¼minor allele frequency; NA¼ not available; SNP¼ single-nucleotide polymorphism.
aR2 refers to the ‘imputation info’ metric produced by IMPUTE2 that represents the certainty with which the SNP has been imputed and lies between 0 (no certainty) and 1 (high certainty; R2¼ 1
for genotyped SNPs).
bMajor allele is associated with increased risk of prostate cancer.
cMerged SNP rs115664826.
dMerged SNP rs114376585.
eThe rs7210100 MAF¼ 0, R2¼ 0, excluded from RAPPER analyses; RADIOGEN R2¼ 0.005; not imputed in GenePARE or CCI data sets.
frs103294 poorly imputed in CCI.
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brachytherapy as well (GenePARE). Other important nongenetic
factors such as age and comorbidities were also adjusted for. Tests
for heterogeneity in these factors across the cohorts were highly
significant, suggesting that the cohorts are not homogeneous.
However, none of the meta-analysis P-values for heterogeneity
were statistically significant. Thus, although the heterogeneity of
the cohorts may have reduced the power of the meta-analysis, it is
unlikely to have biased the results for the SNPs.

The prostate cancer risk SNPs are mostly located in intronic
regions and the functional target genes through which they

increase prostate cancer risk are not known. However, some SNPs
associated with prostate cancer risk reside near genes that may
influence the DNA repair process. The SNP rs817826, identified in
a Han Chinese population, lies in an intergenic region between
RAD23B and KLF4 (Xu et al, 2012). RAD23B is a key protein
involved in the nucleotide excision repair pathway that functions
to repair single-strand DNA breaks from ionising radiation
(Clement et al, 2010). Defects in this pathway have been associated
with photosensitive conditions such as xeroderma pigmentosa
(XP) and increase the likelihood of double-strand breaks and late
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Figure 1. Histograms showing the approximate normal distributions for the non-weighted and the weighted polygenic risk scores in (A) the
RAPPER cohort, (B) the RADIOGEN cohort, (C) the GenePARE cohort and (D) the CCI cohort.
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radiation toxicity (Feltes and Bonatto, 2015). Another SNP,
rs1938781, found on chromosome 11q12 lies very close to
FAM111A and FAM111B (Akamatsu et al, 2012). Mutations in
FAM111B have been associated with the development of hereditary
fibrosing poililoderma with pulmonary fibrosis, tendon contracture
and myopathy (Mercier et al, 2013). The underlying mechanism in
which FAM111B causes the above abnormalities is not known. One
of the most interesting SNPs, rs7141529 on chromosome 14q24, is
an intronic SNP in the DNA repair gene RAD51B (Eeles et al,
2013). Though the functional effect of this SNP is unknown,
RAD51B is involved in homologous recombination repair induced
by double-strand DNA breaks such as those caused by RT. The
SNPs in the TERT locus of 5p15 have been shown to affect prostate
cancer risk by interfering with TERT expression (Amin Al Olama
et al, 2013). The TERT gene functions by adding telomere repeat
sequences at the end of chromosomes that prevent cells under-
going telomere-dependent senescence (Kote-Jarai et al, 2013).
A number of proteins have been identified that are involved in
telomere maintenance as well as being involved in repair of DNA
double-strand breaks by homologous recombination (Huda et al,
2009). Another SNP that has an association with aggressive
prostate cancer is rs4245739 that is located in the 30 untranslated
region (UTR) of MDM4 on chromosome 1q32 (Eeles et al, 2013).
When functioning normally, MDM4 is a critical negative regulator
of the tumour suppressor gene TP53. MDM4 is frequently
overexpressed in many cancers that have wild-type TP53
(Wynendaele et al, 2010). TP53 is involved in DNA repair
(Merino and Malkin, 2014).

Studies investigating genetic variation in relation to risk of
radiotherapy toxicity focused initially on ATM, because individuals
with homozygote mutations are extremely sensitive to radiation.
The first SNP studies were reported at the start of twenty-first
century, and the most widely studied genes encoded proteins
associated with DNA repair (e.g., ATM), the development of
fibrosis (e.g., TGFB1) and scavenging of reactive oxygen species
(e.g., SOD2). Although significant associations were reported,
replication was often unsuccessful (Andreassen et al, 2012; Barnett
et al, 2012a). Since the establishment of the RGC, replicated
associations have been found in both large candidate gene (Talbot
et al, 2012; Seibold et al, 2015) and genome-wide association
(Fachal et al, 2014) studies. It is interesting to note that the SNPs
being identified through GWAS fall in or near genes associated
with the function of the tissue irradiated (Fachal et al, 2014; Kerns
et al, 2014a, c, 2015; Rosenstein et al, 2014). Although DNA
damage response gene products have a clear role in cancer
eradication, other pathways are clearly important in the pathogen-
esis of late radiotherapy toxicity (Bentzen, 2006).

The study reported here had a number of limitations. First, the
findings are limited to prostate cancer risk conferred by common
variants only – many thousands of participants will need to be
studied to assess a role for rare variants. Second, our analysis was
limited to men who were genetically of European ancestry and
therefore the conclusions may not be generalisable to men of other
ethnicities. Third, many genes that predispose to prostate cancer
have not yet been identified. Fourth, there are likely to be
unrecorded toxicities in patients because underreporting is a
known issue of data collection in radiotherapy studies (Bentzen
et al, 2010). For example, it was not possible to analyse sexual
dysfunction as no data were available for two of the cohorts.

Only 33% of common germline variants that predict the familial
risk of developing prostate cancer have so far been discovered
(Eeles et al, 2014). The top 1% of the risk distribution have a 4.7
times increased risk of developing prostate cancer than the average
population being profiled (Eeles et al, 2013). The National Institute
of Health-funded GAME-ON initiative is a cross-cancer genotyp-
ing project that will include 100 000 prostate cancer patient
samples on a genotyping array of 500 000 SNPs. Through thisTa

b
le

3.
P

o
ly

g
en

ic
ri

sk
sc

o
re

an
al

ys
is

re
su

lt
s

R
A

P
PE

R
R

A
D

IO
G

E
N

G
en

eP
A

R
E

C
C

I
M

et
a-

an
al

ys
is

b
(9

5%
C

I)
P

a
b

(9
5%

C
I)

P
b

(9
5%

C
I)

P
b

(9
5%

C
I)

P
b

(9
5%

C
I)

P
Q

,
P

-h
et

b

ST
A

T
sc

o
re

N
on

-w
ei

g
ht

ed
ris

k
sc

or
e

0.
00

3
(�

0.
00

6,
0.

01
)

0.
49

0.
00

3
(�

0.
00

8,
0.

01
)

0.
61

�
0.

01
(�

0.
03

,
0.

01
)

0.
15

�
0.

01
(�

0.
04

,
0.

01
)

0.
25

0.
00

00
2

(�
0.

01
,

0.
01

)
0.

99
3.

88
,

0.
28

W
ei

g
ht

ed
ris

k
sc

or
e

0.
04

(�
0.

02
,

0.
10

)
0.

19
0.

03
(�

0.
05

,
0.

10
)

0.
44

�
0.

06
(�

0.
17

,
0.

05
)

0.
28

�
0.

09
(�

0.
26

,
0.

08
)

0.
29

0.
01

(�
0.

03
,

0.
06

)
0.

49
4.

15
,

0.
25

D
ec

re
as

ed
st

re
am

N
on

-w
ei

g
ht

ed
ris

k
sc

or
e

0.
01

(�
0.

06
,

0.
08

)
0.

78
00

01
(�

0.
00

1,
0.

00
3)

0.
36

0.
00

4
(�

0.
06

,
0.

06
)

0.
91

N
A

N
A

0.
00

1
(�

0.
00

1,
0.

00
3)

0.
35

0.
08

,
0.

96
W

ei
g

ht
ed

ris
k

sc
or

e
0.

34
(�

0.
15

,
0.

83
)

0.
17

0.
01

(�
0.

01
,

0.
02

)
0.

36
0.

04
(�

0.
35

,
0.

43
)

0.
86

N
A

N
A

0.
01

(�
0.

01
,

0.
02

)
0.

33
1.

84
,

0.
40

U
ri

ne
fr

eq
ue

nc
y

N
on

-w
ei

g
ht

ed
ris

k
sc

or
e

�
0.

00
4

(�
0.

06
,

0.
06

)
0.

90
�

0.
00

1
(�

0.
01

,
0.

00
4)

0.
66

�
0.

04
(�

0.
10

,
0.

02
)

0.
18

�
0.

03
(�

0.
12

,
0.

05
)

0.
45

�
0.

00
2

(�
0.

00
7,

0.
00

4)
0.

54
2.

19
,

0.
53

W
ei

g
ht

ed
ris

k
sc

or
e

�
0.

00
3

(�
0.

40
,

0.
40

)
0.

99
�

0.
01

(�
0.

05
,

0.
02

)
0.

50
�

0.
31

(�
0.

72
,

0.
08

)
0.

12
0.

04
(�

0.
56

,
0.

62
)

0.
89

�
0.

01
(�

0.
05

,
0.

02
)

0.
42

2.
18

,
0.

54

R
ec

ta
lb

le
ed

in
g

N
on

-w
ei

g
ht

ed
ris

k
sc

or
e

0.
04

(�
0.

00
9,

0.
08

)
0.

11
�

0.
00

2
(�

0.
01

,
0.

00
3)

0.
47

�
0.

02
(�

0.
08

,
0.

04
)

0.
48

�
0.

00
03

(�
0.

07
,

0.
07

)
0.

99
�

0.
00

2
(�

0.
01

,
0.

00
3)

0.
55

3.
22

,
0.

36
W

ei
g

ht
ed

ris
k

sc
or

e
0.

28
(�

0.
03

,
0.

59
)

0.
08

�
0.

01
(�

0.
04

,
0.

03
)

0.
78

�
0.

06
(�

0.
45

,
0.

32
)

0.
75

�
0.

05
(�

0.
57

,
0.

47
)

0.
86

�
0.

00
2

(�
0.

04
,

0.
03

)
0.

90
3.

32
,

0.
34

A
b

b
re

vi
at

io
ns

:C
I¼

co
nf

id
en

ce
in

te
rv

al
;N

A
¼

no
t

av
ai

la
b

le
;S

TA
T
¼

St
an

d
ar

d
is

ed
To

ta
lA

ve
ra

g
e

To
xi

ci
ty

.
a P-

va
lu

e
co

rr
es

p
o

nd
in

g
to

b-
es

tim
at

e.
b

P-
va

lu
e

fo
r

te
st

o
f

he
te

ro
g

en
ei

ty
b

et
w

ee
n

st
ud

ie
s.

Prostate cancer risk and radiotherapy toxicity BRITISH JOURNAL OF CANCER

www.bjcancer.com | DOI:10.1038/bjc.2016.94 7

http://www.bjcancer.com


expanded genotyping effort, additional risk SNPs for prostate
cancer susceptibility are expected to be identified. Approximately
5000 samples from the RGC are included in the OncoArray
genotyping initiative, and can be used to test associations between
SNPs and radiotherapy toxicity in a future larger study with
more SNPs covering a larger percentage of the familial risk.
The larger sample size should allow for better testing of
individual SNPs.

In summary, this work showed that there is no association
between genetic susceptibility to developing prostate cancer and
the development of late radiation toxicity. The implication of this
finding is that standard RT for prostate cancer can be given to
patients with an increased genetic burden for prostate cancer
without the risk of increased late radiotherapy toxicity.
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