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Abstract 

The number and function of stem cells decline with aging, reducing the ability of stem cells 

to contribute to endogenous repair processes. Particularly, stemness property of stem 

cells is susceptible to age-related changes, including increased rates of apoptosis and 

senescence, and decreased efficiency of paracrine activity. Also, aging detrimentally 

affects the effectiveness of stem cell transplantation and the injection of the collected types 

of molecules released by them, leading to reduction in stem cell ability to contribute to 

endogenous repair processes. The repair capacity of stem cells in aged individuals may be 

improved by genetically reprogramming the stem cells to exhibit delayed senescence and 

enhanced regenerative properties. In this review, we describe critical genes and signaling 

pathways in stem cell aging, that are of interest for the cardiovascular system, and discuss 

ex vivo genetic modification approaches aimed at stem cell rejuvenation.  
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INTRODUCTION 

Patients with severe obstructive vascular disease, usually caused by atherosclerotic 

plaque narrowing of arteries are often aged and have tissue resident and circulating 

vascular stem/progenitor cells with diminished functions [1, 2]. These functional deficits 

may cause a poor angiogenic response to hypoxia or ischemia, with impaired collateral 

vessel formation and microcirculation [3]. Likewise with age, which is a major risk factor for 

cardiovascular disease, regenerative properties deteriorate and consequently resident 

stem/progenitor cells in elderly humans may have a decreased capacity for repair in 

response to tissue injury. Also in aged tissues, myogenic or angiogenic stem cells may 

transform into fibroblasts which contribute to enhanced fibrosis [4, 5]. These combined 

age-related deficits likely contribute to decreased muscle, weakened vessel regeneration 

after injury and facilitation of atherosclerosis and its sequelae in older individuals [6]. 

Replenishing stem cell function either by rejuvenating existing aging cells or transplanting 

stem/progenitor cells from donors capable of supplying the ischemic tissue with new 

vessels and preventing ischemic tissue damage, have been considered an appropriate 

therapy for this condition. In this review, we describe critical genes and signaling pathways 

in stem cell aging, that are of interest for the cardiovascular system, and discuss ex vivo 

genetic modification approaches aimed at stem cell rejuvenation. 

  

POTENTIAL OF STEM CELLS IN THE TREATMENT OF AGE-RELATED 

CARDIOVASCULAR DISEASES  

Diseases of aging, such as metabolic syndrome, diabetes, atherosclerosis, 

neurodegenerative diseases, osteoporosis and cancer, constitute a huge burden for all 

societies, both in terms of economics and quality of life. Despite contemporary medical 

treatments, heart failure remains a major cause of morbidity and mortality in old people of 

developed countries  [7]. Both type 1 and type 2 diabetes are associated with aging and 



increased risk of micro- and macrovascular disease, which can lead to ischemic heart 

disease, heart failure and critical limb ischemia. Hyperglycemia leads to and aggravates 

the reduction of blood flow in cardiovascular tissues. This is believed to occur in a cascade 

in which ischemia induces oxidative stress initiating fibrosis and, thereby, increasing the 

thickness of microvasculature walls [8]. Some consequences of oxidative stress-

associated hyperglycemia include: alteration of energy metabolism, organ dysfunction, 

limited exercise tolerance, and greatly increased vulnerability to a super-imposed ischemic 

stressor (i.e., following atherosclerotic occlusion of a main artery). Valid therapeutic 

strategies that repair damaged heart muscle and ischemic tissue have not yet been 

developed. Heart transplantation remains the only effective remedy for heart failure. 

Meanwhile critical limb ischemia represents a major cause of diabetes-associated 

morbidity [9], still representing the most common cause of amputation in diabetic patients.  

Recent seminal reports have indicated that the adult heart is self-healing and self-

renewing. Specifically, these studies demonstrated that there is a pool of resident cardiac 

stem cells (CSCs) that are clonogenic and multipotent and are capable of differentiating 

into new blood vessels or into new myocytes [10]. This suggests the opportunity to boost 

the endogenous regenerative approach to complement other treatments (e.g., stem cell 

transplantation) that facilitate myocardial repair. However, despite recent progress in 

applying the approaches of regenerative medicine to the treatment of these diseases, valid 

strategies aimed at repairing the infarcted heart and, in general, at treating end-organ 

ischemia continue to be elusive [11].  

In recent years, efforts to use the alternative strategies of regenerative medicine as for 

treating cardiovascular disease have been partially successful. The limitations, still not 

completely understood, include: 1) inadequate recruitment of circulating or resident cardiac 

stem cells; 2) poor capability of adult stem cells to differentiate into cardiomyocytes; 3) 

elevated mortality of transplanted stem cells; 4) anomalous electro-mechanical behavior of 



transplanted cells after stimulation and the eventual onset of arrhythmias; 5) formation of 

new heart tissue structure differing from that of normal heart; and 6) diminished function of 

both resident and circulating stem/progenitor cells with the onset of aging and age-related 

cardiovascular disease.  

 

BOUNDARIES OF STEM CELLS IN THE TREATMENT OF AGE-RELATED 

CARDIOVASCULAR DISEASE   

The difficulty in providing functionally competent autologous stem cells isolated  from aged 

patients with disease, that are specifically effective in myocardial repair, and in the 

engraftment and survival of transplanted stem cells in the harmful microenvironment of 

host tissue, represent major obstacle for stem cell therapy in aged people. The capacity of 

organs, including the heart, to self-repair decreases with age and becomes compromised 

after ischemic injury, partially resulting from the reduced functional capabilities of stem 

cells [1]. Aging is a major risk factor for cardiovascular disease. With the onset of age-

related cardiovascular disease, which often occurs secondarily to atherosclerosis, the 

function of both resident and circulating stem/progenitor cells and their paracrine activities 

is diminished [12]. Furthermore, aging and risk factors might largely affect endogenous 

cardioprotective pathways [13]. Stem cells are susceptible to age-related changes, 

including increased rates of apoptosis and senescence, that reduce their ability to 

contribute to endogenous repair processes. Furthermore, with aging the effectiveness of 

stem cells after transplantation diminishes [14]. Therefore, concerns remain with regard to 

the  potentially lower potency of stem cells from patients, in whom aging and/or disease 

may lead to a poor quality of the stem cell preparation, as aging or the disease may impair 

the source for stem cell or create a hostile microenvironment for implanted stem cells [14]. 

The combination of these disease and age-related deficits may contribute to decreased 

muscle and vessel regeneration after injury and facilitate the development of 



atherosclerosis and its sequelae in aged individuals. In this context, an appropriate therapy 

for age-related vascular disease may be to replenish stem cell function and the collected 

types of molecules released by the stem cells, by rejuvenating existing cells or 

transplanting functional competent stem/progenitor cells or injecting their cellular products 

that will supply the ischemic tissue with new vessels to prevent ischemic tissue damage. 

  

CRITICAL GENES AND SIGNALING PATHWAYS IN STEM CELL AGING AND 

REJUVENATION 

 
Although relatively little has been accomplished for “turning back the clock” in the 

myocardial context, there are signaling pathways that seem connected to reversing the 

cardiac senescence. For example, experimental activation of Notch restored “youthful” 

myogenic responses to satellite muscle cells isolated from 70-year-old humans, rendering 

them similar to cells from 20-year-old humans [15]. Pim-1 kinase is another example of 

antisenescence pathway that works in the context of cardiac stem cells. Pim-1 enhances 

proliferation [16], metabolic activity [17] and differentiation [18, 19] of CSCs and 

mesenchymal stem cells (MSCs) in neovessels and new myocytes. Pim-1 also serves as a 

prosurvival role by preserving mitochondrial integrity [20] and antagonizing intrinsic 

apoptotic cascades [21].  Moreover, Pim-1 preserves telomere length and telomerase 

activity of CSCs [17]. Mohsin and collegues have recently showed that genetic 

modification of aged human cardiac progenitor cells (CPCs) with Pim-1 kinase results in 

remarkable rejuvenation of them, with enhanced proliferation, increased telomere lengths, 

and decreased susceptibility to replicative senescence [22]. Manipulation of the telomere-

telomerase axis was suggested in 1998, when 2 different human cell lines, retinal pigment 

epithelial cells and foreskin fibroblasts, were transfected with vectors encoding for human 

telomerase catalytic subunit. Since then much research has been done on the heart, 



telomeres and telomerase. We recently identified a subpopulation of adipose tissue–

derived mesenchymal stromal cells MSCs (AT-MSCs) that expresses high levels of the 

catalytic subunit of telomerase (ie, telomerase reverse transcriptase or TERT) and 

myocardin (MYOCD) [23, 24]. AT-MSCs have been shown to contain a population of adult 

multipotent mesenchymal stem cells with high cardiovascular regenerative potential [23, 

25-28]. MYOCD is a key regulator of cardiovascular myogenic development [23, 29, 30] 

and acts as a nuclear transcription cofactor for myogenic genes, as well as genes involved 

in muscle regeneration and protection against apoptosis [31, 32]. Telomerase maintains 

telomere length, contributes to cell survival and proliferation, and prevents cellular 

senescence [33, 34]. We have shown that AT-MSCs that co-express TERT and MYOCD 

have increased endogenous levels of octamer-binding transcription factor 4 (Oct-4), 

MYOCD, myocyte-specific enhancer factor 2c (Mef2c), and homeobox protein NKx2.5. 

These observations suggest that TERT and MYOCD may act together to enhance 

cardiovascular myogenic development [24, 35]. 

 

 
EX VIVO GENE MODIFICATION APPROACH FOR STEM CELL REJUVENATION 

Although traditional in vivo gene delivery approach via direct injection of viral vectors by 

attaching the delivery vector to the scaffold [36], is still a candidate strategy in laboratory-

based trials, the most frequently investigated cell engineering method to augment 

regeneration of old and diseased cardiovascular tissues, to date, is ex vivo cell-based 

gene therapy. This therapy typically relies on transplanting cells, such as stem cells, 

lymphocytes, fibroblasts, or – alternatively – the cells of interest, that are removed from the 

body and injected after therapeutic transgene modifications [16, 37]. This ex vivo approach 

allows for targeting of specific cells for gene delivery, supplies rejuvenated cells that may 

directly participate in the regenerative process, and avoids the safety risks of directly 



injecting viral vectors or transfection reagents in vivo. This approach, however, involves an 

extra step to manipulate and expand cells in tissue culture, and has the risk of 

contamination. Additionally, the ex vivo approach does not eliminate the possibility of 

retroviral vectors causing insertional activation of other genes, the over-expression of 

which may cause cancer, as experienced when using ex vivo gene therapy for the 

treatment of children with X-linked severe combined immune deficiency [38]. Progress in 

the field of gene therapy has been limited by safety concerns related to delivery vectors. 

Genetically modified cells are potentially able to provide a stable source of rejuvenating 

factors at a level that is sufficient to elicit a biological response. Autologous cells may also 

be used in this approach via the isolation of a small number of differentiated adult cells or 

stem cells, followed by in vitro expansion to produce an appropriate supply. The cells may 

naturally secrete or be genetically modified in vitro to overexpress the rejuvenating factor, 

either transiently or permanently. After their genetic modification, the cells are allowed to 

grow in vitro and increase in number, so as to synthesize and secrete the desired 

rejuvenating factors at the site where they have been transplanted. Recently, our research 

group examined the interplay in mesenchymal stem cells (MSCs) between two genes, one 

coding for the catalytic subunit of telomerase (i.e., telomerase reverse transcriptase or 

TERT), that has antisenescence properties, the other coding for myocardin (MYOCD), a 

nuclear transcription cofactor for myogenic genes, as well as for genes involved in muscle 

regeneration and protection against apoptosis [14, 23, 24, 35] . We have examined the role 

of TERT and MYOCD  in the conversion of aged MSCs to rejuvenated anti-apoptotic, 

promyogenic stem cells [14]. We have shown that the delivery of the TERT and MYOCD 

genes can restore MSCs from aged mice by increasing cell survival, proliferation, and 

smooth muscle myogenic differentiation in vitro [14]. Furthermore, we have demonstrated 

the therapeutic efficacy of these rejuvenated cells in an in vivo hindlimb ischemia model 

[14]. 



 

LENTIVIRAL AND NON-LENTIVIRAL VECTORS FOR GENE DELIVERY INTO STEM 

CELLS 

The introduction or the overexpression of rejuvenating genes in stem cells can be 

performed by using viral or non-viral vectors. In the choice of using viral vectors, important 

experimental variables for a successful gene therapy include Multiplicity Of Infection (MOI) 

time length for viral incubation and medium used for viral incubation. An optimal 

combination of such experimental conditions would increase gene transfer efficiency and 

possibly obviate the need for selective antibiotic-based enrichment and long-term culture, 

which may contribute to senescence or compromise the long-term engraftment efficiency 

and/or multipotency of grafted cells [39]. In addition, by increasing gene transfer efficiency, 

fewer cells may be required to achieve a therapeutic effect. This justifies the use of 

lentiviral vectors for transducing adult stem cells, by virtue of their ability to transduce both 

dividing and non-dividing cells and their relative ease of use and comparable nature to 

adeno-associated viral (AAV) vectors, which are clinically preferred. For the transduction 

of adult stem cells, lentivirus-based systems are virtually ideal, since they overcome most 

problems, including the short duration of gene expression and the occurrence of significant 

inflammatory responses, which plague other types of gene vectors (such as 

adenoviruses). Lentiviruses are a subgroup of retroviruses that include the human type 1 

immunodeficiency virus (HIV). While retroviral systems are inefficient in transducing non-

dividing or slowly dividing cells, lentivirus-based vectors, after being pseudotyped with 

vesicular stomatitis virus glycoprotein G (VSV-G) (i.e., using the glycoprotein envelope 

from the vesicular stomatitis virus to package recombinant retroviruses) [40], can mediate 

genome integration into both non-dividing and dividing cells. There is evidence that 

lentiviral vectors can also transduce more primitive, quiescent progenitors with stable 

transgene integration  [41]. In comparison with other retroviral vectors, lentiviral systems 



allow the immediate transduction without prior expansion, or with growth factor stimulation 

for only short exposure times. Compared with adenoviral vectors, lentiviral vectors also 

offer the major advantages of causing little or no disruption of the target cells and of not 

promoting any inflammatory response [42]. AAV vectors represent an alternate type of 

vector that may also be used for long-term transgene expression in the heart through cell-

based therapy [43]. Like lentiviruses, AAV can stably integrate into the host genome 

providing long-term transgene expression, with a minimum inflammatory response. 

However, AAV can cause insertional mutagenesis and can only carry genes which are 

less than 5 kb [44]. A possible drawback of the use of lentiviral and AAV vectors for 

delivering genes that encode for growth factors might be that they can cause a chronic 

overexpression of the protein, with an uncertain therapeutic effect. Short-term gene 

expression of the rejuvenating factor gene would be desirable if the goal is to deliver an 

anti-senescent protein, such as TERT, without neoplastic modification or immortalization of 

the stem cell target. On the contrary, long-term expression would be preferable if the goal 

is to express membrane proteins such as receptors for growth factors that require stable 

expression, or promyogenic transcription factors. Possible strategies to induce short-term 

gene expression of the transgene include plasmid transfection or the use of adenoviral 

vectors [45]. Limitations of these strategies are the low transfection efficiency with 

plasmids and the immunogenic response of the host with adenoviruses. 

 

PERSPECTIVE AND OPEN QUESTIONS 

Ex-vivo genetic modification of stem cells may offer an effective strategy for rejuvenating 

aged stem cells and diseased organs. Further studies, particularly more bench-to-bedside 

translational work, are needed to clarify the impact of aging and cardiovascular disease 

on stem cell generation and help identifying the genetic as well as pharmacological tools 



that can rescue aged/sick stem cells as part of personalized medicine. In particular, future 

research in this field should aim at achieving the following goals: 

 (1) add fundamental novel information on the pathobiology of aged stem cells, isolated 

from aged, atherosclerosis-prone or cardiac infarct patients; (2) design new protocols for 

aged stem cell rejuvenation capable to lead to improved preparation and clinical 

application of stem cells harvested from aged tissues and their products, and (3) design 

new protocols for in vivo transplantation of rejuvenated stem cell therapies.  
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