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Abstract

In this thesis stochastic techniques are used in attempts to understand cancer risk, its re-

lationship to patient age and genotype, as well as its distribution in human populations.

The starting point for the thesis is the general observation that cancer incidence grows

in approximate proportion to an integer power of age. Quasi-mechanistic mathematical

models of cancer incidence have suggested that the integer power in a given case is

related to the number of crucial cellular events that must occur for a malignant tumour

to evolve from a healthy tissue. This idea and its limitations are explored. Further ap-

plications of cancer incidence models are then evaluated and developed. Specifically,

a critical examination is presented of the notion that increases in risk associated with

a particular predisposing germline gene mutation, can provide information about the

disease-associated activity of that gene. Finally, there is a discussion of heterogene-

ity in liability to cancer. Methods for quantifying this heterogeneity and its effect on

incidence patterns are investigated.
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Chapter 1

Introduction

Most cancers occur with the same characteristic pattern of incidence [PWFS05]. The

simplicity of this pattern is in contrast to the perceived complexity of carcinogenesis.

Age-onset statistics therefore represent a seductive set of data and have provoked many

bold but often misguided conclusions concerning the physiopathological mechanisms

of cancer. Half a century has passed since the original ‘multistage theory’ of Armitage

and Doll [AD54]. Although their basic idea of a healthy cell becoming malignant

in several ‘rate-limiting’ steps is still accepted, prevailing wisdom about the nature

and number of these steps has never settled into a consensus [Arm85]. Meanwhile,

many quantitative attempts to learn about cancer aetiology from incidence statistics

have floundered in the face of too many unknowns and too few data [HPT07]. Indeed,

a lack of specificity in recorded incidence rates continues to pose a problem. Take

bowel cancer as an example, it is easy to come by statistics on the age-distribution of

bowel cancer. High quality bowel cancer incidence data are available for many differ-

ent populations and at many points in calendar time over the last 50 years [PWFS05].

Turn your interest to bowel cancer with micro-satellite instability, however, and the data

pool shrinks spectacularly. Go a step further to cancer of the bowel, with micro-satellite

instability and arising in the context of a rare hereditary syndrome and the ‘pool’ may

dry up altogether. Gathering such bespoke statistics is not usually something that a

single person or research group can feasibly undertake or commission. Population

based studies require a well orchestrated collaboration between physicians, hospitals

and diagnostic departments [Par06]. So, in the main, good must be made of the data

collected by established registries. The ideal registry would subject every cancer within

its catchment area to genotyping and extensive laboratory analysis, and curate an exten-
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sive database with genomic information for each patient’s neoplastic and normal tissue,

in addition to the usual items; gender, date at onset and physical location of the tumour

etc.. Enriching as this would be for the study of incidence patterns, and their underlying

aetiologies, such a situation is clearly prohibitively expensive, ethically untenable and

unlikely to materialize in the near future. Mathematicians studying cancer incidence

must work with what is available. Should their research lead to a theory of great in-

terest but which requires validation through further observation, usually they will be

powerless to collect the necessary data. This is by no means a unique position, there

are many branches of science in which the process of observation is not carried out

directly at the behest of the relevant theoreticians. Nevertheless, it is mentioned here

because, lacking a quick, clean cycle of observation, analysis and hypothesis, is an is-

sue particularly relevant to epidemiology. It informs the complexity of mathematical

incidence model one can reasonably expect to validate [Fra05], while placing a heavy

premium on extant data and the creative use thereof. In the context of these consider-

ations, which really amount to nothing more than a complaint about scarcity of data,

the task of modelling incidence statistics can be usefully contrasted with other quan-

titatively focused branches of cancer research that concern themselves with different

aspects of the disease and are motivated by different objectives. One example of inter-

est, quite distinct from the work contained in this thesis, is the mathematical description

of tumour spheroid growth [AM04]. An in vitro tumour can be cultivated by planting

cancer cells in a culture medium. Quantitative models of the resulting spheroid typi-

cally centre around the responses of its cells to oxygen and nutrient diffusing into the

tumour from the medium. The cells may consume nutrient, proliferate, move around,

enter growth arrest or commit suicide depending on their exposure to nutrient and oxy-

gen. Many of the parameters relevant to the dynamics of an in vitro tumour spheroid

are directly measurable [KSKK98], for instance, proliferation rates of cultured cells in

different chemical environments or the viscosity of the growth medium. Furthermore,

it is possible to generate a large number of falsifiable hypotheses such as “we predict

that the concentration of glucose and oxygen will fall in the middle of the tumour”, or,

“we predict that if the concentration of glucose in the growth medium is increased by a

factor of X , then the limiting size of the avascular tumour will increase by a factor of

Y .” Experimental validation of these hypotheses is readily at hand. With control of the
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object under scrutiny comes the power to falsify. In such a case as this, setting out to

build a fairly detailed model, with many parameters relating to measurable quantities

seems justified. Even still, you must know when to stop. In biological problems, the

potential for adding detail and complexity is almost unlimited. Sensible decisions must

be made; should the cell be treated as a black box? Or should explicit details of the

cell’s metabolism be included? If a model acquires too many unmeasurable parame-

ters, then it can become nothing more than a data fitting machine with little predictive

power [BA98]. Quantitative work on in vitro tumour spheroids, among other things, is

motivated by a desire to advance the art of mathematical modelling, to demonstrate its

power or discover its limitations. In addition, it can provide a valuable framework for

analysing and reasoning about an interesting experimental system. There is always the

hope that a very successful model will emerge than can be used to guide or optimize

an important enterprise like drug design or testing [BBK04] in much the same way

as computational fluid mechanics has guided the evolution of aeroplane wing shapes

for example. Another interesting but contrasting application of mathematics in cancer

research, is related to genetic counselling. Specifically, the problem of calculating a

person’s risk of carrying a susceptibility allele, given their family history of cancer and

perhaps information relating to other known risk factors [Fou08]. This problem is at-

tached to a concrete short term payoff. Namely, the ability to save money and reduce

anxiety by targeting genetic testing to those patients who will most likely prove posi-

tive. The mathematical model used to solve this problem need only be as detailed or

sophisticated as is required to increase its predictive accuracy. Given a set of inputs (the

details of a patients family history), it must produce the correct output (the probability

that the patient is a carrier of the gene of interest). An involved representation of the

chain of causality between inputs and outputs is not necessarily required. This is be-

cause the model will always be used to answer the same question. It need not generalize

in the same way that an in-silico model of a tumour would have to, were it ever to be of

any use to the pharmaceutical industry. For example, take the successful BOADICEA

model of genetic susceptibility to breast and ovarian cancer [ACP+08]. BOADICEA

incorporates hypothetical, undiscovered susceptibility alleles because doing so has a

positive effect on its performance. However, the unknown alleles are assumed simply

to cause a log normal distribution of liability in the population. There is no requirement
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for explicit terms representing each of the alleles, their population frequencies and the

risks they produce when occurring together in various combinations in the same indi-

vidual. Mathematical models of human cancer incidence (the subject of this thesis),

fall somewhere between the two examples given above. In terms of manipulability

of the object under study and the power to falsify theoretical model predictions, they

are certainly at a disadvantage compared with in vitro tumour models, or any model

of a malleable experimental system. Hence, complexity ought to be scaled down ac-

cordingly. However, since the objective is to build a somewhat generalizable theory

of incidence suitable for more than just regression, we can expect a greater level of

complexity and incorporation of more biological detail than found in a susceptibility

predictor. Striking the optimum balance is difficult, but an important determiner of

success.

1.1 The mechanistic basis of cancer
To clarify the above it should be helpful to sketch an outline of the cancer disease pro-

cess and to highlight its main points of contact with the models developed throughout

this thesis. The regenerative tissues of the body can be viewed as tightly regulated

multicellular communities. A healthy compartment of proliferative cells will maintain

its architecture through a controlled balance of cell birth, differentiation and cell death

[PA07]. Strict rules, ratified into the circuitry of each participating cell, dictate social

cell-cell and cell-extracellular matrix interactions [and08]. Proliferation is prohibited

except in appropriate circumstances and enforced senescence or suicide follows aber-

rant behaviour at the intercellular or intracellular level. A hard limit to the maximum

number of divisions each cell lineage can undertake provides further protection from

the unrestrained proliferation which characterises cancer [Hay65]. However, as a cell

lineage ages and accumulates various kinds of genetic and epigenetic damage, the ge-

nomic information encoding social responses to internal and external stimuli gradually

looses fidelity. As a result a cell may begin to behave in an aberrant fashion, dividing

constituently in defiance of the laws of tissue homeostasis. If a clone of such rebel-

lious cells is established it may overturn the healthy functioning of the organ in which

it arises or in an organ it has spread to. So it can be seen that cancer is closely linked to

the aging process: a process of accumulating cellular damage leading to macroscopic
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loss of integrity and consequent system failure. Cancer mortality is distinguished from

intrinsic mortality or ‘death from old age’ however, by the characteristics and details of

the system failure itself. To make a popular analogy with the automobile, death from

old age would correspond to an old rusted car which slowly grinds to a halt, or simply

fails to start one morning, the causative damage being widespread and hence the final

trigger for system failure difficult to determine. Cancer, by contrast, better corresponds

to an unfortunate but more specific combination of subcomponent failures leading to a

dramatic catastrophe such as an explosion whose cause may more readily be audited.

Cancer is hence seldom a disease of the extreme elderly as it must harness some of the

natural vitality of the body to propagate itself [HPLW08].

Much of the study of the molecular basis of cancer has focussed on the specific

gene alterations which encourage cancerous cell behaviour. However, when viewed in

terms of these mutational signatures cancers appear very heterogeneous with different

patients of the same tumour type expressing different mutations. The vast number of

alternative mutational combinations that can lead to the same cancerous end-point has

been affirmed by the results of recent cancer genome projects [SJW+06, GSS+07] and

led to the suggestion that cancer should perhaps be viewed not just in terms of the af-

fected genes that drive it but the pathways to which these genes belong. The signalling

pathway, as a unit of explanation, may more readily elucidate the commonalities be-

tween tumours and may also prove a more useful target for drug intervention [Jon08]. A

unifying pathway model of cancer was famously articulated by Hanahan and Weinburg

before the aforementioned cancer genome projects came to fruition [HW00]. Hana-

han and Weinburg identified 6 generic acquired properties which define cancerous cell

behaviour and hypothesised that a small number of common core signalling pathways

must be altered (albeit it through various potential gene targets) to achieve these (fig-

ure 1.1).

It is common practice in multistage modeling for the genetic alterations that dis-

rupt tissue homeostasis to be described as stochastic events, obeying point processes in

time.

To illustrate this with a specific example (see figure 1.2), biallelic mutation of

SMAD4 may result in its failure to transduce growth repressive TGFβ signalling, thus

conferring insensitivity to anti-growth signals. These biallelic mutations would be
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Figure 1.1: Hanahan and Weinburg identified 6 common hallmarks of cancer cells

(redrawn from [HW00]).

Figure 1.2: Schematic picture of selected signalling pathways regulating cell fate and

proliferation (redrawn from [HW00]). These pathways may contribute to a malignant

phenotype when hyperactive (purple pathway) or retarded (blue pathways).
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modelled as two separate random events. Alternatively, mutation of the K-RAS onco-

gene may constituently activate mitogenic signal transduction pathways creating self-

sufficiency in growth signalling. This would be modelled as a single stochastic event.

Finally, biallelic p53 mutation could inactivate the cells apoptotic response to DNA

damage, thus allowing the cell to evade apoptosis and continue proliferating in an ane-

uploid state.

1.1.1 Genetic instability

Aneuploidy is often observed in tumour cells. Other types of widespread genetic dam-

age are also typical [LKV98]. This has led to the suggestion that a key property of

cancer cells may be an acquired genetic instability. Cells with a retarded capacity to

maintain genomic integrity ought to age more quickly and more readily acquire the

various mutations required for malignancy. The existence of hereditary cancer syn-

dromes caused by germline mutations that target genes involved in DNA maintenance

certainly suggests that an elevated rate of DNA mutation is carcinogenic in some cir-

cumstances [dlC04]. However, the wider perspective on genetic instability and the

extent to which it precipitates or is rather a consequence of cancer in general is uncer-

tain [SHT03, RNVL03]. The onset of genetic instability can be represented cleanly in

multistage models as a simple increase to a mutation rate parameter. For example, in

chapter four, a model with a variable mutation rate is used to simulate the accumulation

of mutations in miss-match repair deficient tumors.

1.2 Structure of this thesis

Chapter two is a critical review of multistage modelling. Much of the mathematical

machinery required for the remainder of the thesis is also developed here. Chapter

three is a quantitative discussion of inherent difficulties in analysing age-distributions.

Specifically, the problem of distinguishing which kinds of aetiological events can be

investigated with incidence statistics. Armed with the lessons of chapters two and three,

chapter four presents two attempts to learn cancer aetiology from age-onset patterns.

Both concern hereditary bowel cancer syndromes, and the disease-related activity of

the genes which underlie these syndromes. Chapter five is a discussion of liability to

cancer and an attempt to quantify its variance in human populations. Chapter six gives
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a summary of the central results and conclusions of the thesis and examines directions

for further work.



Chapter 2

Multistage Theory

2.1 Armitage and Doll
Cancer incidence refers to the rate at which the disease arises. Measured in cases

per 100,000 people per year, accurate accounts of incidence have only been possible

since the first half of the twentieth century. The advent of the population based cancer

registry (PBCR) led to the first reliable statistics on rates of cancer by age at diagnosis

and site. The PBCR achieves these data by recording every new case of cancer in a

defined population - usually those persons living within a specified geographical area.

Beginning in Europe in 1927 and North America in 1940, this has evolved into a global

activity. The International Association of Cancer Registries currently has 449 members

worldwide covering over 20% of the world’s population (figure 2.1).

The rise of population based cancer registration was motivated by a wish to com-

pare prevalence between different places and over time [DPW66]. Such comparisons

have uncovered potential carcinogens through the identification of environmental fac-

tors that modify cancer risk. Based on the observation that migrants often assume the

cancer rates of their new country [Hae61], it was concluded in the early eighties that

large disparities in cancer burden between England / USA and other countries were

attributable to differences in diet, smoking, reproductive behaviour, sexual behaviour,

infection and occupational exposures. The existence and extent of these associations

have been confirmed in subsequent epidemiological studies [Col06]. Meanwhile ac-

cumulated registry data have been put to use in many aspects of cancer control, from

planning to the evaluation of screening and treatment programmes. For a review see

Parkin [Par06].
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Figure 2.1: Coverage of the cancer registries by region (per cent of total population).

The map includes all registries that were members of the International Association of

Cancer Registries in 2006. Recreated from Parkin [Par06].

An alternative branch of cancer epidemiology developed in parallel with the afore-

mentioned descriptive studies of incidence. In 1954, Armitage and Doll published a

landmark study of the age-distribution of cancer [AD54]. Mortality statistics (taken

as a good indicator of incidence) recorded in several developed countries [Nor53] had

revealed an intriguing dependence of cancer on age. The number of deaths in a speci-

fied age group, observed over one year, was roughly proportional to the nth power of

age, with n around five or six for many cancers including the common carcinomas. We

now know this to be true of incidence also (figure 2.2). Armitage and Doll proposed

a ‘multistage theory’ to explain this observation. They showed that if six or seven

rare cellular changes led to cancer (figure 2.5a), then its age-distribution would have

approximately the correct shape (figure 2.4). Their proposed ‘cellular changes’ can

be equated with gene (epi) mutations. The key to Armitage and Doll’s formulation

was to assume that cancer arises in a susceptible target of asymmetrically dividing

cells (which can now be thought of as stem cells). Each such stem cell and its lineal

descendants could then be considered as a single entity - a stem cell lineage. Under

this simplification, the probability that an organ is afflicted with cancer before a given

age has a straight-forward interpretation. It is the probability that at least one of the

susceptible stem lineages comprising the organ has acquired the necessary number of

mutations by the age given. A crude expression for this probability can be written in
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Figure 2.2: Incidence measured in annual primary cases per 100,000 population with

95% CIs (left) and log-log plot of the same (right). For many types of cancer the in-

cidence rate seems to follow a power law, increasing in proportion to (age)n where

n depends on the particular cancer being considered. We say, in these cases that

the incidence is ‘log-log linear’ because it appears as a straight line on double log-

arithmic axes. Leukaemias and sarcomas additionally show small peaks in early

childhood and adolescence respectively. These peaks could reflect periods of in-

tense proliferation among the cancer target cells. Gradients were calculated using

a least squares method. All data taken from Cancer Research UK. CancerStats -

http://info.cancerresearchuk.org/cancerstats - year of diagnosis 2003 (accessed Sept 20,

2007).

terms of the number of lineages at risk, N , the number of mutations required, n, and

also the probability of mutation per year at each locus, μ.

2.1.1 Derivation of Armitage and Doll’s formula

First of all, a cell lineage and its random acquisition of mutations are modelled by a

continuous time Markov chain. The states of the Markov chain represent the differ-

ent genotypes created by successive mutations (figure 2.3). The notation xi is used to
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represent the ith state, created by i mutations. xn is the malignant state, requiring n

mutations altogether. The waiting time between each mutation is exponentially dis-

tributed with mean 1
μ

years. In other words, the rate of mutation is assumed to be μ per

annum at each locus. The notation x(t) is used to represent the trajectory of a particu-

lar lineage across the chain of states. x(t) takes values x1, x2, . . . The notation Xi(t) is

used to represent the probability that the lineage is in the state xi at age t. This means

that Xi(t) = P [x(t) = xi]. Using this notation, the Kolmogorov forward equations for

a single cell lineage are:

d

dt
[X0(t)] = −μX0(t)

d

dt
[X1(t)] = μ(X0(t) − X1(t))

...

d

dt
[Xn−1(t)] = μ(Xn−2(t) − Xn−1(t))

d

dt
[Xn(t)] = μXn−1(t).

Figure 2.3: Schematic picture of a single stem cell lineage in Armitage and Doll’s

multistage model. The lineage mutates between states xi at rate μ per annum. The

waiting time between each mutation is exponentially distributed. State x0 represents a

healthy stem cell lineage and state xn is the malignant state.

The initial condition for this system of linear ODEs is:

⎛
⎜⎜⎜⎜⎜⎜⎝

X0(0)

X1(0)
...

Xn(0)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Solving this system gives

X0(t) = exp−μt

Xi(t) =
μiti

i!
exp−μt, i = 1, . . . , n − 1

Xn(t) = 1 −
n−1∑
i=0

μiti

i!
exp−μt . (2.1)

Xn(t) is the probability that a given stem cell lineage is malignant at age t. It can

be used to calculate the probability that one or more of a collection of stem lineages

is malignant at age t. If there are a total of N stem cell lineages mutating indepen-

dently of one another, then the probability that none of them is malignant by age t is

(1 − Xn(t))N . The probability that one or more of them is malignant by age t, is one

minus the probability that none of them are. So if T represents the age at which the

first stem lineage becomes malignant then

P [T ≤ t] = 1 − (1 − Xn(t))N . (2.2)

Substituting in from equation (2.1) gives

P [T ≤ t] = 1 −
(

n−1∑
i=0

μiti

i!
exp−μt

)N

. (2.3)

2.2 The Hazard Function
In addition to P [T ≤ t], it is also useful to calculate the hazard function, h(t). The

hazard function is sometimes referred to as the incidence function. It gives the instan-

taneous rate of occurrence of cancers in a collection of non-malignant lineages at age

t. The formal definition of the hazard function is

h(t) = lim
Δt→0

(
1

Δt
P [t < T ≤ t + Δt|T > t]

)
.
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h(t) is related to P [T ≤ t] by the formula:

P [T ≤ t] = 1 − exp

[
−
∫ t

0

h(s) ds

]
,

since by definition:

h(t) = lim
Δt→0

(
1

Δt
P [t < T ≤ t + Δt|T > t]

)

=
1

1 − P [T ≤ t]
lim

Δt→0

(
1

Δt
P [T ≤ t + Δt] − P [T ≤ t]

)

=

d

dt
(P [T ≤ t])

1 − P [T ≤ t]
= − d

dt
ln(1 − P [T ≤ t]). (2.4)

The hazard function is useful for data fitting and also as a continuous approximation to

observed ‘age-specific incidence’ . PBCRs provide incidence in annual primary cases

per 100,000 by age group. Usually the age groups are 5 years wide, so that the data is

presented as:

Age last birthday Annual primary cases per 100, 000

0 - 4 0

5 - 9 0

10-14 2

15 - 19 5

Table 2.1: Example incidence data in the format produced by PBCRs

This ‘age-specific incidence’ is well approximated by 100, 000 × h(t) . For example,

the expected ‘age-specific incidence’ observed in the age interval [t, t + 5) is roughly

100, 000 × h(t̂) where t ≤ t̂ ≤ t + 5. A simple way to visualize the quality of an
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incidence model is to plot observed age-specific incidence against the hazard function.

For the Armitage Doll model (2.3), the hazard can be expressed in terms of elementary

functions using equation (2.4):

h(t) =
Nμntn−1

(n − 1)!
∑n−1

i=0

(μt)i

i!

. (2.5)

As an illustrative test of the Armitage and Doll hazard, if it is assumed that there

are N = 108 stem cell lineages in the average colon [PBH03], fitting to colon cancer

incidence (figure 2.4) implies, n = 6 and μ = 8 · 10−4. That the estimate for μ is

high compared with estimates made in human cell cultures [SKT+87], may reflect an

absence in the model of mechanisms, such as selection and clonal growth, which can

accelerate the multistage process despite low rates of gene mutation.

Figure 2.4: (a) Fit of Armitage and Doll’s original multistage model to colon cancer

incidence with 95% CIs shown for observed data. 100, 000 × h(t) is plotted alongside

incidence rates recorded among Finnish females between 1959 and 1961 as published

in Doll [DPW66]. A maximum likelihood method was used, with likelihood function

constructed according to Luebeck and Moolgavkar [LM02], to optimize the hazard

function given in equation (2.5). (b) The same plot on log-log axes.

2.3 The two stage clonal expansion model
It had been suggested that cancer might arise through mutation in the hereditary mate-

rial of a somatic cell since as early as 1930 [MM30]. Despite this, when the multistage

theory was first published, ideas about the causes of cancer were still dominated by

those of the great 19th century German pathologists. One popular such theory was

that cancer arose from embryonic cells that had failed to differentiate and persisted in
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adult tissues. Even as late as 1960 there was still significant doubt regarding mutational

theories [Bru60]. In this context, the pertinent insight of Armitage and Doll was that

steep increases of cancer with age are indicative of random, heritable, multiple and

rare causal cellular events. For a more exact understanding of the age dependence of a

particular cancer, the simplifying assumptions of their original theory are insufficient.

Every cancer deviates to some extent from log-log linearity. Moreover, a cell cen-

tric model, that considers only a simple sequence of mutations without any benign

growth before malignancy, does not adequately represent our understanding of cancer

as somatic evolution. Revised multistage theories partially address these issues by

incorporating clonal expansion and other mechanistic details. Among such models, the

most widely adopted are the two stage clonal expansion model (TSCE) [MDV88] due

to Moolgavkar and colleagues and its derivatives [LM02, LW03].

Figure 2.5: (a) In the original multistage theory a healthy cell lineage becomes trans-

formed through multiple hereditary cellular changes / (epi) mutations. Each follows

sequentially from the previous at rates μ1 to μ6. Although the mutations are assumed

to happen in a defined order only the final step produces a phenotypic effect. (b) In

the Two Stage Clonal expansion model (TCSE) an initial mutation (μ1) causes a clone

to grow. Any among the cells in the clone can then become malignant through a sec-

ond mutation (μ2). Although most, if not all cancers, contain more than two muta-

tions, TSCE was designed to reflect the major rate-limiting steps identified in chemical

tumourigenesis:- initiation (first mutation), promotion (clonal growth) and progression

(final mutation)
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TSCE (figure 2.5b) shares the common basic assumptions of the original multi-

stage theory. A population of cell lineages is at risk for a given cancer. Mutations can

afflict any of these lineages with a certain probability per cell generation, and cancer

arises when the first of these lineages has acquired enough mutations. TSCE differs in

that the first mutation is assumed to cause a benign growth. Specifically, when a target

lineage receives its first mutational hit, it divides, giving birth to a clone of identical

‘initiated’ one-hit lineages. Any member of this clone is then at risk of becoming

cancerous through only one further mutation. Steep increases in cancer with age under

TSCE are caused by the growing number of one hit lineages populating benign precur-

sor lesions as a patient ages.

TSCE has proved a versatile theory, able to synthesize a variety of incidence

patterns, both log-log linear and otherwise. From a technical perspective, its biggest

triumph lies in its stochastic representation of clonal growth. Similar but inferior mod-

ifications to multistage theory treat the expansion of an initiated lineage as inevitable

once the lineage has arrived at a certain genotype. In TSCE, mutant clones may be-

come extinct through random cell death while they are still young. If they survive, their

growth profiles are exponential on average but fluctuate randomly about this trend. An

obvious limitation of TSCE is that it only allows for two rate-limiting stages. Elegant

generalizations of TSCE have removed this restriction and can account for more than

one initiating mutation [LM02] as well as multiple and sequential rounds of clonal

expansion at different growth rates [Lit96]. An unresolved limitation of TSCE is the

restriction to exponential clone growth. In reality a variety of growth profiles are to be

expected, depending on the phenotype of a clone’s constituent cells, and also the envi-

ronment in which they are growing. For example, if an outgrowing clone is competing

with its parent clone for resources, the growth rate of the outgrowing clone should af-

fect that of the parent. In all generalizations of TSCE, each clone grows independently

and exponentially and so this type of competitive behaviour is not considered.
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2.3.1 Derivation of the TSCE model

There are many incarnations of TSCE and various approaches to deriving the hazard

functions associated with each. The formulation given here represents the core mod-

elling techniques required to use TSCE or its derivatives. It will be drawn upon in

section 3.2 to build a novel clonal expansion model. The approach combines the work

of Little [Lit96] and Moolgavkar [LM02] and has been designed to be intuitive and

generalizable.

In the basic TSCE model, the number of susceptible stem cell lineages is repre-

sented by a deterministic function of age S(t). Sometimes this is assumed to

be constant, for example S(t) ≡ 108. Alternatively S(t) can be chosen to re-

flect tissue growth as will be discussed for breast cancer models below. Initiated cells

are created through mutation at rate μ1(t) per cell per year. So, in a small time inter-

val Δt an initiated cell will arise through mutation of a normal cell with probability

μ1(t)S(t)Δt + o(Δt). The probability that more than one initiated cell will arise in the

interval is o(Δt). Equivalently, the number of initiated cells arising in the time interval

[t, t + τ) follows a Poisson distribution with mean
∫ t+τ

t

μ1(s)S(s) ds.

The age-dependence of μ1 can be exploited to model periods of exposure to a more

carcinogenic environment, or other factors causing age-related variation in mutation

rate.

Initiated cells, denoted by ‘I’ in figure 2.6, once created, grow into a clone and

become malignant according to the following rules. Between times t and t + Δt each

initiated cell can either:

1. divide symmetrically with probability α(t)Δt + o(Δt), i.e. split into two initi-

ated cells, thus increasing the number of initiated cells by 1,

2. die or differentiate with probability β(t)Δt + o(Δt), thus decreasing the num-

ber of initiated cells by 1,

3. divide into one initiated cell and one malignant cell with probability μ2(t)Δt+o(Δt)
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Figure 2.6: The two stage clonal expansion model. S(t) is the number of susceptible

stem cells at age t. Although this can be modelled by a stochastic process, often S(t)

is taken to be a deterministic function of time (S(t) ≡ ‘a constant’ for example). The

initiated ‘I’ cells have acquired the first heritable change. They divide symmetrically at

rate α per annum and die at rate β per annum. One further change , at rate μ2 per cell

per annum is required to make an intermediate cell malignant.

or,

4. do nothing, with probability 1 − Δt(α(t) + β(t) + μ2(t)) + o(Δt).

The chance of any other event, for example two of the above occurring together, is

vanishingly small (o(Δt)).

To calculate the hazard function for the basic TSCE process described above, two

probability generating functions are used. The main generating function for the process

is:

ψ[y1, y2; t] =
∑

i1≥0,i2≥0

yi1
1 yi2

2 P [Y (t) = (i1, i2)], (2.6)

where Y (t) = (Y1(t), Y2(t)). Y1(t) is the number of initiated cells at age t and Y2(t) is

the number of malignant cells. Both are created under rules 1 - 4 above, assuming that

there are only healthy cells at age zero. i.e. Y1(0) = Y2(0) = 0. Note that:
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ψ[1, 0; t] =
∞∑

i1=0

P [Y (t) = (i1, 0)] = 1 − P [T ≤ t], (2.7)

where T is the age at which the first malignant cell occurs. The hazard, h(t), is related

to P [T ≤ t] by equation (2.4). So by equations (2.4) and (2.7), h(t) can be expressed

in terms of ψ:

h(t) = − d

dt
ln[ψ[1, 0; t]]. (2.8)

ψ[y1, y2; t] itself can be expressed in terms of a second generating function:

φ[y1, y2; t, s] =
∑
i1,i2

yi1
1 yi2

2 P [Y (t, s) = (i1, i2)].

φ[y1, y2; t, s] is the generating function for a process which begins at time s with only

a single cell (an initiated cell). Hence, Y (t, s) = (Y1(t, s), Y2(t, s)) is a random vector

representing the number of initiated (Y1(t, s)) and malignant cells (Y2(t, s)) at time t,

arising from the initial state (1, 0) at time s.

To express the main generating function, ψ, in terms of the subsidiary φ,

P [Y (t) = (i1, i2)] can be rewritten as:

P [Y (t) = (i1, i2)] =
∑

k

P [c(t) = k]P [Y (t) = (i1, i2)|c(t) = k], (2.9)

where c(t) is the number of initiated cells that have arisen from the healthy cell com-

partment by age t. Substituting (2.9) into (2.6):

ψ[y1, y2; t] =
∑
i1,i2

yi1
1 yi2

2

∑
k

P [c(t) = k]P [Y (t) = (i1, i2)|c(t) = k]. (2.10)

c(t) is a Poisson count-process with intensity μ1(t) · S(t) so:

P [c(t) = k] =

(∫ t

0

μ1(s)S(s) ds

)k

k!
exp

[
−
∫ t

0

μ1(s)S(s) ds

]
. (2.11)
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To complete the expression on the RHS of (2.10) it remains to calculate

P [Y (t) = (i1, i2) |c(t) = k]:

P [Y (t) = (i1, i2)|c(t) = k] =
∑

N1,N2,...,Nk
N1+···+Nk=(i1,i2)

k∏
i=1

P [Y (t, si) = N i]. (2.12)

Here Y (t, si) = (Y1(t, si), Y2(t, si)) is the number of initiated and malignant cells

seeded by the ith of the k initiated cells created in the Poisson process. The ith

such initiated cell is created at time si. The N i’s are pairs of integers (n1, n2) rep-

resenting numbers of initiated and malignant cells. They are constrained so that

N1 + .. + Nk = (i1, i2). In summary, formula (2.12) expresses the probability of

having i1 initiated cells and i2 malignant cells by age t, in terms of the behaviour of the

k initiated cells generated from the healthy cell pool. To arrive at the state (i1, i2) by

age t, the cells arising from the k initiated cells must sum together to make i1 initiated

cells and i2 malignant ones. In formula (2.12) all combinations in which this is the case

are considered in the sum.

When k events occur in the interval [0, t] under an inhomogeneous Poisson process

with intensity μ(s)S(s) the arrival times of these events are independent and identically

distributed. The common probability density for the arrival times at s < t is:

μ1(s)S(s)∫ t

0

μ1(r)S(r) dr

.

This PDF can be used to make an expression for P [Y (t, si) = N i]:

P [Y (t, si) = N i] =

∫ t

0

μ1(s)S(s)P [Y (t, s) = N i] ds∫ t

0

μ1(r)S(r) dr

. (2.13)

Substituting (2.13), (2.11) and (2.12) into (2.10) gives:
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ψ[y1, y2; t] =
∑
i1,i2

yi1
1 yi2

2

∑
k

(∫ t

0

μ1(s)S(s) ds

)k

k!
exp

[
−
∫ t

0

μ1(s)S(s) ds

]

∑
N1,N2,...,Nk

N1+···+Nk=(i1,i2)

k∏
i=1

∫ t

0

μ1(s)S(s)P [Y (t, s) = N i] ds∫ t

0

μ1(r)S(r) dr

,

swapping the order of summation over the ijs and k gives:

ψ[y1, y2; t] =
∑

k

(∫ t

0

μ1(s)S(s) ds

)k

k!
exp

[
−
∫ t

0

μ1(s)S(s) ds

]
(2.14)

∑
i1,i2

yi1
1 yi2

2

∑
N1,N2,...,Nk

N1+···+Nk=(i1,i2)

k∏
i=1

∫ t

0

μ1(s)S(s)P [Y (t, s) = N i] ds∫ t

0

μ1(r)S(r) dr

. (2.15)

To simplify this expression the following result is used:

Lemma

If y, x1, x2, . . . and xn all map from a vector space, V , into the real numbers and y is

such that:

y(a + b) = y(a) · y(b),∀a, b ∈ V,

then

∑
r

y(r)
∑

r1,r2,...,rn
r1+r2+···+rn=r

n∏
i=1

xi(ri) =
n∏

i=1

[∑
r

y(r)xi(r)

]
. (2.16)

A proof is given in appendix A. Using the lemma, equation (2.15), can be reduced to:
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ψ[y1, y2; t] =
∑

k

(∫ t

0

μ1(s)S(s) ds

)k

k!
exp

[
−
∫ t

0

μ1(s)S(s) ds

]

k∏
i=1

∑
i1,i2

yi1
1 yi2

2

∫ t

0

μ1(s)S(s)P [Y (t, s) = (i1, i2)] ds∫ t

0

μ1(r)S(r) dr

=
∑

k

(∫ t

0

μ1(s)S(s) ds

)k

k!
exp

[
−
∫ t

0

μ1(s)S(s) ds

]
⎡
⎢⎢⎣∑

i1,i2

yi1
1 yi2

2

∫ t

0

μ1(s)S(s)P [Y (t, s) = (i1, i2)] ds∫ t

0

μ1(r)S(r) dr

⎤
⎥⎥⎦

k

.

This expression for ψ[y1, y2; t] can be manipulated further by taking the sum over i1

and i2 inside the integral of P [Y (t, s) = (i1, i2)] against the Poisson density:

ψ[y1, y2; t] =
∑

k

(∫ t

0

μ1(s)S(s) ds

)k

k!
exp

[
−
∫ t

0

μ1(s)S(s) ds

]
⎡
⎢⎢⎢⎢⎣

∫ t

0

μ1(s)S(s)
∑
i1,i2

yi1
1 yi2

2 P [Y (t, s) = (i1, i2)] ds

∫ t

0

μ1(r)S(r) dr

⎤
⎥⎥⎥⎥⎦

k

=
∑

k

(∫ t

0

μ1(s)S(s) ds

)k

k!
exp

[
−
∫ t

0

μ1(s)S(s) ds

]
⎡
⎢⎢⎣
∫ t

0

μ1(s)S(s)φ[y1, y2; t, s] ds∫ t

0

μ1(r)S(r) dr

⎤
⎥⎥⎦

k

= exp

[
−
∫ t

0

μ1(s)S(s) ds

]∑
k

[∫ t

0

μ1(s)S(s)φ[y1, y2; t, s] ds

]k

k!
.
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Ultimately

ψ[y1, y2; t] = exp

[∫ t

0

μ1(s)S(s)[φ[y1, y2; t, s] − 1] ds

]
. (2.17)

Substituting (2.17) into the expression for the hazard function given in (2.8):

h(t) = −
∫ t

0

μ1(s)S(s)
∂φ

∂t
[1, 0; t, s] ds. (2.18)

Before the hazard can be computed, it remains to obtain an expression for
∂φ

∂t
[1, 0, t; s]. This can be done via the Kolmogorov forward and backward equations

for φ. To begin with, the backward equation can be derived as follows:

∂

∂s
φ[y1, y2; t, s] =

∑
N

yi1
1 yi2

2

∂

∂s
P [Y (t, s) = N ]. (2.19)

Here,
∂

∂s
P [Y (t, s) = N ], is calculated as the following limit,

∂

∂s
P [Y (t, s) = N ] = lim

h→0

[
P [Y (t, s) = N ] − P [Y (t, s − h) = N ]

h

]
.

Hence the name ‘backward equation’; the partial derivative with respect to s is found

by extending the time interval, t − s, backward in time. By contrast, in a ‘forward

equation’ the derivative with respect to t is found by incrementing t forward in time.

P [Y (t, s) = N ] − P [Y (t, s − h) = N ] can be expressed as:

Δ(h) = P [Y (t, s) = N ] −
∑
NT

P [Y (s, s − h) = NT ]PNT
[Y (t, s) = N ],

where NT = (iT1 , iT2 ) is a transitional state between (1, 0) and N = (i1, i2). Also

PNT
[Y (t, s) = N ] is the probability of being in state N at age t having started in state

NT at age s.

Δ(h) can be rearranged:

Δ(h) = P [Y (t, s) = N ](1 − P [Y (s, s − h) = (1, 0)])
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−
∑

NT �=(1,0)

P [Y (s, s − h) = NT ]PNT
[Y (t, s) = N ],

dividing by h and taking the limit as h → 0 gives:

lim
h→0

Δ(h)

h
=

∂

∂s
P [Y (t, s) = N ]

= (α(s) + β(s) + μ2(s))P [Y (t, s) = N ] − α(s)P(2,0)[Y (t, s) = N ]

−μ2(s)P(1,1)[Y (t, s) = N ] − β(s)P(0,0)[Y (t, s) = N ]. (2.20)

Substituting (2.20) into (2.19) leads to:

∂

∂s
φ[y1, y2; t, s] =

∑
N

yi1
1 yi2

2 (α(s) + β(s) + μ2(s))P [Y (t, s) = N ] (1)

−
∑
N

yi1
1 yi2

2 α(s)P(2,0)[Y (t, s) = N ] (2)

−
∑
N

yi1
1 yi2

2 μ2(s)P(1,1)[Y (t, s) = N ] (3)

−
∑
N

yi1
1 yi2

2 β(s)P(0,0)[Y (t, s) = N ]. (4)

Note that the first component of
∂

∂s
φ[y1, y2; t, s], denoted (1), can be written as:

∑
N

yi1
1 yi2

2 (α(s) + β(s) + μ2(s))P [Y (t, s) = N ] = (α(s) + β(s) + μ2(s))φ[y1, y2; t, s],

component (2) can be written as:

∑
N

yi1
1 yi2

2 α(s)P(2,0)[Y (t, s) = N ] = α(s)
∑
N

yi1
1 yi2

2

∑
NH

P [Y (t, s) = NH ]P [Y (t, s) = N − NH ]

= α(s)
∑
NH

P [Y (t, s) = NH ]
∑
N

yi1
1 yi2

2 P [Y (t, s) = N − NH ]

= α(s)
∑
NH

y
iH1
1 y

iH2
2 P [Y (t, s) = NH ]

∑
N

y
i1−iH1
1 y

i2−iH2
2 P [Y (t, s) = N − NH ]

= α(s)φ[y1, y2; t, s]
2,
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where NH represents the state achieved by one of the two original initiated cells, mak-

ing up one half of the target state N . Components (3) and (4) can be expressed similarly.

The resulting PDE for
∂

∂s
φ[t, s] (suppressing the dependence on y1 and y2) is:

∂

∂s
φ[t, s] = (α(s) + β(s) + μ2(s)(1 − y2))φ[t, s] − α(s)φ[t, s]2 − β(s).

Differentiating with respect to t gives:

∂

∂s

(
∂

∂t
φ[t, s]

)
= (α(s) + β(s) + μ2(s)(1 − y2))

∂

∂t
φ[t, s] − 2α(s)φ[t, s]

∂

∂t
φ[t, s].

(2.21)

Fixing t and setting (y1, y2) = (1, 0), (2.21) becomes an ODE w.r.t. s and can

be solved numerically for
∂

∂t
φ[1, 0; t, s]. However, a boundary condition is required.

This can be obtained via the Kolmogorov forward equation for φ[y1, y2; t, s] which is

derived as follows:

∂

∂t
φ[y1, y2, t; s] =

∑
i1,i2

yi1
1 yi2

2

∂

∂t
P [Y (t, s) = (i1, i2)]

=
∑
i1,i2

yi1
1 yi2

2 α(t)(i1 − 1)P [Y (t, s) = (i1 − 1, i2)] (�)

+
∑
i1,i2

yi1
1 yi2

2 β(t)(i1 + 1)P [Y (t, s) = (i1 + 1, i2)]

+
∑
i1,i2

yi1
1 yi2

2 μ2(t)i1P [Y (t, s) = (i1, i2 − 1)]

−
∑
i1,i2

yi1
1 yi2

2 (α(t) + β(t) + μ2(t))i1P [Y (t, s) = (i1, i2)].

The component of
∂

∂t
φ[y1, y2, t; s] denoted by (�) can be written as:

∑
i1,i2

yi1
1 yi2

2 α(t)(i1 − 1)P [Y (t, s) = (i1 − 1, i2)]
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= α(t)y2
1

∑
i1,i2

(i1 − 1)yi1−2
1 yi2

2 P [Y (t, s) = (i1 − 1, i2)]

= α(t)y2
1

∂

∂y1

[∑
i1,i2

yi1−1
1 yi2

2 P [Y (t, s) = (i1 − 1, i2)]

]

= α(t)y2
1

∂

∂y1

φ[y1, y2, t; s].

The other components can be expressed in the same way to make the Kolmogorov

forward equation for φ[t, s] (suppressing the dependence on y1 and y2):

∂

∂t
φ[t, s] =

[
α(t)y2

1 + μ2(t)y1y2 + β(t) − (α(t) + β(t) + μ2(t))y1

] ∂

∂y1

φ[t, s].

A boundary condition can now be derived by setting y1 = 1, y2 = 0 and s = t:

∂

∂t
φ[y1, y2; t, s]|y1=1,y2=0,s=t = −μ2(t), (2.22)

since
∂

∂y1

φ[t, s]|y1=1,y2=0,s=t = 1. Numerical integration of (2.21) using the bound-

ary condition (2.22) and substitution into (2.18) yields an expression for the hazard

function.

2.4 Likelihood Constructs
In much of the literature on mathematical modelling of incidence, models are fit to

observed data using maximum likelihood. In chapters three and four likelihood tech-

niques will be used to estimate how many mutations cause a cancer and also the rates of

these mutations. There are standard methods for constructing the requisite likelihood

functions. Two such methods are presented here.

2.4.1 Population based age-specific incidence

Population based incidence data are often recorded by age group (table 2.1). So, for

example, over a particular year, a cancer registry may have an average of Pop1 patients

within its catchment area that fall into the youngest age group. This group could be

all those patients aged between 0 and 4 at last birthday for example. The same reg-

istry may reside over Pop2 patients who fall into the next youngest age group, say

patients aged 5 to 9 at last birthday and Pop3 patients in the third age group etc.. Dur-

ing a year of observation there may be Di primary cancers of a certain type observed
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among the Popi patients in the ith age group. What is the probability of observing the

data {D1, D2, D3, . . . } given the population sizes are Pop1, Pop2, Pop3, .. and given a

model M of the cancer in question? Suppose the hazard in an individual under model

M is h(t). Make the simplifying assumption that the Popi are constant over the obser-

vation year. Also make the assumption that cancers occur in the ith age group at rate

Popi · hi throughout the year, with hi = h(ti), Li ≤ ti ≤ Ui where Li and Ui are the

upper and lower bounds of the age group respectively.

Under these assumptions the observed number of cases, Di, in the ith age group

follows a Poisson distribution with mean
∫ 1

0

Popi · hi dt so:

P [Di] � (Popi · hi)
Di

Di!
exp[−Popi · hi].

Since the members of the different Popi’s are independent of each other, the like-

lihood of {D1, D2, D3, . . . } given the model, M is:

L[{D1, D2, .}|M ] �
∏

i

(Popi · hi)
Di

Di!
exp[−Popi · hi]. (2.23)

2.4.2 Non-population based incidence

Data for rare cancers, for example those arising in the context of an inherited syn-

drome, are usually based on a small sample (< 1000) of patients. Typically, the ages

at presentation of individuals (who all eventually get cancer) are available, but the fre-

quency with which the disease occurs in the general population is not. Calabrese and

colleagues [CTS04] have derived a likelihood function for such a series of ages at pre-

sentation {t1, t2, ...., tn}. The ti’s are assumed to be independent. The probability that

a patient (who eventually gets cancer) presents between ages ti and ti + 1 can be rep-

resented as a conditional probability:

ω[ti] = P [ti ≤ T < ti + 1|T < Td]

=
P [ti ≤ T < ti + 1, T < Td]

P [T < Td]
,

here Td is a random variable representing the age at death of the average patient. P [ti]

is conditional on the age at cancer being less than the age at death. The event [T < Td]
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is equivalent to the event that the patient eventually gets cancer. Consider the random

vector (T, Td). If the cancer under consideration is a relatively minor cause of death,

it can be assumed that T and Td are independent [CTS04]. The density at an arbitrary

point (t, td) is then the product fT (t)fTd
(td) where fT and fTd

are the density functions

for T and Td respectively. P [T < Td] can be expressed in terms of these densities:

P [T < Td] =

∫ ∞

t=0

∫ ∞

td=t

fT (t)fTd
(td) dtddt

=

∫ ∞

t=0

∫ ∞

td=t

fTd
(td) dtdfT (t) dt

=

∫ ∞

t=0

s(t)fT (t) dt.

Here s(t) =

∫ ∞

td=t

fTd
(td) dtd is the survival function giving the probability that

Td > t. s(t) can be approximated from known data. Using this notation:

ω[ti] =

∫ ti+1

t=ti

s(t)fT (t) dt∫ ∞

t=0

s(t)fT (t) dt

,

and the likelihood, L, of the data {t1, t2, t3, . . . } is:

L =
n∏

i=1

ω(ti) =
n∏

i=1

⎛
⎜⎜⎜⎝
∫ ti+1

t=ti

s(t)fT (t) dt∫ ∞

t=0

s(t)fT (t) dt

⎞
⎟⎟⎟⎠ . (2.24)

2.5 Applications of Multistage Modelling
Typical derivatives of TSCE or original multistage theory can be obtained by allowing

certain model parameters to vary with time. As mentioned previously, a mutation rate

may change with age to reflect changing influences of the tissue micro-environment.

Alternatively the number of healthy cell lineages at risk may increase with age to ac-

count for tissue growth between conception and adulthood. Another common modifi-

cation is to incorporate multiple rounds of clonal expansion at different growth rates.
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More subtle phenotypic effects like genome destabilization have also been quantified

[LW03]. It is most instructive to consider these and other various incarnations of mul-

tistage theory in the context of their applications.

2.5.1 Breast Cancer and Clemmesen’s Hook

Breast carcinoma, and its dependence on age, is complicated by the temporal sequence

of reproductive events beginning with menarche and ending with menopause. The re-

sult is a curious looking incidence profile referred to as Clemmesen’s hook, so named

because of its appearance on log-log paper (figure 2.7). Its shape reflects a rapid in-

crease in incidence starting in the 20s followed by a gentler rise beginning in the late

40s and continuing into old age

Figure 2.7: Breast cancer incidence is piecewise log-log linear. The first piece has a

steeper gradient and gives way to the second phase in the late 40s around the time of

the menopause. Data taken from the SEER database - http://.seer.cancer.gov - year of

diagnosis 1993-1997 (accessed Sept 20 2007)

.

A derivative of TSCE has been used in a quantitative attempt to explain breast

cancer incidence [MDS80]. The basic TSCE model, with a target stem cell pool of

constant size, provides a poor fit to data (figure 2.8 - left column), but improvements

are made with suitable modifications. First of all, predicted risk of cancer at young ages

can be improved by assuming that the susceptible target cells (breast stem cells) grow

in number to reflect the development of the breast during puberty (middle column). The

excess risk observed to associate with an early menarche follows in this context because

the stem cells of the mature breast start to accumulate mutations from an earlier age. To
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refine the fit further, reductions in the susceptible cell pool and growth rate of initiated

clones can be added to reflect involution of the breast in old age (right column).

Figure 2.8: All fits performed using a maximum likelihood method. 95% CIs shown

for observed data. Different breast stem cell growth patterns in TSCE model of breast

cancer. (Left column) Model based on assumption that size of stem cell pool remains

constant. (Middle column) Model based on assumption that size of stem cell pool

changes to account for development of breast during puberty. (Right column) Size

of stem cell pool changes to account for both development of breast during puberty

and involution of breast in old age. Observed breast data taken from Moolgavkar et

al.[MDS80].

2.5.2 Declining incidence in old age

Although the mellowing of breast cancer risk associated with Clemmesen’s hook is

unusual, cancer incidence in general begins to plateau above 65 years. Its subsequent

decline in some cases is incompatible with an idealized log-log linear cancer onset.

This fact was initially dismissed as an error of diagnosis and/or reporting in the el-

derly. Quantitative arguments have now shown that simple assumptions of population

heterogeneity have substantial impact on expected risk and could entirely account for
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its decline in old age [HJTMF+00, SMT+06]. Specifically, if a subpopulation is liv-

ing with genetic susceptibility to a given cancer, among a background population at

relatively low risk, then mortality will peak and begin to decline as this subpopulation

gradually dies out.

The idea of a subpopulation with elevated cancer risk is compatible with the concept of

polygenic susceptibility. For many cancers, the genetic contribution to familial aggre-

gation is only partially accounted for by highly penetrant single gene defects[CLH02].

A portion of the remaining susceptibility may be inherited through several genes. For

instance, aggregation of breast cancer is consistent with a polygenic model in which

50% of breast cancers occur in the 12% of the population with the greatest predisposi-

tion [PAB+02]. Alternative theories for the peak in cancer incidence among the elderly

focus on increases in apoptosis and cell senescence that occur in old age [PW01] or

temporal changes in cancer risk [AUAY05].

2.5.3 Smoking and Lung Cancer

Bronchial carcinoma arises in a classic log-log linear fashion in non-smokers and is dra-

matically more prevalent among the smoking population. Multistage models have been

used in attempts to explain excess risk in smoking cohorts, the goal being an under-

standing of the mechanism through which tobacco smoke exerts its carcinogenic effect.

Typically a model of lung cancer is posed for non-smokers. This is then adapted for a

given smoking cohort by perturbing parameters (mutation rates for example) from their

basal level during the years for which the subjects of the cohort have used cigarettes.

The magnitudes of these perturbations are chosen to depend upon the smoking level

of the cohorts members, measured in cigarettes per day. Various attempts to elucidate

smoking risk in this manner have relied on TSCE to model the underlying incidence in

non-smokers. The problem has then been to decipher which of the three phases of the

TSCE model, initiation, promotion or progression, is most significantly affected in the

smoking cohort. Unfortunately, different studies using slightly different methodology

or datasets, have yielded different conclusions. For example, Hazelton et al. [HCM05]

and Schollnberger et al. [SMB+06] both used TSCE, with dose responsive parameters,

to model incidence of lung cancer among the British Doctors smoking cohort. Hazelton
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et al. assumed that kinetic rates among smokers departed from those of non-smokers

according to a general power law. So, for example, a smoker of d cigarettes per day, has

a mutation rate, μs, related to that of a non-smoker, μn, by μs = μn(1 + a · db) where a

and b are free parameters, inferred from data, used to calibrate the model. Schollnberger

et al. instead assume μs = μn·(1+f(d; a, b)) where f(d; a, b) = b·(1−exp[−(a/b)·d]).

The dose responses of TSCE parameters, as predicted in the two studies, are shown in

figure 2.9. Despite very similar methodology, Hazelton et al. emphasize the effect on

smoking of initiation and promotion while Schollnberger et al.’s method downplays

the relative contribution of promotion. Of interest, however, is Hazelton et al.’s ability

to predict risk in ex-smokers. It has long been suggested that the lack of an abrupt

fall in risk post quitting, indicates that the final event triggering clonal expansion of a

fully malignant bronchial cell is unaffected by smoking [Arm85, Pet01]. The absence

of a smoking effect on Hazelton et al.’s progression rate lends some support to this

hypothesis.

2.5.4 Prostate cancer and acceleration

The original multistage theory claimed that cancer incidence at age t was proportional

to tn−1 where n is the number of stages a cell must pass through to become malignant.

As has been discussed above, this is an idealization and many cancers stray from the

log-log linear relationship. Such cancers have an incidence with a changing, rather than

constant, gradient on log-log paper. The gradient at any particular age is referred to as

‘age-specific cancer acceleration.’ For instance, an idealized log-log linear cancer has a

constant acceleration with age. By contrast, breast cancer, in the paradigm of Clemme-

sens Hook, has a roughly constant acceleration until the late forties and a lower but

roughly constant acceleration thereafter. In general, depletion in the number of healthy

target cells will result in a reduced acceleration. This was exploited by Moolgavkar

et al. in their model of breast cancer incidence [MDS80]. Prostate cancer incidence is

distinguished from that of other common epithelial cancers by a dramatic decrease with

age (figure 2.10). Frank has used multistage arguments to show how the size and posi-

tion of an early acceleration peak might depend qualitatively on the number, size and

speed of clonal expansions leading to the disease [Fra04b]. Prostate cancer incidence

has, however, exhibited strong temporal trends over the past two decades as a result
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Figure 2.9: The incidence of lung cancer in the British Doctors smoking cohort

[DPBS04] was modelled by two separate groups, both using TSCE with smoking-

dose-sensitive parameters but assuming different models of dose response. The dose

responses implied by both studies are shown. μs andμn represent the initiation rate in

smokers and non-smokers respectively. ds, dn and vs, vn are the rates of promotion and

progression in smokers and non-smokers. The left column shows the ratio
μs

μn

at differ-

ent smoking doses, implied by Hazelton and co-workers[HCM05] (black line) model

of dose response. The ratio derived by Schollnberger and colleagues [SMB+06] (red

line) is also shown. The centre and right columns show the ratios for promotion and

progression.

of changing screening practices [KFFM00]. These have dramatically altered the shape

of the observed prostate cancer age-distribution (figure 2.10), and are likely to have a

significant confounding effect on inferences made from the derivative of this curve.

2.6 Discussion

Quasi-mechanistic modelling of cancer incidence is now a 50 year old discipline. Since

its beginning, ideas about cancer aetiology have changed dramatically and, naturally,

these changes have been driven by the molecular biology revolution. Multistage mod-

els have had to undergo adaptation and revision as the number of alterations in the

‘cancer genome’ has been shown to be progressively larger than the initially hypoth-

esized ‘two hits’. During this process of adaptation and revision, the difficulty of in-

ferring aetiological details from incidence data alone has become apparent. A minor
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Figure 2.10: (Left) Age-specific acceleration is the slope of the log-log age-incidence

plot. Prostate cancer acceleration is very high during the forties and decreases rapidly

thereafter. The other common carcinomas hover around an acceleration of five or six. In

general, clonal growth and sequences of multiple mutations create acceleration. Deple-

tion in target cell numbers or reductions in clonal growth rates can reduce acceleration.

Lung incidence data taken from the CPS2 cohort [SMB+06], all other incidence data

taken from the SEER database - http://seer.cancer.gov - year of diagnosis1993-1997

(accessed Sept 20 2007). Acceleration was calculated by interpolating the incidence

data, and then taking the log-log slope of the interpolating function. (Right) Changes

in the prostate cancer incidence curve with calendar time in Connecticut. Trend lines

are five-year moving averages. Data from SEER nine registry, Nov 2007 submission

(accessed June 5 2008).

problem is that temporal trends in non-aetiological factors, like screening, can create

red herrings in recorded incidence rates, as shown for prostate cancer. Such temporal

trends can be resolved to an extent however. The greater difficulty is that several dis-

tinct, but equally plausible models, can often be fit to the same incidence pattern, but

with different conclusions. This was demonstrated for smoking and lung cancer where

conclusions regarding the carcinogenic behaviour of cigarette smoke were sensitive to

minor changes in dose-response specification. Quantitative analysis can certainly play

a useful role in generating plausible hypotheses for qualitatively interesting features
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of age-onset, the aforementioned examples being breast cancer and the general cancer

burden in very old age. However, the predictive power of incidence modelling is more

questionable. The next chapter focuses on the predictability of the most fundamental

multistage parameter of all, the number of mutations or transformations a cell lineage

must undergo to become malignant.



Chapter 3

How many mutations are in a cancer?

A tractable quantitative theory of cancer cannot account for every mechanism that

might contribute to the disease. In practice, choices must be made about which features

are important so that negligible details can be excluded in the name of simplification.

For example, while it is clear that extra-cellular factors are crucial in determining the

clonal evolution of a tumour, models used to interpret incidence data have tended to

concentrate on heritable changes at the genomic level as drivers of this process. Micro-

environmental selection parameters that control the relationship between genotype

and phenotype are typically accounted for only through fixed clonal growth profiles

assumed to associate with a given combination of mutations. It is of crucial impor-

tance to understand how such simplifications impact inferences made with the resulting

models. Below it is demonstrated that estimates of the number of mutational stages

that lead to cancer are sensitive to the assumptions about clonal growth on which they

are made. This is illustrated by using two contrasting models to estimate the number

of mutations in bowel cancer. Armitage and Doll’s model, which assumes no clonal

growth, is tested against a model that incorporates a logistically growing precursor

lesion. Including a precursor lesion is shown to result in a lower estimate of mutational

stages. The sequences of consecutive mutations described in Armitage and Doll’s

model, and the idea of a clonally expanding precursor lesion, are the two most widely

adopted quantitative explanations for a rising cancer incidence with age. Inclusion

of a precursor lesion results in a lower estimate of mutational stages, because clonal

expansion of the precursor lesion accounts for some of the rise in incidence with age.

A shorter sequence of mutations is then required to produce the remainder of the rise in

risk. Paradoxically, however, large clonal expansions raise the possibility of mutations
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happening very quickly, Such mutations may have a negligible effect on the incidence

pattern of a cancer and be undetectable via incidence modelling. Therefore, incor-

porating clonal expansion can lead to lower estimates of mutation numbers but also

throws open the possibility that these are severe underestimates. Those cellular events

which are necessary to produce a cancer but that negligibly effect the time taken for

the cancer to develop are referred to as non-‘rate-limiting’. In the second part of this

chapter, a quantitative definition for ‘rate-limiting’ is outlined and used to determine

in what contexts gene mutations are rate-limiting, based on various notional mutation

rates and clone sizes of precursor lesions.

3.1 Original Multistage Model
Armitage and Doll originally suggested that late-onset epithelial cancers contained

about six mutations [AD54]. This estimate was formed by qualitative comparisons

between the predicted incidence of the multistage model and observation. In place

of a qualitative inference procedure, Bayesian methods can be used to calculate the

probability that the number of mutations, n, is 2, 3, 4, 5, 6, etc. based on the original

multistage model and the observed colon cancer data. In this way an idea of the relative

quality of fit provided by each value of n can be obtained. The version of Armitage

and Doll’s model given in chapter 2 (equation 2.5) has only three parameters, n - the

number of mutations, μ - the annual mutation rate per cell at all loci and N - the total

number of susceptible stem cells. With N fixed at 108, a posterior density, P [μ, n|D],

can be constructed for N and μ, where D = {{D1, D2, ..}, {Pop1, Pop2, ...}} is the

observed data. Di represents the annual primary disease counts in the ith age group.

Popi is the size of the ith age group. N = 108 is justified on the basis that the colon

contains of the order of 107 crypts [CTS04] and each crypt contains on the order of 10

stem cells [YTS01]. The posterior density at the point (μ, n) can be expressed as:

P [μ, n|D] =
L[D |μ, n]π[μ, n]∑

i

∫
u

L[D |u, i]π[u, i]du

, (3.1)

where π[μ, n] is the prior density and L[D |μ, n] is the likelihood function.
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If a uniform prior is taken i.e:

π[μ, n] =

⎧⎪⎨
⎪⎩

1

(μmax − μmin)(nmax + 1 − nmin)
μmin ≤ μ ≤ μmax, nmin ≤ n ≤ nmax

0 otherwise

then equation 3.1 becomes

P [μ, n|D] =
L[D |μ, n]

nmax∑
i=nmin

∫ μmax

u=μmin

L[D |u, i]du

.

By integrating out μ as a nuisance parameter [Siv96], the marginal posterior den-

sity for n, P [n|D] is:

P [n|D] =

∫ μmax

u=μmin

L[D |u, n]du

nmax∑
i=nmin

∫ μmax

u=μmin

L[D|u, i]du

. (3.2)

An expression for the likelihood function, L[D|μ, i], was previously derived, see

equation (2.23). Using (2.23), (3.2) becomes:

P [n|D] =

∫ μmax

u=μmin

∏
j

(Popjh(tj, u, n))Dj

Dj!
exp[−Popjh(tj, u, n)] du

nmax∑
i=nmin

∫ μmax

u=μmin

∏
j

(Popjh(tj, u, i))Dj

Dj!
exp[−Popjh(tj, u, i)] du

,

where h(t, μ, n) =
Nμntn−1

(n − 1)!
∑n−1

i=0

(μt)i

i!

is as given in equation (2.5).

Figure 3.1 shows a graph of P [n|D] using incidence data for bowel cancer (ICD

153 - neoplasm of the large intestine, excluding rectum, (eighth revision of the In-

ternational Classification of Diseases)) in UK males (four regions) taken from Doll

[DPW66] (year of diagnosis 1960-1962). To calculate P [n|D], the following values

were assumed:
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• N was fixed at 108.

• μmin = 10−8 and μmax = 10−2

• nmin = 2 and nmax = 8

Under these assumptions, six mutations is the overwhelming favourite. The sharp

peak in the posterior distribution for n arises because h(t) �∏μit
n−1 for small muta-

tion rates μi so that the shape of the predicted incidence curve and also the quality of

fit is dictated primarily by the exponent n − 1 where n is the number of stages.

Figure 3.1: Probability (posterior density) of different numbers of mutations implied

by observed bowel cancer incidence data. Armitage and Doll’s original model strongly

implies six mutations. By contrast, a model in which stem cell lineages undergo a slow

clonal expansion after receiving a certain number of hits (see text), suggests only three

or four mutations. In both fits, mutation rates were constrained to fall in the range

10−8 − 10−2 per cell per year and the total number of mutations must be eight or less.

The initial number of healthy target cells was set at 108. We used uniform priors for the

mutation rates and the mutation numbers.
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3.2 Logistic clonal expansion
Suppose the original multistage model is modified slightly and the inference procedure

is repeated. Will the estimate of mutation numbers change? Consider a revised mul-

tistage model which includes a clonal expansion (figure 3.2). Each cell lineage, upon

acquiring an initial number of hits, nint, begins to grow into a clone of lineages (as in the

case of the TSCE model). A further nf hits then convert any cell in the clone into a ma-

lignant cell. The total number of hits, n, required to produce a cancer is n = nint + nf .

Rather than using the standard TSCE model, where the clone grows exponentially, a

novel model will be presented here in which the clone grows to a limiting capacity

in a logistic fashion. This may be a more suitable representation of the behaviour of

adenomas in the large intestine [TB95].

Figure 3.2: In the logistic clonal expansion model, a cell lineage starts to divide sym-

metrically on receiving nint initial hits. The resulting clone grows logistically. Any cell

in the clone can become malignant by receiving nf further hits.

The time until a single lineage becomes malignant, Tlin is equal to Tint + Tf . Tint

is the time taken for the initial ni hits to occur, initiating the cell lineage. Tf is the time

taken for the the initiated lineage to produce a malignant offspring with a further nf

hits. The distribution of Tint + Tf can be expressed as:

P [Tint + Tf ≤ t] =

∫ t

0

fTint(s)P [Tf ≤ t − s]ds, (3.3)

where fTint(s) is the density function for Tint. Assuming each of the initial hits

occurs at rate μ per year, (2.3) can be used for P [Tint ≤ t]:
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P [Tint ≤ t] = 1 −
nint−1∑
i=0

μiti

i!
exp[−μt].

Differentiating with respect to t gives the density:

fTint(t) =
μninttnint−1

(nint − 1)!
exp[−μt]. (3.4)

P [Tf ≤ t] can be calculated with a method similar to that used to derive the TSCE

model. If ψ[t, y1, . . . , ynf
; t] is the generating function for the process which starts at

t = 0 with one initiated cell lineage (i.e. one which has acquired the first nint hits):

ψ[y1, . . . , ynf
; t] =

∑
i1,...,inf

P

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝

Y1(t)
...

Ynf
(t)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

i1
...

inf

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦ yi1

1 . . . y
inf
nf

=
∑

i1,...,inf

P [ Y (t) = n ] yi1
1 . . . y

inf
nf ,

where

n =

⎛
⎜⎜⎜⎝

i1
...

inf

⎞
⎟⎟⎟⎠

.

Here Yi(t) is the number of lineages with i further hits at age t.

To represent the growth of the original initiated cell lineage, a continuous function

of age, X(t), can be used. Then, by a generalization of equation (2.17) it can be shown

that:

ψ[y1, . . . , ynf
; t] = exp[

∫ t

0

μX(s)(φ[y1, . . . , ynf
; t, s] − 1) ds],

where φ is the generating function for the process which starts at time s in the

state: ⎛
⎜⎜⎜⎜⎜⎜⎝

Y1(s, s)
...
...

Ynf
(s, s)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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If the extra hits all occur at rate μ per year then it is possible to give an explicit

formula for φ:

φ[y1, . . . , ynf
; t, s] =

∑
i1,..,inf

yi1
1 . . . y

inf
nf P [Y (t, s) = n] .

P [Y (t, s) = n] is only non-zero when n = e1, e2, e3 etc., where ei =

(0, 0, . . . , 0, 1, 0, . . . , 0) with 1 in the ith row zero in all other rows. So

φ[y1, . . . , ynf
; t, s] =

nf∑
i=1

yiP [Y (t, s) = ei] .

From equation (2.1) we know that:

P [Y (t, s) = ei] =
μi−1(t − s)i−1

(i − 1)!
exp[−μ(t − s)], i = 1, . . . , nf − 1

and

P [Y (t, s) = enf
] = 1 −

nf−1∑
i=1

P [Y (t, s) = ei] .

Accordingly,

φ[y1, . . ., ynf
; t, s]

= exp[−μ(t − s)]

nf−2∑
i=0

yi+1μ
i(t − s)i

i!
+ ynf

(
1 − exp[−μ(t − s)]

nf−2∑
i=0

μi(t − s)i

i!

)
,

so

ψ[y1, . . . , ynf
; t] = exp

[∫ t

0

μX(s)

(
exp[−μ(t − s)]

nf−2∑
i=0

yi+1μ
i(t − s)i

i!
+

ymnf

(
1 − exp[−μ(t − s)]

nf−2∑
i=0

μi(t − s)i

i!

)
− 1

)
ds

]

and
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P [Tf ≤ t] = 1 − ψ(1, 1, . . . , 1, 0; t) (3.5)

= 1 − exp

[∫ t

0

μX(s)

(
exp[−μ(t − s)]

nf−2∑
i=0

μi(t − s)i

i!
− 1

)
ds

]
.

(3.6)

Substituting (3.6) and (3.4) into (3.3) gives an expression for P [Tlin ≤ t]:

P [Tlin ≤ t] = P [Tint + Tf ≤ t] =

∫ t

0

fTint(s)P [Tf ≤ t − s]ds

=

∫ t

0

μnintsnint−1

(nint − 1)!
exp[−μs](

1 − exp

[∫ t−s

0

μX(r)

(
exp[−μ(t − s − r)]

nf−2∑
i=0

μi(t − s − r)i

i!
− 1

)
dr

])
ds.

Taking account of the N lineages, the distribution of the time until cancer, T , is:

P [T ≤ t] = 1 − (1 − P [Tlin ≤ t])N . (3.7)

It remains to specify the growth profile X(t). A logistic type growth is given by:

X(t) =
K exp[rt]

K + exp[rt] − 1

This is the solution to Ẋ = rX

(
1 − X

K

)
and X(0) = 1.

Fixing K and r, the posterior density at (μ, nint, nf ) can be expressed as:

P [μ, nint, nf |D] =
L[D |μ, nint, nf ]π[μ, nint, nf ]∑
i,j

∫
u

L[D |u, i, j]π[u, i, j]du

.

With a uniform prior, the posterior reduces to:

P [μ, nint, nf |D] =
L[D |μ, nint, nf ]

nmax
int∑

i=nmin
int

nmax
f∑

j=nmin
f

∫ μmax

u=μmin

L[D |u, i, j]du

.
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Accordingly, the posterior density at a specific value of n , where n = nint +nf is given

by:

P [n|D] =

∑
i,j

i+j=n

∫
L[D |u, i, j] du

nmax
int∑

i=nmin
int

nmax
f∑

j=nmin
f

∫ μmax

u=μmin

L[D |u, i, j]du

.

For the likelihood function, L[D |μ, nint, nf ], equation (2.23) can be used with h(t)

found by differentiating equation (3.7) according to equation (2.4). This is computa-

tionally expensive however. To avoid the need to perform calculus on equation (3.7),

hi can be approximated with

hi � P [T ≤ t̂ + 1] − P [T ≤ t̂]

1 − P [T ≤ t̂]
, (3.8)

where t̂ lies in the ith age group.

With the carrying capacity, K, fixed at 106 and r = 0.1 years−1 the growth profile

of the clone is shown in figure 3.3. N was fixed at 108 and uniform priors were taken

on 1 ≤ nint, nf ≤ 8 and 10−8 ≤ μ ≤ 10−2. Calculations of P [n|D] now strongly

favour 3 or 4 mutations, rather than 6, with 4 the favourite (figure 3.1). This is a moder-

ate change in conclusion and indicates the instability of the result. If more mechanistic

details were included, the uncertainty over mutation numbers would increase further.

Unfortunately, there are many more things to consider. At the cellular level, context

dependent rates of mutation and selection-driven growth of benign precursor lesions

[ISTB99] both play a critical role. At the tissue level, the number and dynamics of

healthy target cells are important modulators of incidence. At the population level,

genetic heterogeneity among patients can create subpopulations with distinctive risk

patterns [PM00]. Similarly, as mentioned previously, temporal trends in incidence can

distort population statistics [LM02]. Such trends arise either through real changes in

risk, owing, for example, to changes in lifestyle and environment, or sometimes super-

ficially through over-diagnosis or more rapid detection associated with the introduction
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of a novel screening program [QB02]. With many confounders, it is extremely dif-

ficult to isolate the effects of mutation numbers. This fact is hidden by the standard

approach to fitting quasi-mechanistic models of carcinogenesis, an approach which (i)

treats a single, predefined clonal growth structure as if it were definitive, and (ii) takes

the optimized state of this model (i.e. the parameter values which give the best fit) as

a starting point for making inferences. The result is often to exaggerate the specificity

of conclusion that can be drawn from the data. Zhang and Simon [ZS05] or Luebeck

and Moolgavkar [LM02], in attempts to estimate the number of rate-limiting stages in

breast and colorectal cancer respectively, both employ models that depend on a plau-

sible but narrowly constrained description of clonal growth and mutation. These mod-

els cannot readily be used for quantifying physiopathological mechanisms of cancer.

Translating uncertainty regarding tumorigenesis accurately into statistical uncertainty

regarding mutation numbers, or other mechanistic features, is very difficult. However,

steps in this direction could be made by, for example, working with a representative

collection of possible model structures, rather than a single model. A posterior density

for any parameter value of interest could then be calculated by averaging the posterior

distributions under each of the models considered, weighted by their posterior model

probability [HMRV99].

Figure 3.3: The deterministic growth profile of clones in the logistic clonal expansion

model.
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3.3 Evidence from cancer genome projects
Besides being unstable under changes in model structure, multistage model predictions

appear to be inconsistent with evidence generated through the systematic study of can-

cer genomes. Quantitative analyses of incidence data have conventionally implied ≤ 10

mutational stages in, for example, human breast and colorectal cancer. Evidence pro-

duced in a screen of � 13, 000 genes in cell lines and xenographs derived from these

tumour types, however, suggests approximately 14 and 20 genes could be altered via

selected mutations in the average colorectal and breast cancer respectively [SJW+06].

Without doubt, these are rough estimates, due to the difficulties inherent in distinguish-

ing genuine selected somatic mutations from passenger mutations or artefacts of se-

quencing and PCR. Nonetheless, a more recent study of � 500 protein kinase genes

[GSS+07], across � 200 cancer types, using different methods to identify selected mu-

tations, also suggests that a larger number of functionally altered genes than previously

anticipated are operative in many human cancers. The apparent discrepancy between

low mutation numbers predicted by multistage models and the larger number of alter-

ations found in cancer genomes has a standard explanation; that only certain critical

mutations limit the rate at which a cancer is formed. Other mutations, while making

essential contributions to the cancer phenotype, occur more quickly than their critical

counterparts, for example during the clonal evolution of an established cancer, and are

not ‘rate-limiting’.

3.4 Rate-Limiting Events
The concept of a rate-limiting step (RLS) originates in the quantitative study of chemi-

cal reactions wherein several precise mathematical definitions have been suggested to

identify such a step [Tur90]. Common among these definitions is the idea that changes

in the speed of a RLS must have a significant impact on the rate of the overall chain

of events to which the RLS belongs. As applied to cancer modelling the term is used

colloquially and without a strict meaning.

From an incidence modelling perspective, a RLS could be defined as a step whose

consequences can be observed by looking at age-distributions. The relevant question

in this context is how quick must a mutational / transformational step become before
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it ceases to be visible in the age-onset pattern? A rough approach to addressing this

question is to (i) build a simple model of tumorigenesis, (ii) fit this model to the inci-

dence distribution of a specific cancer, (iii) add in fast steps of a given rate and observe

the effect on quality of fit and (iv) increase the common rate of the extra steps until the

effect on quality of fit becomes negligible.

Figure 3.4: A multistage model to test the feasibility of determining ‘fast’ cellular

events from incidence data. A cell lineage becomes malignant following nμ slow steps

(at rate μ), followed by nν fast steps at rate ν. When the ν is large enough, the quality

of fit becomes insensitive to nν .

For parts (i) and (ii) of this method, the Armitage and Doll formula (2.5) can

be fit to bowel cancer data, with the number of cell lineages fixed at N = 108. This is

done using the standard maximum likelihood method via the likelihood function (2.23).

Adding in more steps to the Armitage Doll model at a faster rate (part (iii)) leads to the

Markov chain, shown in figure 3.4. There are nμ slow hits, followed by nν fast hits.

The Kolmogorov equations for this system are:

d

dt
[X0(t)] = −μX0(t)

d

dt
[X1(t)] = μ(X0(t) − X1(t))

...

d

dt
[Xk+1(t)] = μXk(t) − νXk+1(t)

...

d

dt
[Xn−1(t)] = ν(Xn−2(t) − Xn−1(t))

d

dt
[Xn(t)] = νXn−1(t).

where k = nμ − 1 and n = nμ + nν . This system is solved by:
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Xi(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

μiti

i!
exp−μt i = 0, . . . , k

νi−k−1μk+1 exp[−μt]

k∑
j=0

(
i−k−1+j

j

)
(−1)jtk−j

(ν − μ)i−k+j(k − j)!

+ νi−k−1μk+1 exp[−νt]

i−k−1∑
j=0

(
k+j

j

)
(−1)k+1ti−k−1−j

(ν − μ)k+j−1(i − k − 1 − j)!

, i = k + 1, . . . , n − 1

(3.9)

and

Xn(t) = 1 −
n−1∑
i=0

Xi(t),

so that

P [T ≤ t] = 1 − (1 − Xn(t))N

= 1 − (
n−1∑
i=0

Xi(t)). (3.10)

Consider extra stages occurring at rate ν̂. To calculate the quality of fit associated

with a particular value of nν a uniform prior on nν = 0, 1, . . . , 5 can be taken, leading

to a posterior density at nν = i given by:

P [nν = i|D] =
L[D|nν = i, nμ = n̂, μ = μ̂, ν = ν̂]∑5

j=0 L[D|nν = j, nμ = n̂, μ = μ̂, ν = ν̂]

where nν = n̂ and μ = μ̂ optimize P [D|nν = 0, nμ, μ].

It is again more computationally efficient to use approximation (3.8) for construct-

ing the likelihood function, L[D|nν = j, nμ = n̂, μ = μ̂, ν = ν̂], as this avoids the need

to perform calculus on (3.10). Figure 3.5 shows the relative quality of fit to bowel

cancer incidence data obtained by adding between 0 and 5 extra stages. These stages

have an expected duration of one year or less. One extra stage of three months has a

negligible effect, three extra steps of one month go similarly unnoticed.

3.4.1 When is a mutation rate-limiting?

At first glance it does not seem to matter much that it is impossible to sense, at the

population level, the effects of an event that takes less than 6 months on average to
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Figure 3.5: Relative quality of fit achieved by adding in one to five extra stages to an

optimized multistage model of bowel cancer. The optimized model assumes 108 stem

cells at risk and that cancer occurs after six mutations each occurring with probability

7 × 10−4 per cell per year. Quality of fit is measured as a posterior density on the

number of extra stages. A uniform prior on 0 - 5 extra stages was assumed. Fast steps,

expected to occur in less than six months (i.e. with a mutation rate, ν, larger than 2 per

cell per year) have a small effect on incidence and so the quality of fit does not decline

substantially when these are added. Bowel cancer data taken from [DPW66] (year of

diagnosis 1960-1962).

occur. A gene mutation with a rate of 10−6 per cell per year for example, is expected

to take a million years if it can arise in only one cell lineage. By contrast, the effect

of an equally rare event will go unnoticed if it can afflict any of a large population of

target cells. For example, among 108 healthy target cells, assuming a gene mutation

rate of 10−8 per cell with each cell division, we would expect the first mutated gene

within two divisions. Although the initial step in a genetic pathway is likely to hap-

pen very quickly when the number of healthy target cells is large, in many cases the

second mutation must arise from a single cell and is expected to take much longer.

Towards the end of a genetic pathway, the situation can be reversed again because mu-

tations may arise in a substantial precursor lesion or early stage cancer. How large must

such a clone be before one, two, or more sequential mutations cease to be rate-limiting?

The expected time taken for n mutations, occurring at rate μ to arise in any one of

N target cell lineages is given by:
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∫ ∞

0

fT [t]t dt,

where fT [t] is the density function for T the time until cancer, found by differentiating

(2.3):

fT [t] =
d

dt
[P [T ≤ t]]

= −N

(
n∑

i=0

(μt)i

i!
exp−μt

)N−1
d

dt

(
n∑

i=0

(μt)i

i!
exp−μt

)

= N

(
n∑

i=0

(μt)i

i!
exp−μt

)N−1
μntn−1

(n − 1)!
exp−μt .

Table 3.1 shows the expected time for mutations to occur in cancer stem cell

clones of varying sizes. In a very large clone of 1 billion cells (enough to constitute

a clinically apparent tumour), two consecutive mutations need not be rate-limiting if

they occur with probability 10−6 per cell division or higher.

Table 3.1: Expected time lapse in years before one, two or three specific mutations

occur in any of a clone of target cells. Clone size is measured in cells. Hits refers to the

number of specific gene mutations that are to occur in any one cell of the clone. The

mutation rate is quoted per cell per cell generation, assuming 100 generations per year.

Since a continuous model of mutation is assumed, mutations can occur at any time and

are not limited to fixed points in the cell cycle. This explains why the expected time

lapse is less than one cell generation time in some cases
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So it is reasonable to assume that many non-rate-limiting mutations occur once

the tumour mass has reached a substantial size. This could explain why the age-onset

pattern of bowel cancers that have only acquired the potential for local invasion is

almost indistinguishable from that of tumours which are aggressively metastasizing

and widespread [CMJ+05]. The implication is that clinical stage depends on non-rate-

limiting mutations (table 3.1) or other events which occur with high frequency after

malignant transformation.

3.5 Discussion
In this chapter it was shown that assumptions about clonal growth can materially effect

estimates, made from incidence statistics, of the number of mutations in a given can-

cer. This is significant because there is real uncertainty over clonal expansion patterns

in tumorigenesis. Clonal expansion controls the impact of a given mutation and can

determine whether or not subsequent mutations are rate limiting. A novel definition of

‘rate-limiting’ was given in terms of the observability of a carcinogenic cellular event

through registry data. The aim of introducing a concrete metric for measuring the prop-

erty of being rate limiting is to provide a quantitive framework through which to judge

the efficacy and realistic scope of multistage modelling. A marked aspect of this defi-

nition is its dependence on the size of the registry in question. It would be interesting

to investigate this dependence. For example, could a large patient database notably im-

prove the observability of fast cellular events? Working with bowel cancer data from a

UK registry, the ‘rate-limiting’ definition given was used to show that gene mutations

can be undetectably fast, provided they target a sufficient number of cells. Therefore,

the concept of a rate-limiting step, provides some explanation for the discrepancy be-

tween multistage models predicting low mutation numbers and investigations into can-

cer genotypes that implicate a greater number of significant DNA modifications. It has

been argued, by Moolgavkar et al. [LM02] that if a given gene is inactivated or mod-

ified to cause a large clonal expansion, and that if certain critical mutations following

this clonal growth happen very quickly (because they can target any cell in the large

clone), then it is sufficient to model only the initial mutation causing the clonal growth.

The other mutations can be viewed as inevitable consequences of the initial mutation.

This argument is a justification for a simple model of tumorigenesis with a small num-
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ber of mutations. However, if many mutations conspire together to create an observed

incidence profile, it is unlikely that they can be partitioned squarely into those which

are rate-limiting and those which are not. The observability of an event is a continuous

property and some mutations will occupy the grey area between rate-limiting and not

so. For example, one mutation in a clone of a given size may not be rate-limiting but

two such mutations may become so. Further, these two mutations together targeting a

clone of fixed size could be mistaken for a single mutation in a larger growing clone. To

make progress in deciphering the relationship between incidence and aetiology, meth-

ods for isolating the effects of a particular mutation or other carcinogenic cellular event

are required. In the next chapter such methods are discussed and applied.

In summary, it has been shown in this chapter that quantitative attempts to derive

information from age-distributions are sensitive to the assumptions about cancer on

which they are made. Therefore, if incidence data are used naively, a false sense of

confidence is created over the specificity of conclusion that can be drawn. Care must

be taken to ensure that inferences made adequately reflect our current uncertainty over

cancer biology as well as our understanding of it.



Chapter 4

Comparative studies of risk in

inherited and sporadic tumours

Biologically based models of cancer incidence have not fulfilled their early promise of

generating quantitative results on aetiology. How might a further understanding of age-

incidence and its dependence on underlying cell and molecular biology be achieved?

One approach is to compare the incidence patterns of sporadic and hereditary forms

of the same cancer. Observed differences in these incidence patterns can then be as-

cribed to the gene defect that underlies the hereditary disease. A pioneering example

of this type of analysis compared the incidence of familial and sporadic Retinoblas-

toma. Retinoblastoma is a rare childhood cancer of the nervous system. It is initiated

by inactivation of the tumour suppressor gene, RB1, in the developing retina. Before

the identification of RB1, and its role in Retinoblastoma, Knudson [Knu71] had shown

that children with familial retinoblastoma develop tumours with an age-onset pattern

suggestive of one less causative mutation than in sporadic patients. This finding sup-

ported the theory that both alleles of a specific gene must be silenced before a tumour

can develop. In familial patients, one of the alleles is already mutated in the germline,

causing a shift in age-onset pattern consistent with one less causative mutation.

Retinoblastoma exemplifies a simple relationship between sporadic and hereditary

cancer whereby the germline mutation causing the hereditary cancer features as an ini-

tiating somatic change in the sporadic cancer. In such a case, patients with a germline

mutation are very much like sporadic patients; the increase in risk they experience

arises only because their cell lineages begin life with a head-start of one cancerous

mutation. In the first part of this chapter, a sporadic and hereditary bowel cancer that
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follow this pattern are compared. The hereditary bowel cancer syndrome, familial ade-

nomatous polyposis coli (FAP), is caused by germline mutation in the APC gene. APC

mutations also feature as initiating somatic events in sporadic bowel cancer. The re-

spective incidence patterns of FAP and sporadic bowel cancer are used to estimate the

rate of the somatic APC mutation which separates them.

4.1 Estimating the rate of APC mutation

Cancer arises through successive somatic mutations/epimutations of oncogenes and

tumor-suppressor genes. Accurate estimates of the rates at which these (epi)mutations

occur are a vital but missing link in our emerging quantitative understanding of tumori-

genesis. Their absence has hindered arguments concerning the importance of genetic

instability in tumorigenesis and the number of mutations that precede malignant con-

version of healthy cell lineages. In this section, a novel method for calculating the

in-vivo mutation rate of the APC tumor-suppressor gene is presented. The large ma-

jority of bowel cancers are thought to be initiated by a partial loss of APC function.

Consequently, bowel cancer risk is dramatically altered for the worse in the heredi-

tary syndrome, familial adenomatous polyposis (FAP). This is because FAP patients

already harbor germline APC mutations so that their cancers require one less genetic

aberration at APC. Below, the extra time taken for bowel cancers to develop in sporadic

patients is used to estimate the rate of their extra initiating APC mutation. A result of

approximately 10−5 mutations per allele per year, although faster than previous esti-

mates, appears consistent with the high number of different mutations known to target

APC.

4.1.1 Previous estimates of somatic gene mutation rates

The in vivo rate of somatic tumour suppressor or oncogene mutation cannot be mea-

sured directly. Often, it is not possible to isolate the precursor cells of a given cancer or,

as a consequence, to probe their DNA for abnormalities. In cases where precursor cells

can be isolated, the rarity of any specific mutation makes direct measurements of mu-

tation rate impractical. Even in human cell cultures, determining mutation rate is very

difficult [KF88] and has only been possible at a handful of loci. Estimates fall between

10−8 and 10−6 mutations per gene per cell generation [DH72, SKT+87, AGZ+05].
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Similar rates have been observed in yeast [LH89, YK90].

These data provide only a blurred picture of the somatic mutation rate in humans.

Aside from the three orders of magnitude over which they are spread, there is a ques-

tion mark over how well the mutational characteristics of cultured cells mirror those

of cells in vivo. Consequently, it is currently very difficult to ascribe a notional rate to

tumour suppressor or oncogene mutation. This is especially apparent when considering

that the rate in a particular case will depend not only on micro-environmental factors

that modify replication fidelity, but also on the specific spectrum of genetic changes

that lead to a selected mutant protein product.

Figure 4.1: In Luria-Delbruck fluctuation analysis (left), the number of mutant colonies

arising in plated clones can be used to estimate in vitro mutation rates. By analogy, in

vivo, the number of tumours arising in individuals can be used to estimate mutation

rates.

Without resorting to cell lines, what alternative methods are available for measur-

ing mutation rates? In vitro, the standard method is Luria-Delbruck fluctuation analysis

(see figure 4.1). Many parallel clones are grown in culture from small parent popula-

tions containing no mutated genes. After a certain number of cell generations or when

the clones have grown to a specific size, the prevalence of mutant cells within each

population is recorded. The mean prevalence per clone is then used to estimate the

underlying mutation rate. A simple in vivo analogue of this experiment is to observe

many patients (rather than clones) and measure the frequency with which neoplasia

(rather than mutant colonies) arise:- the neoplasia being markers of mutation. In other

words, rather than trying to observe gene mutations at the microscopic level, a practi-
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cal alternative is to observe malignancies at the population level (figure 4.1). Luebeck

and Moolgavkar [LM02] inferred a rate of 10−6 per gene per year for APC mutation in

patients with colorectal cancer via this approach.

The primary advantage of using population data, in place of cell line data, is that

they are indicative of in-vivo rather than in-vitro gene mutations. A second advantage is

that neoplasms are markers of precisely the gene mutations whose rates of occurrence

we would like to measure. Unfortunately, it is usually difficult to determine the number

of precursor cells per patient at risk for a given cancer - a crucial factor in determining

the mutation rate. Furthermore, besides the mutation of interest, there are often un-

known additional pathogenic events required to produce a cancer. These confound the

estimation procedure. For example, Luebeck and Moolgavkar’s estimate of the APC

mutation rate depends on an assumed number of progenitor cells per colorectum. It also

depends on more difficult assumptions about the aetiology of bowel cancer. Although

it was reasonable for them to suppose that the initiating events are alterations in the two

alleles of APC, assumptions about the events that follow from the second APC hit are

more speculative. These compromise the accuracy of their estimate.

In cancers where there is a well-defined genetic and histological sequence, pre-

cursor lesions can be used in place of malignant tumours for estimating rates of gene

mutation. The advantage of using neoplasia at an earlier stage of tumourigenesis is that

they contain fewer genetic alterations than mature tumours (in addition to the muta-

tion of interest). Iwama treated colonic adenomas as representative of two APC hits

[Iwa01]. From observed data on the incidence of adenomas in the bowel, he was able

to infer a rate between 2 × 10−6 and 3 × 10−6 APC mutations per gene per year - sim-

ilar to the estimate of Moolgavkar et al. While Iwama’s approach removes some of

the uncertainty associated with aetiology, it is still dependent on assumptions about the

number of cells at risk of cancer per patient. The method presented here removes this

dependency, while still requiring only a limited knowledge of pathogenesis.

The rate of APC mutation can be inferred by comparing incidence of sporadic

colon cancer, with that of colon cancers arising in the context of familial adenomatous

polyposis coli (FAP). FAP is a hereditary cancer syndrome caused by germline APC

mutation. It occurs in the general population with a frequency between 1
10000

and 1
7000

and accounts for around 2% [dlC04] of CRCs. Patients with FAP develop hundreds
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to thousands of adenomas throughout the colon and rectum, beginning in their teens.

If untreated at least one of these adenomas will progress to an invasive lesion (the

penetrance of FAP is taken to be 100%). It is commonly assumed that colon cancers

arising sporadically and in FAP patients proceed along similar pathways of somatic

evolution, with FAP cancers requiring one less mutation at the APC locus. If this is the

case and if partial loss of APC function is initiating for the large majority of cancers

of either type, then it is reasonable to use the age-onset pattern of FAP to estimate

the time lapse between the first APC hit and clinical detection in sporadic bowel cancer

(figure 4.2). Using FAP incidence data in this manner removes the need for assumptions

about the adenoma - carcinoma sequence after the first APC mutation. Additionally, the

method is insensitive to the assumed number of progenitor cells, since this information

is implicit in the FAP data, provided that the number of progenitors is the same in FAP

and sporadic patients.

Figure 4.2: The pathways of FAP and sporadic bowel cancer are separated by only a

single, truncating APC hit. In the case of FAP the first APC hit already exists in the

germline. In a sporadic patient, a given cell lineage takes Tν years to acquire a truncat-

ing APC mutation in one allele and then a further T lin
FAP years to become malignant. A

FAP lineage only takes T lin
FAP years to become malignant.
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4.1.2 A comparative method for estimating the APC mutation rate

FAP incidence was estimated from a retrospective study of British FAP families pub-

lished in1965 [Vea65]. Sporadic incidence was estimated from UK registry data

recorded between 1960 and 1962 by Doll [DPW66]. It was assumed that sporadic

bowel cancer emerges via the same genetic pathway as FAP, but with an extra initiating

APC ‘hit’ (figure 4.2). A quantitative model, describing the time taken for a sporadic

bowel cancer to develop, was derived on the basis of this assumption. The initiating

APC hit occurs at a rate of ν per allele per year in the model. The time between this hit

and clinical detection was estimated from FAP incidence data. Fitting the model sepa-

rately to sporadic male and female incidence data then allowed ν, the desired mutation

rate, to be inferred in each case.

4.1.2.1 Time Until Sporadic Cancer

It was assumed that the colonic epithelium of each patient is sustained by a population

of stem cells and that these stem cells form the target population for cancer. Periodi-

cally, each divides asymmetrically to give rise to one new stem cell and one non-stem

cell daughter. A given stem cell, and its lineal stem cell descendants will be referred

to collectively as a ‘stem cell lineage’ (figure 4.3). We assumed a fixed number of lin-

eages, N , and each was treated as an independent entity. Before the first APC mutation

has occurred, each lineage retains only a single stem cell (undergoes no symmetric di-

visions). This restriction allows the time taken for the first APC mutation to be modeled

with an exponential distribution. After the first APC mutation, however, the assump-

tions of the model do not preclude expansion through symmetric divisions. A cancer is

recorded when the first of the lineages has become malignant and grown to a detectable

size.

The age at which any single lineage in a sporadic patient becomes malignant is

denoted by T lin
spor. It is the sum of two times (figure 4.2): (i) Tν the time taken for the

initial APC hit to occur and (ii) T lin
FAP, the time taken for the events which comprise the

FAP pathway to follow (again see figure 4.2). So T lin
spor can be expressed as:

T lin
spor = Tν + T lin

FAP. (4.1)
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Figure 4.3: The epithelial sheet is replenished, initially, by a fixed number of inde-

pendent stem cell lineages. These are shown in grey and their differentiating progeny

are shown in white. Black cells represent stem cell descendants that have at least one

mutant APC allele. The assumptions of the model do not preclude expansion through

symmetric division, in the black cell lineages

Tν is assumed to follow to an exponential distribution, with rate 2ν (since there

are two alleles and ν is the mutation rate per allele per year). Two contrasting methods

were then used to derive a distribution for T lin
FAP from the observed FAP data.

First of all, to avoid forcing a generic shape onto the distribution of T lin
FAP, it was

constructed as a survival curve directly from the FAP data. The construction pro-

ceeded in two stages. Initially, the observed FAP data, as summarized by Ashley

[Ash69], were used to estimate the distribution of TFAP , the time at which a patient

(rather than a lineage) first develops a malignancy. So, P [TFAP ≤ t] was inferred for

ti = 10, 15, 20, 25, . . . via the ‘actuarial method’ (see for example Parmar and Machin

[PM95]).

The FAP data from [Vea65] are reproduced in table 4.1. If TFAP represents the time

at which a FAP patient presents with a tumour, then the data in table 4.1 suggests an

estimate for P [TFAP ≤ 10] is 0, since there were no cases of cancer occurring before

age 10. The chance of a patient presenting with cancer before age 15 given that the

patient was healthy at age 10 is taken as P [TFAP ≤ 15| TFAP > 10] =
1

(151 − 7
2
)
. This
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Age Cases treated, S Cases of cancer, D Patients for Analysis

0-10 5 0 156

10-15 7 1 151

15-20 11 0 144

20-25 10 6 133

25-30 14 14 123

30-35 15 17 109

35-40 5 8 94

40-45 9 14 89

45-50 3 6 80

50-55 1 3 77

55-60 0 2 76

60-65 1 1 76

65-70 0 1 75

70-75 0 2 75

Table 4.1: FAP data (males only) from [Ash69], the patients treated during each age

interval are removed from the study, and no longer form part of the analysis. This

is reflected in the ‘Patients for Analysis’ column, which contains the total number of

patients who began the study and have not yet received treatment.

is the number of cancers occurring in the age range, divided by the average number

of patients at risk during the period who did not already have cancer. So, although

there were 151 healthy patients at age 10, 7 were treated with prophylactic surgery

and removed from the analysis before age 15. Assuming the times at which they were

removed are uniformly distributed (the actuarial assumption - [PM95]), then there were

on average 151 − 7
2

patients. Similarly, P [TFAP ≤ 25| TFAP > 20] =
6

(133 − 1 − 10
2
)
.

Again, this is the number of cancers, 6, divided by the average number of healthy and

untreated patients 133 − 1 − 10
2

. 133 patients had not yet been treated, subtract 1, as

one case of cancer has been recorded, and then subtract 10
2

, as 10 patients were treated

during the interval. The probability of cancer occurring before age 30, for example, is

then constructed as a product:
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P [TFAP ≤ 30] = 1 − P [TFAP > 30]

= 1 − P [TFAP > 10]P [TFAP > 15|TFAP > 10]...P [TFAP > 30|TFAP > 25]

= 1 − (1 − P [TFAP ≤ 10])

× (1 − P [TFAP ≤ 15| TFAP > 10])

× . . .

× (1 − P [TFAP ≤ 30|TFAP > 25]).

This completes the actuarial method for calculating P [TFAP ≤ ti] when ti is

10, 15, 20, 25, ... Subsequently, it was observed that if a patient has N independent

lineages at risk of becoming cancerous, then there is a simple relationship between

TFAP and T lin
FAP. By equation (2.2):

P [TFAP ≤ ti] = 1 − (1 − P [T lin
FAP ≤ ti])

N . (4.2)

Rearranging gives

P [T lin
FAP ≤ ti] = 1 − (1 − P [TFAP ≤ ti])

1/N .

Hence a smooth approximation to P [T lin
FAP ≤ t] can be derived by interpolating the

co-ordinates:

(ti, 1 − (1 − P [TFAP ≤ ti])
1/N), ti = 10, 15, 20, . . . .

Using this approximation to P [T lin
FAP ≤ t] and equation (4.1) it follows that:

P [T lin
spor ≤ t] = P [Tν + T lin

FAP ≤ t]

=

∫ t

0

d

ds
(P [Tν ≤ s]) P [T lin

FAP ≤ t − s] ds.

This gives the age at which cancer arises in a single lineage, T lin
spor. For the patient,

any of the N lineages has the potential to become a cancer. Consequently, the time
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taken for a patient to present with cancer, Tspor, is much quicker than that for a lineage.

The two waiting times are related by (equation (2.2)):

P [Tspor ≤ t] = 1 − (1 − P [T lin
spor ≤ t])N . (4.3)

4.1.2.2 Fit to sporadic data 1

With N fixed, and T lin
FAP defined as above, P [Tspor ≤ t] (equation (4.3)) can be used

to construct a likelihood function, L(Dspor|ν), for the sporadic data, Dspor. This is

done as described in the previous chapter (equation (3.8)). In turn, L[Dsport|ν] is used

to calculate a posterior distribution P [ν|Dspor]. Assuming a uniform prior for ν on

10−7 − 10−3, gives

P [ν|Dspor] =
L[Dspor|ν]∫ νmax

νmin

L[Dspor|v] dv.

The variance of this posterior is likely to be too narrow because uncertainty over

the distribution of T lin
FAP was ignored in its derivation. To address this issue, in the second

method for characterizing T lin
FAP, the assumption was made that its distribution follows a

predefined functional form whose parameters are to be inferred. Specifically, Armitage

and Doll’s formula was used (equation (2.1)). Recall that this gives the probability that

a cancer requiring n successive mutations, each occurring at a rate μ, has developed

from an immortal lineage by time t:

P [T lin
FAP ≤ t] = 1 −

n−1∑
i=0

μiti

i!
e−ut, (4.4)

so that

P [TFAP ≤ t] = 1 − (1 − P [T lin
FAP ≤ t])N . (4.5)

4.1.2.3 Fit to sporadic data 2

Using equations (4.4) and (4.5), a likelihood function, L[(DFAP, Dspor)|μ, n, ν] was con-

structed for the FAP and sporadic data together, given the approximated FAP curve
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(parametrized by μ and n) and the model for the sporadic disease. This likelihood was

the product of the likelihood for the sporadic data (L[Dspor|ν] - equation (3.8)) and a

new likelihood, L[DFAP|μ, n] for the FAP data. The FAP data is drawn from a small

study involving M patients where M is ∼ 100. The patients are observed at 5-year

age intervals. During the ith age interval, a total of Si patients are treated with surgery

before being removed from the study and Di new cancers occur among the remaining

patients. To account for loss of patients through treatment, the effective number of

patients, Popi, at risk during the ith interval, Popi, is defined by:

Popi = M −
i−1∑
k=0

(Dk + Sk) − 1

2
Si. (4.6)

The likelihood L[DFAP|μ, n] at μ given the FAP data can be expressed as a product of

binomial probabilities. If the probability of a cancer arising in a given patient during

the ith interval is pi, then the probability that Di cancers arise among the effective

population Popi over the period is

(
Popi

Di

)
pDi

i (1 − pi)
Popi−Di .

L[DFAP|μ, n] is then equal to the probability of the given sequence of case numbers

{D1, D2, . . .},

L[DFAP|μ, n] =
∏

i

(
Popi

Di

)
pDi

i (1 − pi)
Popi−Di .

If si and ei are the start and end points of the ith age interval then pi can be evaluated,

using equation (4.5), as:

pi = P [TFAP ≤ ei|TFAP > si] =
P [TFAP ≤ ei] − P [TFAP ≤ si]

1 − P [TFAP ≤ si]
. (4.7)
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To fit both the sporadic and FAP data simultaneously, the combined likelihood function,

L[(DFAP, Dspor)|μ, n, ν] was used:

L[(DFAP, Dspor)|μ, n, ν] = L[DFAP|μ, n] · L[Dspor|ν].

The posterior density at ν, was calculated assuming uniform priors for ν,μ and n

respectively on 10−7 − 10−3, 0 − 10−2 and 2 − 7:

P [ν|(DFAP, Dspor)] =

nmax∑
n=nmin

∫ μmax

μmin

L[(DFAP, Dspor)|μ, n, ν]dμ

nmax∑
n=nmin

∫ νmax

νmin

∫ μmax

μmin

L[(DFAP, Dspor)|μ, n, v]dμ dv

.

4.1.3 Results

It was assumed that sporadic bowel cancer emerges via the same genetic pathway as

FAP, but with an extra initiating APC ‘hit’ (figure 4.2). A stochastic model, describing

the time taken for a sporadic bowel cancer to develop, was derived on the basis of

this assumption. The intestinal cell lineages of a sporadic patient acquire initiating

APC hits at a rate of ν per allele per year in the model. The remaining time taken

for any such lineage to become malignant and present clinically was estimated from

FAP incidence data. Fitting the resulting model back to the sporadic incidence curve

allowed a posterior distribution for ν, the desired mutation rate, to be inferred.

The posterior distribution, P [ν|D], was derived via two separate methods. In the

first, the time taken for an APC+/- cell lineage to become malignant and present clini-

cally was assumed to be distributed according to a survival curve constructed from the

FAP data. The shape of P [ν|D] in this case (see figure 4.4), implies that ν - the annual

rate of APC mutation per allele - falls between 6 × 10−5 and 9 × 10−5 for both males

and females. These estimates are insensitive to two-order of magnitude changes in the

assumed number of cell lineages per patient. However, substituting the optimum ν for

males or females into the model gives only a rough approximation to the sporadic in-

cidence profiles (figure 4.5). The discrepancy is systematic, in that for both males and

females we overestimate the risk prior to 65 years of age and underestimate it there-
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after. It is likely that ascertainment bias in the FAP data is the underlying cause of this

error.

Ascertainment bias in the FAP data arises because only those patients who present

clinically before death from other causes are included in the study. Consequently, rel-

ative risk of cancer at young ages, when mortality is low, is exaggerated while risk in

older age as mortality increases is downplayed. Another problem is that the FAP data

consist of only a small number of observations.

By assuming the ‘real’ distribution of FAP cases followed exactly a survival curve

constructed from a small sample, the variances of the posterior distributions on ν were

underestimated. To quantify the extent of this problem, in addition to using the exact

survival curve suggested by observed data points, a parameterized class of possible

approximations to the FAP curves was used. The posterior densities on ν in this case

are only slightly wider (figure 4.6). The optimized models naturally give a better fit to

the sporadic data (figure 4.7) and seem, crudely, to correct for the ascertainment bias

described.

Figure 4.4: Posterior distribution of the APC mutation rate, ν, measured in mutations

per allele per year, calculated using a single parameter likelihood function. Sporadic

data colon cancer incidence taken from Doll [DPW66], cases diagnosed between 1960

and 1962.

4.1.4 Discussion

The above calculations suggest that alleles of the APC tumour suppressor mutate about

6×10−5 times a year. This is 30 times faster than previous estimates [Iwa01, LM02]. A
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Figure 4.5: P [TFAP ≤ t], the cumulative risk of FAP at age t, was calculated separately

for males (left column) and females (right column) by interpolating observed FAP data.

P [Tspor ≤ t], the cumulative risk of sporadic bowel cancer at age t, was constructed

from P [TFAP ≤ t], according to assumptions about the relationship between FAP and

sporadic bowel cancer described in the text. Using the optimum ν, provides an adequate

approximation to observed sporadic data.

rough consistency check can be done by comparing the estimate against the mutational

spectrum of the gene. More than 95% of the APC mutations found in bowel cancers

are nonsense or frameshift mutations. They take the form of small deletions / insertions

or point mutations that result in truncation of the protein [FWB02]. Assuming an error

rate (insertions / deletions or mismatches) of 10−10 per base per cell generation [KB00]

and assuming order 102 stem cell divisions per annum, the number, B, of base pairs

through which APC can be suppressed (either by insertion / deletion or point mutation)

is:

B = ν × 108

Assuming ν � 10−5 gives B � 1000. This seems a sensible value for B as more
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Figure 4.6: Posterior distribution of the APC mutation rate ν, measured in mutations

per allele per year, calculated using a three parameter likelihood function. Data on

sporadic colon cancer incidence taken from Doll [DPW66], cases diagnosed between

1960 and 1962.

than 700 distinct, somatic APC mutations, have been reported in bowel cancers to date

[LPBS98].

Confidence in the estimates for v, should be based primarily upon the accuracy of

the assumptions / approximations used in their calculation. The most crucial assump-

tions are listed below:

1. FAP and sporadic bowel cancer are both initiated by genetic alterations in the

APC gene,

2. A lineage in a sporadic patient, with one APC hit, becomes malignant via the

same mechanism as a FAP lineage with the germline genotype,

3. The target lineages for bowel cancer act independently,

4. The time of loss of the first APC allele in a sporadic patient follows an exponen-

tial distribution.

To evaluate the accuracy of these assumptions, a definition of ‘sporadic’ colon

cancer is necessary. We take sporadic to mean any case occurring in the general pop-

ulation, excluding those arising in the context of a known, highly-penetrant germline

mutation. Although initiating APC mutations appear to feature in the large majority of

such sporadic cases [RLI+00], alternative genetic pathways are available for progenitor

cells in the colonic epithelium [ST06] and cases with no APC mutation are a source of
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Figure 4.7: P [TFAP ≤ t], the cumulative risk of FAP at age t, is represented by a

smooth function, parametrized by μ and n. P [Tspor ≤ t], the cumulative risk of sporadic

bowel cancer at age t, was again constructed separately for males and females from

P [TFAP ≤ t], as described in the text. Using the optimum parameter vector (μ̂, n̂, ν̂),

which maximizes the likelihood function, a good fit to the sporadic data can be made.

noise in the experiment. Since these cases account for less than 30% and since their

age-relatedness is unlikely to be remarkably different from those initiated by APC, the

impact should be minimal.

A similar but potentially more serious source of noise arises, because the registry

data we use to represent sporadic cases are likely to be contaminated with FAP cases

and those of other highly penetrant hereditary bowel cancers. However, these account

for less than 5% of all colorectal cancers [dlC04], so the effect is negligible.

Concerning approximation 2, APC hits can broadly be categorized into two types:

truncating mutations and loss of heterozygosity (LOH). It is well established that the

type, as well as the position of the two hits at APC are not independent in either FAP

or sporadic bowel cancer. The first hit in sporadic cases and the germline mutations
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in FAP are both predominantly truncating mutations but their spatial distribution is not

identical. Consequently, due to non independence of the two hits, or otherwise, LOH

may occur at a different frequency as a second hit in sporadic cancers. Fortunately,

the difference in the spatial distributions is primarily due to certain germline mutations

occurring at high frequencies relative to somatic mutations in sporadic cases. Specifi-

cally, germline mutations affecting codon 1061 and codon 1309 are relatively frequent

in FAP. As these tend to lead to different second hits (truncating mutation and LOH

respectively) the overall frequency of LOH as a second hit in FAP and sporadic colon

cancer is similar. For example, Rowan et al. [RHG+05] and Prall et al. [PWO07] de-

tected LOH in 23 of 99 (23%) and 20 of 99 (20%) sporadic cancers respectively, while

Lamlum et al. [LIR+99] found APC LOH in 42 of 210 (20%) FAP tumours.

Other factors that usually confound estimates taken from incidence data include

the assumed number of cell lineages at risk and also calendar year effects whereby in-

cidence changes over calendar time. Happily, the comparative nature of the method

presented here eliminates any sensitivity to the assumed number of lineages. It remains

to be shown that the estimate is also robust under age-related changes in cell num-

ber. Calendar year effects are mild for bowel cancer before the 1980s [LM02] and are

unlikely to have a significant effect. Finally, a difficult problem, when modelling inci-

dence data, is to decide how long it takes for a cancer to be detected once it has come

into existence [MIN06]. In this study, the FAP data are used to estimate the time taken

for an APC+/- cell lineage to mutate into a cancer and present clinically. Assumptions

about how this time is split between tumour formation and tumour progression are not

required.

Given a small set of fairly conservative assumptions regarding sporadic colon can-

cer and its relationship to FAP, incidence data on the two diseases imply that the rate of

truncating and disease-causing APC mutation is of order 10−5 mutations per allele per

year. This estimate, although higher than previous estimates, seems to be consistent

with the mutational spectrum of APC. Further, the estimate neither requires accurate

determination of the number of target cells in the colon, nor depends on assumptions

about time spans between the appearance of a cancer and its detection clinically. The

quality of fit provided by the model supports the theory that FAP and sporadic bowel

cancer follow the same genetic pathway and are separated by only one mutation.
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4.2 HNPCC and sporadic colorectal cancer

The penetrance of APC germline mutations can be explained by a simple modification

of the sporadic genetic pathway for bowel cancer. In general, however, many factors

may influence the penetrance of a given germline variant. It may target a non-initiating

and non-rate limiting step from a sporadic cancer and hence have low or negligible

penetrance. Alternatively, a germline mutation may cause selective pressures that give

rise to a syndromic cancer with an aetiology distinct from that of sporadic cancer in the

same tissue. For example, hereditary non-polyposis colorectal cancer (HNPCC) pa-

tients have germline mutations targeting certain DNA repair pathways. They are prone

to particular gene mutations which they accumulate more quickly than sporadic bowel

cancer patients. In the second part of this chapter quantitative methods are used to

probe for consequent differences in the aetiology of HNPCC and sporadic bowel can-

cer. First of all, it is argued that only a subset of HNPCC patients actually has a raised

risk of cancer. This explains the plateauing of HNPCC penetrance with age in the pop-

ulation. Subsequently, a scale free measure of the rate of change in incidence with age,

referred to as ‘log-log acceleration’ or ‘LLA’ is used to argue against a simple relation-

ship between HNPCC and sporadic bowel cancer. The change in ‘LLA’ produced by a

germline mutation under various hypothetical scenarios is compared with that observed

for the DNA miss-match repair (MMR) mutations found in HNPCC patients. A model

in which these MMR defects act only to increase the rate of the transitions found in the

sporadic cancer is inconsistent with the incidence shift observed in HNPCC. A more

consistent hypothesis is that HNPCC tumorigenesis begins with slower transitions than

sporadic bowel cancer but then finishes with a series of faster transitions as a result of

reduced DNA repair capacity,

4.2.1 HNPCC

Hereditary non-polyposis colorectal cancer (HNPCC) (also known as Lynch syndrome)

is a familial cancer syndrome affecting patients with a germline mutation in an allele of

one of the mismatch repair (MMR) genes. Somatic loss of the wild-type copy causes

a failure in post replicative MMR. A portion of the cancer susceptibility in HNPCC,

therefore, is thought to originate from an elevated rate of copying errors during DNA

replication. 90% of all known HNPCC - associated germline mutations are found in
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just two of the nine human genes shown to possess MMR function [PV04]. MLH1

and MSH2 mutations account for approximately 50% and 40% respectively. The fact

that germline mutations in HNPCC target specific components of the MMR machinery

suggests the possibility that an additional fitness advantage, distinct from dysfunctional

MMR, is also being selected. Indeed, the ability to signal an apoptotic response fol-

lowing certain types of DNA damage has been proposed for both MLH1 and MSH2

[Fis01]. Regardless of the precise mechanisms through which variants of MLH1 and

MSH2 confer risk of colorectal cancer, it is clear from the high penetrance of HNPCC

and the finding of biallelic inactivation of MLH1 in a significant majority of sporadic

bowel cancers, that silencing of these genes represents a pivotal rate-limiting step in the

somatic evolution of the disease. Therefore, it will be of interest to quantify age-specific

risk in the context of a germline MMR mutation. A comparison with age-specific risk

of sporadic bowel cancer may then provide clues as to the biological consequences of

inherited MMR dysfunction.

The incidence curve for HNPCC is of general interest, not least for the purposes

of genetic counselling, and so, much effort has been expended in trying to estimate the

probability of developing cancers associated with the syndrome. This is, however, more

difficult than in the case of FAP. HNPCC is a more heterogeneous disease with lower

penetrance, and so not as easily diagnosed or as cleanly defined. It is hard to obtain a

representative sample of patients within a given population that fit a clear definition of

HNPCC.

4.2.2 Defining HNPCC

When the term ‘HNPCC’ was introduced by Henry Lynch in 1985, it was intended to

describe early-onset and predominantly right-sided CRCs arising in an autosomal dom-

inant pattern, sometimes in combination with certain extra colonic cancers and always

in the absence of the multiple premonitory polyps associated with FAP. Ambiguity crept

in, however, after the genetic basis of the disease was discovered in the early 1990’s

and clinical definitions used to diagnose HNPCC families were incrementally updated

to improve their sensitivity. In what follows, the terms HNPCC and Lynch Syndrome

will be used synonymously and specifically in reference to germline MMR mutation

carriers. For example, an individual with a de novo germline MMR mutation shall be
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considered an HNPCC patient despite an inconspicuous family history.

4.2.3 Calculating age-specific risk of colorectal cancer in HNPCC

patients

An idealized method of measuring age-specific risk in Lynch syndrome would involve

screening the whole population of interest for germline MMR defects and then record-

ing every primary cancer occurring among mutation carriers over a fixed period, for ex-

ample 12 months. Such a method is clearly impractical. Instead, a sample of HNPCC

families must typically be used. Collecting a representative sample is very difficult. As

pointed out by Mitchell et al. [MFDC02] “the identification of families with mismatch

repair gene mutations using any phenotypic selection criteria introduces ascertainment

bias, and such kindreds may not be representative of all mutation-carrying families in

the general population”.

Figure 4.8: Penetrance estimates for bowel cancer in HNPCC have been lowered in

light of concerns over ascertainment bias. The original studies, for example Aarnio et

al. [AMA+95], that used family history to identify HNPCC kindreds, were enriched

for multiple case families and so are thought to have overestimated risk. More recently,

Bayesian statistical methods have been used by Quehenberger et al. [QVvH05] to

correct for ascertainment bias by conditioning on sample phenotype. This has resulted

in a markedly reduced penetrance estimate (figure redrawn from Aarnio et al. and

Quehenberger et al. [AMA+95, QVvH05].

The first penetrance calculations for MLH1 and MSH2 mutation typically yielded

lifetime risk figures of 70% - 90% (figure 4.8), but used family history as part of

the selection criteria for index cases [AMA+95, ASP+99, VWM+96]. Such estimates

are likely to be inflated, since multiple case families are over-represented in samples
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collected on the basis of family history. To reduce the “ascertainment bias” associated

with sampling according to family history, Dunlop et al. [DFC+97] instead used early-

onset as a sampling criterion, gathering a small collection of 67 relatives of early-onset

cases. The result was a lower penetrance estimate, with cumulative risks to age 70 for

CRC of 70% in males and only 34% in females (a lower risk in females is consistent

with other studies that have separated the sexes in Finland, the United States, Holland

and Australia [MFDC02, JBD+06]). The possibility remains that early-onset probands

may either tend to carry mutations that correlate with a severe phenotype or tend to

occur in families whose members share other genetic or environmental risks.

As an alternative to synthesizing a small sample of population based probands,

statistical methods can be used to correct for ascertainment bias in larger clinic-based

studies that may still utilize databases of HNPCC kindreds. The obvious method of

correcting for ascertainment, is to estimate penetrance with a likelihood function that

models the ascertainment process. Unfortunately, this is frequently intractably difficult

for HNPCC, since the clinical criteria are complex. To circumvent this problem, at the

expense of likelihood efficiency, “retrospective likelihood” methods [KT00, CBP04]

can be used. The idea is to condition on the observed phenotypic information and

maximize the probability of observing the genotypic information. Such a method, was

taken up by Quehenberger et al. [QVvH05] and used to estimate a cumulative risk

to age 70 for colorectal cancer in men at 26.7% and in women at 22.4% (figure 4.8)

using over 2000 patients from a national HNPCC database in the Netherlands. Another

study, by Jenkins et al. [JBD+06] using early-onset cases unselected for family history

as probands, calculated comparable, but higher risks of CRC by age 70, 45% for men

and 38% for women.

Figure 4.9 contains a collation of estimated penetrance functions from the three

studies mentioned above that each use a methodology designed to minimize ascertain-

ment bias. Although not shown, to avoid a cluttered picture, wide 95% confidence in-

tervals were provided for the penetrance estimates of Quehenberger et al. and Jenkins et

al. In the case of Quehenberger et al. risk to age 80 of CRC was quoted at 28.5% (13.7

- 53.4%) in males and at 23.7% (11.3 - 45.5%) in females. In the case of Jenkins et al.

risk to age 70 in males was 55.9% (36.7 - 75.0%) and in females 48.1% (26.2-65.3%).

Hence it is difficult to say to what extent the disparity in these risk estimates could be
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Figure 4.9: Penetrance functions estimated in three studies that have attempted to mit-

igate, as far as possible, ascertainment bias. An unexpected but common feature, is the

shallow gradient after age 50.

caused by experimental bias and low statistical power. Their most striking common

feature is the plateauing of penetrance after age 50. The majority of theoretical pene-

trance functions do not plateau until they reach full penetrance, i.e. a cumulative risk

of 100%. When the multistage evolution of cancer is modelled as a simple series of

transitions through states of a Markov chain, cumulative risk (the risk of transitioning

into the final malignant state), will increase with age until transition to the malignant

state becomes a practical certainty. Hence the incidence (rate of transition into the final

malignant state) is a monotonic increasing function of age. The plateauing penetrance

functions of figure 4.9 translate into peaked rather than monotonic incidence patterns

(figure 4.10).

Figure 4.10 shows the incidence profiles for CRC in MMR mutation carriers as

predicted by Dunlop et al., Quehenberger et al. and Jenkins et al. They appear as a

series of humps centred around the 40’s and 50’s.

What could cause risk per unit time to be less in older individuals, who under



100 Chapter 4. Comparative studies of risk in inherited and sporadic tumours

Figure 4.10: Incidence of CRC in MMR mutation carriers derived from the penetrance

functions given in figure 4.9. Declining incidence, after age 50, could be indicative

of a combination of factors. For example a severe decline in susceptible target cells,

heterogeneity in liability, age-related cell behaviour and study design issues, e.g. as-

certainment bias.

normal circumstances would be expected to carry more mutated cell lineages and pre-

cancerous lesions? Some suggestions for declining incidence have already been put

forward. As per a previous discussion on cancer in old age (section 2.5.2), there is the

idea that susceptible individuals may have, in the main, developed cancer by a certain

age. Beyond that age, the population will predominantly be made up of low suscepti-

bility individuals and so the number of cases per 100,000 population will drop. There

is also the idea of age dependent cell kinetics. For example, the number of target cell

divisions per unit time in a tissue may be unusually high during a particular period of

growth (c.f. peak in incidence of oesteosarcoma and its coincidence with adolescence

when the long bones are growing rapidly [Pri58]). Alternatively, the rate of target cell
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divisions may be unusually low at some point in old age, for example during involution

of the breast [MDS80]. Another possibility is that some essential event in the natural

history of a particular cancer must occur during a certain window of opportunity, as

in a model of childhood leukaemia which hypothesizes a necessarily-in-utero muta-

tion [SCS97]. Before considering such hypotheses, artefacts of the estimation methods

should be ruled out. It is possible that the logistic parameterizations used to infer the

three penetrance functions described, naturally tend to plateau even when the real pene-

trance does not. To test this, sample data can be simulated using a log-log linear hazard

function (i.e. a hazard that is monotonically increasing rather than humped). These

simulated sample data can then be fit using the logistic-type penetrance functions em-

ployed in the studies under scrutiny to see how they perform.

4.2.3.1 Performance of logistic penetrance estimators under log-log

linear simulated patient data.

Perhaps the simplest method of simulating the life histories of a sample of patients is to

independently draw a time at death, di, from a mortality distribution for each patient,

and then a time at cancer, ci, from a log-log linear hazard (see equation (2.3)). The

likelihood of the data can be computed as:

L[C, D|X] =
∏

i

ṖX [T ≤ ci]
(ci≤di)(1 − PX [T ≤ di])

(ci>di), (4.8)

where C holds the times at cancer, and D holds the times at death. X is the vector of

parameters controlling the logistic penetrance function used to fit the data, PX [T ≤ t].

(ci ≤ di) is an indicator function evaluating to one when ci ≤ di and zero otherwise.

(ci > di) also represents an indicator function defined similarly.

Numerically maximizing the log of the likelihood given in equation (4.8) yields a

maximum likelihood estimate, X̂ . The maximization was performed in ‘Mathematica’

using the ‘NMaximize’ routine By repeating 5000 times, the mean optimum parameter

vector can be used to plot a typical penetrance estimate against the true penetrance.

Figure 4.11 shows two such plots. One with
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PX(T ≤ t) =
x1

1 + ex2(t−x3)
, (4.9)

X = (x1, x2, x3)

as in Jenkins et al. and the other with

PX [T ≤ t] = 1 − (1 − Ps(t))

(
1 − x1

1 + ex2(t−x3)

)
, (4.10)

as in Dunlop et al., where Ps(t) is sporadic penetrance fit from sporadic incidence

data. In both cases the mortality distributions were constructed from life-tables relating

to the appropriate populations.

Figure 4.11: Penetrance / incidence estimates from log-log linear simulated patient

data, using the inference methods of Jenkins et al. and Dunlop et al. Three different

functions were used to simulate the patient data with cumulative risks to age 70 of

0.73, 0.54 and 0.24. In each case the number of patients in the simulated samples were

matched to the real sample sizes used by Jenkins et al. and Dunlop et al.

The estimation methods used by Jenkins et al. and Dunlop et al. show little bias

(figure 4.11). It is unlikely that an artefact of these methods could be responsible for the

humped incidence patterns shown in figure 4.10. In Quehenberger et al. the log-ratio

of the sporadic and syndrome-related hazards is taken to be a polynomial function of

age. This model has many more degrees of freedom than the logistic functions tested

above and so should be able to match a log-log linear hazard at least as well.
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4.2.4 Heterogeneity and acceleration matching

Supposing then, the incidence of CRC in HNPCC is humped in reality. What expla-

nation can multistage theory provide? Several theories for peaked incidence patterns

already exist in the literature as noted above. Of particular interest is a study which

encountered a similar pattern for breast cancer risk among Askenazi Jewish women

carrying germline BRCA1 and BRCA2 mutations [SHW+97]. Because of the high

prevalence of these mutations in the Askenazi Jewish population ( 2%), Struewing et

al. were able to survey 3742 female volunteers and yield 89 population based (2.4%)

mutation carriers. The penetrance estimate from the study is shown in figure 4.12 along

with the associated humped incidence.

Figure 4.12: Dots - penetrance of breast cancer in BRCA1 and BRCA2 female mutation

carriers as calculated by Struewing et al. [SHW+97]. Line - fit of Struewing et al.s esti-

mates. The incidence shown was calculated from the logistic function (equation (4.9)).

Observing the data from Struewing et al. (figure 4.12) led Frank to suggest that

perhaps only a fraction of the mutation carriers participating in the survey had fully

elevated risk [Fra07]. This is the same as the heterogeneity in liability hypothesis put

forward to explain declining incidence in the elderly [HJTMF+00, SMT+06]. It allows

incidence in the high risk subjects to be restored to a monotonically increasing function,

in line with a theoretical Markov - multistage model. Frank had an additional but related
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motivation for his hypothesis, concerned with acceleration matching between sporadic

patients and those with a predisposing germline mutation.

The concept of age-specific acceleration was mentioned briefly in section 2.5.4,

and will now be used further. Recall that acceleration is a measure of the change in

incidence with age,
d(I(t))

dt
where I(t) is the incidence at age t. So, if the incidence is

increasing with age, then the acceleration is positive. It is useful to calculate accelera-

tion on a log-log scale to produce a scale free measure of fractional change in incidence

with fractional change in age [Fra04a]. Such a measure will be referred to as log-log

acceleration or ‘LLA’.

In section 2.5.4, it was mentioned that LLA can be thought of as the gradient of a

log-log plot of incidence against age, in other words as the gradient of the parametric

curve:

( log(t), log(I(t)) ).

Therefore at age t

LLA(t) =
d log(I(t))

d t
×
(

d log(t)

d t

)−1

= t
İ(t)

I(t)
. (4.11)

As observed by Frank [Fra07], under the simple model of progression described

by equation (2.5) with >> 1 lineages per patient ( i.e. N >> 1), the number of

steps by which a mutant germline genotype advances progression is approximated by

the difference between the LLA for cancer arising in healthy patients and in mutation

carrying patients. This is because equation (2.5), roughly equates the LLA (gradient

of log-log age-incidence plot) with the number of stages in progression. Therefore, by

plotting ΔLLA(t), the difference in LLA between the sporadic and inherited cancer, a

roughly constant function equal to the number of rate-limiting steps abrogated by the

inherited mutation is expected.

As well as restoring a monotonic increasing incidence in high risk mutation car-

riers, Frank’s hypothesis that not all BRCA1/2 germline mutation carriers are at rela-

tively high risk also creates a ΔLLA between sporadic patients and high risk mutation

carriers which seems to remain approximately constant at one, with age (figure 4.13).
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However, to achieve the constant ΔLLA shown in figure 4.13, Frank has varied the

smoothing parameter used in his fit of observed incidence.

Figure 4.13: Breast cancer rates for females who carry a mutation in BRCA1 or

BRCA2, shown as solid lines, versus those females who do not have a mutation shown

as dashed lines. The circles in (a) and (c) mark the estimated fraction of females in

each class that have not yet developed tumors, taken from figure 1B of Struewing et al.

[SHW+97]. In (b) and (d), the observed fraction tumorless, Sobs, is transformed to the

‘real’ fraction tumorless, Sr, via Sr =
max − (1 − Sobs)

max
, where max is the fraction of

carriers who have fully elevated risk. Panels (a) and (b) used the smooth.spline function

of the R computing language (R Development Core Team 2004) to fit a smooth curve to

the logarithms of the observed points, with smoothing parameter set to 0.5; (c) and (d)

force a stiffer, less curved fit with a smoothing parameter of 0.6. The second row shows

incidence on a log10 scale, obtained from -dln(S)/dt, where S, is the fraction tumorless

in the curves of the top row. The bottom row shows ΔLLA, the difference in the log-log

slopes of incidence in the second row of plots (Redrawn from Frank [Fra07]).

This smoothing parameter dictates the weight of penalty applied to the integral

of the squared derivative of the smoothing function during the fitting procedure. The
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effect on ΔLLA, as can be seen from the two rightmost columns of figure 4.13, is

significant. While it is not unreasonable to use a smoothing algorithm when trying to

obtain information from the derivative of an incidence curve, since it is unclear what

the most parsimonious choice of the smoothing parameter is, care must be taken in

interpreting the smoothed fit. To illustrate this point figure 4.14 shows an analagous

plot, comparing the FAP and sporadic colorectal cancer incidence data discussed in

section 4.1. Although it is not necessary to use the parameter max to obtain ΔLLA ≡
1, as predicted in the previous chapter, in this case a lower smoothing parameter is

required to ensure a roughly constant ΔLLA.

Figure 4.14: Panels (a) to (c): survival rates for male FAP patients who carry a mutation

in APC. The circles mark the estimated probability of being tumorless at various ages,

taken from figure 4.7. Panels (d) through (f) show incidence for carriers and non-

carriers (dashed line) on a log10 scale. Non-carrier incidence relates to British males

diagnosed in 1961 and is taken from [DPW66]. Panels (g) through (i) show ΔLLA, the

difference in the log-log slopes of incidence in the second row of plots.
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4.2.5 Heterogeneity and acceleration matching in the case of HN-

PCC

Can the same technique of correcting for heterogeneity in liability also work to restore

the incidence observed in MMR gene mutation carriers to a monotonic increasing func-

tion and perhaps a roughly constant acceleration? Figure 4.15 shows ΔLLA calculated

from Quehenberger et al. [QVvH05]. ΔLLA was also calculated from Jenkins et. al

and Dunlop et al. In each case, the lowest value of max used was the smallest value

theoretically possible, i.e. the smallest value larger than the lifetime penetrance. Even

using such extreme values for max, the resulting ΔLLA is always an increasing (rather

than constant) function of age, starting low and rising to between 3 and 7.

Figure 4.15: Panels (a) to (c): survival rates for male colorectal cancer patients who

carry a mutation in MLH1 or MSH2. The circles mark the estimated probability of

being tumorless at various ages, taken from table 4 of Quehenberger et al. [QVvH05].

Panels (d) through (f) show incidence for carriers and non-carriers (dashed line) on a

log10 scale. Non-carrier incidence is taken from table 3 of Quehenberger et al. Panels

(g) through (i) show ΔLLA, the difference in the log-log slopes of incidence in the

second row of plots.
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4.2.6 Theoretical ΔLLA patterns

The rising ΔLLA observed for CRC in MMR mutation carriers relative to sporadic

patients contrasts with the flatter ΔLLA seen in the case of BRCA mutation. This could

be explained by the contrasting nature of the relative dysfunction caused by MMR and

BRCA mutation respectively. Frank has shown that in the simple case of theoretical

Armitage and Doll incidence (equation (2.5)), a rising ΔLLA with age is expected if

the syndrome-associated genotype causes an increase in the rate of transitions, relative

to the healthy genotype. In general, acceleration decreases with age, proportional to

the rate at which the average transitional stage, occupied by the separate cell lineages

within a tissue, rises with age [Fra07].

4.2.6.1 ΔLLA under Armitage and Doll hazard

As noted above, under the Armitage and Doll hazard, inherited mutations which effec-

tively remove one stage of progression are predicted to cause a roughly constant drop in

LLA of around one with age. This is because the Armitage and Doll hazard is approx-

imately log-log linear, with log-log slope equal to one less than the number of stages

in progression. This can be seen from the incidence / hazard function, h(t), given by

equation (2.5) where N is the number of target lineages in a tissue, n - the number of

stages and μ the mutation rate between stages:

h(t) =
Nμntn−1

(n − 1)!
∑n−1

i=0

(μt)i

i!

� Nμn

(n − 1)!
tn−1, when μt 	 1.

Figure 4.16 shows ΔLLA for instances of the Armitage and Doll model, where

the healthy patients require their cell lineages to progress through n stages to become

malignant, and syndrome-associated-mutation-carrying patients cell lineages need only

pass though n− 1 stages. As expected, in each case, ΔLLA is roughly constant at one.

This is the case regardless of which stage in progression is inactivated by the inherited

mutation.

Suppose an inherited mutation is assumed to cause an increase in the rates of

transitions rather than abrogation of a rate-limiting step. The hazard in mutation carriers

can still be described by equation (2.5), but with a new transition rate ν, larger than μ -
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Figure 4.16: ΔLLA arising from a germline mutation which abrogates one of n stages

in progression under the Armitage and Doll hazard (equation (2.5)) with number of cell

lineages N = 108, n = 6, 10, 14 and μ chosen in each case so that the penetrance at age

80 in the healthy genotype (blue line) is equal to 5%. While the effect on penetrance

of the mutant gene (red line) is diminished as the rate of transition between stages

increases (with increasing n), ΔLLA remains roughly equal to one.

the transition rate in non carriers. Then the incidence in syndrome associated patients

loses acceleration more strongly with age in proportion to ν. However, in order for the

fall in acceleration to be as strong as that observed in HNPCC, the transition rate ratio

has to be high,
ν

μ
>> 1, which results in a much higher incidence than observed in

HNPCC (figure 4.17).

Suppose an inherited mutation only increases the rate of some but not all transi-

tions. This situation can be simulated by using the standard Armitage and Doll hazard

(equation (2.5)) to model the incidence in non carriers and equation (3.9) for the inci-

dence in carriers. Recall that equation (3.9) describes a lineage transitioning through

stages at two different rates. The first k + 1 transitions are at rate μ and the remaining

steps are at rate ν. Thus, the number of steps with an increased mutation rate ν can

then be controlled through the parameter k in equation (3.9), also see figure 3.4. Nat-

urally the penetrance is lower in mutation carriers if fewer transitions are quickened

but, again, the model will not reproduce the observed deceleration in MMR mutation
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Figure 4.17: ΔLLA arising from a germline mutation which increases the rates of

transitions under the Armitage and Doll hazard (equation (2.5)) with N = 108, n =

6, 10, 14 and μ chosen in each case so that the penetrance at age 80 in the healthy

genotype (blue line) is equal to 5%. All of the age axes are logarithmic to base 10.

Incidence also is plotted on a log10 scale. The increased transition rate, ν, even at only

4 times the original transition rate, causes a strong increase in incidence but only a small

deceleration in mutation carriers (red line). Incidence of CRC observed in HNPCC is

never higher than 10−1

carriers without too large an increase in incidence (figure 4.18).

A more appropriate hypothesis for the effect of MMR mutations may be that some

transitions are quicker in HNPCC patients while some are slower. This hypothesis

can produce falling acceleration in the HNPCC incidence curve without raising the

overall HNPCC incidence unrealistically. It is consistent with HNPCC following a

pathway that is initially distinct from sporadic CRC, requiring extra or slower mutations

to precipitate loss of MMR. Figure 4.19 shows ΔLLA for a situation in which the

sporadic case has ten stages with μ chosen to force a lifetime penetrance of 5%. The

inherited case also has 10 stages but three of these are 100 times slower than in the

sporadic case, while the other 7 are 30 times faster.
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Figure 4.18: ΔLLA arising from a germline mutation which increases the rates of q out

of n transitions by a factor of 4 under the Armitage and Doll hazard (equation (2.5))

with N = 108, n = 6, q = 1, 3, 5, 6 and μ chosen so that the penetrance at age 80 in

the healthy genotype (blue line) is equal to 5%.

Figure 4.19: ΔLLA arising from a germline mutation which slows the rates of 3 out of

n transitions while quickening all other transitions. Incidence in the healthy genotype

(blue line) is modelled by equation (2.5) with N = 108, n = 10 and μ chosen so that

the penetrance at age 80 is equal to 5%. The heterogeneity in the syndrome associated

transition rates produces a plateauing incidence and rising ΔLLA (red line).

4.2.6.2 ΔLLA under clonal expansion

To investigate ΔLLA when clonal expansion features in the multistage sequence,

Frank’s multistage model [Fra04b], mentioned in section 2.5.4, can be used and will

now be described. Let the probability that a cell lineage is in stage i at age t be denoted

by xi(t). Having entered a given stage, i, at age s, the time until transition to stage i+1

is governed by an inhomogeneous Poisson process with intensity viyi(α). α = t − s
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is the time since entry into stage i, vi is the transition rate per lineage and yi(α) is a

continuous approximation to the number of copies of the lineage existing in stage i, α

years after the lineage first entered that stage. The copies are produced through clonal

expansion so yi(0) = 1, i.e. there is only one copy of the lineage when first it enters a

particular stage. The lineage then multiplies according to:

yi(α) =
Kie

riα

Ki + eriα − 1
.

This is the same logistic expression used in a different clonal expansion model

presented in section 3.2. Ki is the carrying capacity and ri is the initial growth rate of

the clone.

Hence, the probability that a lineage which entered stage i at time s is still there at

time t (denoted by D(t, s) where t > s) is:

D(t, s) = e
−
∫ t

s

viyi(z − s)dz

=

(
Ki

Ki + eri(t−s) − 1

)viKi

ri . (4.12)

The time until transition from state i to state i + 1 given the lineage is in state i

at age t, but where the time of entry into state i is unspecified, can also be modelled

by the waiting time of a non-homogeneous Poisson process. The intensity in this case,

denoted ui(t), is harder to define because ui(t) depends on the size of the clone in stage

i at time t, which in turn depends on the unknown time of entry into stage i, which in

turn depends on all the previous rates of transition uj(s) where s < t and j < i . In

effect, ui(t) must be defined iteratively. It is equal to the following limit:

lim
Δt→0

1

Δt
P [X(t + Δt) ≥ i + 1|X(t) = i].

Here, X(t) is the discrete state random process representing the stage occupied by

a cell lineage which starts in the healthy compartment, i = 0, at age t = 0. Suppose
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that the entry time into stage i is known to be s, with s ≤ t. In this case, by time t the

clone has grown to be of size yi(t − s), so:

P [X(t + Δt) ≥ i + 1|X(t) = i] = 1 − e
−vi

∫ Δt

0

yi(t − s + z)dz
,

i.e. the lineage, having entered state i at time s, and still remaining in state i at

time t, will leave state i with density yi(t − s + z) at age t + z. However, since the

entry time, s, is not known, an integral over all possible entry times is required. Let

Si denote a random variable representing the entry time of the lineage into state i. The

cumulative density for the entry time, conditional on the event X(t) = i is:

P [Si ≤ s|X(t) = i] =
P [(Si ≤ s) ∩ (X(t) = i)]

P [X(t) = i]

=

∫ s

0

ui−1(z)xi−1(z)Di(t, z)dz

xi(t)
.

The numerator in the last integral reflects that the probability of entering state i

before age s and remaining there until age t is given by integrating the unconditional

density for the entry time, ui−1(z)xi−1(z), against the probability of remaining in state

i given an entry time of z, Di(t, z).

Therefore

d

ds
[Si ≤ s|X(t) = i] =

ui−1(s)xi−1(s)Di(t, s)

xi(t)
,

and hence

P [X(t + Δt) ≥ i + 1|X(t) = i]

=

∫ t

0

ui−1(s)xi−1(s)Di(t, s)

xi(t)

⎛
⎜⎜⎝1 − e

−vi

∫ Δt

0

yi(t − s + z)dz

⎞
⎟⎟⎠ ds.

So
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lim
Δt→0

1

Δt
P [X(t + Δt) ≥ i + 1|X(t) = i] = ui(t)

=

∫ t

0

ui−1(s)xi−1(s)Di(t, s)

xi(t)
viyi(t − s)ds

=

vi

∫ t

0

ui−1(s)xi−1(s)Di(t, s)yi(t − s)ds

xi(t)

= viyi, (4.13)

where yi is the expected clone size in the ith department. Hence, the transition rate

from state i at age t is vi, the rate per lineage, multiplied by this expected clone size.

The probabilities of being in stages i through n are given by:

x0(t) = D0(t, 0)

xi(t) =

∫ t

0

ui−1(s)xi−1(s)Di(t, s)ds i = 1, . . . , n − 1

xn(t) =

∫ t

0

un−1(s)xn−1(s)ds,

where ui(s) is given by equation (4.13) and Di(t, s), (4.12).

This model can be used to test the effect of clonal expansion on ΔLLA. First, con-

sider the basic case where precursor lineages of the syndrome-associated cancer must

traverse one less stage than those of the sporadic cancer to become malignant. Assume

that a single compartment in the inherited and sporadic cancer undergoes clonal expan-

sion. A constant ΔLLA of one, as predicted under the Armitage and Doll model with

no clonal expansion, is no longer expected. The expanding clone initially causes accel-

eration as the number of target cells at risk increases. However, once the expected clone

size of a lineage in that compartment becomes large, the effective transition rate out of

the compartment becomes extremely rapid. Acceleration lowers again as transition out

of the compartment ceases to be rate-limiting. The net result is a peaked acceleration

pattern and associated concave incidence curve on the log-log scale (figure 4.20). The

effect of a peaked acceleration pattern on ΔLLA is limited, since acceleration peaks

equally in both the sporadic case and the mutant case. However, the peak occurs at

an earlier age in the mutant case because the expanding compartment is preceded by
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fewer stages. Hence there is a falling ΔLLA at young ages, which rises again once

the sporadic acceleration catches up. Even for a large clone, the effect is small though

(see figure 4.20) and the stability of ΔLLA under the complex acceleration patterns

suggested by figure 4.20 is an endorsement of its potential utility.

Figure 4.20: Penetrance, log-incidence and ΔLLA assuming a six-step pathway with

one clonal expansion in healthy patients (blue line) and the same pathway with one

step deleted in mutation carrying patients (red line). The top four panels are calculated

assuming a clonal expansion in the final stage with capacity of K5 = 106 cell lineages

and initial growth rate of 0.4. The bottom four panels assume a faster growing and

larger clone. In either case the mutation rate per lineage is chosen so that cumulative

risk to age 80 is 5% in healthy patients. The effect of the more aggressive clone is only

to shift the kink in ΔLLA to earlier ages. The departure from a constant ΔLLA of one

remains small in either case.
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Given the strong modulating effect clonal expansion has on acceleration, it is

tempting to suggest that differences in clonal expansion could contribute to the rising

ΔLLA between HNPCC and sporadic colorectal cancer. However, if a difference in

clonal expansion is responsible for elevating risk in the context of syndrome-associated

patients, then necessarily the clonal expansion must be stronger in the syndrome-

associated patients in order that the penetrance of the disease be increased. Since

clonal expansion increases acceleration, higher clonal expansion in mutation carriers

will cause a negative ΔLLA (see figure 4.21). So under this particular model of pro-

gression it is unlikely that faster growing clones are a primary mechanism of risk mod-

ulation in mutation carriers.

Figure 4.21: Penetrance, log-incidence and ΔLLA assuming a six step pathway with

one clonal expansion in healthy patients (blue line) and the same pathway but with two

clonal expansions in mutation carriers (red line). All clones have capacity K = 106 and

initial growth rate r = 0.4. The mutation rate per lineage is chosen so that cumulative

risk to age 80 is 5% in healthy patients. The mutation carriers out-accelerate the healthy

patients throughout mid-life causing a negative ΔLLA.

4.2.7 Sporadic MSI+ colorectal cancer

A limitation of the data used to generate the observed ΔLLA patterns discussed above

is that HNPCC colorectal cancers are known to progress along a pathway which di-

verges, to an extent, from that of sporadic CRC [ISTB99]. One cause of this diver-

gence is thought to be the contrasting type of genome destabilization found in each of



4.2. HNPCC and sporadic colorectal cancer 117

the cancers. Most sporadic cancers show evidence of chromosomal instability (CIN)

(chromosome losses/duplications, mitotic recombinations, and large deletions) while

HNPCC cancers show evidence of microsatellite instability (MSI). MSI is manifest as

variable length microsatellites (repetitive DNA sequences with a short repeating unit)

and an increased point mutation rate indicative of lost miss-match repair (MMR) func-

tion. In sporadic CRCs which are microsatellite stable (MSS or MSI-) certain genes are

mutated that are not selected in HNPCC. Alternative genes, lying, for example, in the

same signalling pathways, but containing coding micro-satellites, are targeted in prefer-

ence, by the MSI phenotype [SKP+99, YAN+98]. Other distinctions between HNPCC

and MSS sporadic CRC, may be caused by non-hypermutation-related changes in se-

lection pressure arising in the context of MMR mutation [JVH+05]. Irrespective of the

driving force behind the divergence of HNPCC and MSS sporadic CRC, their pheno-

types are clearly distinguishable, in terms of their position in the colon, prognosis and

histological features [dlC03]. A closer relation of HNPCC CRC, therefore, ought to be

the minority of sporadic colorectal cancers that are MSI+. This seems to be the case.

While observable phenotypic differences exist [YSB+01] and there is debate over the

extent of their similarity, HNPCC and MSI+ sporadic CRC are certainly closer in terms

of their aetiology than HNPCC and MSS sporadic CRC. For example, MSI+ sporadic

CRC shows biallelic inactivation of MLH1 by promoter hypomethylation [BDR+07,

YSB+01]. Other similarities distinguishing MSI+ sporadic and HNPCC CRC from

MSS CRC include a lower frequency of APC mutation compared with MSS CRC

[JBF+03, KKYT+96, SRV+06, SKP+99] and raised frequencies of TGFβR2 muta-

tion [YIM+06, FSW+98, YAN+98, YSB+01, JSD+06, TSO+01, SKP+99, FPNO+05]

and BAX mutation [YSW+98, YAN+98, RYI+97, FPNO+05] with associated reduc-

tion in P53 mutation [LdLJ+97, YAN+98, KKYT+96, SKP+99, KKYT+96]. Notable

differences between HNPCC and MSI+ sporadic CRC include a significant frequency

of β-catenin mutations in HNPCC which are never found in sporadic MSI+ CRC

[MIK+99, JLC+05, JVH+05, SKP+99]. Conversely, BRAF mutations are very com-

mon in sporadic MSI+ while very rare in or absent from HNPCC where K-Ras mutation

is more likely found [KSW+04, MWW+04, DBC+04, MVSC+07]. BRAF mutation is

not only associated with MLH1 promoter methylation but also thought to correlate with

a general increase in the frequency of promoter methylation at other genes [STK+07].
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So, another potential distinction between MSI+ sporadic and HNPCC is a higher level

of promoter methylation in the former that could influence tumorigenesis beyond the

inactivation of MLH1 [WSC+06, eaY02]. On balance, it seems reasonable to assume

that HNPCC and MSI+ sporadic CRC differ at least in terms of the mechanism through

which MMR is silenced and possibly beyond that. Still, by comparing penetrance in

HNPCC specifically with the risk of MSI+ sporadic CRC, the effect of an inherited

mutant MMR gene ought to be isolated more cleanly.

4.2.7.1 Estimating the penetrance of MSI+ CRC

An estimate of age-related sporadic MSI+ CRC penetrance can be derived from the

data of Salovarra et al. [SLK+00] and Aaltonen et al. [ASK+98]. They attempted to

determine the MSI status of every CRC diagnosed at nine regional hospitals in south-

east Finland over a four-year period running from May 1994 until June 1998. They

managed to achieve this for just over one thousand cases (approximately 60% of all

cases diagnosed in the catchment area of the hospitals in question [SLK+00]). Fig-

ure 4.22 shows the number of cases typed as MSS and MSI+ respectively, binned into

five-year age groups. MSI+ cancers are less prevalent and account for 12% of all cases,

as expected from other studies [BTH+98]. Figure 4.22 suggests that incidence of spo-

radic MSI+ CRC is not strictly proportional to that of sporadic MSS CRC. Hence the

two cancer types must have different acceleration patterns.

Figure 4.22: Number of cases of MSS and MSI+ CRC occurring at 9 regional hospitals

in southeast Finland over a four-year period.

Estimating the penetrance or incidence of MSI+ CRC from these data is dif-

ficult because the population in which the cases arise is not clearly defined. The
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nine hospitals included Helsinki University Hospital and hospitals serving defined

healthcare districts in southeast Finland: Kymenlaakso, Etelä-Karjala, Etelä-Savo, Itä-

Savo, Pohjois-Karjala, Pohjois-Savo and Keski-Suomi. The structure of their catch-

ment population can be estimated. ‘Statistics Finland’ ( a government agency -

http://www.stat.fi/index en.html ) holds historical population figures for ages

0 - 75 by geographical region rather than healthcare district. However, the geographi-

cal regions Uusimaa, Itä-Uusimaa, Kymenlaakso, South Karelia, Etelä-Savo, Pohjois-

Savo, North Karelia and Central Finland together overlap with the healthcare districts

in question. Figure 4.23 shows an estimate of the catchment population based on these

geographical regions. For comparison an estimate made from recent data from the

Finnish Cancer Registry (http://www.cancerregistry.fi ), that run to age 85 and

are tabulated by healthcare district, is also given. Most of the regions have a very sim-

ilar age structure, with the exception of Uusimaa, which includes Helsinki and has a

younger population.

Figure 4.23: Estimated age-structure of the population served by nine regional hospitals

in southeast Finland. (a) Frequency by 5-year age group, averaged over the years 1994-

1998, taken from ‘Statistics Finland’ for 8 geographical regions of Southeast-Finland.

(b) Frequency of population by age in 8 healthcare regions, taken from the Finnish

cancer registry. (c) Population age-structure of the combined regions in (a) and in (b).

By combining the (1994-1998) population structure for ages 0-75 with the more

recent (2002-2006) population structure estimate for older ages, a simple estimate of
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the hazard function for MSI+ CRC can be made. First of all, the combined age structure

is used to estimate the population at risk. A total population size is chosen so that the

number of cases of CRC per unit population matches roughly the incidence in Finland

as a whole over the period (see figure 4.24, left panel). The incidence of MSI+ CRC

can then be calculated using the notional population (defined by this total size and age

structure), and the MSI+ case count data (figure 4.24, right panel).

Figure 4.24: (Green line): average annual cases of CRC per unit population during

1994-1998, estimated from nine hospitals in southeast Finland, assuming a 300,000

catchment population. (Orange line): nationwide cancer incidence over the period

1993-1997, taken from the Finnish Cancer Registry [PWF+97]. (Blue lines): MSI+

incidence estimated from the nine hospitals data.

The incidence of MSI+ CRC in the catchment population of the nine hospitals

seems to rise more sharply in old age than the incidence of CRC in general. As a

consequence, MSI+ CRC has a strongly rising acceleration (figure 4.25). The strongly

rising acceleration pattern in turn confirms the rising ΔLLA relative to HNPCC (figure

4.26).

4.3 Discussion
In the first half of this chapter, a comparative analysis of the incidence of sporadic CRC

and the hereditary bowel cancer syndrome, FAP, was presented. Molecular analyses

indicate that the two cancers differ only by virtue of an inherited germline mutation

in the APC gene. Assuming this simple relationship enabled an estimate of the rate

of APC mutation that did not require knowledge of clonal expansion patterns or other

aetiological details. This estimate is a useful addition to the few estimates of in-vivo

gene mutation already in the literature and shows the potential of studies which focus
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Figure 4.25: (Left): The red circles are log of incidence of MSI+ CRC, estimated from

the data of Salovarra et al. [SLK+00] and Aaltonen et al. [ASK+98]. The circles

are fit with the smooth.spline function of the R computing language, with smoothing

parameter set to 0.5. (Right): LLA calculated from the smoothing spline opposite.

Figure 4.26: (Top row): the red circles show the fraction of MMR mutation carriers

who are tumourless on a log scale, estimated in three studies of HNPCC penetrance.

The data are fit with smoothing splines as in figure 4.13. (Middle row): the solid lines

show incidence derived from the smoothing splines above. The dashed lines show

incidence of MSI+ sporadic CRC as estimated above (see figure 4.24). (Bottom row):

ΔLLA calculated as the difference in gradient between the solid and dashed lines from

the middle row.
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on changes in incidence patterns arising in the context of identified germline mutations

[HPT08].

Attention was then turned to another hereditary bowel cancer syndrome, HNPCC.

CRC penetrance in HNPCC, in contrast to FAP, suggests a more complex relationship

between HNPCC and sporadic CRC. Using the computational machinary outlined by

Frank [Fra07] it was difficult to isolate a single effect that could cause the observed

plateauing of HNPCC incidence relative to sporadic CRC or, in particular, relative to

sporadic MSI+ CRC. The most promising hypothesis for this phenomenon, suggested

by Franks measure of ΔLLA in the exploratory analysis above, is that MMR mutation

causes a slowing of some transitions in HNPCC patients coupled with a quickening

of other transitions. This combination allows a significant drop in acceleration to be

generated in HNPCC patients without penetrance becoming too severe. Nevertheless,

the data can be fit in a variety of different ways that suggest other, more complicated

hypotheses, drawing on combinations of changes in clonal expansion parameters, num-

bers of transitional stages and mutation rates. The simple idea of increased transitions

in some stages and slower transitions in others is appealing because it fits with the

known function of MMR genes and also the observation that adenomas in HNPCC

develop no faster than those in sporadic patients, but progress to malignancy more

quickly. However, the incidence data alone support this hypothesis only very weakly.

In fact, the observed plateau in penetrance of CRC associated with an MMR mutation

is at odds with multistage theory. To resolve this issue it was necessary to hypothesize

that as few as 30% of MMR carriers are at increased risk of CRC, but that this small

sub-population has complete penetrance. Heterogeneity of this kind has the potential to

distort population incidence, so that it ceases to reflect the risk profiles of individuals.

In the next chapter direct methods for quantifying heterogeneity are developed in order

to better understand the relationship between individual risk and population incidence.
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Population variance in cancer liability

5.1 Introduction
The models presented so far in this thesis have made the assumption that all patients

within the population of interest have the same cancer risk. Exception has only been

made for distinguishable groups with rare cancer syndromes such as HNPCC and FAP,

or defined and observable environmental risk factors such as smoking. This dichoto-

mous view of cancer liability is probably inadequate. It is possible that many interacting

loci influence cancer risk and that exposure to environmental risk factors varies widely

within populations. The extent to which genetic and environmental factors cause popu-

lation variance in liability informs the validity of inferences made on the assumption of

a homogeneous population. It also tells us how concentrated the cancer burden may be

in high risk subsets of a given population. One of the strongest pieces of evidence for

variance in cancer liability is the existence of high risk families whose members pre-

sumably share genetic and / or environmental risk factors. Known genetic syndromes

are the most obvious candidates to explain such clustering. To start this chapter a model

of susceptibility owing to a single dominant locus is presented and used to show that,

in fact, such rare Mendelian cancer syndromes have insufficient impact to explain the

familial clustering of cancer. A polygenic model, positing many common low pene-

trance risk alleles, is then developed as an alternative theory for the high relative risks

observed in first degree relatives of affected patients. Evidence for environmental in-

fluences on cancer susceptibility are subsequently discussed and finally an estimate of

population variance owing to the combined effects of genes and environment is pre-

sented. This estimate is based on the observation that patients who have had cancer
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once are more likely to be afflicted again than healthy age-matched controls.

5.2 Genetic liability to cancer
Consider an intuitive definition of liability, quantified by the parameter (l). Let l for

a given patient be equated with that individual’s lifetime risk of cancer (probability

of cancer before age 80), so that 0 ≤ l ≤ 1. Ignoring environmental factors and

ascribing an increase in risk only to those patients with a particular Mendelian cancer

syndrome is tantamount to assuming a discrete liability distribution. Figure 5.1 shows

such a discrete liability distribution based on a simplistic notion of colorectal cancer

susceptibility, i.e. that the large majority of patients have a lifetime risk of 5% while a

small fraction with known CRC cancer syndromes have higher liability.

Figure 5.1: Simplistic liability distribution for CRC. Population frequency of FAP taken

as 1:10000 [BFB+94] and population frequency of germline MMR mutation taken as

1:3000 [DFN+00]. For a review of further hereditary CRC syndromes that are rarer

still see Lynch and de la Chapelle [LdlC03]

A discrete distribution of the type shown in figure 5.1 is unsuitable for many can-

cers. It is at odds with the extent to which cancer typically clusters in families. Risk

of cancer in first degree relatives of affected individuals is around twice the risk in the

general population [HC02]. In particular, the CRC risk to siblings of patients affected

with CRC is more than twice the population risk [BHP06].

5.2.1 Sibling risk owing to a rare dominant single gene syndrome

It is perhaps intuitively obvious that rare highly penetrant germline variants such as

mutant APC or MLH1/MSH2 cannot be responsible for a doubling of risk in siblings

or first degree relatives in general. Nevertheless, it is instructive to see what type of fa-

milial aggregation such rare predisposing mutations can produce. Consider the simple
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nuclear family shown in figure 5.2.

Figure 5.2: Given that one offspring is a confirmed case of cancer (sibling (a) shown in

black), the probability that the other will develop cancer within a lifetime depends on,

among other things, the existence of predisposing allelic variants in the population.

Supposing there is a single, autosomal susceptibility locus. If the population of

interest contains two variants at this locus, D and d, then a simple dominant model

of liability is that individuals with at least one D allele, (i.e. heterozygotes or DD-

homozygotes) have lifetime risk R×s, with R > 1 while dd individuals have a baseline

risk s. If the allelic frequencies of D and d are p and q respectively (q = 1 − p), then,

assuming Hardy-Weinberg equilibrium, the lifetime risk, K, of cancer in an individual

of unknown genotype is given by:

K = (p2 + 2pq)Rs + q2s. (5.1)

By comparison, lifetime risk, Ks, for the sibling of a confirmed case (sibling (b)

in figure 5.2), is:

Ks = P [(b) has cancer|(a) has cancer]

=
P [cancer in both siblings]

P [(a) has cancer]
. (5.2)

P [(a) has cancer] = K. P [cancer in both siblings] depends on the genotypes of

the parents. For example if the parents are DD × DD then both siblings must be DD

and have risk Rs. Hence the chance they both get cancer would be (Rs)2. Under
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random mating, parents with DD×DD occur with frequency p2 × p2. Considering all

possible parental genotypes in this manner leads to:

P [cancer in both siblings] = (p2)2(Rs)2 + 2(p2)(2pq)(Rs)2

+ 2(p2)(q2)(Rs)2

+ (2pq)(2pq)((3/4)Rs + (1/4)s)2

+ 2(q2)(2pq)((1/2)(s + Rs))2

+ (q2)2(s2). (5.3)

Equations (5.1), (5.3) and (5.2), can be used to calculate sibling relative risk, λs,

through:

λs =
Ks

K2
, (5.4)

which is a function of p and R but independent of s.

Table 5.1 and figure 5.3 show λ for various allele frequencies, p, and relative risk

values R.

Table 5.1: Sibling relative risk, λs, as a function of disease allele frequency, p, and

genotype relative risk, R.

Under the dominant model, the deleterious allele frequency, p, is roughly half the

frequency of affected carriers when p is small. So, taking the example of HNPCC,

where the frequency of affected carriers is roughly 1/3000 [DFN+00], the deleterious

allele frequency is 1/6000. The penetrance of colorectal cancer in HNPCC is at most

0.80 (vs 0.05 in the general population), which translates into a maximum relative risk

of 16. Hence, by equation (5.4), the resulting sibling risk owing to HNPCC is only



5.2. Genetic liability to cancer 127

Figure 5.3: Relative sibling risk as a function of deleterious allele frequency for various

genotype relative risk values. Calculated from equation (5.4) which assumes random

mating. The biphasic nature of this graph can be explained as follows: for very low

allele frequencies an affected sibling is only in rare cases likely to carry the deleterious

allele, and hence the sibling risk approaches the population risk as the allele frequency

tends to zero. For very high allele frequencies, an affected sibling will likely carry

the allele but then so will most of the population so the sibling risk approaches the

population risk also as the allele frequency tends to one. The data point highlighted in

red in table 5.1 is shown.

1.04. Other heritable effects or environmental sharing must be present to cause an ob-

served sibling risk of 2. One possible explanation for a lack of observable genetic

syndromes to explain the familial clustering of cancer is the existence of many com-

mon low penetrance susceptibility alleles, which are difficult to identify individually

by linkage analysis, but which can nevertheless act in combination to produce sizable

effects [TWCC+07].

5.2.2 Offspring risk under multiplicative polygenic susceptibility

The following model can be used to quantify risk in offspring inherited through such

multiple low penetrance alleles. Consider the offspring of an affected parent, with

otherwise unknown pedigree information (e.g. child (a) in figure 5.4).

Suppose there are n susceptibility loci and that the population in question contains

two variants at each locus, one dominant risk-conferring allele, Di, at frequency p,

and one wildtype allele, di, at frequency 1 − p for i = 1, ..., n. Suppose these loci

are unlinked and that in each case the dominant allele confers a relative risk of R .

Under this scenario the liability, l, of an individual with genotype (g1, g2, ..., gn) where

gi ∈ {didi, Didi, DiDi} is:



128 Chapter 5. Population variance in cancer liability

Figure 5.4: A nuclear family with undetermined number of offspring. Given that one

parent is a confirmed case of cancer, the probability that a given offspring will develop

cancer within a lifetime again depends on the existence of predisposing allelic variants

in the population.

l[(g1, ..., gn)] = s
∏

i=1,...,n

(
l[(d1d1, . . . , di−1di−1, gi, di+1di+1, . . . , dndn)]

s

)
,

Here, s = l[(d1d1, ..., dndn)] is the wildtype liability and

l[(d1d1, . . . , di−1di−1, gi, di+1di+1, . . . , dndn)] =

{
s gi = didi

R × s gi ∈ {Didi, DiDi} .

The genotype frequency of (g1, g2, ...., gn) under Hardy-Weinberg equilibrium is:

f [(g1, . . . , gn)] =
∏

i=1,...,n

f [gi], (5.5)

where f [DiDi] = p2, f [Didi] = 2p(1 − p) & f [didi] = (1 − p)2.

Consequently, the general population risk, K is:

K =
∑

g1∈G1

∑
g2∈G2

· · ·
∑

gn∈Gn

f [(g1, . . . , gn)]l[(g1, . . . , gn)], (5.6)

where Gi = {didi, Didi, DiDi} for i = 1, . . . , n.

The risk to the offspring of an affected parent can be calculated similarly as in the

case of the sibling risk derived above. The aim is to calculate the chance of cancer in

a particular offspring (denote this event Co) given the event Cp - cancer in the parent.

Again,
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P [Co|Cp] =
P [Co ∩ Cp]

P [Cp]

=
P [Co ∩ Cp]

K
,

since P [Cp] = K (equation (5.6)). The relative offspring risk is then:

P [Co|Cp]

K
=

P [Co ∩ Cp]

K2
, (5.7)

P [Co ∩ Cp] can be calculated by considering the different possible combinations

of genotypes in the parents and offspring. If the genotype of the affected parent is

Gp = (g
(p)
1 , . . . , g

(p)
n ) and the offspring genotype is Go = (g

(o)
1 , . . . , g

(o)
n ) then P [Co ∩

Cp| Gp, Go] = l[Gp]l[Go]. So,

P [Co ∩ Cp] =
∑
Gp

∑
Go

P [Gp]P [Go|Gp]l[Gp]l[Go],

where P [Gp] = f [Gp] (equation (5.5)) and P [Go|Gp] is given by:

P [Go|Gp] =
∏

i=1,...,n

P [g
(o)
i |g(p)

i ].

P [g
(o)
i |g(p)

i ] is calculated by considering the three possible genotypes, g(m)
i , at locus

i in the affected parents mate. This is done below for some examples of g(o) and g(p)

(the i subscript is dropped for convenience) assuming allele D has frequency p:

P [g(o) = dd|g(p) = dd] = P [g
(m)
i = dd] +

1

2
P [g

(m)
i = Dd] + 0P [g

(m)
i = DD]

= (1 − p)3

P [g(o) = Dd|g(p) = dd] = 0P [g
(m)
i = dd] +

1

2
P [g

(m)
i = Dd] + P [g

(m)
i = DD]

= p(1 − p)2

P [g(o) = DD|g(p) = dd] = 0.

Figure 5.5 shows relative offspring risk (equation (5.7)) assuming different num-

bers of risk loci, n, and allele frequencies p. At each locus the risk conferring variant
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is assumed to give a doubling of risk (i.e. R=2). For bowel cancer the relative familial

risk, when HNPCC, FAP and other known syndromes are excluded is estimated at 1.5

[JH01]. At least eight common, low risk (R=2) alleles with minor allele frequency

0.1 < p < 0.3 are required to produce such a familial clustering.

Figure 5.5: Relative offspring risk based on 1,2, ... ,8 susceptibility loci plotted against

allele frequency.

If many alleles underlie the familial aggregation of cancer, then a large propor-

tion of cases will involve a hereditary component and the discrete liability distribution

shown in figure 5.1 will be violated, giving way to a lognormal distribution of liability

(figure 5.6).

Figure 5.6: Notional liability distribution for “sporadic” CRC based on a multiplicative

polygenic model with 8 risk loci, p=0.1 and R=2. The baseline risk, s, is fixed so

that mean lifetime risk is 0.05. The distribution arising from the product of many

independent positive valued random variables tends to be lognormal.
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5.3 Environmental liability to cancer
Abundant evidence exists for a strong environmental component to cancer incidence.

Migrants frequently adopt the cancer rates of their new country. Consequently, the

greater than ten-fold differences in incidence between populations worldwide have

largely been attributed to environment and lifestyle factors [HBF06]. It seems rea-

sonable to hypothesize that shared environment among family members also accounts

for a degree of the familial aggregation of cancer described in the previous section.

Lichtenstein et al. [LHV+00] used twin data and the multi-factorial threshold (MFT)

model to estimate the relative contribution of genes and environment to many cancers.

In the MFT model, liability in a population of twin pairs, l, is assumed to vary nor-

mally about its mean, μ, in response to independent and normally distributed genetic

and environmental factors:

l − μ = g + c + e.

g represents inherited genetic effects, c represents shared environmental effects

between twins raised in the same environment and e represents non-shared environ-

mental effects. Cancer is treated as a binary trait arising in all those individuals whose

liability exceeds a threshold value. The liability of a twin pair, (l1, l2), is assumed to

follow a bivariate normal distribution. The covariance of l1 and l2 depends on whether

the twins are monozygotic or dizygotic. In the monozygotic case:

Cov(l1, l2) = σ2
g + σ2

c ,

whereas, in the dizygotic case, the covariance arising from the genetic effect is

halved to
1

2
σ2

g on account of the reduced relatedness between dizygotic twins [Yan00].

So, if the genetic effect is large, the MFT model predicts that cancer status will concord

more often in monozygotic twins than in dizygotes.

Fitting the MFT model to twin data seems to imply that shared environment has

a limited role in familial aggregation for most cancers. For example, in the case of

colorectal cancer, Lichtenstein et al. estimate that while 35% of the variance in liability

is inherited / genetic, only 5% by contrast can be apportioned to shared environmental
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effects. Results of this kind are supported by data showing low spouse concordance at

many sites [HDV01], excepting stomach and lung cancer. Although the MFT model

implies that environment has a limited role in familial aggregation, the environment

is nevertheless strongly implicated in overal disparities in risk between individuals.

In CRC for example, liability variance due to non-shared environmental effects was

estimated at 60% of the total liability variance [LHV+00].

5.4 Temporal environmental variance in cancer liabil-

ity
Genes and environment both appear to make significant contributions to cancer suscep-

tibility. Twin studies suggest that inheritance is largely responsible for familial cluster-

ing but that environmental factors dominate overall liability variance. A precise appor-

tioning of blame to genes and environment through such studies, however, is wrought

with difficulties [HBF06]. The classical assumption that dizygotic and monozygotic

twins share environmental risks to the same extent remains controversial as does the

assumed additive interaction of genetic influences and the environment [BTH05]. An-

other unsatisfactory aspect of the MFT model is that the implied genetic contribution

to susceptibility depends on population prevalence. For example, heritability, a relative

measure of the genetic effect, is defined by:

h =
σ2

g

σ2
g + σ2

c + σ2
e

. (5.8)

Figure 5.7 shows that for a fixed ratio in the risk to a monozygotic vs dizygotic

twin of an affected patient, the implied heritability increases with increasing prevalence,

K.

If determining the relative contributions of distinct factors to liability is difficult,

perhaps a more feasible aim is simply to quantify the total variance in cancer suscepti-

bility within a population. In section 5.5 this is attempted by comparing risks of second

primary malignancies in cancer patients (i.e. new primaries unrelated to the first can-

cer), with risks in unaffected individuals of the same age and birth cohort. Before

addressing the question of intra-cohort variance in liability, also of interest are changes

in susceptibility patterns that occur with calendar time. Figures 5.8, 5.9 and 5.10 show
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Figure 5.7: Under MFT, the heritability h (equation (5.8)) implied by a fixed ratio in

twin relative risk, between monozygotic or dizygotic twins, increases with increasing

population prevalence, K. σ2
g + σ2

c + σ2
e was normalized to one in the calculations of

twin relative risk and σ2
c was fixed at 5%.

temporal trends in cancer incidence for breast, colorectal and prostate cancer. For each

age between 0 and 85, the incidence rates recorded in Connecticut each year between

1973 and 2005 are plotted. This gives an impression of the variance in disease counts

per unit population.

In the absence of calendar year effects, Poisson variance, i.e. variance equal to

the mean, is expected. If liabilities among individuals of the same birth cohort are

independent then intra-cohort variance in susceptibility does not translate into extra-

Poisson variance in the disease counts. Any over-dispersion (variance greater than

predicted by the Poisson distribution) can be attributed to calendar year effects. The

following model is designed to quantify such over dispersion. Let dij denote the cancer

counts in individuals of age i at calendar year j. Let nij denote the population at that

age and in that year. dij is modelled as a Poisson variable with mean νij · nij .

νij is the hazard for a given individual from the population at age i and calendar

year j:

νij = εj · h(i),

where εj is a multiplicative term for calendar year j that acts on the baseline haz-

ard, h(i).

If εj is drawn from a lognormal distribution with mean fixed at 1, variance σ2
E and
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Figure 5.8: Top: age-specific female breast cancer incidence in Connecticut. Plotted

for the years 1973 - 2003, giving a rough picture of dispersion in the disease counts

at each age. Bottom: a rising temporal trend for 40, 60 and 80 year olds can be seen

following the initiation of mammography screening in the early 1980s [AJD06]. This

trend contributes to the count dispersion.
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Figure 5.9: Top: colorectal cancer incidence in Connecticut for the years 1973 - 2003.

Bottom: downwards temporal trends in incidence for 40, 60 and 80 year olds are sig-

nificant from the 80s onwards. Increased use of sigmoidoscopy and fecal occult blood

tests (triggering colonoscopy) beginning in the 70s seems to have precipitated the early

detection and removal of precancerous legions (e.g. adenomas) eventually impacting

on incidence in the following decade [CTC+94]. Lifestyle changes may also play a

role in the continuing steady reduction in colorectal cancer incidence.
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Figure 5.10: Top: age-specific prostate cancer incidence in Connecticut (1973 - 2003).

Bottom: strong temporal incidence trends following the introduction of prostate spe-

cific antigen (PSA) screening in the late 1980s [KFFM00]. PSA testing is highly sen-

sitive. Its use has meant cancers are registered at earlier stage / age and has also led to

the detection of some cases that would never have become clinically apparent over the

lifetime of the patient in the absence of PSA testing.
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density function fE(ε), then the likelihood of the count dij is:

P [dij|σ2
E, h(i)] =

∫ ∞

0

fE(ε)
(ε · h(i) · nij)

dij

dij!
· exp−ε · h(i) · nij dε. (5.9)

Under the simplifying assumption that the calendar year coefficients are indepen-

dent, the likelihood, L(d|σ2
E, h(i)), of a sequence of counts, d, among birth cohorts of

the same age, with d = (di1, di2, . . . , din) is:

L(d|σ2
E, h(i)) =

n∏
j=1

P [dij|σ2
E, h(i)],

with P [dij|σ2
E, h(i)] given by equation (5.9).

The posterior density for σ2
E is:

P [σ2
E|d] =

∫
L(d|σ2

E, h) · πΣ2
E
(σ2

E) · πH(h)dh∫ ∫
L(d|s, h) · πΣ2

E
(s) · πH(h)dsdh

,

where πH and πΣ2
E

are uniform prior densities for the hazard and variance terms re-

spectively.

Figure 5.11 shows the marginal posterior, P [σ2
E|d], for breast, colorectal and

prostate cancer data recorded in Connecticut. These data show a small but not insignif-

icant extra-Poisson variance caused by calendar year effects in breast and colorectal

cancer, with modal variances less than 0.03. Prostate cancer shows stronger temporal

incidence trends. Modal variances at different age groups of up to 0.6 are suggested

for prostate cancer. Figure 5.12 shows lognormal distributions with mean one and vari-

ances ranging from 0.01 to 0.64. These distributions give an idea of the volatility in

mean hazard with time described by various lognormal variances. However, only a

fraction of this volatility is due to bona fide changes in susceptibility (i.e. changes in

genetic and environmental influences on cancer risk). Much of the fluctuation in inci-

dence is controlled by changing patterns of medical interventions and screening. The

estimates of variance in mean hazard can be viewed as conservative upper bounds for

the effects of changing susceptibility patterns with time.
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Figure 5.11: Posterior densities for Σ2
E in the case of prostate, breast and colorectal

cancer.
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Figure 5.12: Lognormal distribution with mean set to one, and variance given by
2n

100
for n = 0, 1, . . . , 6.

5.5 Estimating total population variance

In the MFT model used to determine environmental and genetic contributions to cancer

susceptibility via twin data (discussed in section 5.3), liability is treated as a latent

variable and as such its total variance cannot be estimated [Els81]. Locatelli et al. in

an alternative analysis of breast cancer among twins, treated liability explicitly within

a proportional hazards framework [LRLY07] and modelled age at cancer onset in a

cohort of patients, rather than treating cancer as a binary trait. This model enabled

an estimate of total liability variance as well as the absolute sizes of the genetic and

environmental contributions to this variance. The hazard function for an individual was

defined as:

h(t, l) = l · h(t),

with liability, l, lognormally distributed and the baseline-hazard, h(t), parame-

terised as a Gompertz curve [YVI95]. Log-normality for quantitative traits has been ar-

gued for elsewhere [LSA01] and arises naturally, for example, in the polygenic model

of genetic risk described above [PAB+02]. Locatelli et al. took, (l1, l2), the liability

of a twin pair, to have a bivariate log-normal distribution (see appendix B) with mean

equal to (1, 1) and covariance matrix given by:
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⎛
⎝ σ2 σ2ρ

σ2ρ σ2

⎞
⎠ .

For monozygotic twins, ρ = ρM and for dizogotic twins, ρ = ρD. ρM and ρD were

estimated along with σ2 and the Gompertz parameters. The estimated total population

variance was σ2 ≈ 45.

The population lifetime-risk distribution implied by this variance can be derived.

If fL(l) represents the PDF of the log-normal hazard ratio (with mean 1 and variance

σ2 = 45 ) then the density, fR(r) , at a given lifetime risk, r is:

fR(r) = fL[w(r)] · dw

dr
,

where w is the inverse of g(l, t) with t fixed. g maps from hazard ratio for an

individual, l, to lifetime risk, r (r is calculated to age t = Tlife) . g is given by:

g(l, t) = 1 − exp[−l ·
∫ t

0

h(s)ds]. (5.10)

Assuming a Gompertz hazard, h(a, b, t) = a · exp[b · t], g(l, Tlife) becomes:

g(l, Tlife) = 1 − exp[−l · a

b
(exp[b · Tlife] − 1)],

and

w(r) =
−b · ln(1 − r)

a(exp[b · Tlife] − 1)

and further

dw

dr
=

b

a(exp[bTlife] − 1)(1 − r)
.

fR(r) is plotted in figure 5.13(a) using the Gompertz parameters inferred by Lo-

catelli et al. Because the mean hazard ratio is constrained to 1, a large variance trans-

lates into a highly skew distribution with mode very close to zero. Another consequence
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of a large population variance in hazard, is that while the expected hazard among new-

borns is equal to the baseline hazard, the theoretical population incidence deviates from

the baseline hazard with age. This is because higher susceptibility individuals have

higher mortality and so comprise a smaller proportion of the population at older ages.

To quantify this effect, consider the expected population hazard, hpop:

hpop(t) =

∫ ∞

0

fL(l, t)l · h(t)dl (5.11)

where h(t) is the baseline hazard and fL(l, t) is the density function for the hazard

ratio at age t and fL(l, 0) = fL(l). To calculate fL(l, t) requires an assumption con-

cerning the mortality impact associated with a particular hazard ratio, l. Suppose the

age related mortality rate from the cancer in question is mc(t) and that total mortality,

m(t), is m0(t) + mc(t). Here m0(t) represents mortality from all causes other than

the cancer in question. Assuming for simplicity that mc(t) = α · hc(t) where hc(t) is

the cancer incidence function, it follows that for an individual with hazard ratio l, the

mortality is given by m(l, t) = m0(t) + l · α · h(t). Hence, the survival to age t of such

an individual, S(l, t), is:

S(l, t) = exp

(
−
∫ t

0

m0(s) + l · α · h(s)ds

)
.

Now,

fL(l, t) = fL(l) · S(l, t)∫ ∞

0

fL(l)S(l, t)dl

= fL(l) ·
exp

(
−l · α ·

∫ t

0

h(s)ds

)
∫ ∞

0

fL(l) exp

(
−l · α ·

∫ t

0

h(s)ds

)
dl

. (5.12)

Equations (5.12) and (5.11) together give the population hazard, hpop(t). hpop(t) is

plotted in figure 5.13 (b) with α = 1 and assuming two different values of σ2 in the log-

normal distribution of hazard ratio. The baseline Gompertz hazard, h(a, b, t), is shown

alongside. There is a trend for increasing divergence from the baseline hazard with
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increasing population variance in hazard ratio. A variance of 45 implies that inferences

made from the observed population hazard are likely to be inaccurate reflections of the

hazard function in individuals.

Another implication of such a large variance, is that approximately 80% of cases

would be expected to occur among the top 20% of the population stratified by hazard

ratio. To see this, note that for a given hazard ratio, l, the proportion of the population

with hazard ratio greater than l is 1−
∫ l

0

fL(s)ds. The proportion of affected individuals

with hazard ratio above this amount is given by:

1 −

∫ l

0

g(s, t)fL(s)ds∫ ∞

0

g(s, t)fL(s)ds

.

Figure 5.13(c) plots r(l) for l = 0 to l >> 1, where

r(l) =

⎛
⎜⎜⎝1 −

∫ l

0

fL(s)ds, 1 −

∫ l

0

g(s, t)fL(s)ds∫ ∞

0

g(s, t)fL(s)ds

⎞
⎟⎟⎠ .

The trend with increasing σ2 is shown.

But is σ2 = 45 realistic on closer scrutiny? Can such a large subset of cases really

be concentrated in such a small subset of the population? One potential problem with

Locatelli et al.’s study, is their choice of parameterisation for the hazard function. A

Gompertz hazard, h(a, b, t), has a linear LLA with age, given simply by b · t. Breast

cancer incidence however, as discussed in section 2.5.1, has an approximate step func-

tion LLA. So, some of the variance in liability estimated by Locatelli et al. is actually

likely to arise from poor representation of the hazard shape. Figure 5.14 shows the im-

plied population incidence from Locatelli et al. against Swedish population incidence

from Doll [PWF+02]. The discrepancy in the hazards is apparent.

5.6 Using incidence of second primary cancers to esti-

mate liability variance
Pharoah et al. presented a more robust method of estimating σ2 from a lognormal

model of genetic liability variance [PAB+02] based only on observed twin relative risk
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Figure 5.13: (a) Distribution of lifetime risk implied by the study of Locatelli et al. (b)

Increasing liability variance causes a decoupling of expected population incidence and

the baseline hazard rate. (c) A larger proportion of cases arise in a smaller minority of

the population as the lognormal variance is increased. Under a variance of 45, 80% of

cases occur in the 20% of the population at highest risk.

or sibling relative risk and not individual patient age-at-onset data. The technique rests

on the idea that relative risk in siblings of affected patients is a function of the popula-

tion variance in liability owing to genetic factors. To calculate the relative probability,

λd, that the sibling of an affected patient is also affected, genetic liability in siblings

is assumed to be correlated according to a theoretical value. Pharoah et al. took cor-

relation on the log-scale to be
1

2
, so the distribution of (l1, l2), where l1 and l2 are the

liabilities of each member of the sibling pair, is bivariate lognormal with covariance

matrix given by:

⎛
⎝ σ2 (1 + σ2)1/2 − 1

(1 + σ2)1/2 − 1 σ2

⎞
⎠ .
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Figure 5.14: Locatelli et al. [LRLY07] used a Gompertz hazard to model age of breast

cancer onset in Swedish twins born between 1886 and 1967. A Gompertz hazard is a

questionable model for Breast cancer incidence.

Assuming simply that risk of cancer is proportional to liability (through the con-

stant α say), Pharoah et al. calculated λd:

λd =

∫ ∞

0

∫ ∞

0

fL(l1, l2)(α · l1)(α · l2)dl1dl2(∫ ∞

0

fL(l)(α · l)dl

)2

=

∫ ∞

0

∫ ∞

0

fL(l1, l2)(l1 · l2)dl1dl2, since E(L) = 1.

=
1 + σ2

2
. (5.13)

Taking λd = 2 [PDD+97], equation (5.13) is solved with σ2 = 3. However, if

rather than assuming risk of cancer is proportional to liability, risk of cancer is modelled

in the relative hazards context, then λd can alternatively be expressed as:

λd =

∫ ∞

0

∫ ∞

0

fL(l1, l2)Pl1 [T < tlife]Pl2 [T < tlife]dl1dl2(∫ ∞

0

fL(l)Pl[T < tlife]dl

)2 . (5.14)

where, Pl[T ≤ t] = 1 − e
−
∫ t

0

l · h(s)ds
. and h(t) is given a suitable parametrization.

Solving equation (5.14) with h(t) = aeb·t (where (a, b) is chosen so that the haz-

ard roughly fits breast cancer incidence data) and λd=2 gives σ2 = 9.6. A much higher
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estimate than the σ2 = 3 predicted by Pharoah et al. For calculating lifetime risks,

the relative hazards framework is more precise than the risk proportional to liability

assumption, but the greater difficulty is in determining an appropriate theoretical re-

lationship between the liabilities of siblings or twins. If the correlation of the actual

liabilities of dizygotes, rather than their logarithms is taken to be one half so that the

covariance matrix for the bivariate lognormal distribution of (l1, l2) becomes:

⎛
⎝ σ2 σ2/2

σ2/2 σ2

⎞
⎠ .

then equation (5.14) solves to give σ2 = 3.73.

Even in the case of monozygotic twins, although the genetic component of liabil-

ity can confidently be set equal between a twin pair, the extent of their correlation in

environmental liability is undetermined.

To avoid modelling relatedness in the liabilities of relatives, total liability variance

can be estimated by looking at second primary risk in individual patients rather than

recurrence risk in their relatives. Assuming variable liability within the population of

interest the risk of a second cancer in patients with an initial primary malignancy is

higher than the risk of first cancer in patients of the same age. This is simply because

the expected liability of a cancer patient is higher than for a healthy individual. The

recurrence risk for a cancer patient depends on the age at diagnosis of the first primary.

If, for example, the first primary is diagnosed before age s, then the smaller s is, the

higher the patients expected hazard after that age. Further the larger the population

variance in liability the greater the relative risk in patients compared with unaffected

individuals. To see this, consider a random process, x(t), that counts the number of

primaries a patient has accumulated by age t. As before let fL(l) represent the PDF of

the log-normal density for the hazard ratio. The probability of second primary before

age t given one primary before age s, with t > s, is given by:

P [x(t) � 2|x(s) = 1] =

∫ ∞

0

fL|x(s)=1(l)

⎛
⎜⎝1 − e

−
∫ t

s

l · h(x)dx

⎞
⎟⎠ dl, (5.15)
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Figure 5.15: Relative hazard for second primary cancer given one primary diagnosis

accumulated by age 40.

where

fL|x(s)=1(l) =

fL(l)

(∫ s

0

l · h(x)dx

)
e
−
∫ s

0

l · h(x)dx

∫ ∞

0

fL(y)

(∫ s

0

y · h(x)dx

)
e
−
∫ s

0

y · h(x)dx
dy

. (5.16)

Figure 5.15 shows the relative hazard derived from equation (5.15) evaluated for

several values of σ2. The upward trend in relative hazard with increasing variance

can be exploited to estimate liability variance from observed risks of second primary

cancers.

5.6.1 Incidence of second primary colon cancers

Hoar et al. published a large study of second cancers following initial cancer of the

digestive system in Connecticut [HWB+85]. The results for 26 804 initial cases of

colon cancer diagnosed between 1935 and 1982 are shown in table 5.2. Average follow

up per patient was 4.5 years. Expected numbers of cases were calculated by applying

appropriate age specific and calendar year specific incidence rates to the person years

at risk accumulated in the follow up period after each initial colon cancer diagnosis.

Relative risk was then calculated as the ratio of observed to expected cases.

A model of the results of Hoar et al. can be used to estimate population variance

in liability. Suppose the initial 26804 cases of colon cancer were distributed by age

according to the population structure and colon cancer risk profile in Connecticut (taken
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Table 5.2: Expected verses observed incidence of second primary colon cancer in Con-

necticut. Data from Hoar et al. Relative risk is calculated as the ratio of observed to

expected cases. Incidence is the ratio of observed cases to person years in interval.

from the SEER database for a calendar year within the study period). i.e. that the

probability a given case falls into the ith age interval (where the age intervals are the

typical 5 year bins 0-4, 4-9, etc..) is given simply by the total number of cases in this

interval for a given year within the study period, divided by the total number of cases

in that calendar year. Suppose that incidence is modeled by a Weibull hazard, with

relative hazard lognormally distributed in the population, so that:

h(t) = l · atb, (5.17)

where l is a lognormal variable with variance σ2 and mean 1. For a given value of

σ2, equation (5.17) can be fit to incidence data from the Connecticut registry using the

standard likelihood function (equation (2.23)). Then the ratio of observed to expected

cases, assuming n years of follow up, predicted by the model can be compared with

that published by Hoar et al. The relative risk predicted by equation (5.17) is:

Ob(âσ2 , b̂σ2 , σ2)

Ex(âσ2 , b̂σ2 , σ2)
(5.18)

where âσ2 and b̂σ2 are the maximum likelihood estimates of the Weibull parameters

a and b (equation (5.17)) with liability variance fixed at σ2. The number of cases,

Ex(âσ2 , b̂σ2 , σ2), expected per patient when applying the hazard described by equa-

tion (5.17) to n years of follow up after each initial diagnosis is:
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Figure 5.16: Theoretical relationship between relative risk and liability variance based

on the studies of Hoar et al. and Harvey and Brinton.

Ex(âσ2 , b̂σ2 , σ2) =
∑

i

P [T1 ∈ [5(i − 1), 5i)]

·
∫ ∞

0

(
1 − exp[−l ·

∫ 5i−2.5+n

5i−2.5

âσ2tb̂σ2dt]

)
· fL(l, σ2)dl,

where fL(l, σ2) is the lognormal density with mean 1 and variance σ2. T1 is the

time at first cancer, and P [T1 ∈ [5(i − 1), 5i)] is estimated by the ratio of the number

of cases over the period falling in the age bracket [5(i− 1), 5i) in Connecticut, divided

by the total number of initial colon cancer cases recorded over the period.

The observed number of cases expected per patient under equation (5.17), is:

Ob(âσ2 , b̂σ2 , σ2) =
∑

i

P [T1 ∈ [5(i − 1), 5i)]

·
∫ ∞

0

(
1 − exp[−l ·

∫ 5i−2.5+n

5i−2.5

âσ2tb̂σ2dt]

)
· fL|T1∈[5i−3,5i−2)(l, σ

2)dl,

where fL|T1∈[5i−3,5i−2)(l, σ
2) is defined by analogy to equation (5.16).

Hoar et al. calculate a relative risk of 2.06, however they excluded cases occurring

less than 2 months following the initial diagnosis or multiple cases diagnosed simul-

taneously. Including these cases leads to a relative risk estimate of 4.2. Figure 5.16

shows (5.18) evaluated for various values of σ2 with the follow up period n set to 4.5

years. A relative risk of 4 implies a variance of � 6.
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5.6.2 Incidence of second primary breast cancers

Harvey and Brinton published a large study of second cancers following initial cancer

of the female breast in Connecticut [HB85]. The results for 41109 initial cases of breast

cancer diagnosed between 1935 and 1982 are shown in table 5.3. Average follow up

per patient in this study was 6.6 years.

Table 5.3: Expected verses observed incidence of second primary breast cancer in Con-

necticut. Data from Harvey and Brinton. Relative risk is calculated as the ratio of ob-

served to expected cases. Incidence is the ratio of observed cases to person years in

interval.

As above, in the case of colon cancer, the age distribution of the initial 41109

breast cases recorded in Harvey and Brinton [HB85] can be inferred from the Con-

necticut registry statistics. A simple model of the age related breast cancer hazard can

then be used to estimate population variance in liability. Suppose that incidence is mod-

elled by a piecewise linear hazard with relative hazard lognormally distributed in the

population, so that:

h(t) =

⎧⎨
⎩ 0 t ≤ a

l · b(t − a) t > a
, (5.19)

with l a mean-one lognormal variable with variance σ2. Then equation (5.18) gives the

relative risk predicted by equation (5.19).

Harvey and Brinton calculate a relative risk of 3.03. However, the second pri-

maries they observe are all in the contralateral breast, but they have used population

rates (i.e. twice the hazard per breast) to calculate expected numbers of cases. There-

fore their estimate of relative risk should be six rather than three. A relative risk of six

implies a large population liability variance of roughly 20 (figure 5.16).
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5.7 Discussion
In this chapter evidence for genetic and environmental influences on cancer susceptibil-

ity was discussed. A common argument was presented showing that known Mendelian

cancer syndromes are insufficient to explain the doubling of risk in first degree relatives

of cancer patients. A popular theory accounting for this discrepancy states that many

common but undiscovered low penetrance alleles must act to confer the susceptibility

patterns observed in relatives. The notion of many factors, environmental and genetic,

interacting multiplicatively to influence cancer risk, leads naturally to the assumption

of a lognormal distribution of susceptibility in populations [PAB+02]. A lognormal

distribution has been used previously to quantify variance in cancer risk by Pharoah et

al. Their method was based on assumptions about twin pairs or siblings and the extent

to which they share risk factors. It is difficult to argue convincingly for a definitive

theoretical relationship between the genetic or environmental components of liability

in twins or siblings. The problem can be avoided, however, via the novel method out-

lined above which focuses on recurrence risk in individual cancer patients rather than

in the relatives of these patients. Liability variances calculated from recurrence data in

this manner suggest large variation in cancer susceptibility within human populations.

A lognormal variance value of six for colon cancer implies that 80% of colon cancers

occur in the 30% of the population which is at highest risk (figure 5.17) . Similarly, for

breast cancer, with a lognormal variance of 20, the relative hazard model predicts that

80% of cases occur in the 25% of the population at highest risk. Intra-cohort variance

on this scale can be contrast with temporal variation in susceptibility which is mod-

est by comparison. Modifications to the risk of being diagnosed with cancer show a

variance of less than 0.03 for colon and breast cancer over the last 30 years. Further,

this variance seems to be dominated by changes in screening and medical interventions

rather than bona fide changes in susceptibility. A pattern of susceptibility, relatively

stable with calendar time, but showing strong differences between individuals under-

lines the importance of continuing efforts to pinpoint genetic and environmental risk

factors.

A more theoretical implication of wide intra-cohort variance in liability is that it

forces age-specific risk in an individual to be different from that observed in the pop-

ulation (figure 5.13) (b). The exact relationship between individual hazards and pop-
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Figure 5.17: Relationship between fraction of the population at highest risk and the

fraction of cases occurring in that high risk subset for breast and colon cancer - esti-

mated from the data of Harvey and Brinton and Hoar et al. respectively.

ulation incidence is dictated by the mortality impact of the cancer in question and by

the manner in which risk varies between people. It is likely that a simple proportional

hazards model, with hazards changing by only a constant factor, does not capture the

risk variation between individuals adequately. Evidence for a less uniform variation in

hazard function is provided by the breast cancer recurrence data of Harvey and Brinton

[HB85]. Risk of contralateral breast cancer following an initial primary appears to be

independent of the time since the initial primary was diagnosed (figure 5.18). This is

at odds with the proportional hazards description. If the population incidence is to be

monotonic increasing, then under the proportional hazards assumption, every patient

must have a hazard that increases monotonically with time, regardless of their age at

initial primary onset. An explanation put forward to explain the constant risk of cancer

in the opposite breast after initial breast cancer diagnosis is that predisposition may be

mediated through some of the multiple steps leading to cancer but not others [Fra04c].

So, perhaps breast cancer patients are predisposed to progress quickly through all ex-

cept one stage in breast cancer development. Then, by the time of a patients first breast

cancer diagnosis, he or she will have many lineages that have already passed through all

except the final stage of tumorigenesis. Their risk of cancer will hence be constant with

time. The finding that monozygotic twins, mothers and sisters of breast cancer patients

all also have a high and roughly constant incidence of breast cancer after they attain the
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Figure 5.18: Colon cancer shows a rising risk of second primary with time since initial

diagnosis, as predicted by the lognormal relative hazards model. Breast cancer, by

contrast, shows a stable incidence with time since initial diagnosis.

index patients age at diagnosis supports this view [PM00]. The relationship between

risk in individuals and population incidence is an interesting avenue for further study.

The above argument for breast cancer could be quantified with a simple multistage

model in which some rates of mutation or transition between stages vary widely in the

population but others do not. In general, data on second primary incidence is a useful

source of information on the hazard in high-risk individuals and multistage theory is

likely to prove useful in generating hypotheses concerning the connection between the

risk profiles of high susceptibility patients and the population incidence.
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Discussion

This thesis began with a sceptical review of the literature on multistage-modelling of

cancer incidence. Multistage models are often referred to as ‘quasi-mechanistic’. This

phrase can be seen as an acknowledgement of the speculative nature of multistage the-

ory and / or an acknowledgement of the overly simplistic picture of cancer which the

theory describes. Multistage models are primarily stochastic time-to-event-models.

They attempt to depict the distribution of the time until cancer in patients and hence

the population incidence of cancer and its dependence on patient age. There are many

unknowns in the development of cancer, a complex process involving multiple cell lin-

eages interacting with each other and with the tissue micro-environment. In chapter

two, the methods by which two prominent ‘quasi-mechanistic’ multistage models (Ar-

mitage and Doll’s model and the two stage clonal expansion (TSCE) model) reduce the

development of a tumour to a mathematically tractable abstraction were presented. A

survey of some of the applications of these theories was then given, leading to the sug-

gestion that multistage models may be more suitable in many situations for hypothesis

generation rather than for hypothesis testing.

In Armitage and Doll’s model, the time until cancer in a patient is seen as the

end result of a sequence of mutations afflicting any of the cell lineages in a given

tissue. Armitage and Doll viewed population incidence as an exact mirror of the hazard

in an individual, a position that arises naturally from the assumption that the risk in

every individual is the same. They reasoned that the risk of tumour in a patient, which

rises as an integer power of age, should translate directly into a population incidence

which rises with the same power of age. In the two stage clonal expansion (TSCE)

model, an initial mutation causes a lineage to divide and proliferate, creating copies of
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itself, a process referred to as ‘clonal expansion’. A second mutation in one of these

lineages then creates a malignancy. The authors of TSCE also assumed a homogeneous

population and saw population incidence as a mirror of individual hazards. Clonal

expansion is thought to be an important mechanism of tumorigenesis, increasing the

number of dysfunctional target cell lineages that can be further transformed by the

next in a sequence of mutations. Patterns of clonal expansion are very difficult to

observe however. Comparing TSCE and Armitage and Doll’s model it can be seen

that both achieve a theoretical population incidence that rises with age but by different

means. Increasing risk with age in Armitage and Doll’s model results solely from the

assumption of many mutations. In TSCE, increasing risk with age is dictated as much

by clonal expansion as mutation numbers. So TSCE and Armitage and Doll’s model

embody two of the main themes around which explanations for the central observation

of age-specific risk, that it rises sharply with age, have been based.

In chapter three a simple statistical exercise was used to show that the number of

mutations implied by a multistage model depends upon the assumed clonal expansion

pattern in that model. This result shows that statistical inference of aetiological detail

from incidence data cannot be considered reliable, unless uncertainty over clonal ex-

pansion patterns and other details concerning the development and detection of a tumor

are accounted for.

The concept of a rate-limiting step is central to the interplay between mutation and

clonal expansion. In chapter three, it was shown that a gene mutation, necessary for the

development of a malignant tumor and able to target many different lineages within a

large clone, may happen very quickly and not have an appreciable effect on the time

taken for the tumor to emerge. Such a mutation should therefore not be considered rate-

limiting. Working from an incidence profile, it is not possible to discern the existence

or effects of non-rate-limiting mutations. Therefore, greater insight into cancer aetiol-

ogy may be gained by modelling the effect on incidence that a specific and identified

mutation has, rather than trying to model the combined effects of an unknown number

of unidentified mutations. This can be achieved by comparing cancer risk in individ-

uals with and without a germline mutation in a known susceptibility allele. The fact

that such an allele confers susceptibility suggests that its inactivation is a rate-limiting

event. Further, the observed change in incidence caused by the presence of a germline
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mutation in the allele can be more confidently attributed to the effect of a specific gene

product.

In chapter four, bowel cancer risks in patients with and without a germline APC

mutation were compared. APC mutation is thought to initiate bowel tumorigenesis.

This makes the relationship between risk in cases with or without a germline APC

mutation quite simple. A method for estimating the rate of APC mutation was described

which exploits this simple relationship and bypasses the need for many of the difficult

assumptions concerning clonal expansion that are required for a more complete model

of cancer development.

Bowel cancer risks in patients with and without mutations in the human miss-

match-repair (MMR) machinery were also compared in chapter 4. The aetiological

relationship between these cancers is less clear and differences in their genetic path-

ways have been shown to exist. Also, the point in the sporadic genetic pathway at

which MMR inactivation occurs is not certain. In view of these complicating factors,

a more general analysis of incidence modulation through germline mutation was pre-

sented to generate hypotheses on the aetiological relationship between bowel cancer

with or without a germline MMR mutation. To facilitate this analysis Franks measure,

ΔLLA, was employed. ΔLLA is a measure of the change in the log-log gradient of

the incidence curve. Observed ΔLLA owing to an MMR mutation was compared with

ΔLLA derived under various theoretical scenarios. It was found that a strongly rising

ΔLLA with age, as observed following germline MMR mutation, can be created by a

slowing of some aspects of tumorigenesis, i.e. through extra stages or slower mutations

coincident with a quickening of other stages of tumorigenesis i.e. through increased

mutation rate. Changes in clonal expansion and their effect on ΔLLA were found not

to match MMR mutation data.

An interesting aspect of germline MMR mutations is that they give rise to a

humped incidence pattern; one that rises and falls, peaking between forty and sixty

years of age. This observation has been repeated in three separate studies of bowel

cancer risk in patients with MMR mutations [JBD+06, DFC+97, QVvH05] and a sim-

ilar phenomenon has been observed for breast cancer in patients with mutations of

BRCA1 or BRCA2. Multistage theory does not predict a peaked incidence pattern so

this behaviour complicates attempts to model ΔLLA due to germline BRCA1, BRAC2
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or MMR mutation. On the other hand it is an interesting point of departure for new hy-

potheses to explain the peak. It has been argued that the peaking incidence in old age,

observed in some cancers, results from population heterogeneity [HJTMF+00], that el-

derly populations are purged of high risk members and so the incidence among them is

lower than at younger ages. Incidence peaks in high penetrance mutation carriers may

represent a similar phenomenon but shifted to an earlier age. In chapter four, Franks

discrete model of population heterogeneity was used [Fra07], based on the assumption

that only a subset of MMR mutation carriers had a raised penetrance. This creates a

humped incidence pattern, provided the penetrance in each of the subsets of the popu-

lation are suitably different. Suppose incidence in low risk individuals is given by hl(t)

and in high risk individuals the hazard is hh(t). If a fraction, f , of these individuals are

at high risk then the penetrance observed in the population is:

P [T ≤ t] = f ·
(

1 − exp

[
−
∫ t

0

hh(s)ds

])
+ (1 − f) ·

(
1 − exp

[
−
∫ t

0

hl(s)ds

])
.

The population incidence is

hp(t) =
f · hh(t) exp

[
− ∫ t

0
hh(s)ds

]
+ (1 − f) · hl(t) exp

[
− ∫ t

0
hl(s)ds

]
1 − P [T ≤ t]

.

Figure 6.1 shows hp(t) assuming 30% of the population have elevated risk hh(t) =

a · tb and the rest have the background incidence hl(t) = c · td.

The notion of a discrete risk heterogeneity such as that depicted by figure 6.1 is

unconventional, but it is possible that the effect of an MMR germline mutation is only

realised in the presence of another common but unidentified genetic modifier. In any

case the causes of the incidence patterns in BRCA mutation carriers and MMR muta-

tion carriers warrant further study. In chapter 5, a contrasting type of risk heterogeneity

was investigated. A continuous model of variation in hazard functions was used to

estimate how concentrated the cancer burden may be in high risk patients. Departure

of the population incidence, from that observed in individuals was not so strong under

the continuous model of hazard variation. But the model did predict a flattening in

population incidence, relative to the assumed log-log linear individual hazards at older

ages. Such a flattening is consistent with observation [HJTMF+00]. A related aspect



157

Figure 6.1: (a) Red line: background population penetrance of 5% (c = 10−12, d =

5). Purple line: 30% of the population have complete penetrance by age 80 (a =

10−8, b = 4. Green line: observed penetrance in the mixed population. (b) Incidence

corresponding to the population penetrance.

of cancer biology is the potential for heterogeneity in the lineages which form a tis-

sue. The models presented in this thesis have assumed that the target tissue contains a

homogeneous population of target cell lineages each equally at risk of malignant trans-

formation. However, in a tissue such as the colonic epithelium, exposure to carcinogens

and other relevant risk factors may not be uniformly distributed. A non-uniform distri-

bution of risk across lineages is suggested by the different spatial distributions within

the bowel obeyed by different types of colorectal cancer.

As a simple, discrete theoretical model of this situation consider two sub-

populations of cell lineages within a tissue with distinct risk profiles. The risk of cancer

in the first population could be given by h1(t) and h2(t) could dictate cancer risk in the

second population. The combined hazard is then simply h1(t) + h2(t). Figure 6.2

shows how such a composite hazard could lead to a modulating acceleration pattern

even when the two subpopulations have log-log-linear hazard.

Consider another situation where every lineage progresses along the same pathway

via the same number of stages but where each lineage passes through these stages at a

different rate. In this case the penetrance of disease in the tissue is dictated by a few
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Figure 6.2: (a) Green line: higher penetrance in some lineages disposed to a pathway

with greater acceleration of 7. Red line: lower penetrance in cells disposed to a pathway

with a lower acceleration of 5. Blue line: the composite penetrance has a modulating

acceleration which starts at 5 and rises to 7.

lineages with high mutation rates. Working with Armitage and Doll’s formula and a

truncated lognormal distribution of mutation rate (so that the maximum rate per annum

is 0.01), the penetrance arising from a variable population of lineages can be expressed

by:

penetrance = 1 −

⎛
⎜⎜⎜⎜⎝1 −

∫ 0.01

0

fL(l)

(
1 − exp[−l · ut]

n−1∑
i=0

(l · ut)i

i!

)
dl

∫ 0.01

0

fL(l)dl

⎞
⎟⎟⎟⎟⎠

N

, (6.1)

where fL(l) is the lognormal PDF for the factor l which multiplies the mutation rate,

u is the mutation rate, n is the number of stages and N is the number of cell lineages.

This expression can be used to show that the mutation rate implied by an observed

penetrance depends on the variance in mutability of the various cell lineages in the tis-

sue of interest. The wider the variance, the lower the mean mutation rate per lineage

implied by the same risk profile. Figure 6.3 shows penetrance calculated from equa-

tion (6.1) with fL(l) a lognormal PDF with mean and variance both equal to one and
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with u = 2 × 10−4, n = 6 and N = 108. The penetrance is equivalent to that arising

from a homogeneous population of cell lineages with common mutation rate 10−3 per

annum.

Figure 6.3: (b) Penetrance arising from two different distributions of mutation rate

in target lineages within a tissue. The dashed red line is calculated assuming every

lineage has a mutation rate of 0.001 per annum. The blue line is calculated assuming a

lognormal distribution of mutation rate as shown in (a).

Heterogeneity in risk between individuals can produce departures in observed pop-

ulation incidence from the hazard experienced by an individual. Such heterogeneity can

be observed through recurrence data, revealing a tendency for cancer to target certain

individuals or certain families. Risk variation within the lineages of a tissue is more

difficult to measure, but is reflected to an extent by spatial clustering of cases affecting

a particular epithelial surface for example. Overall variability in the aetiology of cancer

between patients and also at different locations within the same organ requires further

study and is an important component of the age-onset pattern.

The hope that quantitative analysis of tumour risk may help to resolve the com-

plexities of cancer aetiology still seems justified. Success will require a greater un-

derstanding of clonal expansion patterns which control the relative effects of different

mutations, determining, for example, those that are rate-limiting and those that are not.

Mendelian cancer syndromes suggest germline variation at a rate-limiting locus and

closer inspection of the incidence shift in a particular syndrome may reveal further as-

pects of the underlying allele’s aetiological role. Finally it must be acknowledged that

age-specific onset data are not an exact reflection of individual hazards but rather an

aggregate of the various risks experienced by a cohort. Likewise, individual hazards

are dominated by the lineages within a tissue that are most easily drawn into the ways
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of malignancy. Multistage models may ultimately be essential not only to understand-

ing how somatic DNA aberrations combine to produce a particular hazard curve in an

individual, but also how environmental factors and germline variation in susceptibility

alleles act to modify this hazard and produce the population incidence of cancer.

6.1 Directions for further work
When work on this thesis began the field of quasi-mechanistic cancer incidence mod-

elling was dominated by the TSCE model in various forms. Implementations of TSCE

were being used to predict the nature of all the rate limiting steps in bowel cancer

[LM02], elucidate the mechanisms through which smoking causes cancer [HL01], deci-

pher the point during tumorigenesis at which the genome may become unstable [LW03]

and understand the interaction between radiation and carcinogenesis [KZH+03]. As

has been outlined above and in more detail in chapters two and three, it can be argued

that many of these aims are too high for TSCE. However, this argument was almost

never made in the literature and so the work of these chapters contributes significantly

to formalizing a quantitative framework through which to judge multistage modelling

[HPT07]. A key development documented in chapter three is a novel quantitative def-

inition of ‘rate-limiting’, providing a measure of the observability of a carcinogenic

event through age onset statistics. This definition and its properties, particularly its

interaction with the size of the registry collecting the age-onset data, could benefit

from further investigation however. Another key concept arising from the critique of

multistage models is model uncertainty:- the problem of different but equally plausi-

ble models of tumorigenesis producing different conclusions when applied to the same

question. This was formally demonstrated in chapter three through estimates of the

number of mutations in a cancer. Statistical approaches for dealing with model uncer-

tainty, although readily available, are seldom if ever applied to multistage modelling.

Going forward, practitioners in this area may be discouraged from techniques such

as Bayesian model averaging due to computational intractability; however progress in

understanding the limitations of multistage models could equally be made by system-

atically testing models against simulated data. For example synthetic incidence data,

generated from a known clonal expansion structure, could be used to test a given mul-

tistage models efficacy in delineating this structure etc..
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Despite reservations expressed in chapters two and three, chapter four uses a multi-

stage approach but in a novel way more recently advocated [Fra05] to address questions

of cancer aetiology. The approach advocated is distinguished from the TSCE model

approaches referenced above by a focus on situations that require fewer arbitrary bio-

logical assumptions. Repeating an earlier comment, it seems likely that greater insight

into cancer aetiology may be gained by modelling the effect on incidence that a spe-

cific and identified mutation has, rather than trying to model the combined effects of an

unknown number of unidentified mutations. This approach was vindicated in chapter

four with a stable estimate of the rate of mutation of the APC gene [HPT08] via an

original computational technique. There is a scarcity of data around in-vivo mutation

rates as they are difficult to calculate and so the estimate in chapter four can be viewed

as significant.

Comparing cancer risk in individuals with and without a germline mutation in a

known susceptibility allele was originally made famous by Knudson in his celebrated

study of retinoblastoma [Knu71]. A handful of other ‘copy-cat’ studies have appeared

since [KS72a, KS72b, MYFS90] but in general attention in this type of comparative

study waned after Knudson’s original success. The approach has been championed

again more recently by Frank [Fra07] who has developed new computational machin-

ery to analyse the incidence patterns of hereditary cancer syndromes. Applying these

techniques to HNPCC in chapter four showed for the first time that HNPCC has a ris-

ing ΔLLA with respect to sporadic MSI+ CRC, consistent with its role in replication

fidelity. Despite some difficulties with data quality and some ambiguity associated with

smoothing parameters etc.., more work in this area certainly seems justified and many

hereditary syndromes exist as potential targets for these types of investigation. An ob-

servation arising from chapter four, which may prove to be important, is that incidence

of HNPCC is biphasic. Franks hypothesis for the similar nature of BRCA1/2 breast

cancer incidence is outlined above in figure 6.1. It would certainly be interesting to

look for this pattern in other hereditary cancer syndromes and to speculate further on

its origin.

The work done in chapter five is based on the idea of polygenic susceptibility

to cancer. Previous quantitative work has shown how multiple common susceptibility

loci lead naturally to a log-normal distribution of risk in a given population [PAB+02].
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However, methods for quantifying the variance of this distribution have typically been

based on studies of risk in relatives of cancer patients. These methods are unreliable

because they confuse environmental and genetic causes of familial clustering. The

central contribution of chapter five is the development of a novel quantitative method

for estimating the variance in risk arising from the combined influence of genes and

environment. This method does not rely on twin or family data. Instead, data on the risk

of second cancers to cancer patients themselves is used. The approach was successfully

applied to bowel and breast cancer but further work could apply the same method to

other cancers for which data on second primary tumours exist. An abundance of data

of this kind has been collected by Flannery et al. [FBD+85]. The value of quantifying

variance in cancer risk is at least two fold. From a medical perspective, cancers which

are shown to cluster in families or correlate strongly with environmental exposures can

be mitigated through changes in lifestyle or benefit from targeted prophylactic care.

Second, as described above, any variance in cancer risk impacts age-onset patterns

and complicates the relationship between individual and population age-related risk

profiles. This is also true for variation in cancer risk between cell lineages within a

patient (see figure 6.2 and figure 6.3). For these reasons, continuing to estimate variance

in susceptibilities is a particularly valid avenue for futher study.
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Appendix A

In section 2.3.1 it was claimed in equation (2.16) that if y, x1, x2, . . . and xn all map

from a vector space, V , into the real numbers and y is such that:

y(a + b) = y(a) · y(b),∀a, b ∈ V,

then

∑
r

y(r)
∑

r1,r2,...,rn
r1+r2+···+rn=r

n∏
i=1

xi(ri) =
n∏

i=1

(∑
r

y(r)xi(r)

)
. (A1)

To prove (A1) first note that, ∀n,

∑
r1,r2,...,rn

y

(
n∑

i=1

ri

)
n∏

i=1

xi(ri) =
∑

r1,r2,...,rn

n∏
i=1

y(ri)xi(ri)

=
n∏

i=1

(∑
r

y(r)xi(r)

)
. (A2)

The LHS of (A1) can then be rewritten as:
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∑
r

y(r)
∑

r1,r2,...,rn
r1+r2+···+rn=r

n∏
i=1

xi(ri)

=
∑

r

∑
r1,r2,...,rn

r1+r2+···+rn=r
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i=1

xi(ri)

=
∑

r
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)
, by (A2).
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Lognormal distribution

The lognormal distribution has density:

f(x; μn, σn) =
1

xσn

√
2π

e
−

(log(x) − μn)2

2σ2
n ,

where μn and σn are the mean and variance of the associated normal-distribution. The

mean and variance, μl and σ2
l of a lognormal variable with density given above are:

μl = eμn+
σ2

n
2 ,

and

σ2
l = (eσ2

n − 1)e2μn+σ2
n .

Conversely,

μn = log(μl) − 1

2
log

(
1 +

σ2
l

μ2
l

)

and

σ2
n = log

(
1 +

σ2
l

μ2
l

)
.

Hence, if μl is set equal to one then μn = −1
2
σ2

n.
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Bivariate lognormal distribution
The density of the bivariate lognormal distribution for (X, Y ) when X and Y have the

same variance is:

f(x, y) =
1

2πσ2
n(1 − ρ2

n)
1
2

e−q/2,

q =
1

1 − ρ2
n

[(
log(x) − μn

σn

)2

− 2ρn

(
log(x) − μn

σn

)(
log(y) − μn

σn

)
+

(
log(y) − μn

σn

)2
]

.

where

ρn =
1

σ2
n

log
(
1 +
(
eσ2

n − 1
)

ρl

)
.

Here ρl is the correlation coefficient of the lognormal bivariates X and Y . μn,

σn and ρn are the mean, variance and correlation of the associated multinormal pair.

Conversely,

ρl =
eσ2

nρn − 1

eσ2
n − 1

.



Glossary of terms and abbreviations

FAP familial adenomatous polyposis coli, a Mendelian cancer

syndrome

HNPCC hereditary non-polyposis colorectal cancer, a Mendelian

cancer syndrome

APC adenomatous polyposis coli, a tumour suppressor gene,

gives rise to FAP

MMR miss-match repair

RB retinoblastoma, a tumour suppressor gene

hMLH1 human mut-L homolog 1, a caretaker gene involved in DNA

repair that gives rise to HNPCC

hMSH2 human mut-S homolog, a caretaker gene involved in DNA

repair that gives rise to HNPCC

BRCA1 breast cancer 1 caretaker gene, gives rise to hereditary

breast and ovarian cancers

BRCA2 breast cancer 2 caretaker gene, gives rise to hereditary

breast and ovarian cancers

TSCE two stage clonal expansion model, a quantitative model

of tumorigenesis involving two mutations separated by a

clonal expansion
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penetrance the proportion of individuals with a particular genotype who

express a particular phenotype

incidence the rate at which a disease occurs in a population measured

in disease counts per unit time per unit population

hazard function closely related to incidence, a function of age giving the

instantaneous rate of disease in a population or individual

LLA log-log acceleration, the gradient of log(incidence) against

log(age), provides a measure of the change in incidence of

a disease with age

ΔLLA the difference in acceleration measured in two diseases

Bayesian method a procedure used to improve a statistical model in the light

of observed data

likelihood function a function central to Bayesian statistics, used to quantify the

quality of a statistical model

prior distribution used to represent knowledge of a parameter or other at-

tribute of a statistical model in advance of observing data

pertinent to that parameter or attribute

posterior distribution used to represent knowledge of a given parameter or at-

tribute in the light of observed data


