Issuesin the Design of an Environment to Support the
L earning of Mathematical Generalisation™

Darren Pearce Manolis Mavrikig, Eirini Geraniod, and Sergio Gutiérréz

London Knowledge Lab?

! Birkbeck College {dar r enp, ser gut }@ics. bbk. ac. uk
2 Institute of Education{m mavri ki s, e. ger ani ou}@ oe. ac. uk

Abstract. Expressing generality, recognising and analysing pattandl articu-
lating structure is a complex task and one that is invarigibbblematic for stu-
dents. Nonetheless, very few systems exist that suppartdeaexplicitly in the
process of mathematical generalisation. We have addreékisetly developing
a novel environment that supports users in their reasonidgpaoblem-solving
of generalisation tasks. We have followed a stakeholdetreé design process,
integrating feedback and reflections from twenty-four dtgh, five teachers and
a variety of other stakeholders. This paper focuses onakewnter-related design
issues that have been informed by this iterative processamadnstrates how the
system can be used for a typical generalisation task torfastappreciation of
generality and indeed algebra.

1 Introduction

In the traditional mathematical curriculum, algebra is sanmgeof expressing general-
ity. However, generalisation is so implicit in algebra teaperts no longer notice the
strategies they have integrated into their thinking [1]isTdauses problems for students
who perceive algebra as andpointrather than a tool for problem solving [2].

Several learning environments have been developed angratéel in classroom
contexts over the last few years that attempt to help stgdartlgebra and problem
solving. However, the vast majority of these environmeetg.([3-5]) are aimed at
students who already have at least a basic understandinigeifra and attempt to
develop students’ understanding of various represemwsach as tables and graphs.
These learning environments therefore do not deal expligiith the generalisation
difficulties that students face before they are comfortabhile algebra. A different ap-
proach could focus on helping students derive generalisafrom patterns. For exam-
ple, in Mathsticks [6] students use a subset of LOGO commgmaerk on patterns and
regularities constructed out of matchsticks. This allole to explore how the vari-
ables within the task relate to each other. Despite someessaes, difficulties remain,
and these tend to coalesce around the need for significaagpgit support from the
teacher to provide a bridge to algebraic symbolism and gdisation.

* The authors would like to acknowledge the rest of the memblgiiee MiGen team and finan-
cial support from the TLRP (e-Learning Phase-Il, RES-1390381).

This paper presents a mockup mathematical microworld — &Bajfder — that
attempts to address these issues by supporting users liméasoning and solving of
generalisation problems. As the user constructs their hafdthe problem, they im-
plicitly use the power of algebra and, as such, student éxpegs of the system serve
to provide a smooth transition to the teaching of algebrazamiahtuitive justification as
to why algebra is such a useful and powerful tool.

Throughout the development of ShapeBuilder, we have fabtbwa stakeholder-
centred design procedsnterleaving software development phases with smallespal
lot studies with groups of children of our target age (11-&4rg old). We have also
integrated feedback from various other stakeholders ssitbaehers and teacher edu-
cators. This co-design with teachers is critical since frsiudies have shown that the
use of educational tools in the education of mathematicg brisarefully integrated
within the classroom context [6]. In addition, studies attbe adoption of educational
software highlight that teachers would like the opportyiit be more involved in the
entire design process of computer-based environmentkdarstudents [7, 8].

The remainder of the paper is structured as follows. Setidiscusses the theoret-
ical background of mathematical generalisation and thigcdifies of developing this
kind of thinking in young learners. Section 3 then brieflyadses the key functionality
of ShapeBuilder. This is followed by detailed discussiohsarious inter-related de-
sign issues in Section 4. Section 5 presents a concrete tabkwe used extensively for
exploring generalisation, discussing its typical classnaleployment and how Shape-
Builder can be useful in its exploration. Section 6 drawsethgr the various issues
described in the paper and discusses future work.

2 Theoretical Background

The difficulty that algebraic thinking poses to children baen thoroughly studied in
the field of mathematics education [9, 10]. One of the sigaifiassues is that gener-
alisation problems are frequently presented to studentsifusing ways and this is
compounded by strict constraints on the teaching appreacted [11]. These difficul-
ties have to be investigated in the context of the curricythenature of the tasks posed
and the tools available for their solution [2]. The geneealsion in schools is towards
pattern spotting. As mentioned by many authors [2, 12], nmettuctions emphasise
the numeric aspect of patterning. These unfortunately fedtle variables becoming
obscured and limit students’ ability to conceptualisetiefeships between variables,
justify the rules and use them in a meaningful way [11]. Iniadd, teachers tend
to teach “the abstracted techniques isolated from all ewhte alternatively “the tech-
nique as a set of rules to be followed in specific contexts] {aB8elp their students find
the rule. This could result in students’ own powers atropgylue to lack of use [14].
Another difficulty secondary school students face is thexperience with the use
of letters. They struggle to grasp the idea of letters reprisg any value (e.g. [15])
and lack some of the mathematical vocabulary needed to &xgenerality at this age.
Even though it is a reasonable idea to introduce algebrg, ehdre is still the issue

% This term is intended to encompass user-centred desigreanuer-centred design since our
design process has integrated feedback from stakeholttensthan users/learners.

of how to introduce it so that students can make the tramsftiom simple arithmetic
to algebra smoothly. Other researchers [16] describe thdests’ written responses
lacked precision which supports the view of primary schaadients’ inexperience with
the mathematical language. Even if students succeed iressipg generality, they do
so in natural language. The right design of tasks thought®pdtential to encourage
students to write expressions in a general form rather thanagdescription in words.
This articulation process needs to be addressed so thangtudan learn to express
their thinking using algebraic notation. Deployed appiagty, ICT can help students
understand different representations — the symbolic, ¢tbeic and the numeric —
and reinforce connections between them once they realeseethtionships and the
equivalence of different representations.

Students are required to learn techniques to pass examseaedamples as ways to
learn different techniques, whereas working on differesaneples should help them re-
alise “how the calculations are done, with an eye to seeititeif generalise” [14]. The
idea of ‘seeing the general through the particular’ is a péuevay to introduce stu-
dents to generalisation [14]. It is important, though, todduce different approachesto
students and allow them to explore. In this way, studentsrene likely to “strengthen
their own powers, and at the same time, because of the peasperienced in exploit-
ing their own powers, actually find mathematics enjoyabieative and involving” [14].
This can be further enhanced by having students constmictiivn mathematical mod-
els [2]. This modelling approach seeks not only to fosteirggthe general in the par-
ticular by construction and exploration, but also a sensenafership of the abstraction
process, which as claimed above is of great value to the istside

Learning is an active process and learners construct mamddels and theories
of the world as they understand it. This latter idea is char&ed as constructivism.
Papert ([17]), though, introduced another notion inspligcconstructivism, which is
characterised as constructionism. This supports “thetlugtdearners build knowledge
structures particularly well in situations where they amgaged in constructing public
entities” [12, p.61]. Such a constructionist pedagogiggiraach allows students to
explore and construct their own models and can be usefulhpted when building
systems. In contrast to much of the content of modern schathematics textbooks,
tasks within such systems can aim at generating undersigamdther than inducing
repetitive behaviour.

3 ShapeBuilder

ShapeBuildéetis an environment which aims to encourage structured adgebeason-
ing of 11-14-year-old students. It allows the learner tatxeonstants, variables and
arbitrarily-complex compound expressions involving badgebraic operations. These
expressions can then be used to define various differenésh@nce a shape is defined,
the user can move it, attach it to other shapes and alter fitsirg expressions as de-
sired. The actual numerical values of expressions can bedfoy dragging them into
the evaluator.

4 Please see the project web-site { p: / / www. mi gen. or g/) to download this and other
project-related software.

Fig. 1: Screenshot of ShapeBuilder, showing the main afeggression Palette (1),
Shape List (2), main interaction area (3), Expression Taoi), Evaluator (5).

A critical feature of the software allows usersdefine expressions using shapes
Specifically, by double-clicking on an edge of a shape, tle¢ issable to obtain aicon-
variable[18] which, at all times, evaluates to the current value af timension of the
shape. These icon-variables drena fideexpressions and, as such, can be combined
with other expressions in the usual way.

Figure 1 shows the layout of the ShapeBuilder. The followdegtion explains
the design issues behind its crucial functionalities, gralrtevolution through our
stakeholder-centred iterative design process.

4 Design issues

Due to the nature of the tasks that the system is able to ajdned the developmental
level of the students, there is a pragmatic requirement sigdethe user interface in
an optimal way: not only should it be intuitive for all studgmo use but it should also
support their cognitive processes and reduce their menoawy ih relation to how the
software works. As explained in Section 1, one of the aimauofpwoject is to develop
tools that provide assistance to learners and advice théesabased on analyses of in-
dividual students and the activities of the group overdiisTequires striking a balance
between the need to design parts of the system with intelligigpport in mind, and the
need to take into account pedagogical and HCI considermation

Several pilot studies have been conducted so far, invoRéngessions with children
in our age range (11-14 years old). They are helping to raiptdations for the design
of the system’s intelligent support. However, due to thestarttionist principles be-

hind our approach, the expressive power of the system arfdeth@dom for students to
interact with it in an exploratory manner are not compromhisgthe need for intelligent
pedagogic support.

4.1 Direct Manipulation

In initial iterations of the software, creating a new regfi@required the user to select
two expressions and click on the ‘Make Rectangle’ buttog{Fé 2a) This creates
a new shape on the canvas at a default location and adds dtitsdet an entry in the
Shape List (Figure 2b).

width | | 4

oo [ke rectangepy] - - - wian [4 wiem ([4 j=——= .
- height 1 == o T heignt | 1]
=0 == - -E
height 1 HEtcey, - [:\5
@ (b) © (d)

Fig. 2: Using direct manipulatior{a) The user selects two expressions and clicks on
‘Make Rectangle’(b) This creates the appropriate entry in the Shape(dsiThe user
drags an expression for the wid{lf) and for the height.

As part of our reflections through contact with users andragkekeholders, it be-
came clear that this interface was far from intuitive. Prittigathis was due to the fact
that the user’s action of clicking on the ‘Make Rectangleftbn was dislocated from
the system responses of creating an entry in the Shape ldsa ahape in the interac-
tion area. We addressed this issue through allowing thetosigag expressions to slots
within the Shape List as shown in Figures 2c-d. Once all gmjmte expressions are
specified, the shape is created at a default location.

This refinement relates to the notion of ‘distance’ in dire@nipulation inter-
faces [19] as it reduces ‘the effort required to bridge thi lgetween the user’s goals
and the way they must be specified to the system’ [20]: if theg ugnts an expression
to be used as the width for a shape, they simply drag it to theogpiate location; there
is no need to understand that they must first select two esipresand then click on a
specific button to create a shape.

Other aspects of the interface also relate to issues oftd&ss. For example, recent
iterations introduced the facility for cloning shapes thgh dragging their thumbnail
from the Shape List to the interaction area. This is evenireddior creation of the ini-
tial shape rather than it being created at a default localiofuture work, the creation
of values and icon-variables will both adopt direct margpiolh interface metaphors.

® The expression selected first was used as the width and tbedsas the height.

In general, such interface design considerations are itapofor a constructionist en-
vironment since it has the potential to increase the clafithe construction and make
the process more intuitive.

4.2 Variables, Constantsand Values

Initially the software allowed the user to create variabld®se value could change
and constants whose values were fixed. These were displ#feetly on the screen.
However, during user trials it was often the case that caimsirg the user to choose
between these two typest creation timeled to unnecessary and confusing interac-
tion. Consider for example the situation where a user deditey want the side of an
already-created shape to be a variable rather than a ctnéfdh this constraint in
place, they would have to create a new variable and put itanepbf the original con-
stant. This situation becomes more complex if the consteattthey want to change is
buried deep within another expression. Not only is this sega of steps an issue in
terms of usability but, as part of a system that will featimteliigent support, detecting
that such an episode of interaction solely achieves thefiwamation of a constant into
a variable introduces an unwanted element of complexity.

In view of this, we experimented with another user interfabéch allowed the user
to convert variables to constants and vice versa at any fifnie.was achieved through
the use of a ‘Toggle Lock’ tool. Using this new tool on a val&lould ‘convert’ it to
a constant and, similarly, using this tool on a constant @éednvert’ it to a variable.

Through various discussions with teachers and teacheréalsc it later became
clear that the use of the terms ‘variable’ and ‘constantenmoblematic in themselves
since, in terms of the National Curriculum, a variable is atitg with a name such as
2 which varies in some way. Since the representation of veasabithin ShapeBuilder
was purely in terms of its current value and not in terms of m@athis could be a
potential source of confusion for users of the system. Asaltref these considerations,
the most recent iteration of the software development diages entirely from this false
dichotomy of constant and variable and provides a tool thedites a newalue The
user can switch between locked values (‘constants’) andcked values (‘variables’)
using the Toggle Lock tool as before. An important aspechisffinal configuration is
that values are always creatiedked In this way, it is clear to the user and the system
(for the purposes of intelligent support) whether they widuet values to be able to
change or not.

4.3 Building with ‘n’

When expressing generality, one of the main difficultiedes tise of variables for ex-
pressing universal concepts (ermgrepresenting the number of peopleany room).
This basic foundation of algebra is a difficult skill for aiien to acquire. Previous re-
search has shown that children start viewing variablesadie sthjects with no general
meaning and then pass through a series of steps. Theserstkpeiviewing variables
as concrete numbers then generalised numbers and, firsatjgreral entities [9].

When designing our system, one of our main concerns was ® thiw learner
the facility to ‘build with n’. We were conscious that using letters to denote variables

was likely to prove difficult for learners so we addressed fgiroblem by using ‘icon-
variables’ [18]. Icon-variables are iconic representadiof an attribute of an object
(such as the height of a rectangle). They are defined fronctsbgnd can be used to
construct expressions that, in turn, define other objects.

Icon-variables are a pictorial representation of a conaegtprovide a way to iden-
tify a general concept that is easier for young learnerstoprehend. They can be used
in exactly the same way as other expressions: copied, deleged in operations (e.g.
addition), used to define other objects, etc. In this wayy #re an intermediate step
that scaffold the use of variables.

This design feature holds significant potential to lead toegalised thinking. For
example, a constant and an icon-variable can be added tessxlationships such as
“the width of shape B is the width of shape A plus 2", or “shapésAwice as high as
shape B”. These expressions can be built on screen and uaedsmurce for reasoning
by the user.

4.4 Evaluating Expressions

As explained in Section 2, a typical problem with the depleyitnof generalisation
tasks is the premature engagement with specific numbersdiAgathis problem was
therefore an important requirement of the software.

Initially, this was achieved through providing tooltips @xpressions. When the user
hovered with the mouse cursor over an expression, a tootiigdhappear showing the
result of evaluating the expression. This is a standardfade metaphor wherein wait-
ing over various screen areas for a moment leads to moreniiatton. It was precisely
this status of ‘additional information’ that satisfied thes@yn requirement of number
as secondary.

Although during the student trials, users had minimal ditficin using this soft-
ware feature, we still concluded that its use was noneth@iexblematic. This was due
to the fact that the use of the tooltip wambiguouswhen a user displays a tooltip,
it is not clear whether it is deliberate or whether they aterating to it appropriately.
For the user, this means that the tooltip is potentiallyrditing if it is displayed when
unwanted. For the system — in which intelligent support i@oortant design consid-
eration — unambiguous interaction is essential as recedriiyg a large body of work
since the early 1990s [21]. The use of a tooltip for evalupéirpressions therefore can
increase the noise in the system.

In view of these considerations, we included a specific scerea within the in-
terface — the ‘Evaluator’. It i®nly through this component that a user can evaluate
expressions explicitl§.To demonstrate the behaviour of this component, consider th
case where the user has created a rectangle (of, say, widith Hesght 3) and wants to
evaluate expressions for both its area and its perimetey place these in the Evalua-
tor and it displays their initial values as shown in Figurel8tne width of the rectangle
is now changed to 5, the value of both these expressions tieges as a result since

5 Currently, all expressions can be evaluated by the user aligrin that they could carry out
the operations on the expressions themselves. The inedntivse the Evaluator therefore is
to save calculation time and ensure calculation accuracy.

they both depend on the width of the rectangle. Given thisddpncy, the Evaluator
obscures the evaluation component with question marksi(€&igb). In order to see the
new values of these expressions, the user must now clickese thuestion marks (in
any order they choose). In this way, an expression withirettaduator requiresxplicit
action from the user to view values as they change, whichmigtdirects their attention
and therefore reduces their cognitive load but also previdirmation to the system
increasing the amount and quality of the input (also retetoeas ‘bandwidth’ [22]) for
intelligent components of the system.

== MDl=F=
[=E=h=p=/aR|=N=N=t=

@)

Fig. 3: The behaviour of the Evaluatqa) Two expressions first evaluate(y) Both
expressions have changed.

5 Pond Tiling: A Concrete Task for Exploring Generalisation

As a first exploration of using ShapeBuilder, we focused om particular generalisa-
tion problem: pond tiling, which is typical in the Britishgdbra curriculum for children
in our target age group. The simplest version of this taskbeadescribed as follows:
“given a rectangular pond with an actual integer length amédth, how many x 1
tiles are needed to surround it?”. We have focused on the-fitimgl activity both be-
cause of its appropriateness for presentation on a comaudethe fact that it naturally
lends itself to a variety of different representations. Thgk encourages students to
find expressions for the number of tiles needed based on tigghleand the breadth
of the pond. Four different ways students could visualigepbnd and its surrounding
tiles are shown in Figure 4. Given these different arrangesstudents can be asked
to have interesting discussions about the equivalenceeoéxpressions derived from
each viewpoint. There is then an incentive to develop sontlesdasic rules of algebra
intuitively such as commutativity and associativity.

Fig. 4: Tilings corresponding to the general algebraic &qna:21+2b+4, 21+ 2(b+2),
2(1+1)+2(b+ 1), and2(l + 2) + 2b (I is the length of the pond;the breadth).

The following sections illustrate how this problem is usyapproached in the
classroom and how the introduction of ShapeBuilder aff@rdsfferent approach, in
line with the constructionist principles discussed in 8ecp.

5.1 Pond Tiling in the Classroom

In order to tackle pond tiling and similar generalisatioalgems in the classroom con-
text, students are often advised to try different valuesiferlength {) of the pond and
arrange them in a table such as the one shown in Table 1. Thieeranm the table are
then used to determine the relationship betweserd the number of tiles. This of course
enables students to generate a relationship using paptetting based on the numbers
in the table. However, this is far from ideal since this rielaship is independent of the
structure of the initial problem.

Length|Number of tiles|Difference
1 8 +2
2 10
+2
3 12 +2
50 ? *2

Table 1. A table of differences, typically used to find general rules.

Another disadvantage of this approach is that it is limitegotoblems involving
one variable. In cases where more than one variable is iadpthe approach becomes
cumbersome. A further — and more crucial — issue is that #psasentation is usually
given to students without any justification. As a resultdstuts learn to become perfect
executors of ‘tricks’ without being prompted to thinkwhy, but rather onijhowsimilar
problems were solved by the teacher. Lastly, since there snse of ownership in the
abstraction process, it becomes less meaningful.

5.2 Pond Tiling in ShapeBuilder

As presented in Section 4, students can use ShapeBuildenstract their own mod-
els, play with these creations and put them to the test. Usersither build specific
constructions using explicit values or use icon-varialjéessdiscussed in Section 4.3)
so that their constructions are general. Figure 5 illusgr#tte construction of a general
tiling using icon-variables.

During the pilot studies, one typical yet erroneous apgndaat students take is
to construct their solution for specificpond. After the solution has been constructed,
the given values of the problem (e.g. width and height of thed) can be changed
‘surprising’ the student who has to figure out what was wroiith the construction. In
the dynamic geometry literature, this operation is refittceas ‘messing up’ [23]. An
example of this is shown in Figure 6a where the width of théaregle is defined by the

Step 1 The user creates two inde- 1

pendent variables, clicks on ‘New wisth || 8
Shape’ and then drags these expres
sions to define the width and height
of their pond (rectangle).

Step 2 The user creates an iconic

height | [E

expression for the pond width and ’ —

add 2 to it. They then use this to de- wirn | [| +
fine the width of the horizontal tile.

They copy it (by dragging) to create neight | 1

two instances.

Step 3 They then create an iconic ,
expression for the height of the pond width | 1
and use this to define the height of D

the vertical tile. Once again, they
copy this through dragging.

neight | [

Fig. 5: Using ShapeBuilder for the pond tiling task. Eaclp stieows the latest entry in
the shape list and the current state of the canvas.

@ 7o [© Ell:l
height | 1

Fig. 6: ‘Messing up’.(a) The definition of the long rectangléh) the tiling for pond
width 3;(c) and 6.

constant 5. This looks correct for a pond of width 3 (Figurg lowever, if the width
of the pond is changed by the teacher (or indeed anotherrdtodein the future, the
system itself), the construction is no longer valid (Fig6icg.

The challenge for students, therefore, is to constructwtisol that is impervious to
‘messing up’ in this way. This ‘incentive to generalise’ fifovides students with the
opportunity to realise that there is an advantage in usiog-i@riables and promotes
thinking in terms of abstract characteristics of the tagkeathan specific numbers,
thus leading to a type of mathematical generalisation.

The next step for students is to name their expressions. Tyegally produce
phrases such as ‘width of the swimming pool’ or ‘number @fdil This initiates an ar-
ticulation process. Students could be further promptedéowords instead of phrases
and, later on, letters instead of words. As discussed in #okdround, this process
should help them make a smooth transition to the use of ¢eittethe traditional alge-
braic symbolism. Depending on the task, there are oppditsrior students to see the
pointin the use of letters since, for instance, naming thigjects or expressions will en-
able them to refer to them in a laconic way when they collatgordth fellow students.
Furthermore, in line with the constructionist approack, phocess of constructing ob-

jects or expressions and then naming them as they wish engagients and deviates
in a positive way from the traditional teaching method ofedi.

6 Conclusonsand Future Work

The need to recognise, express and justify generality iseatbre of mathematical
thinking and scientific enquiry. However, it has been cdesitty shown to be complex
and problematic for students. Several systems have beeioped to help students
in algebra but assisting the development of mathematicadigdisation still presents
important challenges. Although it may seem that it is theéstis’ responsibility to ac-
tively construct mathematics for themselves, it is unreabte to expect they will do
it on their own. This is particularly true in the case of matfagics because it is not
observable: unlike the physical world, mathematics onlgtexvithin people’s minds.
This paper presents a system that could act as a mediatoedrethe learner and math-
ematics and therefore assist students visually in theihemagtical knowledge and de-
velopment of generalisation.

The tool follows a constructionist approach, allowing sni$ to create shapes and
expressions and see the relationships between them. Tlee Ipap presented the de-
sign of the system, describing and discussing several nléssges: the need for direct
manipulation; the importance of how values are presentedearsystem; the need for
building with ‘n’ using icon-variables; and the issue of kxaing expressions.

Our aim is to foster the idea of seeing the general throughpéngcular by con-
struction and exploration, but also to promote a sense okostrip of the abstraction
process. However, we recognise that this also depends @ttivéies undertaken and
the educational settings in general. The paper presentedHhsotool has been applied
to a well-known generalisation problem and discussed tde@salue compared to the
traditional classroom-based approach. Future work wilifally evaluate its effective-
ness. In addition, the iterative design and developmeritesystem and the suggested
activities will continue to co-evolve. It is important to €ithe right balance between the
degree of structure and degree of flexibility built into tlearning process. While we
recognise the importance of giving clear guidance and suppstudents to achieve the
learning objectives, we also need to give them freedom téoespexperiment, enjoy,
interact and arrive at their own generalisations.

Next steps in our research include exploring collaboragimong learners within a
classroom context and integrating intelligent supporimithe system to assist students
and teachers in the teaching and learning of mathematiocalrgksation.

References

1. Mason, J., Graham, A., Johnston-Wilder, S.: DevelopihmRing in Algebra. Paul Chap-
man Publishing (2005)

2. Noss, R., Healy, L., Hoyles, C.: The construction of matagcal meanings: Connecting the
visual with the symbolic. Educational Studies in Mathers33(2) (1997) 203-233

3. Tall, D., Thomas, M.: Encouraging versatile thinking igebra using the computer. Educa-
tional Studies in Mathematic@2(2) (April 1991) 125-147

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Roschelle, J., Kaput, J.: SimCalc MathWorlds: Compasabmponents for calculus learn-
ing. Communications of the ACN9 (1996) 97-99

. Kieran, C., Yerushalmy, M.: Research on the role of tetdgioal environments in algebra

learning and teaching. In Stacey, K., H. Shick, H., Kendal, &fis.: The Future of the
Teaching and Learning of Algebra. The 12th ICMI Study. Vot of New ICMI Study
Series. Kluwer Academic Publishers (2004) 99-152

. Hoyles, C., Healy, L.: Visual and symbolic reasoning irtlleanatics: Making connections

with computers. Mathematical Thinking and Learni{d) (1999) 59-84

. Underwood, J., Cavendish, S., Dowling, S., Fogelmanl,.&uyson, T.: Are integrated learn-

ing systems effective learning support tools? ComputedsEatucatior26 (1996) 33—-40

. Pelgrum, W.: Obstacles to the integration of ICT in ediotatresults from a world-wide

educational assessment. Computers and Educafi¢2001) 163-178

. Kiichemann, D., Hoyles, C.: Investigating factors thfiience students’ mathematical rea-

soning. In: PME XXV. Volume 3. (2001) 257-264

Healy, L., Hoyles, C.: A study of proof conceptions ineddga. Journal for Research in
Mathematics EducatioBl(4) (2000) 396428

Moss, J., Beatty, R.: Knowledge building in mathematggpporting collaborative learning
in pattern problems. International Journal of Computepifuted Collaborative Learnin
(2006) 441-465

Noss, R., Hoyles, C.: Windows on mathematical meanirggrning cultures and computers.
Dordrecht: Kluwer (1996)

Sutherland, R., Mason, J.: Key aspects of teaching eddgelschools. QCA, London (2005)
Mason, J.: Generalisation and algebra: Exploitingdelil’'s powers. In Haggarty, L., ed.:
Aspects of Teaching Secondary Mathematics: Perspectivézactice. Routledge Falmer
and the Open University (2002) 105-120

Duke, R., Graham, A.: Inside the letter. Mathematicsch@ay Incorporating Micromath
200 (2007) 42—-45

Warren, E., Cooper, T.: Generalising the pattern rul@iiual growth patterns: Actions that
support 8 year olds’ thinking. Educational Studies in Math&cs67 (2008) 171-185
Papert, S.: Mindstorms: Children, Computers, and Plolviteas. Perseus Books, U.S.
(1993)

Gutiérrez, S., Mavrikis, M., Pearce, D.: A learning ieonment for promoting structured
algebraic thinking in children. In: Int. Conf. in Advanceaarning Technologies (ICALT
'08), IEEE (2008)

Schneiderman, |.E.: Direct manipulation: A step beypnmagramming languages. |IEEE
Computerl6 (1983) 57-69

Hutchins, E.L., Hollan, J.D., Norman, D.A.: Direct mauliation interfaces. Human-
Computer Interactiod (1985) 311-338

Orey, M., Nelson, W.: Development principles for inggint tutoring systems: Integrating
cognitive theory into the development of computer-bassttuction. Educational Technol-
ogy Research and Developmer{1) (March 1993) 59-72

VanLehn, K.: Student modeling. In Polson, M., Richarnjsb, eds.: Foundations of Intelli-
gent Tutoring Systems. Hillsdale, NJ: Erlbaum (1988) 55-78

Healy, L., Heltz, R., Hoyles, C., Noss, R.: Messing upcidimath10 (1994) 14-17

