
Issues in the Design of an Environment to Support the
Learning of Mathematical Generalisation⋆

Darren Pearce1, Manolis Mavrikis2, Eirini Geraniou2, and Sergio Gutiérrez1

London Knowledge Lab1,2

1 Birkbeck College {darrenp,sergut}@dcs.bbk.ac.uk
2 Institute of Education{m.mavrikis,e.geraniou}@ioe.ac.uk

Abstract. Expressing generality, recognising and analysing patterns and articu-
lating structure is a complex task and one that is invariablyproblematic for stu-
dents. Nonetheless, very few systems exist that support learners explicitly in the
process of mathematical generalisation. We have addressedthis by developing
a novel environment that supports users in their reasoning and problem-solving
of generalisation tasks. We have followed a stakeholder-centred design process,
integrating feedback and reflections from twenty-four children, five teachers and
a variety of other stakeholders. This paper focuses on several inter-related design
issues that have been informed by this iterative process anddemonstrates how the
system can be used for a typical generalisation task to foster an appreciation of
generality and indeed algebra.

1 Introduction

In the traditional mathematical curriculum, algebra is a means of expressing general-
ity. However, generalisation is so implicit in algebra thatexperts no longer notice the
strategies they have integrated into their thinking [1]. This causes problems for students
who perceive algebra as anendpointrather than a tool for problem solving [2].

Several learning environments have been developed and integrated in classroom
contexts over the last few years that attempt to help students in algebra and problem
solving. However, the vast majority of these environments (e.g. [3–5]) are aimed at
students who already have at least a basic understanding of algebra and attempt to
develop students’ understanding of various representations such as tables and graphs.
These learning environments therefore do not deal explicitly with the generalisation
difficulties that students face before they are comfortablewith algebra. A different ap-
proach could focus on helping students derive generalisations from patterns. For exam-
ple, in Mathsticks [6] students use a subset of LOGO commandsto work on patterns and
regularities constructed out of matchsticks. This allows them to explore how the vari-
ables within the task relate to each other. Despite some successes, difficulties remain,
and these tend to coalesce around the need for significant pedagogic support from the
teacher to provide a bridge to algebraic symbolism and generalisation.

⋆ The authors would like to acknowledge the rest of the membersof the MiGen team and finan-
cial support from the TLRP (e-Learning Phase-II, RES-139-25-0381).

This paper presents a mockup mathematical microworld — ShapeBuilder — that
attempts to address these issues by supporting users in their reasoning and solving of
generalisation problems. As the user constructs their model of the problem, they im-
plicitly use the power of algebra and, as such, student experiences of the system serve
to provide a smooth transition to the teaching of algebra andan intuitive justification as
to why algebra is such a useful and powerful tool.

Throughout the development of ShapeBuilder, we have followed a stakeholder-
centred design process,3 interleaving software development phases with small-scale pi-
lot studies with groups of children of our target age (11–14 years old). We have also
integrated feedback from various other stakeholders such as teachers and teacher edu-
cators. This co-design with teachers is critical since former studies have shown that the
use of educational tools in the education of mathematics must be carefully integrated
within the classroom context [6]. In addition, studies about the adoption of educational
software highlight that teachers would like the opportunity to be more involved in the
entire design process of computer-based environments for their students [7, 8].

The remainder of the paper is structured as follows. Section2 discusses the theoret-
ical background of mathematical generalisation and the difficulties of developing this
kind of thinking in young learners. Section 3 then briefly describes the key functionality
of ShapeBuilder. This is followed by detailed discussions of various inter-related de-
sign issues in Section 4. Section 5 presents a concrete task we have used extensively for
exploring generalisation, discussing its typical classroom deployment and how Shape-
Builder can be useful in its exploration. Section 6 draws together the various issues
described in the paper and discusses future work.

2 Theoretical Background

The difficulty that algebraic thinking poses to children hasbeen thoroughly studied in
the field of mathematics education [9, 10]. One of the significant issues is that gener-
alisation problems are frequently presented to students inconfusing ways and this is
compounded by strict constraints on the teaching approaches used [11]. These difficul-
ties have to be investigated in the context of the curriculum, the nature of the tasks posed
and the tools available for their solution [2]. The general tension in schools is towards
pattern spotting. As mentioned by many authors [2, 12], mostinstructions emphasise
the numeric aspect of patterning. These unfortunately leadto the variables becoming
obscured and limit students’ ability to conceptualise relationships between variables,
justify the rules and use them in a meaningful way [11]. In addition, teachers tend
to teach “the abstracted techniques isolated from all context” or alternatively “the tech-
nique as a set of rules to be followed in specific contexts” [13] to help their students find
the rule. This could result in students’ own powers atrophying due to lack of use [14].

Another difficulty secondary school students face is their inexperience with the use
of letters. They struggle to grasp the idea of letters representing any value (e.g. [15])
and lack some of the mathematical vocabulary needed to express generality at this age.
Even though it is a reasonable idea to introduce algebra early, there is still the issue

3 This term is intended to encompass user-centred design and learner-centred design since our
design process has integrated feedback from stakeholders other than users/learners.

of how to introduce it so that students can make the transition from simple arithmetic
to algebra smoothly. Other researchers [16] describe that students’ written responses
lacked precision which supports the view of primary school students’ inexperience with
the mathematical language. Even if students succeed in expressing generality, they do
so in natural language. The right design of tasks though has the potential to encourage
students to write expressions in a general form rather than give a description in words.
This articulation process needs to be addressed so that students can learn to express
their thinking using algebraic notation. Deployed appropriately, ICT can help students
understand different representations — the symbolic, the iconic and the numeric —
and reinforce connections between them once they realise the relationships and the
equivalence of different representations.

Students are required to learn techniques to pass exams and use examples as ways to
learn different techniques, whereas working on different examples should help them re-
alise “how the calculations are done, with an eye to seeing ifthey generalise” [14]. The
idea of ‘seeing the general through the particular’ is a powerful way to introduce stu-
dents to generalisation [14]. It is important, though, to introduce different approaches to
students and allow them to explore. In this way, students aremore likely to “strengthen
their own powers, and at the same time, because of the pleasure experienced in exploit-
ing their own powers, actually find mathematics enjoyable, creative and involving” [14].
This can be further enhanced by having students construct their own mathematical mod-
els [2]. This modelling approach seeks not only to foster seeing the general in the par-
ticular by construction and exploration, but also a sense ofownership of the abstraction
process, which as claimed above is of great value to the students.

Learning is an active process and learners construct mentalmodels and theories
of the world as they understand it. This latter idea is characterised as constructivism.
Papert ([17]), though, introduced another notion inspiredby constructivism, which is
characterised as constructionism. This supports “the ideathat learners build knowledge
structures particularly well in situations where they are engaged in constructing public
entities” [12, p.61]. Such a constructionist pedagogical approach allows students to
explore and construct their own models and can be usefully adopted when building
systems. In contrast to much of the content of modern school mathematics textbooks,
tasks within such systems can aim at generating understanding rather than inducing
repetitive behaviour.

3 ShapeBuilder

ShapeBuilder4 is an environment which aims to encourage structured algebraic reason-
ing of 11–14-year-old students. It allows the learner to create constants, variables and
arbitrarily-complex compound expressions involving basic algebraic operations. These
expressions can then be used to define various different shapes. Once a shape is defined,
the user can move it, attach it to other shapes and alter its defining expressions as de-
sired. The actual numerical values of expressions can be found by dragging them into
the evaluator.

4 Please see the project web-site (http://www.migen.org/) to download this and other
project-related software.

Fig. 1: Screenshot of ShapeBuilder, showing the main areas:Expression Palette (1),
Shape List (2), main interaction area (3), Expression Toolbar (4), Evaluator (5).

A critical feature of the software allows users todefine expressions using shapes.
Specifically, by double-clicking on an edge of a shape, the user is able to obtain anicon-
variable[18] which, at all times, evaluates to the current value of that dimension of the
shape. These icon-variables arebona fideexpressions and, as such, can be combined
with other expressions in the usual way.

Figure 1 shows the layout of the ShapeBuilder. The followingsection explains
the design issues behind its crucial functionalities, and their evolution through our
stakeholder-centred iterative design process.

4 Design issues

Due to the nature of the tasks that the system is able to address, and the developmental
level of the students, there is a pragmatic requirement to design the user interface in
an optimal way: not only should it be intuitive for all students to use but it should also
support their cognitive processes and reduce their memory load in relation to how the
software works. As explained in Section 1, one of the aims of our project is to develop
tools that provide assistance to learners and advice to teachers based on analyses of in-
dividual students and the activities of the group overall. This requires striking a balance
between the need to design parts of the system with intelligent support in mind, and the
need to take into account pedagogical and HCI considerations.

Several pilot studies have been conducted so far, involving26 sessions with children
in our age range (11–14 years old). They are helping to raise implications for the design
of the system’s intelligent support. However, due to the constructionist principles be-

hind our approach, the expressive power of the system and thefreedom for students to
interact with it in an exploratory manner are not compromised by the need for intelligent
pedagogic support.

4.1 Direct Manipulation

In initial iterations of the software, creating a new rectangle required the user to select
two expressions and click on the ‘Make Rectangle’ button (Figure 2a).5 This creates
a new shape on the canvas at a default location and adds its details as an entry in the
Shape List (Figure 2b).

.

(a) (b) (c) (d)

Fig. 2: Using direct manipulation.(a) The user selects two expressions and clicks on
‘Make Rectangle’;(b) This creates the appropriate entry in the ShapeList.(c) The user
drags an expression for the width;(d) and for the height.

As part of our reflections through contact with users and other stakeholders, it be-
came clear that this interface was far from intuitive. Primarily, this was due to the fact
that the user’s action of clicking on the ‘Make Rectangle’ button was dislocated from
the system responses of creating an entry in the Shape List and a shape in the interac-
tion area. We addressed this issue through allowing the userto drag expressions to slots
within the Shape List as shown in Figures 2c-d. Once all appropriate expressions are
specified, the shape is created at a default location.

This refinement relates to the notion of ‘distance’ in directmanipulation inter-
faces [19] as it reduces ‘the effort required to bridge the gulf between the user’s goals
and the way they must be specified to the system’ [20]: if the user wants an expression
to be used as the width for a shape, they simply drag it to the appropriate location; there
is no need to understand that they must first select two expressions and then click on a
specific button to create a shape.

Other aspects of the interface also relate to issues of directness. For example, recent
iterations introduced the facility for cloning shapes through dragging their thumbnail
from the Shape List to the interaction area. This is even required for creation of the ini-
tial shape rather than it being created at a default location. In future work, the creation
of values and icon-variables will both adopt direct manipulation interface metaphors.

5 The expression selected first was used as the width and the second as the height.

In general, such interface design considerations are important for a constructionist en-
vironment since it has the potential to increase the clarityof the construction and make
the process more intuitive.

4.2 Variables, Constants and Values

Initially the software allowed the user to create variableswhose value could change
and constants whose values were fixed. These were displayed differently on the screen.
However, during user trials it was often the case that constraining the user to choose
between these two typesat creation timeled to unnecessary and confusing interac-
tion. Consider for example the situation where a user decides they want the side of an
already-created shape to be a variable rather than a constant. With this constraint in
place, they would have to create a new variable and put it in place of the original con-
stant. This situation becomes more complex if the constant that they want to change is
buried deep within another expression. Not only is this sequence of steps an issue in
terms of usability but, as part of a system that will feature intelligent support, detecting
that such an episode of interaction solely achieves the transformation of a constant into
a variable introduces an unwanted element of complexity.

In view of this, we experimented with another user interfacewhich allowed the user
to convert variables to constants and vice versa at any time.This was achieved through
the use of a ‘Toggle Lock’ tool. Using this new tool on a variable would ‘convert’ it to
a constant and, similarly, using this tool on a constant would ‘convert’ it to a variable.

Through various discussions with teachers and teacher educators, it later became
clear that the use of the terms ‘variable’ and ‘constant’ were problematic in themselves
since, in terms of the National Curriculum, a variable is an entity with a name such as
x which varies in some way. Since the representation of variables within ShapeBuilder
was purely in terms of its current value and not in terms of a name, this could be a
potential source of confusion for users of the system. As a result of these considerations,
the most recent iteration of the software development disengages entirely from this false
dichotomy of constant and variable and provides a tool that creates a newvalue. The
user can switch between locked values (‘constants’) and unlocked values (‘variables’)
using the Toggle Lock tool as before. An important aspect of this final configuration is
that values are always createdlocked. In this way, it is clear to the user and the system
(for the purposes of intelligent support) whether they wantthe values to be able to
change or not.

4.3 Building with ‘n’

When expressing generality, one of the main difficulties is the use of variables for ex-
pressing universal concepts (e.g.n representing the number of people inany room).
This basic foundation of algebra is a difficult skill for children to acquire. Previous re-
search has shown that children start viewing variables as static objects with no general
meaning and then pass through a series of steps. These steps include viewing variables
as concrete numbers then generalised numbers and, finally, as general entities [9].

When designing our system, one of our main concerns was to give the learner
the facility to ‘build with n’. We were conscious that using letters to denote variables

was likely to prove difficult for learners so we addressed this problem by using ‘icon-
variables’ [18]. Icon-variables are iconic representations of an attribute of an object
(such as the height of a rectangle). They are defined from objects and can be used to
construct expressions that, in turn, define other objects.

Icon-variables are a pictorial representation of a conceptand provide a way to iden-
tify a general concept that is easier for young learners to comprehend. They can be used
in exactly the same way as other expressions: copied, deleted, used in operations (e.g.
addition), used to define other objects, etc. In this way, they are an intermediate step
that scaffold the use of variables.

This design feature holds significant potential to lead to generalised thinking. For
example, a constant and an icon-variable can be added to express relationships such as
“the width of shape B is the width of shape A plus 2”, or “shape Ais twice as high as
shape B”. These expressions can be built on screen and used asa resource for reasoning
by the user.

4.4 Evaluating Expressions

As explained in Section 2, a typical problem with the deployment of generalisation
tasks is the premature engagement with specific numbers. Avoiding this problem was
therefore an important requirement of the software.

Initially, this was achieved through providing tooltips onexpressions. When the user
hovered with the mouse cursor over an expression, a tooltip would appear showing the
result of evaluating the expression. This is a standard interface metaphor wherein wait-
ing over various screen areas for a moment leads to more information. It was precisely
this status of ‘additional information’ that satisfied the design requirement of number
as secondary.

Although during the student trials, users had minimal difficulty in using this soft-
ware feature, we still concluded that its use was nonetheless problematic. This was due
to the fact that the use of the tooltip wasambiguous; when a user displays a tooltip,
it is not clear whether it is deliberate or whether they are attending to it appropriately.
For the user, this means that the tooltip is potentially distracting if it is displayed when
unwanted. For the system — in which intelligent support is animportant design consid-
eration — unambiguous interaction is essential as recognised by a large body of work
since the early 1990s [21]. The use of a tooltip for evaluating expressions therefore can
increase the noise in the system.

In view of these considerations, we included a specific screen area within the in-
terface — the ‘Evaluator’. It isonly through this component that a user can evaluate
expressions explicitly.6 To demonstrate the behaviour of this component, consider the
case where the user has created a rectangle (of, say, width 4 and height 3) and wants to
evaluate expressions for both its area and its perimeter. They place these in the Evalua-
tor and it displays their initial values as shown in Figure 3a. If the width of the rectangle
is now changed to 5, the value of both these expressions then changes as a result since

6 Currently, all expressions can be evaluated by the user manually in that they could carry out
the operations on the expressions themselves. The incentive to use the Evaluator therefore is
to save calculation time and ensure calculation accuracy.

they both depend on the width of the rectangle. Given this dependency, the Evaluator
obscures the evaluation component with question marks (Figure 3b). In order to see the
new values of these expressions, the user must now click on these question marks (in
any order they choose). In this way, an expression within theevaluator requiresexplicit
action from the user to view values as they change, which not only directs their attention
and therefore reduces their cognitive load but also provides information to the system
increasing the amount and quality of the input (also referred to as ‘bandwidth’ [22]) for
intelligent components of the system.

(a) (b)

Fig. 3: The behaviour of the Evaluator.(a) Two expressions first evaluated;(b) Both
expressions have changed.

5 Pond Tiling: A Concrete Task for Exploring Generalisation

As a first exploration of using ShapeBuilder, we focused on one particular generalisa-
tion problem: pond tiling, which is typical in the British algebra curriculum for children
in our target age group. The simplest version of this task canbe described as follows:
“given a rectangular pond with an actual integer length and breadth, how many1 × 1
tiles are needed to surround it?”. We have focused on the pond-tiling activity both be-
cause of its appropriateness for presentation on a computerand the fact that it naturally
lends itself to a variety of different representations. Thetask encourages students to
find expressions for the number of tiles needed based on the length and the breadth
of the pond. Four different ways students could visualise the pond and its surrounding
tiles are shown in Figure 4. Given these different arrangements, students can be asked
to have interesting discussions about the equivalence of the expressions derived from
each viewpoint. There is then an incentive to develop some ofthe basic rules of algebra
intuitively such as commutativity and associativity.

Fig. 4: Tilings corresponding to the general algebraic equations:2l+2b+4,2l+2(b+2),
2(l + 1) + 2(b + 1), and2(l + 2) + 2b (l is the length of the pond;b the breadth).

The following sections illustrate how this problem is usually approached in the
classroom and how the introduction of ShapeBuilder affordsa different approach, in
line with the constructionist principles discussed in Section 2.

5.1 Pond Tiling in the Classroom

In order to tackle pond tiling and similar generalisation problems in the classroom con-
text, students are often advised to try different values forthe length (l) of the pond and
arrange them in a table such as the one shown in Table 1. The numbers in the table are
then used to determine the relationship betweenl and the number of tiles. This of course
enables students to generate a relationship using pattern spotting based on the numbers
in the table. However, this is far from ideal since this relationship is independent of the
structure of the initial problem.

Length Number of tiles Difference
1 8

+2
2 10

+2
3 12

+2
.

+2
50 ?

Table 1. A table of differences, typically used to find general rules.

Another disadvantage of this approach is that it is limited to problems involving
one variable. In cases where more than one variable is involved, the approach becomes
cumbersome. A further — and more crucial — issue is that this representation is usually
given to students without any justification. As a result, students learn to become perfect
executors of ‘tricks’ without being prompted to think ofwhy, but rather onlyhowsimilar
problems were solved by the teacher. Lastly, since there is no sense of ownership in the
abstraction process, it becomes less meaningful.

5.2 Pond Tiling in ShapeBuilder

As presented in Section 4, students can use ShapeBuilder to construct their own mod-
els, play with these creations and put them to the test. Userscan either build specific
constructions using explicit values or use icon-variables(as discussed in Section 4.3)
so that their constructions are general. Figure 5 illustrates the construction of a general
tiling using icon-variables.

During the pilot studies, one typical yet erroneous approach that students take is
to construct their solution for aspecificpond. After the solution has been constructed,
the given values of the problem (e.g. width and height of the pond) can be changed
‘surprising’ the student who has to figure out what was wrong with the construction. In
the dynamic geometry literature, this operation is referred to as ‘messing up’ [23]. An
example of this is shown in Figure 6a where the width of the rectangle is defined by the

Step 1 The user creates two inde-
pendent variables, clicks on ‘New
Shape’ and then drags these expres-
sions to define the width and height
of their pond (rectangle).
Step 2 The user creates an iconic
expression for the pond width and
add 2 to it. They then use this to de-
fine the width of the horizontal tile.
They copy it (by dragging) to create
two instances.
Step 3 They then create an iconic
expression for the height of the pond
and use this to define the height of
the vertical tile. Once again, they
copy this through dragging.

Fig. 5: Using ShapeBuilder for the pond tiling task. Each step shows the latest entry in
the shape list and the current state of the canvas.

(a) (b) (c)

Fig. 6: ‘Messing up’.(a) The definition of the long rectangle;(b) the tiling for pond
width 3; (c) and 6.

constant 5. This looks correct for a pond of width 3 (Figure 6b). However, if the width
of the pond is changed by the teacher (or indeed another student or, in the future, the
system itself), the construction is no longer valid (Figure6c).

The challenge for students, therefore, is to construct a solution that is impervious to
‘messing up’ in this way. This ‘incentive to generalise’ [1]provides students with the
opportunity to realise that there is an advantage in using icon-variables and promotes
thinking in terms of abstract characteristics of the task rather than specific numbers,
thus leading to a type of mathematical generalisation.

The next step for students is to name their expressions. Theytypically produce
phrases such as ‘width of the swimming pool’ or ‘number of tiles’. This initiates an ar-
ticulation process. Students could be further prompted to use words instead of phrases
and, later on, letters instead of words. As discussed in the background, this process
should help them make a smooth transition to the use of letters in the traditional alge-
braic symbolism. Depending on the task, there are opportunities for students to see the
point in the use of letters since, for instance, naming theirobjects or expressions will en-
able them to refer to them in a laconic way when they collaborate with fellow students.
Furthermore, in line with the constructionist approach, the process of constructing ob-

jects or expressions and then naming them as they wish engages students and deviates
in a positive way from the traditional teaching method of algebra.

6 Conclusions and Future Work

The need to recognise, express and justify generality is at the core of mathematical
thinking and scientific enquiry. However, it has been consistently shown to be complex
and problematic for students. Several systems have been developed to help students
in algebra but assisting the development of mathematical generalisation still presents
important challenges. Although it may seem that it is the students’ responsibility to ac-
tively construct mathematics for themselves, it is unreasonable to expect they will do
it on their own. This is particularly true in the case of mathematics because it is not
observable: unlike the physical world, mathematics only exists within people’s minds.
This paper presents a system that could act as a mediator between the learner and math-
ematics and therefore assist students visually in their mathematical knowledge and de-
velopment of generalisation.

The tool follows a constructionist approach, allowing students to create shapes and
expressions and see the relationships between them. The paper has presented the de-
sign of the system, describing and discussing several design issues: the need for direct
manipulation; the importance of how values are presented inthe system; the need for
building with ‘n’ using icon-variables; and the issue of evaluating expressions.

Our aim is to foster the idea of seeing the general through theparticular by con-
struction and exploration, but also to promote a sense of ownership of the abstraction
process. However, we recognise that this also depends on theactivities undertaken and
the educational settings in general. The paper presented how the tool has been applied
to a well-known generalisation problem and discussed the added value compared to the
traditional classroom-based approach. Future work will formally evaluate its effective-
ness. In addition, the iterative design and development of the system and the suggested
activities will continue to co-evolve. It is important to find the right balance between the
degree of structure and degree of flexibility built into the learning process. While we
recognise the importance of giving clear guidance and support to students to achieve the
learning objectives, we also need to give them freedom to explore, experiment, enjoy,
interact and arrive at their own generalisations.

Next steps in our research include exploring collaborationamong learners within a
classroom context and integrating intelligent support within the system to assist students
and teachers in the teaching and learning of mathematical generalisation.

References

1. Mason, J., Graham, A., Johnston-Wilder, S.: Developing Thinking in Algebra. Paul Chap-
man Publishing (2005)

2. Noss, R., Healy, L., Hoyles, C.: The construction of mathematical meanings: Connecting the
visual with the symbolic. Educational Studies in Mathematics33(2) (1997) 203–233

3. Tall, D., Thomas, M.: Encouraging versatile thinking in algebra using the computer. Educa-
tional Studies in Mathematics22(2) (April 1991) 125–147

4. Roschelle, J., Kaput, J.: SimCalc MathWorlds: Composable components for calculus learn-
ing. Communications of the ACM39 (1996) 97–99

5. Kieran, C., Yerushalmy, M.: Research on the role of technological environments in algebra
learning and teaching. In Stacey, K., H. Shick, H., Kendal, M., eds.: The Future of the
Teaching and Learning of Algebra. The 12th ICMI Study. Volume 8 of New ICMI Study
Series. Kluwer Academic Publishers (2004) 99–152

6. Hoyles, C., Healy, L.: Visual and symbolic reasoning in mathematics: Making connections
with computers. Mathematical Thinking and Learning1(1) (1999) 59–84

7. Underwood, J., Cavendish, S., Dowling, S., Fogelman, K.,Lawson, T.: Are integrated learn-
ing systems effective learning support tools? Computers and Education26 (1996) 33–40

8. Pelgrum, W.: Obstacles to the integration of ICT in education: results from a world-wide
educational assessment. Computers and Education37 (2001) 163–178

9. Küchemann, D., Hoyles, C.: Investigating factors that influence students’ mathematical rea-
soning. In: PME XXV. Volume 3. (2001) 257–264

10. Healy, L., Hoyles, C.: A study of proof conceptions in algebra. Journal for Research in
Mathematics Education31(4) (2000) 396–428

11. Moss, J., Beatty, R.: Knowledge building in mathematics: Supporting collaborative learning
in pattern problems. International Journal of Computer-Supported Collaborative Learning1
(2006) 441–465

12. Noss, R., Hoyles, C.: Windows on mathematical meanings:Learning cultures and computers.
Dordrecht: Kluwer (1996)

13. Sutherland, R., Mason, J.: Key aspects of teaching algebra in schools. QCA, London (2005)
14. Mason, J.: Generalisation and algebra: Exploiting children’s powers. In Haggarty, L., ed.:

Aspects of Teaching Secondary Mathematics: Perspectives on Practice. Routledge Falmer
and the Open University (2002) 105–120

15. Duke, R., Graham, A.: Inside the letter. Mathematics Teaching Incorporating Micromath
200 (2007) 42–45

16. Warren, E., Cooper, T.: Generalising the pattern rule for visual growth patterns: Actions that
support 8 year olds’ thinking. Educational Studies in Mathematics67 (2008) 171–185

17. Papert, S.: Mindstorms: Children, Computers, and Powerful Ideas. Perseus Books, U.S.
(1993)

18. Gutiérrez, S., Mavrikis, M., Pearce, D.: A learning environment for promoting structured
algebraic thinking in children. In: Int. Conf. in Advanced Learning Technologies (ICALT
’08), IEEE (2008)

19. Schneiderman, I.E.: Direct manipulation: A step beyondprogramming languages. IEEE
Computer16 (1983) 57–69

20. Hutchins, E.L., Hollan, J.D., Norman, D.A.: Direct manipulation interfaces. Human-
Computer Interaction1 (1985) 311–338

21. Orey, M., Nelson, W.: Development principles for intelligent tutoring systems: Integrating
cognitive theory into the development of computer-based instruction. Educational Technol-
ogy Research and Development41(1) (March 1993) 59–72

22. VanLehn, K.: Student modeling. In Polson, M., Richardson, J., eds.: Foundations of Intelli-
gent Tutoring Systems. Hillsdale, NJ: Erlbaum (1988) 55–78

23. Healy, L., Heltz, R., Hoyles, C., Noss, R.: Messing up. Micromath10 (1994) 14–17

