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Abstract 

Despite the vast amount of scholarly effort to compare music and speech from a 

wide range of perspectives, some of the most fundamental aspects of music and 

speech still remain unexplored. This PhD thesis tackles three aspects essential to the 

understanding of the relations between music and speech: dynamics, timbre and 

pitch. In terms of dynamics, previous research has used perception experiments 

where dynamics is represented by acoustic intensity, with little attention to the fact 

that dynamics is an important mechanism of motor movements in both music 

performance and speech production. Therefore, the first study of this thesis 

compared the dynamics of music and speech using production experiments with a 

focus on motor movements: finger force in affective piano performance was used as 

an index of music dynamics and articulatory effort in affective Mandarin speech was 

used as an index of speech dynamics. The results showed both similarities and 

differences between the two domains.  With regard to timbre, there has been a long-

held observation that the timbre of musical instruments mimics human voice, 

particularly in terms of conveying emotions. However, little research has been done 

to empirically investigate the emotional connotations of the timbre of isolated sounds 

of musical instruments in relation to affective human speech. Hence, the second 

study explored this issue using behavioral and ERP methods. The results largely 

supported previous observations, although some fundamental differences also 

existed. In terms of pitch, some studies have mentioned that music could have close 

relations with speech with regard to pitch prominence and expectation patterns. 

Nevertheless, the functional differences of pitch in music and speech could also 

imply that speech does not necessarily follow the same pitch patterns as music in 

conveying prominence and expectation. So far there is little empirical evidence to 
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either support or refute the aforementioned observations. Hence the third study 

examined this issue. The results showed the differences outweighed the similarities 

between music and speech in terms of pitch prominence and expectation. In 

conclusion, from three perspectives essential to music and speech, this thesis has 

shed new light on the overlapping yet distinct relations between the two domains.  
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Chapter 1  

Introduction 

1.1 Background 

Music and speech reflect fundamental aspects of human capacities (Patel, 2008). The 

relations between music and speech have been attracting scholarly interest for a long 

time (Fonagy and Magdics, 1963; Scherer, 1995; Sundberg, 1982), with attempts to 

compare the two from a wide range of perspectives: prosody (Scherer, 1995), 

semantics (Seifert et al., 2013), syntax (Lerdahl, 2013), evolution (Cross et al., 

2013), neurocognitive mechanisms (Steinbeis and Koelsch, 2008) and facial 

expressions (Carlo and Guaitella, 2004; Livingstone et al., 2015).  

Particularly, an increasing amount of attention has been given to comparisons 

between affective music and speech. The reason is that vocal expression of emotion 

is a crucial aspect of speech communication, which has been found to exist cross-

culturally (Scherer, 2003); communicating emotion is also a primary function of 

music that exists in both music performance and music perception (Juslin and 

Laukka, 2003). Therefore, music and speech have been two important channels for 

humans to communicate emotion (Juslin and Laukka, 2003). Early attempts to find 

parallels between the two domains could be found in Spencer (1857) where singing 

was argued to be closely associated with vocal expression of emotions, according to 

the hypothesis that emotion triggers physiological changes which could be the 

precondition for the acoustic correlations between music and speech. This classic 

argument has served as the stepping stone for subsequent scholarly endeavor for the 
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search of the similarities and differences between affective music and speech 

(Scherer, 1995; Sundberg, 1982).  

The majority of studies on the comparisons between the two domains show that 

perceptually, acoustic cues (pitch, intensity and duration) of affective music and 

speech are similar (Curtis and Bharucha, 2010; Ilie and Thompson, 2006; Juslin and 

Laukka, 2003). For example, in highly activated emotions such as anger and 

happiness, the sound intensity increases and the high-low frequency energy ratio 

increases; the opposite is true in much less activated emotions such as sadness and 

tenderness (Juslin and Laukka, 2003). Acoustic differences between the two domains 

also exist, but on the whole similarities outweigh differences according to the 

seminal review of around 150 studies on affective music and speech (Juslin and 

Laukka, 2003).  

1.2 A brief introduction to the aims of this thesis 

Past research as outlined above has brought valuable insight into the relations 

between music and speech. However, some fundamental aspects of music and 

speech still remain insufficiently explored especially in terms of dynamics, timbre 

and pitch. With regard to dynamics, research is sparse on the comparisons between 

the dynamics of music and speech from the perspective of production paradigms. 

This could be due to the fact that compared to the vast amount of perception studies, 

research using production paradigms on music is on the rise only in the past twenty 

years, thanks to the advent of music technology that makes quantifying music 

production (i.e., performance) easier than before. Particular interest has been given 

to affective piano/keyboard performance due to the availability of MIDI, 3D motion 

capture cameras and digital acoustic pianos (Palmer, 2006). Nevertheless, to our 
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knowledge, strictly controlled experiments that directly compare the dynamics of 

affective piano performance with those of affective speech production are rare. 

Given the fact that both speech production and piano performance are essentially 

human motor movements, it is worth investigating if the two domains are similar or 

different with regard to the mechanisms of motor movements. Dynamics is an 

important mechanism of motor movements (more details and justification of 

selecting dynamics as a measurement parameter will be given in Chapter 2) which so 

far has not been systematically examined in the comparisons between music 

performance and speech production. Therefore, the first study of this thesis aimed to 

compare music and speech from the perspective of affective piano performance and 

speech production with a special focus on dynamics.  

The second aspect that is not well explored in the relations between music and 

speech is timbre. Timbre is a crucial acoustic dimension of sounds and its 

importance in conveying emotion in both music and speech is undeniable: in music, 

timbre has been an effective platform enabling composers to induce emotions from 

listeners (Boulez, 1987; Gabrielsson, 2001) because of its significant role in the 

expression and perception of emotion (Eerola et al., 2012; Patel, 2008). In speech, 

timbre (i.e., voice quality) is an important means of vocal communication of affect, 

especially in terms of conveying fine-tuned affective states such as confidence, 

boredom, formality, etc. (Gobl and Ní Chasaide, 2003).  Despite the importance of 

timbre, it is not as sufficiently studied as other acoustic features such as pitch, 

duration and intensity (Patel, 2008). This is especially true with regard to exploring 

the emotional connotations of timbre of isolated musical instrument sounds (Eerola 

et al., 2012). Thus it is worth further exploring this issue, particularly with affective 

speech as a reference. This is because musical instruments have long been compared 
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to human voice due to their timbral similarities: one of the most well-known 

analogies is the comparison of string instruments such as the violin or the guitar to 

human voice due to their similar expressiveness (Askenfelt, 1991). Nevertheless, so 

far there have been no strictly controlled behavioral or neurophysiological studies on 

the relations between the timbre of isolated musical instrument sounds and affective 

human voice. Hence, the second study of this thesis explored this topic with 

behavioral and neurophysiological (ERP) methods (more reviews and justifications 

will be provided in Chapter 3).  

The third aspect worthy of further examination is pitch prominence and expectation 

in music and speech. Pitch prominence plays an important role in both music and 

speech. Prosodically prominent elements such as focus in speech or melodic accent 

in music can direct listeners’ attention to the emphasized elements of acoustic signals 

(either of speech or music) to facilitate comprehension. This is because the ability to 

perceive and interpret abstract cues such as focus or accent reflects one of the 

fundamental aspects of comprehension, i.e., differentiation between the important 

and the unimportant (Balkwill and Thompson, 1999). Therefore, pitch prominence 

could be one of the crucial aspects of acoustic communication in music and speech 

(Parncutt, 2003), both of which boil down to attracting greater perceptual weight (‘t 

Hart et al., 1990) than non-prominent prosodic elements (Benward and White, 1997). 

Another aspect of pitch variation employed in both speech and music is related to 

expectation. Expectation is part of psychological laws of mental life responsible for 

human perception and cognition (Meyer, 1956). More specifically, it is a cognitive 

mechanism enabling humans to make predictions about the development of future 

events (Meyer, 1956). Violation of expectation can trigger the emotion of surprise, 

which can be found in both speech and music, i.e., both domains use pitch variation 



19 
 

to convey surprise (Meyer, 1956). As informally suggested in many studies (e.g., 

Huron, 2006; Parncutt, 2003; Patel, 2008), speech could follow the same pitch 

patterns in conveying prominence and expectation as those in music. Nevertheless, 

the functional differences in the use of pitch between music and speech may suggest 

otherwise (Peretz and Hyde, 2003). It is thus worth further examining this issue by 

testing whether under laboratory conditions, music and speech show similar or 

different pitch patterns with regard to prominence and expectation. So far no 

research along this line has been done. Therefore, the third study of this thesis 

addressed this issue by manipulating the pitch patterns of speech and music in terms 

of prominence and expectation (more details and motivations for this study will be 

elaborated on in Chapter 4).   

1.3 Bio-evolutionary implications of music and speech 

Another aim of the thesis is to explore the bio-evolutionary implications of music 

and speech through the lenses of dynamics, timbre and pitch as introduced above. 

The first platform for examining such implications is emotion. This is because music 

and speech are important channels for humans to communicate emotion (Juslin and 

Laukka, 2003).  Emotion, from an evolutionary perspective, is adapted under 

selection pressure (Darwin, 1872). As Ekman (1992) once commented, emotion is 

one of the mechanisms for living organisms to interact with one another: “the 

primary function of emotion is to mobilise the organism to deal quickly with 

important interpersonal encounters, prepared to do so in part, at least, by what types 

of activity have been adaptive in the past” (p.171).  

Correspondingly, emotional vocal expressions are likely selected to have the effect 

of influencing the receiver for the benefit of the signaller (Morton, 1977; Ohala, 
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1984; Xu et al. 2013a, 2013b). One particular line of research has taken such a bio-

evolutionary perspective in studying emotional speech, based on the body size 

projection theory on emotion. The theory was originally proposed by Morton (1977) 

for explaining animal calls, and later extended by Ohala (1984) to human speech. 

The key idea is that vocal emotional expressions are a mechanism evolved under a 

selection pressure to influence the behaviour of other individuals in social 

interactions. For example, (hot) angry vocalizations signal a large body size 

projection because evolutionarily a large animal stands a better chance of winning 

physical confrontations (i.e., the “fight” response triggered by anger), while happy 

(joyful) vocalizations signal a small body size projection because evolutionarily a 

small animal or an infant could suggest attractiveness and lack of threat (Morton, 

1977; Ohala, 1984). Recently, this idea has seen support from a series of perception 

experiments in which the speech stimuli are synthetically manipulated in terms of 

pitch, vocal tract length and voice quality to simulate body size projection 

(Chuenwattanapranithi et al., 2008; Xu et al., 2013a, 2013b). It is shown that 

listeners hear speech with synthetic parameters that project a large body size both as 

being spoken by a large person and as expressing anger. And they hear speech that 

projects a small body size as spoken by a small person and expressing happiness and 

friendliness (Noble and Xu, 2011; Xu et al., 2013a, 2013b).  

Of particular relevance to the first study of this thesis is the “dynamics” dimension of 

the bio-evolutionary account on emotion (Xu et al., 2013a). Dynamics, in the context 

of speech, reflects the extent of effort/vigour of human vocalizations (Xu et al., 

2013a): high dynamics corresponds to a high extent of vocal effort while a low 

dynamics corresponds to a low extent of vocal effort. (Hot) anger and happiness (joy) 

are predicted to have high dynamics (Xu et al., 2013a). This is because anger is a 
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high-arousal emotion associated with a high level of bio-physical activation which 

could help demonstrate great energy and strength to scare off enemies (Morton, 1977; 

Xu et al., 2013a, 2013b). As a result, the extent of vocal effort (i.e., dynamics) 

should be high in anger. Happiness also links to high dynamics because from an 

evolutionary perspective, happiness can be a useful strategy for attracting mates 

(Darwin, 1872). Therefore, it is beneficial for sound signallers to produce highly 

vigorous (i.e., dynamic) sounds so as to be audible to potential mates (Xu et al., 

2013a). Correspondingly, vocal effort in happiness should correlate to high 

dynamics.  With regard to fear, it should also have reasonably high dynamics due to 

the evolutionary function of fear: it could be an antipredator defensive strategy for 

group survival used by many species (Caro, 2005; LeDoux, 1996). Therefore, vocal 

effort should be reasonably high to serve this purpose. In terms of (depressed) 

sadness, the dynamics level should be low due to the low level of arousal and bio-

physical activation. Consequently, it could send out an evolutionary signal of 

begging for sympathy (Shaver et al., 1987). As introduced in the previous section, 

dynamics is an essential mechanism of motor movements (Stein, 1982). Since both 

speech production and piano performance are motor movements, plus the fact that 

both of them are primary platforms for humans to communicate emotion, it is 

therefore reasonable to test (in Chapter 2) whether emotional speech production and 

piano performance follow similar dynamics patterns (reflected by vocal effort and 

finger force respectively) according to the aforementioned bio-evolutionary 

predictions.  

The second study of this thesis is focused on timbre. According to the hypotheses of 

body size projection theory on emotional vocalizations, (hot) angry vocalizations 

should correspond to rough timbre reflected by an abundance of high frequency 
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spectral energy (Morton, 1977; Xu et al., 2013a, 2013b). This is because anger, 

according to the theory, projects a large body size in order to scare off enemies in 

physical confrontations. Due to simple physical laws, the vocalization of a large-size 

animal is likely to have rough sound quality (Morton, 1977). Happiness (joy), on the 

other hand, projects a small body size with evolutionary signals of attracting mates 

and showing a lack of threat (Morton, 1977). As a result, the timbre of happy 

vocalizations often sounds like a pure tone characterized by reduced high frequency 

spectral energy (Xu et al., 2013a, 2013b). (Depressed) sadness could project a 

neutral or small body size due to its evolutionary signal of begging for sympathy 

(Shaver et al., 1987). Therefore, the timbre of sad vocalizations should be associated 

with reduced high frequency spectral energy due to the low physical activation level 

in articulation (Xu et al., 2013a). As introduced in the previous section, musical 

instrument timbre can be compared to human voice quality, and both music and 

speech could have evolutionary implications through the lens of emotion (Darwin, 

1871; Cross, 2009). It is therefore worth examining whether musical instrument 

timbre has acoustic characteristics that convey emotion in the same direction as 

predicted by the body-size projection theory for emotional vocalizations. This will be 

tested by the behavioural experiment in Chapter 3. The following two ERP 

experiments will demonstrate whether brain responses to the musical instrument 

timbre will show similar patterns to those of affective speech, thus further testing 

whether musical instrument timbre could communicate emotion in a way similar to 

affective speech. This could further imply whether the brain processing patterns 

could be consistent with the predictions of the body size projection theory on 

emotional vocalizations. This is because the brain responses are triggered by 

participants’ evaluation of the timbral features of the musical sounds, and if the 
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timbral features are consistent with predictions of the body size projection theory (as 

will be tested by the behavioural experiment), then the brain responses triggered by 

the timbre will also reflect (indirectly) the brain’s evaluation of the sounds in the 

direction as predicted by the body size projection theory.  

Emotion is not the only platform to investigate the bio-evolutionary implications of 

music and speech. Codified meaning in speech and music is another dimension to 

examine such implications. Intonation, as proposed in Gussenhoven (2004), can be 

explained from the perspective of “biological codes” (i.e., the effort code, frequency 

code, and production code). Such a biological perspective on the codified meaning in 

speech has also been applied to analyse the relationship between language and music 

by Cross and Woodruff (2009). Of particular relevance to this thesis is the “effort 

code” (Gussenhoven, 2004), which could be applied to explain pitch prominence 

(the topic of Chapter 4). The effort code is based on the idea that effortful 

articulation is associated with less slurring and hence less target undershoot than 

sloppy articulation. This usually results in more precise articulation and a wider pitch 

expansion (Gussenhoven, 2004). Therefore, expanded pitch range can be used to 

signal informational prominence (e.g., emphasis, focus) (Gussenhoven, 2004). The 

mechanism of the effort code in speech can also be applied to music melodic 

contours, because “(melodic) peaked contours might serve to highlight ostensively 

certain features of a musical utterance, a function analogous to that of focus in 

speech prosody” (Cross and Woodruff, 2009: 91). Therefore, it is worth further 

exploring the aforementioned observations with empirical experiments, with the aim 

to test whether speech and music follow similar pitch patterns in signalling 

prominence in the same direction as predicted by the effort code.  This can serve as a 

further test to show whether codified meanings in speech and music could also 
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convey bio-evolutionary implications, since the effort code is derived from the 

biological mechanisms of speech production. 

1.4 Outline of this thesis 

This thesis addresses the relations between music and speech by focusing on the 

three aspects (dynamics, timbre and pitch) that are not well explored in previous 

studies. Chapter 2 focuses on dynamics in the comparison between affective piano 

performance and speech production. Chapter 3 addresses the emotional connotations 

of musical timbre of isolated instrument sounds through the perspective of affective 

speech. Chapter 4 is concerned with pitch prominence and expectation in music and 

speech. Chapter 5 concludes this thesis with a summary of the results, discussion of 

the implications and suggestions for future research.  
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Chapter 2   

Relations between affective music and speech: Evidence from 

dynamics of affective piano performance and speech production 

2.1 Introduction 

As mentioned in Chapter 1, this chapter is concerned with comparing affective music 

and speech from a different perspective by using affective piano performance and 

speech production with a special focus on dynamics. The results will be discussed in 

terms of the bio-evolutionary account on emotion as introduced in Chapter 1. In 

addition, physical constraints such as fingerings in piano performance and 

articulatory constraints (e.g., articulatory pressure and distance) in speech production 

will also be included as a factor. The reasons will be provided in the following 

sections.  

2.1.1 Dynamics of piano performance  

In studies of affective piano performance, dynamics have received less attention than 

timing, although they are equally important (Repp, 1996; Gabrielsson, 2003). The 

reason is that unlike timing which can be easily measured by metronome and hence 

has been systematically examined in a scientific way for over a decade (Repp, 

1992a, 1992b, 1994a, 1994b, 1995, among others), dynamics are more difficult to 

measure.  This could be partly due to perceptual difficulty in precisely distinguishing 

different levels of dynamics (e.g., forte and mezzoforte) or technical challenge in 

filtering out unwanted acoustic artefacts (Repp, 1996).  

Therefore, in this study we decided to examine piano dynamics from a different 

perspective, i.e., the kinematic level of dynamics which reflects “the varying forces 
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of the pianist’s finger movements on the keyboard” (Repp, 1996, p. 642) by using a 

modified Moog PianoBar scanner (cf. McPherson, 2013). It is a portable scanner that 

can be rapidly attached to any acoustic piano keyboards. Using optical reflectance 

sensing mechanism, the modified PianoBar scanner continuously detects key 

movements. Quantitatively, the scanner returns the values of continuous key 

positions (key displacement) and the time taken for fingers to reach each key 

position during one keystroke. As a result, multiple different dimensions of each key 

press, velocity and peak velocity (i.e., the maximum value in a continuous velocity 

trajectory) of key movement during each keystroke can be extracted from continuous 

key position data, following a similar approach to McPherson and Kim (2011). The 

multidimensions of key touch quantitatively returned by the scanner can provide an 

ideal platform for examining the interaction between pianists’ expressive intention 

and their piano key touch/finger force (cf. McPherson and Kim, 2013). 

Literature on mechanics of skilled motor movement (such as speech production and 

music performance) suggests that dynamics of motor movement are related not only 

to peak velocity but also to the movement amplitude, i.e., the peak velocity should be 

divided by the movement amplitude in order to compare dynamics of movement of 

different sizes (Nelson, 1983; Ostry et al., 1983; Ostry and Munhall, 1985). 

Therefore, in the context of piano performance, since each keystroke may 

correspond to different degrees of key displacement (i.e., different amplitudes of key 

movement), it is necessary to factor in key displacement at the point of peak velocity 

to yield the kinematic dynamics of each keystroke which reflects pianists’ finger 

force (Minetti et al., 2007). Similar approach can also be found in Kinoshita et al. 

(2007) where key displacement was taken as a factor in comparing finger force 

under the conditions of different types of key touch.  
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The examination of kinematic dynamics of pianists’ finger force needs to take into 

account the role of fingerings. This is because in piano performance different 

fingering strategies can reflect how pianists intend to interpret the structure, meaning 

and emotion of music in which dynamics play an important role (Bamberger, 1976; 

Clarke et al., 1997; Neuhaus, 1973). Parncutt et al. (1997) established a set of 

hypothetical rules of right-hand fingerings according to ergonomic difficulty such as 

the extent of hand spans, the involvement of weak fingers, and the coordinated 

playing on black and white keys. Of particular importance are hand spans and finger 

strength (i.e., the contrast between weak and strong fingers). This is because the 

extent of hand spans can affect the degree of tension and physical effort of fingers 

(Parncutt et al., 1997).  Weak fingers usually refer to the fourth and fifth fingers 

(Parncutt et al., 1997) which can constrain the flexibility of finger movement 

because of the hand’s anatomical structure: unlike the other fingers which can move 

relatively independently, the ring and little finger are closely linked to each other via 

the flexor digitorum profundus (FDP) tendons because they share a common muscle 

belly (Gunter, 1960). Moreover, the flexor digitorum superficialis (FDS) is 

especially responsible for the coupling between the fourth and fifth fingers (Baker et 

al., 1981; Austin et al., 1989). Nevertheless, whether weak fingers can significantly 

influence piano performance is still a matter of debate. As pointed out in 

Kochevitsky (1967), Neuhaus (1973) and Sandor (1981), weak fingers are not 

necessarily weak; instead, they are often strong enough to meet the demand of 

different levels of playing, especially octave playing.  
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2.1.2 Dynamics of speech production 

With regard to speech, articulatory effort which reflects “force of articulation” 

(Malécot, 1955) is the counterpart of finger force in piano performance. Articulatory 

effort is essentially a neuromuscular phenomenon. Electrochemical reaction of nerve 

impulses triggers the activation of articulator muscles (Kirchner, 1998). Full 

contraction of articulator muscles occurs when agonist muscle activity outweighs the 

antagonist muscle activity under the condition of repeated neuron firing (Clark and 

Yallop, 1990). Articulatory effort is therefore the sum action of the neuron firing of 

each articulator muscle (Kirchner, 1998). However, direct measurements of the 

neuron firing of each articulator muscle are clearly too intrusive and complex to 

perform. Therefore, indirect measurements have been put forth through examining 

phenomena related to articulatory gestures: clear speech (Uchanski, 2008), fricative 

closures (Lavoie, 2001), trill articulation (Padgett, 2009), assimilation (Lindblom, 

1983), all of which require great articulatory effort.  Correspondingly, speech 

production models as in Lindblom and Sundberg (1971), Westbury and Keating 

(1986), Kirchner (1998), have been established in an attempt to quantify articulatory 

effort. However, the aforementioned measurements of articulatory gestures run the 

risk of not capturing articulatory phenomena large enough for statistically significant 

differences (Kaplan, 2010); in addition, the proposed models would oversimplify the 

reality of speech articulation which often involves much finer details than what the 

models can accommodate (Kaplan, 2010).  

Hence, different alternatives are worth exploring. One such example is to use 

formant dynamics (i.e., trajectories and velocity) as an indicator of articulatory effort 

(cf. Cheng and Xu, 2013). Admittedly, one could argue formant dynamics may not 
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be a reliable indicator of articulatory effort given the fact that there does not exist a 

one-to-one mapping between acoustics and articulation. Nevertheless, measurements 

on articulators as has been mentioned above do not capture the whole picture of 

articulatory movement either (cf. Cheng and Xu, 2013 for more examples and 

discussions). Acoustic signals, on the other hand, have been argued to provide 

reliable information for phonetic characteristics of segments and suprasegments with 

theoretical (Lindblom, 1990) and experimental evidence (Perkell et al., 2002). In 

addition, acoustic and articulatory measurements can produce similar dynamic 

patterns: the evidence is that the linear relations between F0/formant velocity and 

F0/formant movement amplitude (Xu and Wang, 2009; Cheng and Xu, 2013) in 

acoustics are similar to those in articulation (Kelso et al., 1985). Therefore, it is 

justifiable to use acoustic characteristics of formant dynamics to analyze articulatory 

effort. 

In speech, formant patterns tend to be affected by articulatory constraints (e.g., 

articulatory pressure and distance) in different suprasegmental and segmental 

contexts (Erickson et al., 2004; Kong and Zeng, 2006). Tone languages such as 

Mandarin can be a typical platform for investigating articulatory pressure in different 

suprasegmental contexts: In Mandarin, there are five types of tones—High (tone 1), 

Rising (tone 2), Low (tone 3), Falling (tone 4), and Neutral (tone 5). Tone 2 + tone 2 

and tone 4 + tone 4 create high articulatory pressure while tone 3 + tone 1 create low 

articulatory pressure. The reason is that as reported in Xu and Wang (2009), 

successive rising tones (i.e., tone 2 + tone 2) or falling tones (tone 4 + tone 4) create 

much larger articulatory pressure than other tonal combinations because they move 

in directly opposite tonal directions, i.e., the first tone 2 (or tone 4) ends in the 

opposite direction of the start of the second tone 2 (or tone 4). Successive static tones 
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(tone 3 and tone 1), in contrast, have much smaller articulatory pressure because the 

tonal movement at the end of tone 3 is in the same direction as that at the beginning 

of tone 1. With regard to the segmental dimension, diphthongs (i.e., two adjacent 

vowels) can be used because they are categorized into wide and narrow diphthongs 

according to their articulatory distance: wide diphthongs (e.g., /ai/, /au/, /ɔi/) have 

wider articulatory distance between the initial and final vowel and hence reflect 

greater articulatory movement of speech organs. Narrow diphthongs (e.g., /ei/, /əu/) 

have narrower articulatory distance between the initial and final vowel and hence the 

articulatory movement is not as large as wide diphthongs.  

2.1.3 Motivations for this study 

Theoretically, motion for a long time has been an important platform for 

investigating music and speech, i.e., how physical motion is associated with sound 

patterns subsequently generated (Sundberg, 2000). Human voice is a direct reflection 

of such motion-to-sound mapping through physical coordination of articulatory 

gestures; meanwhile, performance of musical instruments is another way of mapping 

motion to sound through the use of tonguing, breathing, and fingering (Palmer et al., 

2007, 2009). Therefore, similar to speech production, music performance can be 

conceptualized as a “sequence of articulatory movements resulting in a continuous 

acoustic wave” (Palmer et al., 2007, p. 119). In the context of piano performance, 

fingers can thus be perceived as “articulators” for pianists to articulate their 

interpretation of music. Indeed, experimental results on piano performance (Winges 

et al., 2013) show that speech production phenomenon such as coarticulation also 

exists in pianists’ finger movement during performance. This is not surprising given 

the fact that both speech production and piano performance are under neuromuscular 
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control (Winges et al., 2013) and essentially both domains require skilled motor 

movements following similar physical mechanisms of dynamics (Grillner et al., 

1982; Nelson, 1983; Ostry, Keller and Parush, 1983; Winges et al., 2013; van Vugt 

et al., 2014). In the context of motor movement, force is a crucial component 

contributing to the dynamics of physical movements (Stein, 1982). Moreover, it is 

not rare to compare articulatory effort in speech with force of other types of motor 

movements (e.g., limb movements) (Gentil and Tournier, 1998; Ito et al., 2004; 

Loucks et al., 2010). As discussed in sections 2.1.1 and 2.1.2, the kinematic 

dynamics of keystroke reflect pianists’ finger force and the formant dynamics of 

speech reflect speakers’ articulatory effort. Since music performance and speech are 

two important platforms for humans to communicate emotion (Juslin and Laukka, 

2003), plus the fact that these two domains are essentially skilled motor movements 

following similar physical mechanisms of dynamics as discussed above, it is 

therefore justifiable to compare music performance and speech production in the 

context of emotion using dynamics of motion (i.e., kinematic dynamics of keystroke 

and formant dynamics of speech production) as a measurement parameter. To our 

knowledge, such comparison is currently missing in literature and we believe it is 

worth bridging the gap.  

In addition, one may wonder how piano fingerings (section 2.1.1) and articulatory 

constraints (section 2.1.2) can relate to each other. Anatomically, articulation refers 

to motor movements caused by skeletal muscle contraction (Tortora, 2002). Hence 

typical human motor movements such as speech production or music performance 

are effectively muscular articulation. There is no wonder, therefore, that pianists’ 

fingers are always referred to as “articulators” expressing pianists’ interpretation of 

music. Different fingerings involve different degrees of hand span and alternation 
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between strong and weak fingers, which consequently lead to different degrees of 

finger muscular tension (Parncutt et al., 1997). Similarly in speech, different 

articulatory constraints (articulatory pressure and distance) are involved as discussed 

in section 2.1.2. Both finger muscular tension and speech articulatory 

pressure/distance can be considered as physical constraints on motor movements 

such as piano performance and speech production (Nelson, 1983; Winges et al., 

2013). Therefore, it is the physical constraints triggered by different fingerings or 

articulatory constraints that relate the two domains to each other. Despite the 

importance of fingerings and articulatory constraints reviewed in sections 2.1.1 and 

2.1.2, it is still unknown whether they interact with emotion in piano performance 

and speech production. Meanwhile, investigating interaction between different cues 

is an important aspect in emotion research (cf. Juslin and Timmers, 2010). Hence, 

this serves as another motivation for this study.  

Four of the basic emotions (Ekman, 1992) are chosen: anger, fear, happiness and 

sadness. One may wonder why a discrete model of emotion (Ekman, 1992; 

Panksepp, 1998) has been chosen rather than a dimensional approach such as 

Russell’s circumplex model (1980). This is because firstly, so far no theoretical 

consensus has been reached as to which approach is better than the other for 

modelling emotion (for a recent summary of theoretical debates, see Zachar and Ellis, 

2012). More importantly, the two approaches are not necessarily in conflict with 

each other as recent affective neuroscience studies (e.g., Panksepp and Watt, 2011) 

have suggested that the differences between the two may well be insignificant given 

the fact that both approaches share many common grounds in explaining cognitive 

functions of emotion. Since it is not the purpose of this study to test which model is 

better, a discrete model of affect is adopted. Among the “big six” emotions (Ekman, 
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1992), vocal disgust usually cannot be elicited satisfactorily under laboratory 

conditions (cf. Scherer, 2003); musical surprises can be very complicated often 

requiring sharp contrast in compositional structure (Huron, 2006) which is out of the 

scope of this study. Hence, only the remaining four of the “big six” emotions are 

chosen. The research questions to be addressed are:  

Are dynamics of piano performance (i.e., finger force) similar to or different from 

dynamics of speech production (i.e., articulatory effort) under the condition of the 

four emotions? Do fingerings and articulatory constraints interact with emotion in 

their influence on the dynamics of piano performance and speech production 

respectively? 

2.2 Experiment 1: The piano experiment 

2.2.1 Methods 

Stimuli 

Two excerpts of music were composed for this study. According to the above review 

on fingerings, hand span and finger strength should be the primary focus. Therefore, 

the two excerpts were composed corresponding to two different hand spans (small 

vs. large) and finger strength (weak vs. strong).  Small hand span is where fingers are 

at their natural resting positions on the keyboard, i.e., without needing to extend far 

beyond the resting positions to reach the notes (Sandor, 1981). Large hand span is 

where fingers need to extend far beyond their resting positions, which usually 

involves stretching at least an octave (Parncutt et al., 1997). Meanwhile, each excerpt 

was to be played with strong finger combinations (the thumb, index and middle 

fingers) and weak finger combinations (the ring and little fingers).  In addition, given 

the fact that right and left hands tend to have different patterns in piano performance 
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(Minetti et al., 2007), only the right hand is involved in this experiment to avoid 

theoretical and practical complexities. Hence altogether there are four levels of 

fingerings for this study: small-weak (SW), small-strong (SS), large-weak (LW), 

large-strong (LS). To avoid confounding effects, all excerpts have musically neutral 

structure, i.e., without having overtly emotional implications. Figures 2.1-2.4 

demonstrate the fingering design: 

 

Figure 2.1 The small-weak condition (SW): small hand span (i.e., fingers are at their 

natural resting positions) with only weak fingers, i.e., the ring (4) and little (5) 

fingers involved.  

 

 

Figure 2.2 The small-strong condition (SS): small hand span (i.e., fingers are at their 

natural resting positions) with only strong fingers, i.e., the thumb (1), index (2) and 

middle (3) fingers involved.    

 

 

Figure 2.3 The large-weak condition (LW): large hand span (i.e., fingers stretching 

across an octave) with only weak fingers, i.e., the ring (4) and little (5) fingers 

involved.  
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Figure 2.4 The large-strong condition (LS): large hand span (i.e., fingers stretching 

across an octave) with only strong fingers, i.e., the thumb (1) and middle (3) fingers 

involved.  

 

Participants and procedure 

 

This experiment was approved by the Committee on Research Ethics at University 

College London. Eight professional pianists (four females, Mean=26 years, SD=2.2, 

all right-handed) from London were recruited to play the excerpts according to the 

fingerings provided on scores. They have been receiving professional piano training 

for an average of 20 years. They were instructed to play each of the excerpts with 

four emotions: anger, happiness, fear and sadness. Each excerpt per emotion was 

repeatedly played three times in a quiet room. Admittedly, lacking ecological validity 

can be a problem with this method, i.e., it deviates from the reality of music making 

in that firstly, performances usually take place in concert halls; secondly, different 

emotions are often expressed by different pieces of music (cf. Juslin, 2001 for 

references therein). Nevertheless, real music making settings often cannot be 

scientifically controlled, i.e., it is impossible to filter out confounding factors coming 

from the acoustics of concert halls and audience. Moreover, it is hard to judge 

whether it is the way music is performed or the melody of music that leads the 

listeners to decide on the emotional categories if different pieces of music are used 

for different emotions (Juslin, 2000, 2001). Therefore, conducting the experiment in 
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a scientifically controlled way is still the better option if validity of the results is the 

priority.  

 

As introduced in section 2.1.1, a Moog PianoBar scanner was attached to the 

keyboard of a Bösendorfer grand piano. Finger force is reflected by keystroke 

dynamics which were calculated according to the formula: dynamics 

=  
𝑝𝑒𝑎𝑘 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑘𝑒𝑦𝑠𝑡𝑟𝑜𝑘𝑒 (𝑉𝑝)

𝑚𝑎𝑥𝑖𝑚𝑢𝑚  𝑝𝑖𝑎𝑛𝑜 𝑘𝑒𝑦 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡  (𝑑)
 (Vp/d henceforth) because of the need to 

consider movement amplitude (i.e., displacement) in relation to peak velocity to 

reflect kinematic dynamics as reviewed in section 2.1.1.  More specifically, 

Vp= 
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑖𝑎𝑛𝑜 𝑘𝑒𝑦 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 (𝑑)

𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑡𝑜 𝑟𝑒𝑎𝑐ℎ 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 (𝑡)
, and so Vp/d = 

𝑑

𝑡
 
 

𝑑
 =  

 

𝑡
. The unit 

of displacement is mm and that of time is sec. The data were obtained by an external 

computer attached to one end of the PianoBar. A Matlab script was written for 

computing dynamics according to the formula.  

There were altogether 8 (pianists) * 4 (emotions) * 4 (fingerings) * 3 (repetitions) = 

384 episodes performed by the pianists. A follow-up perceptual validation test was 

carried out: sixteen professional musicians (10 females, Mean = 28 years, SD = 1.5) 

were asked to rate each emotion*fingering episode on a 1 to 5 scale. 1 represented 

not at all angry/fearful/happy/sad while 5 represented very angry/fearful/happy/sad. 

The top 8 ranked episodes (out of 24) for each emotion*fingering were selected. The 

mean score for each emotion*fingering was 4.03.  

 

2.2.2 Results  

A two-way repeated measures ANOVA was performed to examine the effect of 

emotion (four levels: anger, fear, happiness and sadness) and fingerings (four levels: 
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small-weak, small-strong, large-weak, large-strong). The results (Table 2.1) 

demonstrated that both factors played significant roles in finger force reflected by 

Vp/d. The interaction between the two factors was also significant.  

 

The means of keystroke dynamics (Vp/d) for each condition are displayed in Table 

2.2 and Post-hoc Tukey HSD tests (Table 2.3) revealed more detailed patterns: anger 

and happiness had significantly higher dynamics than fear and sadness. The 

differences between anger and happiness were non-significant. Fear had significantly 

lower dynamics than anger and happiness but it was still significantly higher in 

dynamics than sadness. With regard to the factor of fingerings, the Tukey tests 

demonstrated that weak fingers in large hand span (the LW condition) did not 

produce significantly different dynamics from strong fingers in large hand span (the 

LS condition). However, under the condition of small hand span, weak fingers 

produced significantly lower dynamics than strong fingers.  

 

In terms of the interaction between emotion and fingerings, Figure 2.5 shows that the 

most obvious interaction is between fear and different fingerings: under the 

conditions of large-strong (LS), large-weak (LW), and small-strong (SS) fingerings, 

fear had significantly higher (p < 0.05) dynamics than fear under the condition of 

small-weak (SW) fingering. Among the LS, LW and SS conditions in fear, the 

differences were non-significant. In addition, fear had significantly higher (p < 0.05) 

dynamics than sadness in large-strong (LS), large-weak (LW), and small-strong (SS) 

fingering conditions, although it was still significantly lower (p < 0.05) than anger 

and happiness.  For anger, happiness and sadness, differences between fingering 

conditions were non-significant. This means regardless of whether the hand span was 
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large or small, or whether the fingers were weak or strong, the dynamics were on 

average always high for anger and happiness while for sadness they were always 

low. Therefore, the contrast in dynamics between different fingerings is evident 

under the condition of fear only.  

 

Table 2.1 Mean Vp/d of the four levels of emotion and the four levels of fingerings 

(SW=small-weak, SS=small-strong, LW=large-weak, LS=large-strong).  

 

 anger fear happiness sadness 

Mean Vp/d  

Standard deviation                                                   

25.2  

1.8 

17.3 

4.9 

22.9 

2.1 

5.8 

1.2 

 

 

 SW SS LW LS 

Mean Vp/d  

Standard deviation 

13.7 

2 

17.8 

1.8 

19.4 

2.6 

20.5 

1.5 

 

Table 2.2 Results of the two-way repeated-measures ANOVA of emotion and 

fingerings on keystroke dynamics (as reflected by Vp/d). 

 
 F df     p  

emotion 8.26 3,21 < 0.001                    0.31  

fingerings 4.05 3,21 < 0.001                    0.16  

emotion* fingerings 2.17 9,63 < 0.05                      0.13  
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Table 2.3 Results of post-hoc Tukey tests on means of the four levels of emotion 

(A=anger, F=fear, H=happiness, S=sadness) and the four levels of fingerings 

(SW=small-weak, SS=small-strong, LW=large-weak, LS=large-strong). 

 

 A vs. F A vs. H A vs. S F vs. H F vs. S H vs. S 

p  < 0.05 > 0.05 < 0.001 < 0.05 < 0.05 < 0.001 

 

 SW vs. LS SW vs. LW SW vs. SS LS vs. LW LS vs. SS LW vs. SS 

p  < 0.01 < 0.01 < 0.05 > 0.05 > 0.05 > 0.05 

                            

                            

                                                

Figure 2.5 The interaction between emotions and fingerings (SW=small-weak, 

SS=small-strong, LW=large-weak, LS=large-strong) in terms of Vp/d in piano 

performance. Error bars represent the standard error of the mean. 

 

2.3 Experiment 2: The speech experiment 

2.3.1 Methods 

Stimuli 

The stimuli consist of six sentences divided into two sets (Tables 2.4, 2.5), with 

tones and vowels being the two variables. The purpose was to use the two variables 

to test the respective articulatory constraints on formant dynamics. According to the 
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reviews in section 2.1.2, tone 2 + tone 2 and tone 4 + tone 4 were used to create high 

articulatory pressure. Tone 3 + tone 1 was used to create low articulatory pressure. 

Meanwhile, a wide diphthong /au/ was used for long articulatory distance and a 

narrow diphthong /əu/ was used for short articulatory distance. Cuilaoyao and 

Cuilouyou are compound words denoting a person’s name. 

Table 2.4 The first set of the stimuli in which the numbers of the syllables represent 

the five lexical tones in Mandarin: 1 for H (High tone), 2 for R (Rising tone), 3 for L 

(Low tone), 4 for F (Falling tone), and 5 for N (Neutral tone).  

 
 

 

 

 

cui1 

surname 

lao2[lau]   yao2[jau]         

work          distant 

 

 

 

 

 

nian4  shu1      qu4           le5 

read    book     aspect     particle 

lao3[lau]   yao1[jau]       

old             waist 

 

lao4[lau]   yao4[jau]       

flood          medicine 

 

IPA transcriptions for the key words laoyao are provided in brackets. Translation: cuilaoyao has gone 

to read a book.  

 

Table 2.5 The second set of the stimuli in which the numbers of the syllables 

represent the five lexical tones in Mandarin: 1 for H (High tone), 2 for R (Rising 

tone), 3 for L (Low tone), 4 for F (Falling tone), and 5 for N (Neutral tone).  

 
 

 

 

cui1 

surname 

lou2[ləu]  you2 [jəu] 

building        oil 

 

 

 

    

     nian4   shu1      qu4           le5 

     read    book     aspect     particle 

 

lou3[ləu]   you1[jəu] 

hug             good 

                    

lou4[ləu]   you4[jəu] 

drip             right 

 

IPA transcriptions for the key words louyou are provided in brackets. Translation: cuilouyou has gone 

to read a book.  
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Measurement of formant dynamics  

As reviewed in section 2.1.2, formant dynamics are an important factor reflecting the 

articulatory effort of speech production. Formant peak velocity, i.e., “the highest 

absolute value in the continuous velocity profile of the (formant) movement” (Cheng 

and Xu, 2013, p. 4488), and the displacement/amplitude of the formant movements 

are particularly related to articulatory effort [cf. Cheng and Xu (in press) for further 

discussion].  The peak velocity is measured in the following way (Xu and Wang, 

2009, p. 506): 

 

“Positive and negative extrema in the velocity curve correspond to the rising and 

falling ramps of each unidirectional pitch (formant) movement. A velocity curve was 

computed by taking the first derivative of an F0 (formant) curve after it has been 

smoothed by low-pass filtering it at 20 Hz with the Smooth command in Praat. 

Following Hertrich and Ackermann (1997), the velocity curve itself was not 

smoothed so as not to reduce the magnitude of peak velocity.”  

 

Figures 2.6 and 2.7 show the measurement points taken from F1 and F2 formant 

contours. This allows the calculation of the ratio of formant peak velocity (Vp) to 

maximum formant displacement (d), henceforth Vp/d.  It reflects articulatory 

effort/vocal vigorousness (Cheng and Xu, 2013, in press). Similar to the piano 

experiment, Vp= 
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑜𝑟𝑚𝑎𝑛𝑡 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 (𝑑)

𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑡𝑜 𝑟𝑒𝑎𝑐ℎ 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 (𝑡)
, and so Vp/d = 

𝑑

𝑡
 
 

𝑑
 

=  
 

𝑡
. The unit of displacement is Hz and the unit of time is sec.  
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Figure 2.6  Syllable segmentation and labelling of the syllables /ui/ (a), /lau/ (b) and 

/jau/ (c) in the sentence “Cui laoyao nian shu qu le”.   

 

 Figure 2.7  Syllable segmentation and labelling of the syllables /ui/ (a), /ləu/ (b) and 

/jəu/ (c) in the sentence “Cui louyou nian shu qu le”.                                    
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Table 2.6 lists the values extracted from the measurement points for the calculation 

of Vp/d for F1 and F2.  

 

Table 2.6 Values taken from the measurement points a, b, c for the calculation of 

Vp/d.  

 

minF1a: F1 minimum in a  

           

           minF2a: F2 minimum in b 

maxF1a: F1 maximum in b            maxF2a: F2 maximum in a 

minF1b: F1 minimum in b-c            minF2b: F2 minimum in c 

maxF1b: F1 maximum in c            maxF2b: F2 maximum in b-c 

D1a: maxF1a – minF1a [F1 rising 

displacement] 

     D2a: maxF2a – minF2a [F2 falling   

displacement] 

 

D1b: maxF1a – minF1b [F1 falling 

displacement] 

 

     D2b: maxF2b – minF2a [F2 rising 

displacement] 

 

D1c: maxF1b – minF1b [F1 rising 

displacement] 

 

     D2c: maxF2b – minF2b [F2 falling 

displacement] 

 

V1a: F1 peak rising velocity, in a-b 

 

     V2a: F2 peak falling velocity, in a-b 

 

V1b: F1 peak falling velocity, in a-b 

 

     V2b: F2 peak rising velocity, in a-b 

 

V1c: F1 peak rising velocity, in b-c 

 

     V2c: F2 peak falling velocity, in b-c 

 

 

Subjects and procedure 

Ten native Mandarin speakers without speech or hearing problems were recruited as 

subjects (5 females; Mean = 27 years, SD =2.5) via the University College London 

Psychology Pool. The recording session for each participant lasted for around half an 

hour. This experiment was approved by the Committee on Research Ethics at 

University College London. Voice portrayal/simulation method was used to induce 
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emotions, i.e., the participants were asked to imagine themselves in emotion-

triggering scenarios when recording the sentences. This is because compared to other 

emotional speech induction methods (e.g., natural vocal expression), this method is 

more effective in obtaining relatively genuine emotional speech when experimental 

control is a key concern. Support for this method comes from the fact that natural 

emotional expression is often inherently involved with unintended portrayal and self-

representation (Scherer, 2003). The recording was conducted in a sound-controlled 

booth. Participants were asked to record each sentence 3 times in four emotions: 

anger, fear, happiness and sadness, resulting in 10 (speakers) * 4 (emotions) * 3 

(tones) * 2 (segments) * 3 (repetitions) = 720 tokens.  

 

Similar to the first experiment, a follow-up perception validation test was conducted: 

twenty native speakers of Mandarin (11 females, Mean=23 years, SD=2.6) were 

asked to rate each emotion*tone*segment token on a scale of 1 to 5. 1 represents not 

at all angry/fearful/happy/sad while 5 represents very angry/fearful/happy/sad. The 

top eight ranked tokens (out of 30) for each emotion*tone*segment were selected. 

The mean score for each emotion*tone*segment was 4.16. ProsodyPro and 

FormantPro scripts (Xu, 2014) running under Praat (Boersma and Weenink, 2013) 

were used for data analyses.  

 

2.3.2 Results  

The means of Vp/d of all measurement points are represented in Table 2.7. A three-

way repeated measures ANOVA showed that among the three factors (emotion, tone 

and segments), emotion was the only factor exerting a significant impact on the 

value of Vp/d. The interaction between emotion, tone and segments was non-
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significant. However, the interactions between emotion and tone and that between 

emotion and segments were significant (Table 2.8). 

Table 2.7 Mean Vp/d of the four levels of emotion (A=anger, F=fear, H=happiness, 

S=sadness) and the four levels of articulatory constraints (SS=small segmental 

distance /əu/, ST=small tonal pressure T3+T1, LS=large segmental distance /au/, 

LT=large tonal pressure T2+T2/T4+T4).  

 

 anger fear happiness sadness 

mean Vp/d  

standard deviation 

37.3 

6.2 

 

41.5 

5.5 

43.6 

5.6 

24 

4.9 

 SS ST LS LT 

mean Vp/d 

standard deviation  

34 

5.9 

33.6 

4.8 

38.5 

5.1 

39.8 

5 

                                         

Table 2.8 Results of the three-way repeated-measures ANOVA on articulation 

dynamics (as reflected by Vp/d). 

 

  significant effects F df      p  

 
 

emotion 5.22 3,21  < 0.01        0.25 

emotion*tone 2.39 6,42  < 0.05        0.11 

emotion*segments 3.08 3,21  < 0.05        0.12 

                            

Post-hoc Tukey tests showed more details: sadness had significantly (p < 0.05) the 

lowest Vp/d value compared with the other three emotions. Happiness had the 

highest dynamics followed by fear and anger, but the differences between the three 

were non-significant.  
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The interaction between emotion and tonal pressure was significant. As shown in 

Figure 2.8, the Vp/d of all emotions was higher in tonal combinations of large 

articulatory constraints (i .e., T2 + T2 and T4 + T4) than the Vp/d in those of small 

articulatory constraints (T3 + T1). This is the most obvious in the case of anger 

where T2 + T2 and T4 + T4 made the Vp/d of anger become closer to that of fear 

and happiness. Post-hoc Tukey tests showed that the differences between anger and 

fear plus the differences between anger and happiness were non-significant under the 

T2 + T2 and T4 + T4 conditions. In contrast, under the T3 + T1 condition, the 

differences between anger and fear plus the differences between anger and happiness 

were significant (both ps < 0.05). In addition, for fear, happiness and sadness, the 

Vp/d did not differ significantly between the two tonal conditions. Therefore, anger 

was more affected by tonal variation than the other three emotions. 

The interaction between emotion and segments was also significant. Figure 2.8 

shows Vp/d was overall higher in the wide diphthong condition than in the narrow 

condition. The interaction was the most obvious in the case of anger because it was 

almost as high as fear and happiness with regard to Vp/d in the wide diphthong 

condition. Post-hoc Tukey tests showed the differences between anger and fear plus 

the differences between anger and happiness were non-significant in the wide 

diphthong condition. The differences were significant (both ps< 0.05), however, 

under the narrow diphthong condition. Moreover, for fear, happiness and sadness, 

the Vp/d did not differ significantly between the two segmental conditions. 

Therefore, similar to above, anger was more influenced by segmental distance 

variation than the other three emotions.  
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Figure 2.8 The mean Vp/d of narrow diphthong, wide diphthong, T3 + T1 and T2 + 

T2/T4 + T4 in the four types of emotional speech (anger, fear, happiness, and 

sadness). Error bars represent the standard error of the mean. 

 2.4 Comparisons between the results of the piano and speech experiment 

To directly compare the results of the piano and speech experiments, a MANOVA 

test was conducted: the within-subjects independent variables were emotion (four 

levels: anger, fear, happiness and sadness) and physical constraint (two levels: large 

hand span/articulatory distance; small hand span/articulatory distance) while the 

between-subjects independent variable was group (two levels: pianists and speakers). 

The dependent variables were Vp/d (speakers) and Vp/d (pianists). Using Pillai’s 

trace, there was a significant difference between pianists and speakers (F (8, 7) = 13.78, 

p < 0.01). The following univariate ANOVAs showed that the group differences 

between pianists and speakers were significant across most conditions: anger-large 

(F (1, 14) = 14.92, p < 0.01), anger-small (F (1, 14) = 16.23, p < 0.01), happiness-small 

(F (1, 14) = 15.61, p < 0.01), fear-large (F(1, 14) = 14.95, p < 0.01), fear-small (F (1, 14) = 

18.09, p < 0.01), sadness-large (F (1, 14) =15.93, p < 0.01). In the happiness-large and 

sadness-small conditions, the group difference was non-significant (although speech 

production still had higher Vp/d than that of piano performance). The results suggest 
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on the whole, piano performance has significantly different (i.e., lower) dynamics 

than speech production.  

2.5 Discussion and conclusion 

2.5.1 Similarities between affective piano performance and speech production 

The results showed that firstly, anger in piano performance generated the highest 

dynamics irrespective of fingerings; in speech production, it was also relatively high 

in dynamics although it interacted with articulatory constraints (more discussions on 

the interaction are offered in the following section). This is in line with previous 

reports that anger in music performance and speech production is generally linked to 

high intensity and great energy (cf. Juslin and Sloboda, 2013). Physiologically, the 

high dynamics of anger can be associated with high levels of cardiovascular 

activities such as high heart rate (Rainville et al., 2006), fast/deep breathing (Boiten 

et al., 1994), increases in diastolic pressure and activated baroreceptor mechanisms 

(Schwartz et al., 1981). Evolutionarily, anger originates from natural selection 

pressure on animals (Darwin, 1872): anger induces in humans the inclination to fight 

or attack whatever that threatens survival and well-being. As a result, anger is 

proposed to be associated with large body size projection (Morton, 1977; Xu et al., 

2013a, 2013b) to scare off enemies. Hence anger should be linked to high dynamics 

which can be reflected by high physical or vocal effort to show great strength and 

energy (Xu et al., 2013a).  The results of this study support this prediction by 

demonstrating that greater finger force and articulatory effort were generated 

respectively in piano performance and speech production in the context of anger.  

Secondly, happiness triggered the highest dynamics for speech production and 

second highest dynamics for piano performance, irrespective of fingerings or 
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articulatory constraints. The results are in line with previous reports that in music 

performance, happiness is always associated with faster tempo and higher intensity 

(Gabrielsson, 1995; Widmer and Goebl, 2004; Zanon and De Poli, 2003a, 2003b); 

happy speech is reported to have high values in many acoustic dimensions such as 

pitch, pitch range, intensity (Scherer, 2003; Ververidis and Kotropoulos, 2006), 

speech rate and formant shift (Xu et al., 2013a). Similar to anger, the physiological 

reason for high dynamics of happiness is often linked to increases in heart rate, blood 

pressure, breathing pattern (Boiten et al., 1994; Rainville et al., 2006), all of which 

can contribute to greater physical or vocal force in music performance or speech 

production.  From an evolutionary perspective, happiness can be a useful strategy for 

attracting mates (Darwin, 1872). Therefore, it is beneficial for sound signalers to 

produce highly vigorous (i.e., dynamic) sounds so as to be audible to potential mates 

(Xu et al., 2013a). Hence, the results are also consistent with the evolutionary 

account.  

Thirdly, fear in both piano performance and speech production was linked to 

significantly higher dynamics than sadness; particularly in speech production fear 

did not differ significantly from anger/happiness. This might seem somewhat 

unexpected particularly in terms of music, given that fear in music performance is 

generally associated with soft playing similar to sadness (cf. Juslin and Sloboda, 

2013). In terms of speech production, however, fear has already been found to show 

high dynamics (Xu et al., 2013a), which is consistent with the view that 

evolutionarily, fear can be a defensive emotion (LeDoux, 1996), evidenced from 

animal alarm calls as a useful antipredator defensive strategy across many species for 

the sake of group survival (Caro, 2005). To serve this purpose, alarm calls should be 

reasonably high in dynamics (i.e., vigorousness). Similarly, production of musical 



50 
 

excerpts of fear could also be highly dynamic, analogous to human fearful speech or 

animal alarm calls.  

Fourthly, sadness always generated the lowest dynamics for both piano and speech 

performance regardless of fingerings or articulatory constraints. This finding is in 

line with previous research: sad music and speech are generally low in acoustic cues 

such as intensity, F0, F0 range and duration (Juslin and Laukka, 2003; Laukka et al., 

2005; Patel, 2008). This is mainly because sadness is located at the opposite end of 

happiness in terms of valence and arousal: it is a lowly aroused negative emotion 

because of its association with reduced physiological energy and arousal level, 

sometimes leading to affective pathology such as depression or anhedonia (cf. 

Huron, 2011). Evolutionarily, such low dynamics of sadness indicate physical and 

social withdrawal and a tendency for the sound signaller to beg for sympathy 

(Shaver et al., 1987). Hence usually low motor effort is involved in expression of 

sadness either through music or speech. It is worth mentioning sad speech can be 

split into two categories: depressed sadness and mourning sadness (Scherer, 1979), 

the former being characterized by low vocal energy while the latter by high vocal 

energy. In this study, it was the depressed sadness that was used and hence the 

resulting formant dynamics were low, reflecting decreased articulatory effort due to 

the sluggishness of articulatory muscles in sad speech (Kienast and Sendlmeier, 

2000).  

2.5.2 Differences between affective piano performance and speech production  

The results also showed significant differences between the two domains. The most 

notable difference is that speech production on the whole had higher dynamics than 

piano performance across almost all conditions. This is consistent with previous 
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studies on comparisons between speech articulatory movements and limb 

movements (Gentil and Tournier, 1998; Ito et al., 2004; Loucks et al., 2010). 

Although those studies did not investigate movements in the context of affective 

piano performance or speech production, the general biophysical mechanisms of 

fingers and speech articulators apply to this study. More specifically, it was found 

that compared with fingers or arms, speech articulators in general produce faster 

velocity (Loucks et al., 2010; Ito et al., 2004) and greater force (Gentil and Tournier, 

1998; Loucks et al., 2010). The reasons probably lie in the biomechanical differences 

between speech articulators and fingers: compared with speech articulators, fingers 

are associated with more intervening factors (e.g., long tendons, joints and muscle 

mass between muscle fibers and skeletal joints) that prevent finger muscles from 

contracting as fast as speech articulatory muscles (Gentil and Tournier, 1998). It has 

also been reported that oral-facial muscles are associated with fast-twitch fibers and 

motor protein such as myosin which enable fast acceleration and rapid speech in 

order to meet different levels of speech demand (Burke, 1981; Williams and 

Warwick, 1980). Therefore, in this study the dynamics of affective speech 

production (as reflected by articulatory effort) and piano performance (as reflected 

by finger force) were different from each other due to the biomechanical distinctions.  

In addition, the results also demonstrated that the interaction between emotion and 

physical constraints in piano performance was different from that in speech 

production. In piano performance (Figure 2.5), only fear interacted with physical 

constraints (i.e., fingerings); in speech production (Figure 2.8), only anger interacted 

with physical constraints (i.e., articulatory constraints). The reasons could be 

attributed to the differences in the extent of acoustic stability of music performance 

and speech production in different emotions.  
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Firstly, in music performance, anger, happiness and sadness are associated with 

relatively consistent acoustic patterns (Juslin and Sloboda, 2013), i.e., anger and 

happiness are always fast and loud to convey high energy and arousal while sadness 

is always slow and quiet to convey low energy and arousal. Fear, in contrast, is 

linked to highly variable acoustic patterns especially in terms of tempo and intensity 

(Madison, 2000; Juslin and Madison, 1999; Bernays and Traube, 2014; Juslin and 

Sloboda, 2013) so as to convey the unstable psychological state under the influence 

of fear, e.g., scattered notes with pauses between musical phrases and sharp contrasts 

between intensity are often used to express fear (Madison, 2000). This could further 

imply there may not be a consistent pattern of finger force under the condition of 

fear.  Hence, other factors such as fingerings are highly likely to interact with fear to 

generate different kinematic dynamics in piano performance.  

On the other hand, fearful speech shown in this study always had high formant 

dynamics regardless of articulatory constraints. This is likely to be associated with 

duration: under the condition of fear, the mean duration of the segmented syllables as 

shown in Figures 2.6 and 2.7 was 555.6ms. This was not significantly different from 

the mean duration of the segmented syllables under the condition of happiness 

(mean=546.6ms) which had the highest dynamics. Moreover, the duration of the 

segmented syllables in fear was significantly (p < 0.05) shorter than that in anger 

(mean = 601.1 ms) and sadness (mean = 638.2 ms). In addition, the difference in 

duration between large and small articulatory constraints was non-significant under 

the condition of fear. Similar findings have been reported that fear is often produced 

with fast speech rate that is likely to trigger vowel undershoot [i.e., an articulatory 

phenomenon where the canonical phonetic forms of speech sounds fail to be reached 

because of the articulatory impact of surrounding segments (Lindblom, 1963)] and 
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segmental reduction (Kienast and Sendlmeier, 2000; Paeschke et al., 1999). Shorter 

duration is highly likely to trigger great articulatory effort according to the report of 

studies on articulatory movement (Adams et al., 1993; Edwards et al., 1991; Munhall 

et al., 1985; Ostry and Munhall, 1985; Perkell et al., 2002). Therefore, the relatively 

stable acoustic pattern (i.e., duration) of fearful speech could make it less likely to 

interact with other factors such as articulatory constraints.  

Secondly, this study showed that only angry speech significantly interacted with 

articulatory constraints: the formant dynamics were significantly higher in large 

articulatory constraints than those in small articulatory constraints. Again this can be 

linked to duration.  A closer look at the data reveals that the duration of angry speech 

was significantly (p < 0.05) shorter under the condition of large articulatory 

constraints than the condition of small articulatory constraints. It has been reported 

(Cheng and Xu, 2013) that when time is short for the articulatory execution of 

segments with large articulatory constraints, muscles have to contract faster (i.e., 

with stronger articulatory effort) than when small articulatory constraints are 

involved in order to reach the tonal and segmental targets. This was reflected in the 

high formant dynamics under the condition of large articulatory constraints in this 

study. In addition, the result is also consistent with the finding that anger is often 

more variable in duration compared with the other three emotions (happiness, fear 

and sadness): it can be slow because of the need to be precise and clear in 

articulation (Kienast and Sendlmeier, 2000; Paeschke et al., 1999) so as to project 

big body size to threaten away enemies (Xu et al., 2013a, 2013b); it can also be fast 

in speech rate (Scherer, 2003) especially in female speakers to reflect the highly 

aroused and variable psychological state under the influence of anger. Hence, it is 
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the relatively high variability in duration that makes angry speech more prone to 

interact with external factors such as articulatory constraints.  

All in all, the results on the one hand showed similar tendencies in dynamics of 

affective speech production and piano performance, which can be explained from a 

bio-evolutionary perspective.  On the other hand, different interaction patterns were 

found: physical constraints interacted only with fear in piano performance while in 

speech production, only with anger. This suggests that the more variable an emotion 

is in acoustic features, the more likely it is to interact in production with external 

factors such as fingerings or articulatory constraints in terms of dynamics. In 

addition, speech production on the whole had higher dynamics than piano 

performance, which could be due to the bio-mechanical differences between speech 

articulators and fingers. Therefore, this is the first study to quantitatively 

demonstrate the importance of considering motor mechanisms such as dynamics (i.e., 

finger force and articulatory effort) together with physical constraints (i.e., fingerings 

and articulatory constraints) in examining the similarities and differences between 

affective music performance and speech production. In a nutshell, focusing on the 

motor mechanisms of affective music performance and speech production could 

further enhance our understanding of the relations between music and speech.  
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Chapter 3 

Emotional connotations of musical timbre of isolated instrument 

sounds through the perspective of affective speech: Behavioural and 

ERP Evidence 

3.1 Introduction 

Music and speech are primary platforms for humans to communicate emotions 

(Buck, 1984). A considerable amount of studies have shown that affective music and 

speech are similar in many psychoacoustic dimensions: pitch, intensity and duration 

have been given extensive attention over a long period in terms of their cross-domain 

similarities (cf. Juslin and Laukka, 2003). Timbre is another important acoustic 

dimension but is not as well researched as pitch, intensity and duration (Eerola et al., 

2012; Holmes, 2011). Only recently has timbre, especially musical timbre, attracted 

a reasonable amount of scholarly interest. This chapter will further explore musical 

timbre, particularly in terms of the emotional connotations of musical timbre of 

isolated instrument sounds, with affective speech as a reference. The reasons will be 

provided below.  

3.1.1 Background on musical timbre 

Timbre is a multidimensional auditory event enabling listeners to distinguish 

between sounds that have equal pitch, loudness and duration (Giordano and 

McAdams, 2010). Auditory processing of timbre requires perceptual integration of 

spectral and temporal dimensions (Griffiths and Warren, 2004). The significance of 

timbre in auditory processing is evidenced from the fact that even in infancy, humans 

can differentiate and memorize different types of timbre (Trehub et al., 1990). In 
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music theory, timbre is an effective platform for conveying composers’ underlying 

intentions and inducing emotions from listeners (Boulez, 1987; Gabrielsson, 2001). 

Early empirical evidence for the association of timbre with emotion can be found in 

Scherer and Oshinsky (1977) where tone sequences were manipulated in tempo, 

pitch, intensity as well as timbre (i.e., spectral filtering and envelope manipulation). 

The systematic change in those acoustic dimensions led to listeners’ ratings of 

different emotions. Studies have also shown that listeners could distinguish emotion 

categories from very short musical excerpts, e.g., 250ms long (Peretz et al., 1998), 

400ms long (Krumhansl, 2010) or 1s long (Bigand et al., 2005). This suggests timbre 

could be more immediate to the recognition of emotion than other music cues which 

usually take longer to process (Eerola et al., 2012).  

Studies on polyphonic musical timbre (i.e., timbre of more than one instrument) (e.g., 

Alluri and Toivianen, 2010) show that the arousal dimension of emotion is strongly 

correlated with the high-low frequency energy ratio of spectrums. Cross-cultural 

studies on music perception have shown that western listeners tend to perceive flute 

in Hindustani music as conveying peacefulness while strings as implying anger 

(Balkwill and Thompson, 1999). In western music, on the other hand, flute is often 

associated with sadness (Balkwill et al., 2004). Recently, an in-depth study of 

monophonic timbre (i.e., timbre of one instrument) (Eerola et al., 2012) investigated 

emotional connotations of isolated instrument sounds through a series of perception 

experiments. It was found that affective dimensions (i.e., arousal and valence) of the 

instrument sounds were mainly determined by spectral (high-low frequency ratio), 

temporal (attack slope) and spectro-temporal (spectral flux) parameters. Listeners’ 

consistent ratings of valence and energy arousal of the instrument sounds across 

experiments further indicate that timbre is a primary cue of conveying musical 
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emotions.  ERP experiments on musical timbre (Goydke et al., 2004) show that the 

MMN (mismatch negativity) could be triggered by the violin playing the same 

melody with different emotions (happiness and sadness) as standards or deviants, 

hence leading to the conclusion that variation in musical timbre can communicate 

emotion. A follow-up ERP study (Spreckelmeyer et al., 2013) further extended this 

experiment by incorporating more timbral variations of each emotion (happiness and 

sadness) as standards. The results showed MMN can still be elicited under pre-

attentive condition, suggesting that in spite of the variance, the standards were still 

grouped together as a unified emotional entity (Spreckelmeyer et al., 2013).  

3.1.2 Problems with previous studies on musical timbre 

The studies reviewed above demonstrate a strong connection between musical timbre 

and emotion. Nevertheless, a problem common to almost all of the above studies is 

that timbre was not tested as an independent acoustic cue free from variations in 

other acoustic cues such as pitch, duration and intensity, i.e., acoustic features other 

than timbre were not strictly controlled in those studies. The study by Eerola et al. 

(2012) (reviewed above) has a relatively stricter control, but special musical effects 

(e.g., vibrato, flutter) were not filtered out. It is known that effects like vibrato and 

flutter involve modulations in pitch and intensity (Olson, 2003). Therefore, it is not 

clear whether it was timbre alone or the combination of many acoustic features that 

contributed to the perceptual judgement of emotion reported in those studies. Hence, 

greater effort with a much more focused attention on timbre alone would be 

necessary to advance our understanding of the emotional connotations of musical 

timbre.  
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In addition, to our knowledge there is not enough research that directly compares 

emotional connotations of the timbre of isolated instrument sounds with human 

affective speech. We believe it is worth further exploring the relations between the 

two domains. This is because firstly, human voice, a crucial platform for conveying 

speaker’s emotion and attitude (Banse and Scherer, 1996; Gobl and Ní Chasaide, 

2003), has long been compared to musical instruments. Richard Wagner, the famous 

composer, believed that the oldest and most natural embodiment of musical 

instruments is the human voice (cf. Watson, 1991). Similarly, Stendhal, the famous 

novelist, once commented that only the musical instruments that approximate the 

human voice can be truly pleasing to the human ear (cf. Watson, 1991). String 

instruments such as the violin and the guitar are classic examples of the 

approximation of musical instruments to human vocal expressions (Askenfelt, 1991).  

Secondly, there is neuropsychological evidence showing that string instrument 

timbre and the human voice elicit similar ERP responses (Levy et al., 2003). 

Nevertheless, in that study the voice stimuli were sung vowels devoid of linguistic 

meaning and also emotion was not included as a factor. Hence, it is still unknown 

whether human affective speech (with meaningful linguistic information) could 

trigger similar or different ERP responses compared with those of musical 

instrument timbre. Brain imaging reports also show that during the perception of 

musical timbre, evidence for cognitive processing of emotion was found in the P200 

time window, as suggested by the additional anterior cingulate cortex (ACC) 

activities (Meyer et al., 2006). This evidence would be much stronger if human 

affective speech was included as a factor for comparison with musical instrument 

timbre.   
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Relatively more direct comparisons between the two domains have used affective 

priming paradigm with visually presented words as primes or targets (Goerlich et al., 

2012; Painter and Koelsch, 2011; Steinbeis and Koelsch, 2011). Affective priming 

refers to the phenomenon where the processing speed of an affective stimulus (e.g., 

the word “happy”) becomes faster when preceded by stimulus of the same affective 

category (e.g., the word “sunny”) than that of a different category (e.g., the word 

“boring”) (Klauer and Musch, 2003). The N400 response has been found a primary 

reflector of the affective priming effect. Originally found in studies on semantic 

incongruity (Kutas and Hillyard, 1980; for a recent review, see Kutas and 

Federmeier, 2011), the N400 effect was later found to be elicited in a variety of 

domains such as environmental sounds (Frey et al., 2014; Orgs et al., 2006, 2007, 

2008; van Petten and Rheinfelder, 1995), odours (Grigor et al., 1999), pictures 

(Hamm et al., 2002), affective speech (Paulmann and Pell, 2010; Schirmer et al., 

2002) and music (Steinbeis and Koelsch, 2011; Painter and Koelsch, 2011).   

In particular, the N400 discovered in music studies suggests that music can trigger 

meaning, emotional meaning in particular. Steinbeis and Koelsch (2011) showed that 

musical instrument timbre could communicate emotion to musically trained and 

untrained listeners. Short musical chords (800 ms) subjectively rated as pleasant or 

unpleasant were used as primes followed by visually presented words 

congruent/incongruent with the emotional valence of the chords. Words emotionally 

congruent with the chords (e.g., pleasant sounding chords followed by the word 

“beauty”) triggered smaller N400 amplitude than words emotionally incongruent 

with the chords (e.g., pleasant sounding chords followed by the word “anger”). In 

another study, Painter and Koelsch (2011) focused on the semantic meaning of out-

of-context music sounds while controlling for emotion. A larger N400 amplitude 
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was triggered by semantically incongruent sound-word pairs than that of 

semantically congruent sound-word pairs, under the condition of participants’ active 

evaluation. Nevertheless, in the aforementioned studies, timbre was not independent 

of the variation in other acoustic features such as pitch or duration, and so it is not 

clear if it was timbre or the combination of acoustic features that contributed to the 

N400 effect. In addition, the focus of the aforementioned studies was on the 

semantic level of words; larger linguistic unit such as speech was not investigated. 

Moreover, the linguistic stimuli were visually presented, rather than auditorily 

presented. Given the close acoustic connections between affective music and speech 

(Juslin and Luakka, 2003), it is worth exploring the relations between affective 

speech and musical timbre from an auditory perspective. 

3.1.3 The present study 

In summary, the above reviews suggest that there is a strong link between musical 

timbre and emotion. However, previous behavioural and neuropsychological studies 

have ignored the following issues: 1) proper control of other musical features (e.g., 

pitch, duration, intensity); 2) musical timbre of isolated instrument sounds in relation 

to affective human speech from an auditory perspective. We believe these issues are 

vital for a proper and more enhanced understanding of the emotional meaning of 

musical timbre, particularly in terms of its connection with affective speech. Hence, 

this study aimed to explore emotional connotations of musical timbre of isolated 

instrument sounds through the perspective of affective speech, with a strict control of 

other musical features. More specifically, we tested whether musical timbre of 

isolated instrument sounds alone can have emotional connotations (i.e., whether 

timbre can communicate emotion). Emotion, in this study, was represented by 

affective speech. This means affective speech was used as a reference to which 
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musical instrument timbre was compared (the reason has been provided in previous 

paragraphs), with the goal of testing whether a single acoustic dimension of isolated 

musical instrument sounds (i.e., timbre) is capable of communicating emotion in a 

way similar to affective speech. In addition, as introduced in Chapter 1, another aim 

of this study is to test whether musical instrument timbre has acoustic characteristics 

that convey emotion in the same direction as predicted by the body-size projection 

theory on affective speech.  

A behavioural and two ERP experiments were carried out to achieve the 

aforementioned aims. The behavioural experiment tested whether emotions 

conveyed by musical timbre of isolated instrument sounds would have similar 

timbral patterns as those of affective speech. The first ERP experiment focused on 

the P200 and LPC (late positive complex) components which are primary indicators 

of cognitive processing of emotional stimuli (cf. Paulmann et al., 2013). We tested 

whether the ERP patterns elicited by instrument sounds would be similar to those of 

affective speech. The second ERP experiment focused on the N400 using the 

affective priming paradigm, with the aim to test whether emotionally incongruent 

instrument-speech pairs would elicit larger N400 than emotionally congruent 

instrument-speech pairs. The second ERP experiment is a logical extension of the 

first ERP experiment: The first one tested the brain’s processing of musical 

instrument sounds and affective speech separately, while the second one tested the 

brain’s response when the two categories of stimuli were presented via priming (i.e. 

more closely together) through the lens of N400. As reviewed above, N400 has been 

found to indicate emotional meaning in music through cross-modal (e.g. music and 

words) priming paradigms (Steinbeis and Koelsch, 2011). Hence, the second ERP 

experiment more directly addressed the research aim of this study: the emotional 
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connotations/meaning of musical instrument timbre through the perspective of 

affective speech. In addition, it is not unusual to examine different ERP components 

such as P200, LPC and N400 in one study (e.g., Dunn et al., 1998; Iakimova et al., 

2009), particularly in the field of emotion and meaning (e.g., Kanske and Kotz, 2007; 

Kanske et al., 2011).  

3.2 The behavioural experiment 

The aim of the behavioural experiment was twofold: first, to compare acoustic 

characteristics of affective speech timbre (voice quality) and musical timbre; second, 

to select affective speech and musical instrumental stimuli for the follow-up ERP 

experiments.  

3.2.1 Methods 

Participants 

Twenty native speakers of Mandarin (10 females, age M =28.3, SD = 5.2) without 

music training background were recruited as participants.  

Stimuli 

The speech database includes a pre-recorded Mandarin sentence (Cui luya nian shu 

qu le, meaning Cui luya has gone to read a book) produced in three emotions (anger, 

happiness, and sadness) by 8 native Mandarin speakers (4 females, age M = 25.3, SD 

= 2.1, different from the 20 participants for this behavioural experiment), with each 

rendition of the sentence per emotion repeated three times. Therefore there were 8 

(speakers) * 3 (emotions) * 1 (sentence) * 3 (repetitions) = 72 trials for the speech 

experiment. The music database was from McGill University Master Samples 

(MUMS) (Opolko and Wapnick, 2006). This database includes sounds of almost all 
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instruments (110 sounds altogether). Following Eerola et al. (2012), all the 

instrumental sounds were equal in pitch (D ♯ 4). For the purpose of this study, the 

sounds were also made equal in duration (1s). Moreover, the loudness of all the 

sound samples was adjusted in a way to ensure a perception of equal-loudness. In 

addition, sounds that have special effect (e.g., vibrato) were removed from the 

dataset. The purpose of this was to guarantee that other than timbre, all the rest of the 

acoustic features of the music stimuli remained perceptually the same.  

Procedure 

The participants were instructed to complete a speech and a music task. For the 

speech task, they were asked to listen to the 72 sentences in the speech database and 

rate each sentence per emotion on a 1-5 scale which indicated the intensity of the 

emotion (1 meant very weak; 5 meant very strong). The top 4 rated sentences of each 

emotion category were selected for the following behavioural analyses and ERP 

experiments. The mean score for all selected sentences in each emotion category was 

above 4.5. The acoustic features of the selected speech items were: anger (pitch: 

297.74Hz; duration: 1359ms; intensity: 77dB); happiness (pitch: 260.48Hz; duration: 

1338ms; intensity: 68.18dB); sadness (pitch: 199.36Hz; duration: 2091ms; intensity: 

54.85dB). For each emotion, the speech items were from 2 females and 2 males (all 

different speakers). For the music task, the participants were asked to listen to the 

110 musical instrument sounds and categorize each sound into one of the following 

categories: anger, happiness, sadness and neutral (no obvious emotion). Then each 

sound (except the sounds categorized as neutral) was rated on a 1-5 scale which 

indicated the intensity of the emotion (1 meant very weak; 5 meant very strong). The 

top 4 rated sounds of each emotion category (anger, happiness and sadness) were 

selected for the following behavioural analyses and ERP experiments. The mean 
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score for all selected sounds in each emotion category was above 4.3. Angry 

instruments selected were: cornet, alto shawm, crumhorn and saxophone. Happy 

instruments selected were: harpsichord, marimba, vibraphone and piano. Sad 

instruments selected were: violin, bassoon, flute and oboe.  

The reason why only 4 tokens from each emotion category were selected is that it is 

necessary to ensure the stimuli were highly representative of each emotion. This is 

because acted affective speech (as in this study) sometimes cannot convey the 

targeted emotion satisfactorily (cf. Scherer, 2003). A stimulus size larger than 4 in 

this study would involve sound tokens not well produced for each emotion. With 

regard to music stimuli, listeners’ judgment varied considerably as to the musical 

instruments for each emotion, and the top 4 instruments for each emotion were those 

that achieved high emotion validity scores (above 4). All the remaining instrument 

sounds for each emotion did not achieve an average score of more than 3, which 

consequently could not qualify as representatives of the targeted emotions. As a 

result, this study is limited in stimulus size and future research could include more 

sound tokens per emotion for wider generalizability.  

Following Eerola et al. (2012), 6 timbral features (Table 3.1) were selected: attack 

slope and spectral centroid corresponding to temporal features; ratio of high-low 

frequency energy, spectral skewness and spectral regularity corresponding to spectral 

features; and spectral flux corresponding to spectro-temporal features. They are all 

important timbral features which could contribute to the emotional connotations of 

timbre (Eerola, et al., 2012). The features were extracted from the speech and 

instrument stimuli using the MIR toolbox (cf. MIRtoolbox User’s Guide 1.6.1 by 

Lartillot (2014) for further technical details in computing each timbral feature). It is 

worth pointing out that timbre in music may correspond only partly with timbre (i.e., 
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voice quality) in speech because in speech literature, voice quality is still a relatively 

vague term that lacks a precise definition. Nevertheless, the acoustic features (e.g., 

attack slope, spectral centroid and spectral skewness, etc.) selected in this study have 

been shown to be important parameters for examining affective voice quality by 

several studies (e.g., Banse and Scherer, 1996; Goudbeek and Scherer, 2010; Laukka 

et al., 2005; Xu et al., 2013a, 2013b).  

Table 3.1 Definitions of the 6 timbral features selected for this study [cf. Eerola et al. 

(2012) and Lartillot (2014)]. 

 

Attack Slope   

 

Slope of the attack portion of the sound 

Spectral Centroid   

 

Geometric center of the spectrum (McAdams et 

al., 1995) 

Spectral Skewness   

 

Symmetry of the spectral distribution  

Spectral Regularity   

 

Degree of uniformity of the successive peaks of 

the spectrum, also called Spectral Smoothness 

(McAdams et al., 1999) 

Ratio of high-low frequency energy  

 

High-low spectral energy ratio (Juslin, 2000) 

Spectral Flux Change between the consecutive spectral frames 

(McAdams et al., 1995) 
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3.2.2 Results 

Figure 3.1 displays the means and standard deviations of the six timbral features of 

speech and instruments in the three emotions. Table 2 further summarizes the 

patterns of the three emotions (A=anger, H=happiness, S=sadness) with regard to the 

six timbral features of speech and musical instruments respectively. It can be 

observed that the patterns of emotions were similar for speech and instruments 

across all of the six timbral features, especially in terms of anger and happiness: 

happy speech and instruments had higher values than angry speech and instruments 

(H > A) in terms of spectral skewness and spectral flux; with regard to attack slope, 

spectral centroid, regularity and high-low frequency energy ratio, angry speech and 

instruments had higher value than happy speech and instruments (A > H).  Sad 

speech and instruments had the lowest spectral centroid, highest spectral skewness 

and regularity among the three emotions. Nevertheless, the patterns of sadness were 

not consistent between speech and instruments with regard to attack slope, high-low 

frequency energy ratio and spectral flux.  

To test the group differences between speech and musical instruments, three 

MANOVAs were carried out on the top 4 rated speech and instruments in the 

conditions of anger, happiness and sadness respectively. The dependent variables 

were the six timbral features: attack slope, spectral centroid, spectral skewness, 

spectral regularity, ratio of high-low frequency energy and spectral flux. The 

independent variable was group (two levels: affective speech and musical 

instruments). The results show that in anger, happiness and sadness, the differences 

between speech and musical instruments were non-significant (anger: F (6,1) =31.03, 

p=0.137; happiness: F (6, 1) =19.13, p=0.173; sadness: F (6,1) =5.485, p=0.316).  
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Figure 3.1 Means of the six timbral features of speech and instruments in the three 

conditions of emotion. Error bars represent the standard error of the mean.  
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Table 3.2  Patterns of the three emotions (A=anger, H=happiness, S=sadness) with 

regard to the six timbral features of speech and musical instruments respectively 

(significant comparisons are indicated in bold in the second line of each stimulus 

type, p<0.017).  

 

3.3 ERP experiments 

3.3.1 Methods 

Participants and stimuli 

Sixteen native speakers of Mandarin Chinese were recruited to take part in the ERP 

experiment 1 and another sixteen speakers of Mandarin Chinese for the ERP 

experiment 2 (8 females for each experiment, age M=23, SD=1.8 of the speakers for 

the first experiment; age M=26, SD=2.1 of the speakers for the second experiment). 

For each experiment, data from one participant was discarded due to excessive 

muscle artefacts. The participants reported no hearing or speech impairments. The 

experiments were approved by UCL research ethical committee. The stimuli for the 

ERP experiments were the top four rated speech and musical instruments from the 

behavioural experiment (cf. section 3.2 for details).  

 

 

 attack slope centroid skewness regularity HF/LF  ratio spectral flux 

Speech A>H>S A>H>S S>H>A S>A>H A>H>S H>A>S 

 (A>H, A>S, H>S) (A>H, A>S, H>S) (S>H, S>A, H>A) (S>A, S>H, A>H) (A>H, A>S, H>S) (H>A, H>S, A>S) 

Instruments A>S>H A>H>S S>H>A S>A>H A>S>H H>S>A 

 (A>S, A>H, S>H) (A>H, A>S, H>S) (S>H, S>A, H>A) (S>A, S>H, A>H) (A>S, A>H, S>H) (H>S, H>A, S>A) 
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Procedure 

Two ERP experiments were carried out on two separate days.  

Experiment 1 

The first experiment aimed to separately test the effect of emotional speech and 

musical instruments: the stimuli were blocked separately by stimulus type (i.e., 

speech and instruments respectively).  Each stimulus block was presented 3 times 

with anger, happiness and sadness being the target emotion respectively. That is, in 

each stimulus block, stimuli of all 4 emotions were presented randomly, with anger 

as the target emotion for the first time of presentation, happiness as the target 

emotion for the second time of presentation, sadness as the target emotion for the 

third time of presentation. In each time of presentation, each target emotion had 4 

representations (i.e., the top 4 rated instruments or speech in each emotion, according 

to the behavioural experiment). Each representation of each emotion was presented 

20 times. Altogether there were 3 (target emotions) * 4 (representations of each 

target emotion) * 20 (repetitions of each representation of each emotion) * 3 

(repetitions of each stimulus block) * 2 (stimulus blocks: speech, instruments) = 

1440 trials. The stimuli were presented randomly with the constraint that the same 

stimulus was not presented consecutively and at least there were two different 

stimuli between identical stimuli. The Inter-Stimulus-Interval (ISI) was 1000 ms. 

The participants were given a go/no go task, i.e., they monitored for the target 

emotion in each presentation session by pressing a button as quickly as possible. 

Prior to recording, participants had a two-minute practice session to familiarize 

themselves with the task.  
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Experiment 2 

The second experiment aimed to more directly compare emotional speech and 

musical instruments with the priming paradigm: musical instrumental sounds were 

used as primes and emotional speech as targets, following a similar approach where 

words were used targets and musical sounds were primes (Steinbeis and Koelsch, 

2011). Moreover, in this study, we used an explicit priming paradigm, i.e., tasks that 

directly require participants to judge the relatedness between primes and targets. The 

reason is that the N400 effect could be either absent (Painter and Koelsch, 2011) or 

small (Frey et al., 2014) if an implicit priming paradigm (i.e., tasks unrelated to the 

judgement of the relatedness between primes and targets) was used. There were 

altogether 9 instrument-speech pairs (AA=angry instrument-angry speech; 

HA=happy instrument-angry speech; SA=sad instrument-angry speech; AH=angry 

instrument-happy speech; HH=happy instrument-happy speech; SH=sad instrument-

happy speech; AS=angry instrument-sad speech; HS=happy instrument-sad speech; 

SS=sad instrument-sad speech). In each pair, each emotion had 4 representations (i.e., 

the top 4 rated instruments or speech in each emotion, according to the behavioural 

experiment). Each representation of each pair was presented 20 times. Altogether 

there were 9 (pairs) * 4 (speech) * 4 (instruments) * 20 (repetitions) = 2880 trials. 

They were grouped pseudorandomly and presented in four blocks. The Inter-

Stimulus-Interval between the prime and target was 1000ms. After hearing each 

instrument-speech pair, the participants had 1000ms to judge whether the emotions 

conveyed by the instrument and speech were congruent or not by pressing a button 

(left = yes, right = no). Prior to recording, participants (different from those for 

experiment 1) had a two-minute practice session to familiarize themselves with the 

task.  
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EEG recording and data analyses for Experiments 1and 2 

The EEG was recorded using a Biosemi ActiveTwo system with 64 Ag-AgCI 

electrodes mounted on an elastic cap. The offsets at each electrode were kept 

between +/-20 mV. To detect eye movement-related artifacts, bipolar horizontal and 

vertical EOGs (electro-oculograms) were recorded. The average of left and right 

mastoids was used as the off-line reference to all electrodes. Analysis software was 

EEGLAB v. 12.0.2.04b (Delorme and Makeig, 2004). The data was filtered off-line 

by a band-pass filter of 0.5-30 Hz. Trials with EOG-artifacts were rejected offline 

using the artifact detection tools in ERPLAB v. 3.0.2.1 (Lopez-Calderon and Luck, 

2014). The moving window peak-to-peak threshold tool (moving window width: 200 

ms, voltage threshold: 100 μV, window step: 20 ms) and the step-like artifacts tool 

(moving window width: 400 ms, voltage threshold: 35 μV, window step: 10 ms) 

were used to reject trials with these artifacts. On average 19% of the data was 

rejected for anger, 16% was rejected for happiness and 18% was rejected for sadness. 

ERPs were averaged from the time window of 200 ms pre-stimulus onset to 800 ms 

post-stimulus onset. The EEG epochs were time-locked to the stimulus onset, and 

baseline corrected (-200 to 0 ms).  

There were nine regions of interests (ROIs) for this study: left frontal (LF) electrode-

sites (F7, F5, F3, FT7, FC5, FC3); left central (LC) electrode-sites (C5, C3, TP7, 

CP5, CP3); left posterior (LP) electrode-sites (P7, P5, P3, PO7, PO3); right frontal 

(RF) electrode-sites (F4, F6, F8, FC4, FC6, FT8); right central (RC) electrode-sites 

(C4, C6, CP4, CP6, TP8); right posterior (RP) electrode-sites (P4, P6, P8, PO4, PO8); 

midline frontal (MF) electrode-sites (F1, Fz, F2, FC1, FCZ, FC2); midline central 

(MC) electrode-sites (C1, Cz, C2, CP1, CPZ, CP2); midline posterior (MP) 



72 
 

electrode-sites (P1, PZ, P2, POZ). The ERP data was averaged according to the nine 

ROIs for analyses of variance (ANOVAs).  

3.3.2 Results of experiment 1: P200 and LPC  

Behavioural results  

The mean error rate for angry speech was 2.9% (SD=0.5), happy speech was 3.6% 

(SD=0.4), sad speech was 3.8% (SD=0.8), angry instruments was 14.7% (SD=1), 

happy instruments was 15.1% (SD=1.5), and sad instruments was 15.9% (SD=1.2). 

A two-way ANOVA (stimulus type and emotion) for the error rate showed that the 

main effects of stimulus type and emotion were significant (type: F(1, 14) = 2367.34, 

p<0.001; emotion: F(2, 28) = 9.61, p<0.01) while the interaction between them was 

non-significant (F(2, 28) = 0.56, p=0.58). Average reaction time for angry speech 

was 808ms (SD=5.5), happy speech was 811ms (SD=4), sad speech was 805ms 

(SD=4.9), angry instruments was 813ms (SD=4.4), happy instruments was 804ms 

(SD=3.8), and sad instruments was 810ms (SD=4.6).  A two-way ANOVA (stimulus 

type and emotion) for reaction time showed that neither of the two factors was 

significant (stimulus type: F(1, 14) = 1.04, p=0.33; emotion: (F(2, 28) = 3.23, 

p=0.06).  

P200  

P200 was quantified using a mean amplitude from 170 to 230 ms from stimulus 

onset. The selection of the interval was based on visual inspection and previous 

reports (Paulmann et al., 2013).  The ERP waveforms, scalp topography and the 

mean amplitude are displayed in Figures 3.2-3.4. 



73 
 

        

 

Figure 3.2 ERP waveforms demonstrating the main effects of P200 and LPC at 

selected electrodes for speech and instruments under the conditions of anger, 

happiness and sadness.  
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Figure 3.3 Scalp topography of the P200 and LPC for speech and instruments under 

the conditions of anger, happiness and sadness.  
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Figure 3.4 The mean amplitude of P200 and LPC for speech and instruments under 

the conditions of anger, happiness and sadness. Error bars represent the standard 

error of the mean.  

A three-way (type: speech and instruments; emotion: anger, happiness and sadness; 

and ROI: LF, MF, RF, LC, MC, RC, LP, MP, RP) repeated measures ANOVA was 

performed on the peak latency and mean amplitude of P200.  For peak latency, no 

significant main effects (emotion, type and ROI) were found. However, for mean 

amplitude, significant main effects were found: type (F (1, 14) = 15.1, p < 0.01,       = 

0.52), emotion (F (2, 28) = 334.6, p < 0.001,     = 0.96), ROIs (F (8, 112) = 153.64, p < 

0.001,      = 0.92). Their interaction type * emotion * ROIs was also significant (F (16, 

224) = 10.4, p < 0.001,      = 0.43). 

Post-hoc tests showed more details: with regard to type, speech had significantly 

higher P200 amplitude than instruments in anger (F (1, 14) = 64.11, p < 0.001,    = 
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0.82) and happiness (F (1, 14) = 15.31, p < 0.01,       = 0.52). The opposite was true in 

sadness (F (1, 14) = 11.27, p < 0.01,    = 0.45). In terms of emotion, speech and 

instruments had similar patterns with regard to anger: angry speech had significantly 

higher P200 amplitude than happy (F (1, 14) = 125.1, p < 0.001,     = 0.9) and sad (F (1, 

14) = 464.3, p < 0.001,     = 0.97) speech; angry instruments were significantly higher 

than happy (F (1, 14) = 133.8, p < 0.001,      = 0.91) and sad (F (1, 14) = 64.66, p < 0.001,    

= 0.82) instruments. Happy speech had significantly larger P200 amplitude than sad 

speech (F (1, 14) = 13.37, p < 0.01,    = 0.49) while in the instrument condition, the 

opposite was true: happy instrument had significantly lower P200 amplitude than sad 

instruments (F (1, 14) = 17.93, p < 0.01,     = 0.56).  Table 3.3 shows the results of 

post-hoc tests at each ROI. It can be observed that for speech, the overall pattern was 

A>H>S across all the ROIs. The differences between each emotion and another were 

particularly prominent (i.e., significant) at fronto-central areas. For musical 

instruments, the overall pattern was A>S>H across all the ROIs. Similarly to speech, 

the differences were more pronounced (i.e., significant) at fronto-central ROIs. 

Table 3.3 The results of post-hoc tests at each ROI in terms of the P200 amplitude 

(A=anger, H=happiness, S=sadness, statistically significant comparisons are in bold, 

p<0.017). 

 

P200  LF RF LC RC LP RP MF MC MP 

Speech A vs. H A>H  A>H A>H A>H  A>H  A>H  A>H A>H  A>H  

 A vs. S A>S A>S  A>S  A>S  A>S  A>S  A>S  A>S  A>S 

 H vs. S H>S H>S  H>S  H>S    H>S  H>S  H>S  H>S  H>S  

Instruments A vs. H A>H A>H  A>H  A>H  A>H A>H  A>H A>H  A>H  

 A vs. S A>S A>S  A>S  A>S    A>S  A>S  A>S  A>S  A>S 

 H vs. S S>H   S>H      S>H S>H  S>H  S>H  S>H   S>H    S>H 
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LPC  

LPC (late positive complex) was measured from 450-750ms after stimulus onset 

based on visual inspection and previous reports (Paulmann et al., 2013). The ERP 

waveforms, the mean amplitude and scalp topography are displayed in Figures 3.2-

3.4. A three-way (type, emotion and location) repeated measures ANOVA was 

performed on the peak latency and mean amplitude of LPC. The results were similar 

to those of P200: for peak latency, no significant main effects (emotion, type and 

location) were found. However, for mean amplitude, significant main effects were 

found: type (F (1, 14) = 35.77, p < 0.001,      = 0.94), emotion (F (2, 28) = 143.38, p < 

0.001,      = 0.91), ROIs (F (8, 112) = 128.71, p < 0.001,     = 0.9). The interaction type 

* emotion * ROIs was also significant (F (16, 224) = 3.78, p < 0.001,     = 0.21) (see 

Figure 3.2 for the ERP waveforms and Figure 3.3 for the scalp topography).  

Post-hoc contrasts show that in all emotion conditions, speech had significantly 

higher LPC amplitude than music (anger: F (1, 14) = 87.99, p < 0.001,    = 0.86; 

happiness: F (1, 14) = 68.31, p < 0.001,     = 0.83; sadness: F (1, 14) = 73.57, p < 0.001,      

= 0.84). With regard to emotion, speech and instruments present a similar picture: 

anger was significantly higher than happiness (speech: F (1, 14) = 119.9, p < 0.001,      

= 0.9; instruments: F (1, 14) = 133.99, p < 0.001,      = 0.91) and sadness (speech: F (1, 

14) = 35.42, p < 0.001,     = 0.72; instruments: F (1, 14) = 52.09, p < 0.001,      = 0.79); 

sadness was significantly higher than happiness (speech: F (1, 14) = 34.73, p < 0.001,      

= 0.71; instruments: F (1, 14) = 53.11, p < 0.001,     = 0.79). Table 3.4 shows the 

results of post-hoc tests at each ROI. It can be observed that for both speech and 

musical instruments, the pattern of A>S>H was present across all fronto-central 

ROIs.   
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Table 3.4 The results of post-hoc tests at each ROI in terms of the LPC amplitude 

(A=anger, H=happiness, S=sadness, statistically significant comparisons are in bold, 

p < 0.017).  

 

3.3.3 Results of the ERP experiment 2: N400 

Behavioural results  

The mean error rate for AA (angry instrument-angry speech) pair was 3.1% 

(SD=0.6); AH (angry instrument-happy speech) pair was 3.9% (SD=0.6); AS (angry 

instrument-sad speech) pair was 2.9% (SD=1.1);  HA (happy instrument-angry 

speech) pair was 5.7% (SD=0.9); HH (happy instrument-happy speech) pair was 4.1% 

(SD=0.8); HS (happy instrument-sad speech) pair was 3.8%; (SD=0.6); SA (sad 

instrument-angry speech) pair was 8.2% (SD=1.1); SH (sad instrument-happy speech) 

pair was 7.8% (SD=0.9); SS (sad instrument-sad speech) pair was 8.1% (SD=1.1). A 

two-way (prime and target) repeated measures ANOVA showed that the effects of 

prime, target and their interaction were significant: prime (F (2, 28) = 292.2, p < 

0.001); target (F (2, 28) = 5.93, p < 0.01); interaction (F (4, 56) = 8.46, p < 0.001). 

This could suggest that the listeners’ judgement accuracy on the 

LPC  LF RF LC RC LP RP MF MC MP 

Speech A vs. H A>H  A>H A>H  A>H  A<H  A<H  A>H A>H A<H   

 A vs. S A>S A>S A>S  A>S A<S  A<S  A>S  A>S  A<S    

 H vs. S S>H S>H  S>H S>H  S>H S>H  S>H S>H S>H  

Instruments A vs. H A>H  A>H A>H A>H A<H,  A<H  A>H  A>H  A<H   

 A vs. S A>S  A>S A>S  A>S  A<S  A<S  A>S  A>S  A<S   

 H vs. S S>H  S>H S>H S>H  S>H  S>H  S>H  S>H  S>H 
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congruence/incongruence of the target depends on the prime. No reaction time data 

was collected because the task was a delayed response task.   

N400 

The selection of N400 time window in this study was from 350 to 500ms based on 

visual inspection and previous literature on music and language priming (Painter and 

Koelsch, 2011). The N400 appeared larger in amplitude for emotionally incongruous 

instrument-speech pairs than the congruous pairs (see Figure 3.5 for the ERP 

waveforms, Figure 3.6 for the mean amplitude and Figure 3.7 for the scalp 

topography).  
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Figure 3.5 The N400 effect at Cz when angry speech (a), happy speech (b) and sad 

speech (c) was the target primed by musical instruments of different emotional 

categories.  

     

 

Figure 3.6 The mean amplitude of the N400 for the nine instrument-speech pairs 

(AA=angry instrument-angry speech; AH=angry instrument-happy speech; 

AS=angry instrument-sad speech; HA=happy instrument-angry speech; HH=happy 

instrument-happy speech; HS=happy instrument-sad speech; SA=sad instrument-

angry speech; SH=sad instrument-happy speech; SS=sad instrument-sad speech). 

Error bars represent the standard error of the mean.   
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Figure 3.7 Scalp topography of the N400 effect for the nine instrument-speech pairs 

(AA=angry instrument-angry speech; AH=angry instrument-happy speech; 

AS=angry instrument-sad speech; HA=happy instrument-angry speech; HH=happy 

instrument-happy speech; HS=happy instrument-sad speech; SA=sad instrument-

angry speech; SH=sad instrument-happy speech; SS=sad instrument-sad speech).  

A three-way (target, prime and ROIs) repeated measures ANOVA was carried out on 

the mean amplitude of N400 between 350ms and 500ms. The effects of target, prime 

and ROIs were significant: target (F (2, 28) = 205.22, p < 0.001,      = 0.94); prime (F (2, 

28) = 166.76, p < 0.001,     = 0.92); ROI (F (8, 112) = 148.94, p < 0.001,     = 0.91). The 

interaction between the prime and target was significant (F (4, 56) = 604.75, p < 0.001,      
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= 0.98), suggesting that the modulation of the N400 amplitude of the target depended 

on the prime.  

Post-hoc contrasts  revealed more details of the N400 amplitude comparisons 

between different instrument-speech pairs (AA=angry instrument-angry speech; 

AH=angry instrument-happy speech; AS=angry instrument-sad speech; HA=happy 

instrument-angry speech; HH=happy instrument-happy speech; HS=happy 

instrument-sad speech; SA=sad instrument-angry speech; SH=sad instrument-happy 

speech; SS=sad instrument-sad speech): AA vs. HA (F (1, 14) = 364.67, p < 0.001,      

= 0.96); AA vs. SA (F (1, 14) = 59.16, p < 0.001,    = 0.81); SA vs. HA (F (1, 14) = 

122.21, p < 0.001,      = 0.9); AH vs. HH (F (1, 14) = 666.39, p < 0.001,     = 0.99); AH 

vs. SH (F (1, 14) = 56.82, p < 0.001,     = 0.8); HH vs. SH (F (1, 14) = 558.23, p < 0.001,     

= 0.98); AS vs. HS (F (1, 14) = 426.41, p < 0.001,      = 0.97 ); AS vs. SS (F (1, 14) = 

481.81, p < 0.001,       = 0.98); HS vs. SS (F (1, 14) = 452.52, p < 0.001,       = 0.97).   

3.3.4 Summary of the results of the ERP experiment 1 and 2 

The results of the ERP experiment 1 showed that firstly, emotional speech triggered 

larger P200 and LPC amplitudes than musical instruments, with the exception that 

sad instruments triggered larger P200 than sad speech. Secondly, the results on P200 

and LPC showed that for both speech and instrument conditions, anger overall had 

significantly higher P200 and LPC amplitude than happiness and sadness. Moreover, 

for the P200, happiness was significantly higher than sadness in the speech condition 

while the opposite was true for the musical instrument condition; for the LPC, 

happiness was significantly lower than sadness in both speech and musical 

instrument conditions. The results of the experiment 2 demonstrated that emotionally 
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congruous instrument-speech pairs triggered smaller N400 amplitude than 

emotionally incongruous instrument-speech pairs.  

3.4 Discussion and conclusion 

3.4.1 The behavioral experiment 

In this study we aimed to explore emotional connotations of musical timbre of 

isolated instrument sounds through the perspective of affective speech using 

behavioral and ERP experiments. The results of the behavioral experiment suggested 

that there were no significant differences between affective speech and instrument 

sounds with regard to the six timbral features in each emotion category (i.e., anger, 

happiness and sadness). Moreover, the patterns of emotions were similar for speech 

and instruments across all of the six timbral features, especially with regard to anger 

and happiness (Table 3.2). The results showed that angry speech/instrument sounds 

had higher attack slope and high-low frequency energy ratio than happy 

speech/instrument sounds. This is in line with the report on affective speech (Banse 

and Scherer, 1996; Goudbeek and Scherer, 2010; Laukka et al., 2005; Scherer, 1989) 

that the more activated an emotion is (e.g., anger), the higher the attack slope and 

high-low frequency energy ratio, probably due to the high physiological arousal 

triggered by more activated emotions such as anger (Banse and Scherer, 1996; 

Scherer, 1989).  Moreover, the results on speech are also consistent with the report 

that (Goudbeek and Scherer, 2010; Laukka et al., 2005; Xu et al., 2013b) the valence 

of emotion is often negatively correlated with high-low frequency energy ratio, i.e., 

the more positive an emotion is (e.g., happiness), the lower the ratio. This pattern 

also holds true for musical timbre: sound spectrums with greater amount of high 

frequency energy are generally perceived as sharp and angry (Juslin, 1997). In 
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addition, musical sounds with positive valence were found to have lower attack slope 

and lower high-low frequency energy ratio (Eerola, et al., 2012). With regard to 

sadness, previous reports show that sad speech and music are often characterized by 

legato articulation (Bresin and Friberg, 2000; Juslin, 1997, 2000), i.e., lower degree 

of attack slope. This is supported by this study in terms of sad speech but not sad 

instruments. In addition, this study showed that sadness had the lowest high-low 

frequency energy ratio for speech but not for musical instruments, which does not 

agree with the report that in music, low amount of high frequency leads to the 

perception of soft timbre and sadness (Juslin, 1997). The reason can be attributed to 

the fact that there are usually two kinds of sadness: depressed sadness and grieving 

sadness (Scherer, 1979; Xu et al., 2013a). In this study, sad speech was produced 

more like depressed sadness while sad instruments rated by the listeners sounded 

more like grieving sadness (i.e., with more energy). Depressed sadness is usually 

characterized by low amount of high spectral energy while the opposite is true for 

grieving sadness (Scherer, 1979), which is consistent with the findings of this study. 

It is worth noting that anger and happiness also have different modes of expressions 

(i.e., hot vs. cold anger; pleasure vs. joy). In this study, the speakers produced hot 

anger and joy which were in the same acoustic direction as musical instruments 

selected for anger and happiness respectively. Hence, there were more consistencies 

between speech and music in terms of anger and happiness than sadness.  

In terms of spectral skewness and centroid of spectral gravity, the results on speech 

and instruments shared the same direction: for spectral centroid, anger had the 

highest value while sadness the lowest; for skewness, sadness had the highest value 

while anger the lowest. Happiness was in between for both measures. The results on 

speech are in line with previous reports (Xu et al., 2013b) that happiness is 
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associated with higher degree of spectral tilt (skewness) and lower spectral centroid 

than anger. Moreover, greater spectral skewness suggests breathiness in voice (Xu et 

al., 2013b). Musical instruments perceived as conveying sadness in this study 

included the flute, oboe and bassoon, whose acoustic characteristics can be very 

similar to breathy voice. Musical instruments perceived as expressing anger and 

happiness included brass, keyboard and percussion instruments, whose degree of 

breathiness is much lower than the instruments conveying sadness.  This could 

explain why in this study, sad instruments had the highest degree of spectral 

skewness. The results on musical instruments, however, were in opposite direction 

from the findings in Eerola et al. (2012) where positively valenced musical sounds 

(i.e., pleasant sounds) were associated with higher spectral centroid than unpleasant 

sounds. The reasons could be that in their study, a dimensional approach to emotion 

was adopted (Eerola et al., 2012, p.51) rather than a discrete approach as in this 

study. Therefore, what was perceived as positively valenced sounds in their study 

could fall into more discrete categories than happiness alone in this study. The larger 

data set of their study could lead to inconsistency with the results of this study. The 

results on spectral flux and spectral regularity showed relatively consistent patterns 

for speech and instruments: happiness was associated with higher degree of spectral 

flux and lower spectral regularity than anger and sadness. This is consistent with 

previous reports on affective speech (Xu et al., 2013b) and musical instruments 

(Eerola et al., 2012) where positively valenced sounds are spectrally more dynamic 

(i.e., more fluctuating and less regular).  
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3.4.2 ERP experiments 

P200 

This study firstly showed that different vocal emotions and musical timbre can be 

differentiated by the P200 amplitude. In particular, both angry speech and angry 

instrument sounds had the highest P200 amplitude compared to happy and sad 

speech/instrument sounds. This is consistent with previous reports on affective 

speech where highly arousing emotions such as anger often trigger significantly 

higher P200 amplitude than less arousing emotions such as sadness (Paulmann, et al., 

2013; Sauter and Eimer, 2010; Spreckelmeyer et al., 2006). In terms of music, highly 

aroused emotion such as anger is often associated with faster speed, higher intensity 

and greater roughness than less aroused emotions in a way similar to speech (Juslin 

and Laukka, 2003; Juslin and Västfjäll, 2008). It is therefore not surprising that the 

P200 amplitude of angry instrument sounds triggered the highest amplitude in a way 

similar to angry speech, as revealed in this study. With regard to happiness and 

sadness, happy instrument sounds had lower P200 amplitude than sad instrument 

sounds while the opposite pattern was true for speech. As discussed in section 3.4.1, 

the reasons can be attributed to the two kinds of sadness portrayed by instruments 

and speech, respectively. Sad instruments convey grieving sadness while sad speech 

conveys depressed sadness, as evidenced from the results of the behavioral study 

reported above. Therefore, it is reasonable that the ERP results revealed 

correspondingly different (opposite) P200 patterns for music and speech in terms of 

sadness.   

This finding also supports the fact that the P200 is associated with the human brain’s 

rapid detection of and enhanced attention to emotional stimuli (Paulmann et al., 2013; 
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Schirmer et al., 2013). In terms of speech, previous studies have reported that 

affective speech prosody can be differentiated from neutral speech prosody as early 

as 200 ms, usually at the fronto-central location of the brain (Paulmann and Kotz, 

2008; Paulmann et al., 2011). Recent findings (Paulmann et al., 2013) have also 

reported that different emotions can be differentiated from each other within 200 ms. 

Cognitive processing of emotional visual stimuli follows a similar pattern: highly 

(positive and negative) arousing pictures trigger larger P200 than lowly (positive and 

negative) arousing pictures (Feng et al., 2012). With regard to musical timbre, Meyer 

et al. (2006) found that the P200 was associated with the differentiation of the 

emotional connotations of musical timbre. Studies have also reported that 200ms-

long musical excerpts with intact temporal and high frequency spectral information 

were enough to enable listeners to recognize the titles of popular songs (Schellenberg 

et al., 1999). Such fast cognitive processing of musical timbre can be attributed to 

the possibility that compared with pitch, timbre can be a robust cue facilitating music 

feature perception (Robinson and Patterson, 1995). 

There may be questions about whether the P200 reflects detection of physical 

differences between sound stimuli (i.e., low level acoustic differences of the stimuli) 

or cognitive interpretation of the emotional connotation of the sound stimuli. 

Theoretical (Schirmer and Kotz, 2006) and experimental (Paulmann and Kotz, 2008; 

Pulvermüller and Shtyrov, 2006) studies on affective speech perception has 

suggested that early ERP components such as P200 reflects the processing of both 

physical properties of the sound stimuli and higher-order cognitive events such as 

emotion, due to the rapid differentiation of emotional sentences from neutral 

sentences within the time window as early as 200ms. Recent research using 

Mandarin sentences (Jiang et al., 2014) separately tested the roles of physical 
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properties and emotional categories in perception of affective speech stimuli. The 

results demonstrate that both physical and emotional aspects of the sound stimuli can 

be detected at an early stage (i.e., around 200 ms). With regard to music, the P200 

was found to reflect the emotional connotations inherent of musical timbre (Meyer et 

al., 2006) due to the finding that additional anterior cingulate cortex (ACC) activities 

in the P200 time window were observed in the perception of musical timbre (Meyer 

et al., 2006). ACC activities have been particularly associated with cognitive 

processing of emotion related stimuli (Phan et al., 2002). Therefore, it is plausible 

that musical timbre perception not only activates auditory areas for processing the 

physical properties of the sound stimuli but also triggers response from areas 

responsible for processing higher cognitive dimensions such as emotion (Meyer et 

al., 2006).  

LPC  

The results of this study showed that for both speech and musical instrument sounds, 

anger had the highest LPC amplitude while happiness the lowest, with sadness in 

between. The results are consistent with previous studies showing that highly 

arousing emotions such as anger usually trigger larger LPC amplitude than lowly 

arousing emotions such as sadness (Hinojosa et al., 2009; Paulmann et al., 2013; 

Rozenkrants et al., 2008). More recent findings on affective speech and vocalizations 

also suggest anger tends to trigger larger LPC than other emotions (Pell et al., 2015). 

Nevertheless, the finding of this study that sadness had larger LPC amplitude than 

happiness is the opposite of previous findings (e.g., Paulmann et al., 2013). For 

musical instruments, the explanation for this could be attributed to the fact the sad 

instruments selected for this study conveyed grieving sadness which could sound 

much more activated and aroused than happiness (as discussed in section 3.4.1), 



89 
 

leading to the corresponding ERP patterns where sad instruments triggered larger 

LPC than happy instruments. For speech, the explanation requires more discussion 

about the function of LPC. LPC is proposed to be a part of multi-step model of 

emotion processing (Schirmer and Kotz, 2006). If the P200 is a reflection of the 

processing of both physical properties and emotional connotations of the stimuli as 

discussed above, then the LPC is more indicative of the enhanced and continuous 

cognitive evaluation of emotional stimuli (Jiang et al., 2014; Kotz and Paulmann, 

2011; Paulmann et al., 2013; Schirmer and Kotz, 2006). Specifically, the P200 is 

more about the detection of the emotional salience of the sound stimuli while the 

LPC is responsible for the fine-tuned analysis of the emotional meaning conveyed 

thereafter in order to ensure appropriate actions (Kotz and Paulmann, 2011; 

Paulmann et al., 2013). The more enhanced LPC of sad speech than happy speech as 

seen in this study could reflect a more pronounced cognitive evaluation of the 

speaker’s sad speech (depressed sadness), possibly due to its potential implication to 

beg for sympathy and require subsequent consolation from the listener (Xu et al., 

2013a). Admittedly, this pattern does not necessarily exist universally and could vary 

greatly from individual to individual, and hence there could well be experimental 

inconsistencies between studies in this regard.  

N400 

The results of the second ERP experiment showed a clear N400 effect elicited by 

affective incongruence between affective speech and musical instrument sounds. The 

effect was particularly pronounced for speech-instrument pairs with more opposing 

emotions respectively: the N400 amplitude of angry-sad and happy-sad pairs was 

significantly larger than that of other pairs. The reason could be that anger and 

happiness share many similar acoustic features since both of them are emotions with 
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a high level of activity, and hence perceptually they can be sometimes 

indistinguishable (cf. Scherer, 2003). Therefore, the acoustic contrast between anger 

and happiness could be less than that between anger and sadness or happiness and 

sadness. The N400 patterns, correspondingly, reflected such differences.  

The finding is also in the same direction as that of Steinbeis and Koelsch (2011) 

where affective priming paradigm was used to show that musical instrument timbre 

could communicate emotion to musically trained and untrained listeners. Words 

(visually presented) that were emotionally incongruent with the timbre of musical 

chords generated larger N400 amplitude than emotionally congruent words-music 

pairs. Similar findings were reported in Painter and Koelsch (2011). Nevertheless, 

the music stimuli in the aforementioned studies did not have a strict control for other 

acoustic features such as fundamental frequency, intensity or duration. This means it 

could be the cohort of all acoustic features (not just timbre) that contributed to the 

N400 effect. The present study, in contrast, strictly controls all acoustic features 

except timbre, thus demonstrating a clearer picture of the emotional connotations of 

musical instrument timbre. In addition, this study further extends previous affective 

priming research on emotional meanings of music by showing that when targets 

were auditorily presented affective speech (rather than visually presented words), the 

N400 could still be elicited due to the emotional incongruence between music and 

speech. Hence, the results provide further evidence that the N400 effect can exist 

regardless of domain or modality differences (Cummings et al., 2006; McPherson 

and Holcomb, 1999; Painter and Koelsch, 2011).  

 

 



91 
 

3.4.3 The processing advantage of human voice 

This study shows that on the whole, affective speech triggered larger P200 and LPC 

amplitudes than musical instruments. This finding is in line with previous studies 

reporting the cognitive processing advantage of human voice compared with other 

types of sound stimuli. Behavioral experiments on reaction time differences between 

instrumental sounds (e.g., strings, percussion) and vocal sounds (sung vowels) show 

that voice stimuli elicit faster reaction time than musical instruments (Agus et al., 

2012). Evidence from EEG/ERP experiments also supports the brain’s processing 

preference for voice: compared with musical instruments, human voice can elicit a 

significantly greater positive component peaking at 320 ms (Levy et al., 2001), 

particularly at the frontal area. Compared with environmental sounds and bird songs, 

human voice also triggers greater P200 amplitude in the frontal temporal area 

(Charest et al., 2009). Research on musical expertise differences between musicians 

and non-musicians also show that voice stimuli are processed faster than music 

stimuli by all participants, regardless of musical training (Kaganovich et al., 2013).  

The processing advantage of voice can be further supported by the fact that humans 

are by nature voice experts (Latinus and Belin, 2011), since speech plays a crucial 

role in human communication (Liberman and Mattingly, 1989). Evidence abounds in 

developmental research on human voice sensitivity from infancy: infants’ voice 

sensitivity to mother’s voice develops even before birth (Kisilevsky et al., 2003); 

five-month-olds can show enhanced fronto-temporal activity for voice stimuli 

(Rogier et al., 2010); seven-month-olds begin to show similar language processing 

patterns as adults (Grossmann et al., 2010); one-year-olds can follow adults’ voice 

direction (Rossano et al., 2012), etc.  
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3.4.4 Evolutionary implications of the present study 

Music and speech are two major platforms of communicating emotion (Juslin and 

Laukka, 2003), sharing similar evolutionary implications (Darwin, 1871; Cross, 

2009a). Evolutionarily, emotion is adapted under selection pressure (Darwin, 1872) 

as a mechanism for interacting with other living organisms (Ekman, 1992). 

Emotional vocal expressions are likely selected to have the effect of influencing the 

receiver for the benefit of the signaller (Morton, 1977; Ohala, 1984; Xu et al. 2013a, 

2013b). In particular, vocalizations that mimic a big animal would help to scare off 

the listener because a larger animal stands a better chance of winning a physical 

confrontation, and vocalizations that mimic a small animal or even an infant would 

help to attract the listener by showing lack of threat and eliciting parental instinct 

(Morton, 1977; Ohala, 1984). Due to simple physical laws, the vocalization of a 

large animal is likely to have low pitch and rough sound quality, whereas that of a 

small animal is likely to be high-pitched and pure-tone like (Morton, 1977). Here the 

rough and tone-like voice quality form a continuum in terms of spectral shape: the 

rougher the voice, the flatter the spectrum due to the abundance of high-frequency 

energy; and the more pure-tone like the voice, the more negative the spectral tilt due 

to lack of high-frequency energy (Stevens, 1998). 

In this study angry and happy speech showed similar timbral patterns to those of 

musical instruments in the same emotion category (i.e., anger corresponded to rough 

sound quality while happiness corresponded to pure-tone like sound quality). The 

following ERP studies also reflected that the brain’s evaluation for the musical 

instrument timbre was in the same direction as that for affective speech. Therefore, 

the results further suggest that the timbre of instrumental sounds could imply bio-

evolutionary meanings similar to those of affective speech. That is, similar to 
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affective speech, angry instrument timbre projects a large body size while happy 

instrument timbre projects a small body size. Examples can be found in orchestral 

works (e.g., Tchaikovsky’s The Nutcracker; Prokofiev’s Peter and the Wolf) where 

instruments with rough timbre are used to portray angry characters while instruments 

with tone-like timbre are used to portray happy characters.  

With regard to sadness, the two kinds of sadness (grieving sadness and depressed 

sadness) have different body size projections: grieving sadness should project a large 

body size due to its demanding nature, while depressed sadness has relatively neutral 

size projection due to its lack of communicative intention (Xu et al., 2013a). 

Furthermore, high-low frequency energy ratio is likely to be reduced further in 

depressed sadness because reduced vocal effort would result in reduction of high-

frequency energy (Traunmüller and Eriksson, 2000). The results of this study were in 

line with these predictions, as sad speech timbre (depressed sadness) showed the 

lowest ratio of high-low frequency energy (Figure 3.1) as well as different ERP 

patterns from sad instrument timbre (grieving sadness).  

The ERP patterns of different emotions revealed in this study also provide further 

evidence that cognitive processing of different emotions is unequal (Lindquist et al., 

2012; Vaish et al., 2008). A recent study focusing on the comparison between 

different threat-related stimuli (e.g., anger and fear) shows that sleeping infants have 

larger MMN (mismatch negativity) for anger than fear (Zhang et al., 2014). The 

reason can be associated with different evolutionary functions of anger and fear: 

anger often triggers confrontational/aggressive approach to fight against danger 

threatening survival; fear, on the other hand, often triggers a “flight” response so as 

to avoid danger for self-protection (Darwin, 1872/1965). Therefore, the enhanced 

ERP response to anger revealed in this study (in both speech and music conditions) 
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may reflect the enhanced arousal preparing individuals to fight under the mechanism 

of anger.   

Taken together, the acoustic and ERP findings of this study suggest that the timbre 

of simple, isolated musical instrument sounds can convey emotion in a way similar 

to affective speech. In addition, the timbral features of both instruments and speech 

in each emotional category are consistent with the prediction of body-size projection 

theory on emotion. These findings thus add to the growing evidence that music and 

speech could share a common code in communicating emotion (Juslin and Laukka, 

2003) and both of them could have evolutionary implications (Darwin, 1871; Cross, 

2009).  
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Chapter 4   

Perception of pitch prominence and expectation in speech and music 

4.1  Introduction 

Pitch change is an important source of information about our auditory environment, 

particularly in terms of speech and music. The rising and falling pitch patterns (i.e., 

melody) common to both speech and music have naturally given rise to the question 

as to what relations there may be between speech and music melody (Bolinger,1985). 

Currently, there are two major views regarding the relations between the two 

domains: one is that speech and music melody processing share common cognitive 

resources although the surface representations of the two domains differ (Patel, 

2008); the other is that the processing of speech and music melody is largely separate 

(despite some similarities) due to differences in both surface structure and 

underlying neurophysiological mechanisms (Peretz, 2006, 2012; Zatorre and Baum, 

2012). Evidence for each view mainly comes from studies on congenital amusia (cf. 

Peretz and Hyde, 2003; Patel, 2008), statistics of pitch patterning (Patel et al., 2006) 

and neuroimaging of normal and brain impaired individuals (cf. Zatorre and Baum, 

2012).  

The study in this chapter aimed to shed new light on the above two views by 

exploring the relations between speech and music melody from a different 

perspective: pitch prominence and expectation. They play a vital role in guiding the 

perceptual processing of melodic information in speech and music. This is because 

pitch prominence arises from sound events that stand out from the acoustic 

environment due to their prosodic salience (Terken and Hermes, 2000). Such 

prosodic salience usually helps direct listeners’ attention to acoustically important 
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events such as focus in speech or melodic accent in music, thus facilitating listeners’ 

comprehension of speech or music (Parncutt, 2003). With regard to expectation in 

the context of acoustic communication, it is a cognitive mechanism enabling 

listeners to anticipate future sound events (Meyer, 1956). It is one of the essential 

cognitive abilities for humans to adapt and survive because failure to predict and 

anticipate future events increases the risk of losing control and decreases the 

possibility of preparing for dangers (Huron, 2006).  Violation of expectation, 

therefore, is likely to give rise to surprise (Reisenzein, 2000; Scherer et al., 2004). In 

this study, we will specifically concentrate on prosodic focus in speech (with 

Mandarin as the target language) and music melodic accent, together with 

expectation patterns (i.e., the degree of surprise) in both speech and music melody. 

The background and research questions for this study will be provided in more detail 

in the following sections.  

4.1.1 Pitch prominence in speech and music: focus and melodic accent 

In speech, focus is an important concept because it serves to highlight the 

prominence of a piece of information in an utterance, thus facilitating listeners to 

differentiate the important from the unimportant in the speaker’s utterance (Rump 

and Collier, 1996).  One of the essential ways of signalling focus in speech 

communication is by prosody (Cooper et al., 1985; de Jong, 2004), especially by 

pitch range expansion as has been evidenced from non-tonal languages (Ladd, 2008; 

Liberman and Pierrehumbert, 1984) and tonal languages (Chen and Gussenhoven, 

2008; Xu, 1999). There has been some evidence for the existence of discrete pitch 

ranges for functions like focus. For example, Bruce (1977) and Horne (1988) have 

proposed specific target height of focused components for the sake of speech 

synthesis. Empirical studies have also provided psychological evidence. For instance, 



97 
 

Rump and Collier (1996) have found that Dutch listeners tended to assign specific 

pitch values (ranging from 2 to 6 semitones higher than baseline) to focused 

syllables. ‘t Hart (1981) has found that differences of less than 3 semitones are not 

significant for the detection of large pitch movement in Dutch. Rietveld and 

Gussenhoven (1985) have found a smaller threshold, i.e., a pitch difference of 1.5 

semitones was sufficient to enable listeners to perceive a difference in Dutch pitch 

prominence. On the other hand, evidence also exists as to the lack of discriminatory 

threshold for focus or accent. For example, Ladd and Morton (1997) have found no 

discriminatory boundary (i.e., threshold) between emphatic and non-emphatic 

accents in English. There have also been findings of lack of division of pitch range 

for different types of focus for Dutch (Hanssen, et al., 2008) and English (Sityaev 

and House, 2003). The above interesting albeit somewhat controversial findings on 

the threshold of pitch prominence perception in non-tonal languages raises the 

question as to whether the same pattern could be found in tonal languages such as 

Mandarin Chinese. So far no empirical research has formally investigated this issue. 

Given the functional use of F0 for differentiating lexical words in Mandarin, it could 

be hypothesized that Mandarin listeners do not necessarily follow the same pitch 

pattern in pitch prominence perception (e.g., focus) as do listeners of non-tonal 

languages.  

In terms of music, accent is the counterpart of focus. This is because similar to focus 

in speech, accent in music serves to highlight noticeable sound prominence that 

deviates from contextual norm (Jones, 1987). One of the important ways of 

conveying accent in music is by pitch change, i.e., melodic accent. It is often 

triggered by change in interval or contour and so is also called interval accent or 

contour accent (Huron and Royal, 1996). Interval accent most frequently occurs on 
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the highest pitch after a large interval leap (Graybill, 1989; Lerdahl and Jackendoff, 

1983) (Figure 4.1a). The accent can be particularly prominent if the large interval 

leap is surrounded immediately by stepwise intervals (Graybill, 1989). Contour 

accent (Figure 4.1b) is proposed to occur at the pivot point where pitch direction 

changes, especially at the highest pitch of an ascending-descending contour 

(Thomassen, 1982). Huron and Royal (1996) using a large database with various 

music styles showed strong support for the pivot accent proposal. Interval accent and 

contour accent often overlap since the highest pitch after a great interval leap often 

lies in the pivot position of the melodic contour (Hannon et al., 2004). The degree of 

melodic accent is proposed to be positively related to the size of pitch interval, i.e., 

the larger the interval size, the stronger the degree of accent (Lerdahl and Jackendoff, 

1983). Nevertheless, so far it is not clear as to how large the interval size should at 

least be to evoke the perception of melodic accent. Therefore, the above review 

suggests there does not exist a clearly established threshold for focus perception in 

Mandarin or melodic accent perception in music. In addition, as introduced in 

Chapter 1, it is worth testing empirically whether speech and music follow pitch 

prominence patterns consistent with the prediction of the effort code (Gussenhoven, 

2004). 

                                                                                      

               

                           

                          (a)                                                                   (b) 

Figure 4.1 Melodic interval accent (a) and contour accent (b)  
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Another issue relevant to pitch prominence perception in Mandarin and music is 

related to the pitch excursion of the post prominence components, especially at the 

first post-pitch-prominence position. This is because with regard to Mandarin (and 

many other languages), perception of single focus requires post-focus compression, 

i.e., the pitch range of post-focus components tend to be compressed in order to 

highlight the pronounced pitch increase on the focused component (Liu and Xu, 

2005; Pierrehumbert and Beckman, 1988; Xu, 1999). In Mandarin, the first post-

focus component is usually subject to the greatest extent of distortion because it is 

right on the downward ramp towards the compressed pitch range (Xu, 1999, 2011) 

(Figure 4.2). Absence of post-focus compression could lead to the perception of no 

focus or additional focus (Rump and Collier, 1996). For example, in Dutch a pitch 

excursion of 2 to 6 semitones on a syllable after the focused syllable could lead to 

the perception of a double focus (Rump and Collier, 1996). However, it is still 

unknown in a tonal language such as Mandarin, what the pitch excursion size is for 

the post-focus components (especially the first component) to be perceived as an 

additional focus; in other words, it is not known exactly how large the post-focus 

compression (especially that of the first post-focus component) needs to be for the 

perception of single focus.  

              

Figure 4.2 Time-normalized mean F0 contours produced by 4 speaker groups. The 

vertical lines represent syllable boundaries. The solid thin lines represent the no-

focus condition (adapted from Xu, 2011).  
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In terms of music, some have proposed (e.g., Boltz and Jones, 1986) that melodic 

accent does not necessarily occur on the pivot point as mentioned previously; rather, 

it can occur on the note immediately following the pivot point, i.e., at the first post-

pivot position. This is based on the idea that melodic accent does not have to be 

associated with the highest pitch of a melodic contour; lower pitch can also convey a 

sense of accent (Parncutt, 1989). Although this phenomenon is not directly 

comparable with speech, the common grounds shared by speech and music in this 

regard is that after the pivot (i.e., the turning point) of a pitch contour of speech or 

music, there is possibility for pitch prominence to occur at a post-pivot position, 

either in the form of an additional focus (as in speech) or in the form of a melodic 

accent (as in music). This further means manipulating the pitch excursion size of the 

first post-pivot component of the pitch contour of either speech or music can provide 

clues about the presence or absence of pitch prominence, since in speech post-

focused syllables need to be compressed in pitch range otherwise an additional focus 

will be detected as reviewed above; meanwhile in music the first post-pivot note can 

be the carrier of melodic accent. This naturally raises the question as to whether 

speech and music follow the same pitch excursion patterns at the first post-pivot 

position in signalling pitch prominence. So far there is no empirical research to 

investigate this issue.  

In summary, the above review on speech focus and music melodic accent suggests 

the following important aspects have not been properly examined: Firstly, there is 

not a clearly established pitch perception threshold for the perception of focus in 

Mandarin and music melodic accent. Secondly, with regard to the possibility of post-

pivot pitch prominence, it is not known whether speech and music follow the same 

pitch excursion patterns. Given that both focus in speech and melodic accent in 
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music signal pitch prominence, and the controversy over the extent to which pitch 

processing mechanisms are shared between speech and music (Patel, 2008; Peretz, 

2012), it is worth further exploring whether or not speech focus and melodic accent 

follow the same pitch patterns in signalling prominence.  

4.1.2 Expectation in speech and music 

Expectation is part of psychological laws of mental life responsible for human 

perception and cognition (Meyer, 1956). More specifically, it is a cognitive 

mechanism enabling humans to make predictions about the development of future 

events (Meyer, 1956). Expectation is often reflected in the extent of surprise: A low 

degree of surprise can reflect consistency with expectation while a high degree can 

reflect violation of expectation (Reisenzen, 2000; Scherer et al., 2004). In speech 

prosody, the intonation of surprise is characterized by a large pitch range expansion 

and a relatively high pitch level (Gussenhoven and Rietvelt, 2000; Lai, 2009). 

Moreover, prosodically prominent speech elements such as focus and stress are often 

the main carriers for signaling surprise, as has been evidenced from German (Seppi 

et al., 2010). Absence of such prosodic cues, e.g., compression or flattening of the 

pitch contour, could lead to an indication of no surprise or information withdrawal 

(Gussenhoven, 2004; Lai, 2009).  

In music, the degree of surprise is often triggered by different melodic expectation 

patterns, which have been theorized by Narmour (1990, 1992) in his influential 

implication-realization (I-R) model of melody. The model is based Meyer’s (1956) 

proposal of musical meaning. Meyer (1956) proposes that musical meaning stems 

from the way in which listeners’ expectations are triggered, impeded or resolved by 

the musical structures. Particularly, listeners’ emotion becomes activated when the 
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expectation triggered by the preceding musical structure is inhibited or entirely 

denied by the following musical structure.  

Based on Meyer (1956), Narmour (1990, 1992) has proposed a complex Implication-

Realisation (I-R) model to account for the perception of musical melody. Following 

Meyer (1956), Narmour (1990) used “implication” to refer to melodies generating 

expectations and “realization” as melodies fulfilling expectations. The core idea is 

that melody perception is built on melodic implications which arise from listeners’ 

expectations for the following melodic events triggered by the preceding events. The 

events particularly refer to musical intervals.  

The principles of the I-R model have been summarized into five key rules for 

melodic expectation (cf. Krumhansl, 1995a, 1995b): registral direction, intervallic 

difference, registral return, proximity, and closure. Of particular relevance to this 

study is the principle of intervallic difference because it is associated with change in 

pitch range. The principle states that a small preceding interval implies a following 

interval of similar size, i.e., the same size plus or minus 2 semitones if registral 

direction changes or the same size plus or minus 3 semitones if the direction stays 

the same. A large preceding interval implies the following interval of a smaller size, 

i.e., at least 3 semitones smaller than the large interval if registral direction changes 

or at least four semitones smaller if registral direction is not changed (Narmour, 

1990). This is based on the observation that small intervals tend to be predominant in 

various music styles (Huron, 2006; Narmour, 1990). A number of studies have used 

perception and production methods to test the principles of the I-R model. The 

results on the one hand largely supported the model while on the other hand found 

the need to include additional factors of tonality (e.g., tonal strength, consonance, 
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tonal stability, tonal hierarchy) to boost the model’s predictive power (Cuddy and 

Lunney, 1995; Eerola et al., 2002; Krumhansl, 1995a, 1995b; Thompson et al., 1997).  

The I-R model also has the potential to explain the intonation patterns in speech, as 

once tentatively outlined in Narmour (1991b). This is because the I-R model is built 

on the idea that human’s expectation patterns are governed by principles that can be 

applied universally (Narmour, 1990). The principles of the model, therefore, are 

relevant to all types of melody (e.g., music or speech) (Narmour, 1991b).  Indeed, 

the above review on the pitch patterns of surprise in speech and music suggests that 

in both domains, small intervals (i.e., small pitch excursions) are generally less likely 

to trigger surprise than large intervals. The reason could be explained by common 

motor and perceptual constraints (Patel, 2008). This could serve as further evidence 

for the close link between speech and music with regard to expectation (Patel, 2008). 

It is worth pointing out that although pitch in speech does not strictly follow 

frequency ratios (i.e., semitone intervals) in the same way as music does, research 

has shown that pitch intervals may indeed be essential to the perception of speech 

intonation (Hermes, 2006). Evidence can be found in neutral speech (Patel et al., 

2006), emotional speech (Curtis and Bharucha, 2010) and stylized interjections 

(Day-O’Connell, 2013). Moreover, pitch intervals were adopted as a paradigm for 

examining pitch perception in speech a long time ago (Rietveld and Gussenhoven, 

1985; Rump and Collier, 1996). In addition, the use of semitone intervals facilitates 

cross-modal comparisons between speech and music in terms of pitch processing. 

Therefore, it is worth testing Narmour’s argument (1991b) by empirically examining 

whether in a tonal (and hence melodic) language like Mandarin, principles of the I-R 

model such as intervallic difference can be truly applicable in the same way as it is to 

music.  
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4.1.3 Research questions 

The above review suggests that there could be an intriguing relation between speech 

and music in terms of pitch prominence and expectation. Nevertheless, some 

fundamental issues have not been investigated properly, as identified in the above 

sections. Hence, this study explores the following research questions:  

(1) What are the pitch thresholds, if any, for the perception of focus in speech 

(Mandarin) and melodic accent in music? Do they follow pitch prominence patterns 

consistent with the prediction of the effort code? 

(2)  Do speech (Mandarin) and music follow the same pitch excursion patterns in 

terms of post-pivot pitch prominence?  

(3)  Is the I-R models’ principle of intervallic difference applicable to speech 

(Mandarin) in the same way as it is to music? 

4.2 Experiment 1 

Experiment 1 aimed to address research question 1 which is about focus/accent 

(What is the pitch perception threshold for the perception of focus in Mandarin and 

melodic accent in music? Do they follow pitch prominence patterns consistent with 

the prediction of the effort code?) together with question 3 which is about 

expectation/surprise (Is the I-R models’ principle of intervallic difference applicable 

to Mandarin in the same way as it is to music?). This is because in speech, 

prosodically prominent elements such as focus are often the main carriers for 

signalling surprise (Seppi et al., 2010); similarly in music, melodic accents often 

function to signal musical surprise as well (Jones, 1987). Hence, by making one 

component in either speech or music prosodically prominent, two research questions 
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(focus/accent and surprise) can be tackled at the same time. Also note that for 

research question 3, this study only explores the condition where pitch direction 

remains unchanged, because surprise in speech usually involves continuous pitch 

expansion in the same pitch direction rather than the other way round (cf. Kreiman 

and Sidtis, 2011).  

4.2.1 Methods 

Participants 

15 native Beijing Mandarin speakers with professional musical training background 

(average training time = 20 years) were recruited as participants (9 females, age M = 

31 years, SD = 3.6).  They reported no speech or hearing problems.  

Stimuli 

Speech 

A pre-recorded sentence “Ta (tone1) xiang (tone3) zuo (tone4) zhe (tone4) dao 

(tone4) ti (tone2) mu (tone4)” (He wanted to solve this problem) spoken in a neutral 

way (i.e., without focus on any syllable) by a native Mandarin Chinese speaker was 

used as the base sentence. PENTAtrainer1 (Xu and Prom-on, 2010-2015) running 

under Praat (Boersma and Weenink, 2013) was used to synthetically modify the F0 

contours of the sentence (similar to PSOLA) in such a way that the prosody sounds 

natural despite the large pitch range modifications. PENTAtrainer1 was based on the 

PENTA model (Parallel Encoding and Target Approximation) proposed in Xu 

(2005). The PENTAtrainer1 script was developed from the qTA (quantitative target 

approximation) implementation (Prom-on et al., 2009) of the PENTA model.  The 

rationale of the model is that pitch contours of tone and intonation can be simulated 
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as a result of syllable-synchronized target approximation, under the assumption that 

speech production functions under both biomechanical and linguistic mechanisms 

(Prom-on et al., 2009). More specifically, the program first extracts for each 

(manually segmented) syllable an optimal pitch target defined for its height, slope 

and strength. It then allows the user to arbitrarily modify any of the target parameters 

and then resynthesize the sentence with the artificial target. Figure 4.3 shows the 

segmented syllables with the parameters extracted by PENTAtrainer1. For 

experiment 1, the syllable “zhe” (this) was used as the target syllable. Its pitch height 

parameter (as shown in Figures 4.3 and 4.4) was incrementally raised up to 12 

semitones (in one-semitone steps) according to the pitch height of the pre-focused 

syllable (zuo) (more explanation of this is offered below): b= - 8.1384 (the pitch 

height of zuo) + 1 (semitone), + 2 (semitones), + 3 (semitones)…+ 12 (semitones). 

One semitone was chosen as the step size because a pilot study showed that listeners 

could not significantly distinguish pitch differences of less than one semitone.  

Note that in this study, the pre-focused (zuo), focused (zhe) and post-focused (dao) 

syllables all have the same falling tone (Tone 4) in Mandarin. Therefore, the pitch 

manipulation of the focused syllable with reference to the pitch of the pre-focused 

syllable (as was done in this study) is similar to the pitch manipulation with 

reference to the pitch of the focused syllable itself and the post-focused syllable 

respectively. Such design allows the comparison of this study with previous studies 

on speech focus while at the same time enabling the comparison of speech with 

music in pitch prominence and expectation: Previous studies on focus perception (in 

non-tonal languages) manipulated the pitch of focus according to the baseline (i.e. 

neutral) condition of the focused syllable itself rather than the pre-focused syllable as 

in this study. While in this study, speech has to be manipulated in the same way as 
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music (the details are provided in the following section) in order to facilitate 

comparison between them. This means the component (speech syllable or musical 

note) should be manipulated according to the pitch of the component immediately 

preceding the manipulated one (because this is how melodic accent and expectation 

function in music). Therefore, by making the pre-, on- and post-focused syllables 

share the same tone (Tone 4), we can guarantee that any of them can serve as the 

reference (baseline), thus enabling comparisons within this study (speech and music) 

and across studies (this study and previous studies on speech focus) (cf. Prom-on et 

al., 2009 for technical details of the extraction of pitch by PENTAtrainer1).  

It is also worth mentioning the reason for selecting tone 4 for manipulation is that it 

produced the clearest pitch target manipulation contour under PENTAtrainer 1 

according to our pilot studies. Moreover, the pilot studies showed that listeners’ 

judgement patterns did not differ significantly between stimuli manipulated based on 

tone 4 and stimuli manipulated based on the rest of the tones (tone 1, 2 and 3).   

Music 

12 short excerpts in C major were composed for this study (Figure 4.5). Similar to 

speech, the fourth component (musical note) was the target of manipulation: its pitch 

height ranged from one semitone above its preceding note all the way to 12 

semitones above. Therefore, the target components (syllable or note) in speech and 

music followed the same manipulation patterns of pitch increase relative to their 

respective preceding components. This design enables the comparison between 

speech and music in terms of pitch prominence and expectation.  

Note that two different starting tones were used for the melody composition, e.g., do 

re mi fa mi re do (the first panel of Figure 4.5) and re mi fa so fa mi re (the second 
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panel of Figure 4.5). The reason is that if we stick to one starting tone (e.g., do), then 

inevitably some of the manipulated notes will be chromatic (i.e., mainly the black 

keys in the context of C major), for example under the condition where the target 

note is two semitones above its preceding note (e.g., E-#F). Chromatic tones within 

C major are highly dissonant and unpleasant (Krumhansl, 1990) and hence would 

have an impact on listeners’ response in terms of melodic expectation. Therefore, in 

this study two starting tones were used for the stimuli composition to avoid the 

possible occurrence of chromatic tones.  

Each note of the melody was of equal amplitude (56 dB) and was 0.5 second in 

duration except the last note (which was three times as long as the previous note 

because it was a dotted half note in time signature 3/4). This was so designed to 

avoid the possible contribution of intensity and duration to the perception of 

prominence (accent) (Ellis and Jones, 2009), since the focus of this study was on 

melodic (pitch) prominence. The total duration of each melody was 4.5 seconds. All 

melodies were created using Finale 2011 (piano sound).  
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Figure 4.3 The segmentation of the stimulus sentence (“zhe” as the target syllable) 

with parameters automatically derived from PENTAtrainer1 through analysis by 

synthesis (Xu and Prom-on, 2010-2015).  

 

 

 

 

 

 

 

 

 

Figure 4.4 The 12 synthesized speech stimuli using PENTAtrainer-1(Xu and Prom-

on, 2010-2015). Each stimulus corresponds to a different interval size between the 

pre-focused syllable zuo and the focused-syllable zhe (1=1 semitone, 2=2 

semitones,… 12=12 semitones). The blue line represents the original speech contour. 
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The red line represents the synthesized speech contour. The green line represents the 

pitch target parameters. 

  

 

 

 

 

 

 

 

Figure 4.5  The 12 short excerpts composed as the music stimuli. Each excerpt 

corresponds to a different interval size between the third and fourth note (1=1 

semitone, 2=2 semitones,… 12=12 semitones) 

 

Procedure 

For the speech experiment, each stimulus sentence was presented three times in a 

pseudorandom order on a computer. Listeners performed two blocks of tasks: for the 

first block, they rated the degree of focus conveyed by the syllable “zhe” (this) of 

every sentence on a scale of 1 to 3 (1= no focus; 2 = focus; 3 = a strong degree of 

focus). They had a fifteen-minute break before starting the second block. The stimuli 

for the second block were the same as the first block but listeners were asked to rate 

the degree of surprise conveyed by the syllable “zhe” of each sentence on a scale of 1 

to 3 (1= not surprising; 2 = surprising; 3 = very surprising).  To ensure listeners can 

distinguish between “focus” and “surprise”, different pragmatic contexts were 

provided. For focus, the context was: He wanted to solve this rather than that 
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problem. For surprise, the context was: It was so surprising that he (a very clever 

student) wanted to solve this problem in an intelligence contest. The problem was so 

simple that even a not-so-clever student could easily solve, and it turned out that he 

(with superb intelligence) wanted to solve this problem to show how clever he was. 

The music experiment was carried out on a different day. Similar to the speech task, 

each melody was presented three times in a pseudorandom order on a computer. The 

same group of listeners participated in the experiment and performed two blocks of 

tasks: for the first block, they rated the degree of melodic accent conveyed by the 

fourth note of every melody on a scale of 1 to 3 (1= no melodic accent; 2 = melodic 

accent; 3 = a strong degree of melodic accent). They had a fifteen-minute break 

before starting the second block. The stimuli for the second block were the same as 

the first block but listeners were asked to rate the degree of surprise conveyed by the 

fourth note of each melody on a scale of 1 to 3 (1= not surprising; 2 = surprising; 3 = 

very surprising).   

4.2.2  Results 

Two-way [independent variables: type (speech and music) and interval (12 interval 

sizes); dependant variable: rating scores] repeated measures ANOVAs showed that 

for prominence (focus in speech and accent in music), speech and music were not 

significantly different (p > 0.05), but they were significantly different in surprise (F(1, 

14) = 9.2, p <0.01,   =0.4). Meanwhile, different interval sizes corresponded to 

significantly different ratings of prominence (F(11, 154)=133.4, p<0.001,   = 0.91) and 

surprise (F(11, 154)=114.8, p<0.001,     =0.89). More details are provided below.  
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Speech 

The rusults showed that the larger the interval size, the higher the ratings of the 

strength of focus (Figure 4.6a) and surprise (Figure 4.6b). This is further confirmed 

in a one-way repeated measures ANOVA (F(11, 154)=168.1, p<0.001,    =0.92 for 

focus; F(11, 154)=120.69, p<0.001,    =0.89 for surprise) where interval size had a 

significant main effect on the strength of focus and surprise respectively.  

Furthermore, for focus from 4 semitones onwards (Figure 4.6a) and for surprise from 

7 semitones onwards (Figure 4.6b), the average ratings for focus strength and 

surprise strength respectively were above 2 which is the threshold between no 

focus/not-surprising (i.e., the rating of 1) and focused/surprising (i.e., the rating of 2). 

A one-way repeated measures ANOVA further showed that for focus, the difference 

in ratings between 3 semitones and 4 semitones was significant (F (1, 14) =23.16, 

p<0.001,    =0.62) while for surprise, the difference in ratings between 6 semitones 

and 7 semitones was significant (F(1, 14) =12.51, p=0.003,    =0.47). This suggests an 

interval of at least 4 semitones was needed for the perception of focus and that of 7 

semitones for the perception of surprise.  

Music 

For melodic accent, Figure 4.6c shows that the larger the interval size, the higher the 

degree of accent. This is further confirmed in a one-way repeated measures ANOVA 

(F(11, 154)=30.13, p<0.001,     =0.68) where interval size had a significant impact on 

accent strength. Moreover, Figure 4.6c shows from 3 semitones onwards, the 

average ratings were above 2 (the threshold between no accent=1 and accent=2) and 

the difference in ratings between 2 semitones and 3 semitones was significant 

(F(1,14)=24.68, p<0.001,   =0.64). This indicates that an interval of at least 3 
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semitones was needed for the perception of melodic accent.  With regard to surprise, 

the results again showed a significant main effect of interval size on surprise strength 

(F(11,154)=43.09, p<0.001,   =0.76 ). Nevertheless, Figure 4.6d shows that only a 

partial correlation existed: In the range of 1-7 semitones, the bigger the interval size, 

the higher the surprise strength and this was especially true from 5 semitones 

onwards where the average rating was above 2 (the difference between 4 and 5 

semitones was significant: F(1,14)=8.89, p<0.001,   =0.39). However, after 7 

semitones, the patterns of surprise strength became more irregular. The surprise 

strength of 8 semitones was lower than that of 7 semitones and the largest interval 

(12 semitones) did not correspond to the highest rating of surprise.                       

                         Speech                                                                Music 

                 

                           (a)                                                                       (c)       

                

                           (b)                                                                        (d) 

 

Figure 4.6 The average ratings of focus/accent strength [(a) for speech (c) for music] 

and surprise strength [(b) for speech (d) for music] for each interval size 

(ST=semitone).  
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4.3 Experiment 2 

Experiment 2 aimed to address research question 2:  Do speech (Mandarin) and 

music follow the same pitch excursion patterns in terms of post-pivot pitch 

prominence? 

4.3.1 Methods 

Participants 

The same group of people as experiment 1 participated in experiment 2 (both speech 

and music tasks).  

Stimuli 

Speech 

The stimulus for manipulation in experiment 2 was one of the synthesized sentences 

from experiment 1 where the focused syllable “zhe” was 12 semitones above its 

preceding syllable “zuo” (as shown in Figures 4.7 and 4.8). In experiment 2, the 

pitch height of the first post-focus syllable “dao” (a classifier modifying its 

preceding word) was systematically decreased in 12 semitones: b= 3.6113 (the pitch 

height of zhe) -1 (semitone), -2 (semitones), -3 (semitones)…-12 (semitones). 

Music 

Similar to speech, the music stimulus for manipulation in experiment 2 was a 

stimulus from experiment 1 where the accented note (the 4
th

 note) was 12 semitones 

above its preceding note (the 3
rd

 note). In experiment 2, the 5
th

 note (the first post-

accented note) was systematically decreased in 12 semitones (one semitone per step) 

according to the pitch height of the accented 4
th

 note (Figure 4.9). Note that similar 

to experiment 1, there were two starting notes, e.g., do in the second panel of Figure 

4.9 and re in the first panel of Figure 4.9.  The reason is exactly the same as 

mentioned in experiment 1 (section 4.2.1), i.e., to avoid the occurrence of chromatic 
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notes which could affect listeners’ response and hence become a confound for the 

experiment.          

 

 

Figure 4.7 The segmentation of the stimulus sentence (“dao” as the target syllable) 

with parameters automatically derived from PENTAtrainer-1 through analysis by 

synthesis (Xu and Prom-on, 2010-2015). 

 

 

 

 

 

 

 

 

Figure 4.8 The 12 synthesized speech stimuli using PENTAtrainer-1(Xu and Prom-

on, 2010-2015). Each stimulus corresponds to a different interval size between the 

focused syllable zhe and the post-focused syllable dao (1=1 semitone, 2=2 
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semitones,… 12=12 semitones). The blue line represents the origin speech contour. 

The red line represents the synthesized speech contour. The green line represents the 

pitch target parameters.  

 

 

 

 

 

 

 

 

Figure 4.9 The 12 short excerpts of music for experiment 2. Each excerpt 

corresponds to a different interval size between the fourth and fifth note (1=1 

semitone, 2=2 semitones,… 12=12 semitones) 

 

Procedure 

Experiment 2 was conducted a week after experiment 1. For the speech experiment, 

each stimulus sentence was presented three times in a pseudorandom order on a 

computer. The listeners rated the degree of focus conveyed by the first post-focus 

syllable “dao” of each sentence on a scale of 1 to 3 (1= no focus; 2 = focus; 3 = a 

strong degree of focus). Similarly, for the music experiment, each melody was 

presented three times in a pseudorandom order on a computer. The same group of 

listeners rated the degree of melodic accent conveyed by the 5
th

 note (the first post-

accent note) of every melody on a scale of 1 to 3 (1= no melodic accent; 2 = melodic 

accent; 3 = a strong degree of melodic accent). Note that for the speech experiment, 
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the design was to mainly ensure that it matched that of the music experiment, 

especially given the aim of this research discussed in section 4.1.1. Also, such design 

could indirectly imply whether an additional focus exists or not, which is comparable 

with previous literature on the perception of additional focus.   

4.3.2 Results 

A two-way (type: speech and music; interval: 12 interval sizes) repeated measures 

ANOVA showed that speech and music were significantly different in post-pivot 

pitch prominence (focus in speech and accent in music) (F(1, 14)=27.13, p<0.001,    

=0.66). Meanwhile, different interval sizes also corresponded to significantly 

different ratings of prominence (F(11, 154)=14.01, p<0.001,     =0.5). More details are 

provided below.  

Speech 

The results showed that the smaller the interval difference, the higher the strength of 

focus (Figure 4.10a) of the first post-focused syllable. This is further confirmed in a 

one-way repeated measures ANOVA (F(11, 154)=50.31, p<0.001,    =0.78), in which 

interval size had a significant main effect. Moreover, in the range of 1-7 semitones, 

the first post-focused syllable was perceived as focused, i.e., average ratings were 

above 2 (the difference between 7 and 8 semitones was significant: F(1, 14)=22.77, 

p<0.001,      =0.62). 

Music 

The results again showed that interval size had a significant main effect on post-

pivot accent strength (F(11, 154)=24.33, p<0.001,     =0.64). Furthermore, Figure 4.10b 

shows that at least an interval of three semitones was needed (above the rating of 2) 

for the perception of post-pivot accent (the difference between 2 and 3 semitones 
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was significant: F(1, 14)=21.25, p<0.001,     =0.6). Nevertheless, there does not seem 

to exist a clear correlation between post-pivot accent strength and interval sizes, 

especially from 5 semitones onwards: the largest interval (12 semitones) did not 

correspond to the highest rating of accent strength while relatively small intervals 

(e.g., 5 or 6 semitones apart) had rather high accent strength, as shown in Figure 

4.10b.                                 

                                Speech                                                      Music 

                 

                                 (a)                                                               (b)                          

Figure 4.10 The average ratings of focus/accent strength of the first post-pivot 

component [(a) for speech (b) for music] for each interval size [STD=semitone 

difference between the pivot component (focus in speech or accent in music) and the 

first post-pivot component].  

 

4.4 Discussion and conclusion 

4.4.1 Pitch prominence in speech and music 

In terms of pitch prominence (focus) in speech, the results of experiment 1 showed 

that generally the strength of focus increased as the pitch excursion size increased, 

with the threshold lying in 4 semitones, i.e., a pitch excursion of at least 4 semitones 

was needed to evoke listeners’ perception of focus in Mandarin. Non-tonal languages, 

in contrast, do not require as big an increase in pitch excursion. For instance, in 
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Dutch an increase of 1.5 or 2 semitones was enough to evoke a perceptual difference 

in pitch prominence or focus (Rietveld and Gussenhoven, 1985; Rump and Collier, 

1996). This could be because tonal languages such as Mandarin use F0 to signal 

lexical meanings, and hence more room is needed for F0 variation to convey lexical 

meanings in tonal than in non-tonal languages. Correspondingly, the threshold of F0 

to convey other linguistic information such as focus needs to be higher in tonal 

languages than in non-tonal languages.  

With regard to pitch prominence (melodic accent) in music, the results of experiment 

1 showed that a pitch increase of 3 semitones was needed to convey melodic accent. 

As the interval size increased, the perceived strength of melodic accent also 

increased. The strongest degree of melodic accent appeared at the largest interval 

leap, i.e., 12 semitones in this study. The results are thus consistent with theoretic 

proposals that interval size is positively correlated with accent strength, especially in 

the context of large interval leap (Drake et al., 1991; Lerdahl and Jackendoff, 1983; 

Monahan et al., 1987).  

The results of experiment 1 suggest that speech and music are both similar and 

different. They are similar because in both domains, high pitch corresponded to a 

high degree of prominence. This is consistent with previous observation that pitch 

height is a marker of prosodic prominence in acoustic communications such as 

speech and music (Patel, 2008; Parncutt, 2003).  An acoustic dimension (such as 

pitch) with high salience usually attracts greater perceptual weight than that with low 

salience (Benward and White, 1997; ‘t Hart et al., 1990). Therefore, the results of 

both speech and music experiments are consistent with the prediction of the effort 

code (Gussenhoven, 2004), i.e., pitch prominence such as focus and accent is always 

associated with an increase in pitch range.  Nevertheless, the results also showed 
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difference in thresholds for pitch prominence: the threshold of speech focus was one 

semitone higher than that of music melodic accent. The reason could be that pitch is 

a fundamental building block in music (Patel, 2008) while in speech less so. This is 

evidenced from the finding that removing pitch information (i.e., F0) in speech does 

not inevitably harm intelligibility, even in a tonal language like Mandarin (Patel et 

al., 2010). A slight alteration of pitch in music, on the other hand, can easily be heard 

as “out of tune”, a concept that does not apply to speech (Zatorre and Baum, 2012). 

Therefore, a small change in pitch in music can lead to a significant change in 

musical meaning (such as melodic accent) while in speech, the magnitude of change 

in pitch does not need to be as subtle as that in music, even in tonal languages such 

as Mandarin as shown in this study. Indeed, as argued in Peretz and Hyde (2003), 

linguistic prosodic contours are often less subtle than music melodic contours, i.e., 

music has a more fine-grained requirement for pitch compared with speech. 

Therefore, in music the functional threshold (such as that of pitch prominence) needs 

to be lower (and hence more subtle) than that in speech.   

The results of experiment 2 suggest that speech and music are largely different in 

terms of post-pivot pitch prominence: in speech, when the lowering of the first post-

focused syllable was as small as 1 semitone in relation to the focused syllable, the 

post-focused syllable can be heard as focused. In music, however, the first post-

accented note needed to be at least 3 semitones lower than the accented (pivot) note 

in order to be perceived as a melodic accent. Moreover, in speech, the focus strength 

of the post-focused syllable decreased as its pitch gradually lowered whereas in 

music, the correlation between melodic accent strength and pitch interval size is not 

as clear as that in speech. The differences between the two domains could be 

attributed to the fact that firstly, in languages such as Mandarin and English, post-
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focus compression is mandatory; a lack of compression or insufficient compression 

(i.e., the compression range is not big enough) could lead to the perception of an 

additional focus (Rump and Collier, 1996). Although this study cannot be directly 

compared with the experiment in Rump and Collier (1996) where the pitch 

manipulation was not on the first post-focused syllable as done in this study, the 

present results can be compared with it in an indirect way, i.e., listeners’ judgement 

of the strength of the first post-focus component can imply whether an additional 

focus exists or not (1=no focus, 2= focused, 3= strongly focused). The results of this 

study showed that at least a compression size of eight semitones was needed for the 

perception of single focus, otherwise an additional focus (as indicated by the strength 

of the first post-focused syllable) was perceived. Therefore, when the compression 

size was only one semitone, the first post-focused syllable was perceived as an 

additional focus. In music, however, there is no requirement for pitch range 

compression of the post-accent components. Correspondingly, the psychological 

response to pitch patterns in music is not necessarily the same as in speech. As 

shown in experiment 2, listeners still seemed to follow the three semitone threshold 

for melodic accent perception as they did in experiment 1 (when the pitch direction 

went upwards rather than downwards as in experiment 2), i.e., there needed to be a 

three semitone difference between two notes (the pivot note and first post-pivot note 

in experiment 2) in order for the second note to be perceived as accented. This is 

consistent with the view that in music a decrease in pitch can also trigger a sense of 

accent (Boltz and Jones, 1986). 

Another reason for the differences observed above is that unlike speech, music is 

governed by tonality principles. Melodic accent in music tends to be influenced by 

tonality factors such as tension (Jones, 1993). A close look at the results of 
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experiment 2 shows that the strongest melodic accent occurred at the interval of 11 

semitones while the largest interval (12 semitones) had a considerably weaker accent. 

The reason could be attributed to tonal tension which can be triggered by dissonance 

of intervals, harmonic instability, and melodic attraction (Jones, 1993; Lerdahl and 

Krumhansl, 2007). An interval of 11 semitones is a major seventh, which is a typical 

dissonant interval conveying a great sense of bitterness and tension that strongly 

requires resolution to the tonic (Cooke, 1959). Therefore, such strong degree of 

tension coupled with a large interval size could qualify as conveying the strongest 

degree of accent. On the other hand, the 12 semitone interval is a perfect consonance 

interval (i.e., an octave) with the most stable tonal structure compared with other 

intervallic combinations (Krumhansl, 1990). Hence, despite its large interval size, it 

is less likely to trigger tension and consequently accent. Intervals of 6 and 10 

semitones are dissonant with a strong degree of tension which requires resolution 

(Cooke, 1959) and hence convey a relatively strong degree of accent as shown in this 

study. In addition, the results showed that the perfect fourth (5 semitones) with 

perfect consonance also had a great degree of accent. This is likely due to the 

influence of tonal instability (cf. Lerdahl and Krumhansl, 2007): in this study the 

perfect fourth ended in a tonally unstable note (i.e., ti) of the C major, which 

consequently requires resolution to the tonic, hence giving rise to tension and a 

strong degree of accent. The reason why such tonality constraint does not occur in 

experiment 1 could be due to the fact that interval leaps in ascending motion (as in 

experiment 1) tends to be perceived as more accented than descending interval leaps 

(as in experiment 2) (Graybill, 1989), and hence interval motion direction could 

override the influence of tonality on accent perception, as shown in this study. 

Further research is needed for a deeper understanding of this issue.  
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In summary, for research question 1, the results of this study showed that in both 

speech and music, high pitch generally corresponded to a high degree of prominence, 

which was consistent with the prediction of the effort code.  Nevertheless, pitch 

perception threshold for focus in speech (Mandarin) was one semitone higher than 

that for the melodic accent in music. For research question 2, speech (Mandarin) and 

music did not follow the same pitch excursion patterns in terms of post-pivot pitch 

prominence. The differences between speech and music shown in the two 

experiments were due to the different functional requirements for pitch in speech and 

music. 

4.4.2 Expectation in speech and music 

The results of experiment 1 showed that in both speech and music, small intervals 

were associated with low degree of expectation violation (i.e., surprise). This is 

consistent with the I-R models’ principle of intervallic difference, especially in terms 

of music: The principle states that small intervals should be followed by a similarly 

small sized interval (the same size plus or minus 3 semitones if the pitch direction 

remains unchanged as in this study) to avoid violation of expectation. The results on 

music were compatible with the principle because the degree of surprise was very 

low until the interval of 5 semitones, after which the degree of surprise became 

significantly large. In this study, 5 semitones were exactly 3 semitones larger than 

the size of its preceding interval (2 semitones) and hence this part of the results is in 

line with the intervallic principle. With regard to speech, the results were in the same 

direction as predicted by the I-R model, i.e., small interval continuation 

corresponded to low level of surprise. Therefore, the results are consistent with 

previous findings that in both speech and music, small intervals are preferred (Patel 

et al., 2006). Such preference for small intervals can be associated with our language 
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experience (Patel, 2008). This is because greater frequency differences in vocal 

communication mean larger intervals between pitch targets. According to Fitts’s 

(1954) law, muscular movement is more accurate between short-distance targets 

(e.g., small pitch intervals) than long-distance targets (e.g., large pitch intervals). 

Therefore, vocal communication in large frequency difference can be less accurate 

than that in small frequency difference and is thus less economical in speech 

articulation. Hence, it is the principle of economy of communication (in speech and 

music) that leads to the shared preference for small intervals in both domains, and 

the principle itself could be the results of common motor and perceptual constraints 

(Patel, 2008).   

On the other hand, it is worth noting that although speech was consistent with the 

direction of the I-R model’s prediction, the exact threshold for expectation violation 

(i.e., surprise) did not fall into the predicted range: in this study, the interval 

difference between “xiang” and “zuo” (the interval preceding the manipulated 

interval) was around 1 semitone, and according to the principle the following 

interval should be within the range of 1+3=4 semitones in order not to trigger a large 

extent of surprise. Nevertheless, the results on speech showed that it was from 7 

semitones onwards that a large degree of surprise was triggered. Therefore, the 

results suggest a higher threshold for speech surprise perception than predicted by 

the I-R model. Moreover, speech had a higher threshold (7 semitones) for violation 

of expectation than music (5 semitones). The reason for such results is probably that 

in tonal languages such as Mandarin, pitch serves to differentiate lexical items. 

Hence, there needs to be enough space for pitch to realize its function as a lexical 

marker. Consequently, paralinguistic meanings such as surprise have to be allocated 

to the remaining pitch space. Given the fact that in speech communication pitch 
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range variation for linguistic information is usually kept small due to the need for 

economy of articulation (cf. Patel, 2008), the remaining large range of pitch variation 

is thus allocated to conveying paralinguistic meanings such as surprise. This is also 

consistent with the findings that surprise intonation usually involves a large pitch 

excursion and high pitch level (Gussenhoven and Rietvelt, 2000; Lai, 2009). 

Meanwhile, such inconsistency with the I-R model’s prediction also reflects the fact 

that unlike music, speech does not need to adhere to strict interval ratios to 

communicate meaning (Zatorre and Baum, 2012) and hence it does not have to 

strictly follow the intervallic patterns for music as outlined in the I-R model.  

In terms of large intervals, speech and music showed significant differences. In 

speech, large intervals generally corresponded to a large extent of surprise (which is 

consistent with the I-R model). With regard to the results on music, there is not a 

direct correlation between interval size and the degree of surprise in the range of 

large intervals (from 8 semitones onwards): For example, the interval of 8 semitones 

had a weaker degree of surprise than 7 semitones; the interval of 12 semitones was 

weaker in surprise than the intervals of 10 and 11 semitones. This pattern is 

inconsistent with the prediction of the I-R model, and indeed as previous studies (cf., 

Krumhansl, 1995b) have noted, the principle of intervallic difference sometimes has 

the weakest predictive power due to the influence of additional factors such as tonal 

stability. More specifically, previous studies (Eerola, 2002; Krumhansl, 1995b; 

Thompson et al., 1997) have reported that tonally less stable notes are generally 

perceived as more surprising than tonally stable notes. In this study, the 7 semitone 

interval ended in ti (the leading note) which is the least stable note in C major due to 

its inclination to resolve to the tonic do. This could lead to a high degree of surprise. 

In contrast, the 8 semitone interval ended in do, which is the tonic of the musical key 
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it is situated in (C major). It is the most stable note (Meyer, 1956) and is therefore 

less surprising than the leading note. The 12 semitone interval, despite being the 

largest interval, was rated less surprising than smaller intervals (e.g., 10 and 11 

semitones). The reason is that it ended in mi which is the median of C major (the 

musical key it is situated in). Since the median is the third most stable note of a 

musical key (after the tonic and the dominant, cf. Meyer, 1956), it is consequently 

less surprising, especially when compared with intervals of 10 and 11 semitones (the 

minor and major seventh) which require resolution to the tonic and hence less stable 

(Meyer, 1956). Since such tonal stability exists only in music rather than in speech, it 

is not surprising that the results showed different pitch expectation patterns of speech 

from those of music.  

In summary, for research question 3, the results suggest that in terms of small 

intervals, speech (Mandarin) and music were similar in the sense that both were 

consistent with the prediction of the I-R model: small intervals were preferred over 

large intervals to avoid expectation violation (e.g., surprise). Nevertheless, the model 

could not predict the exact pitch threshold for surprise in speech (which was higher 

than music). In addition, in terms of large intervals, music was noticeably different 

from speech due to constraints from factors such as tonal stability which has no 

counterpart in speech.  

In conclusion, this study empirically examined previously unexplored yet 

fundamental aspects of pitch processing in speech and music: pitch prominence (i.e., 

focus in speech and melodic accent in music) and melodic expectations (i.e., the 

degree of surprise) within the framework of the I-R model. The results suggest that 

there can be some extent of overlap between speech and music in terms of pitch 

prominence (e.g., high pitch corresponded to great prominence) and expectation 



127 
 

patterns (e.g., small intervals were preferred over large intervals). Nevertheless, the 

differences seemed to have outweighed the similarities between the two domains due 

to functional differences of pitch in speech and music. Therefore, in terms of the two 

views regarding the relations between speech and music melody introduced in 

section 4.1, the results are more in favour of the second view: speech and music 

melody tend to require specialized pitch patterns unique to their own respective 

communication purposes (Peretz, 2006, 2012; Zatorre and Baum, 2012), although 

whether they are governed by separate neural mechanisms is still a topic of ongoing 

debate. Of course, this does not negate the commonalities between them (Peretz, 

2012), as the results of this study also showed similar tendencies shared between the 

two domains. This naturally raises the question about exactly to what extent speech 

and music melody can be related to each other. More research along this line would 

provide a more comprehensive answer to this question and hence sheds new light on 

comparative studies on pitch processing of speech and music.  
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Chapter 5    

Conclusion  

5.1 Summaries of the main findings of this thesis 

This thesis examined the relations between music and speech from the perspectives 

of dynamics, timbre and pitch using production (for dynamics) and perception (for 

timbre and pitch) methods. Chapter 2 dealt with dynamics: unlike previous research, 

in this thesis finger force and articulatory effort were used as indexes reflecting the 

dynamics of affective piano performance and speech production, respectively. 

Moreover, for the first time physical constraints such as piano fingerings and speech 

articulatory constraints were included due to their potential contribution to different 

patterns of dynamics. A piano performance experiment and speech production 

experiment were conducted in four emotions: anger, fear, happiness and sadness. 

The results showed that in both piano performance and speech production, anger and 

happiness generally had high dynamics while sadness had the lowest dynamics, 

which can be interpreted from an evolutionary perspective. Fingerings interacted 

with fear in the piano experiment and articulatory constraints interacted with anger in 

the speech experiment, i.e., large physical constraints produced significantly higher 

dynamics than small physical constraints in piano performance under the condition 

of fear and in speech production under the condition of anger. In addition, the results 

also showed that affective speech production on the whole had higher dynamics than 

affective piano performance, which may be due to the biomechanical differences 

between speech articulators and fingers. Using production experiments, this is the 

first study to show quantitative evidence for the importance of considering motor 
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aspects such as dynamics in comparing similarities and differences between music 

and speech.  

Chapter 3 dealt with timbre, with a focus on the emotional connotations of musical 

timbre of isolated instrument sounds through the perspective of affective speech 

using behavioural and ERP experiments. The behavioural experiment compared the 

timbre (i.e., voice quality) of affective speech and the timbre of isolated instrument 

sounds categorized by listeners into three emotions: anger, happiness and sadness. 

The results showed that there were no significant differences between affective 

speech and musical instruments in terms of the timbral acoustic features in each 

category of the emotions, suggesting that the timbre of musical instrument sounds in 

each emotion (anger, happiness and sadness) is acoustically similar to the timbre of 

affective speech of the same emotional category. Two ERP experiments were 

conducted to further explore the neural processing of affective speech and instrument 

sounds. The first one tested the ERP patterns (the P200 and LPC) of affective speech 

and instrument sounds separately. The results showed that overall, speech had 

significantly higher P200 and LPC amplitude than isolated instrument sounds, which 

was probably due to the brain processing advantage of human voice. Nevertheless, 

similarities also existed: in both speech and instrument conditions, anger was higher 

than happiness and sadness in the P200 and LPC amplitude; sadness was higher than 

happiness in the LPC amplitude. The second ERP experiment used a priming 

paradigm, with isolated instrument sounds as primes and affective speech as targets. 

The results showed that emotionally incongruent instrument-speech pairs triggered 

larger N400 than emotionally congruent pairs. Taken together, this is the first 

empirical study to show that even simple, isolated musical instrument sounds can 

convey emotional connotations in a way similar to affective speech. In addition, the 
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timbral features of both instruments and speech in each emotional category were 

consistent with the prediction of body-size projection theory on emotion.  

Chapter 4 empirically examined previously unexplored yet fundamental aspects of 

pitch processing in speech and music: pitch prominence (i.e., focus in speech and 

melodic accent in music) and melodic expectations (i.e., the degree of surprise) 

within the framework of the implication realization (I-R) model. The results showed 

some degree of overlap between speech and music: high pitch generally 

corresponded to a high degree of prominence; small intervals were preferred over 

large intervals to avoid expectation violation (i.e., surprise), which was consistent 

with the prediction of the I-R model. Nevertheless, the differences seemed to have 

outweighed the similarities due to functional differences of pitch in speech and 

music: the pitch perception thresholds for pitch prominence and surprise were higher 

in speech than in music; speech and music did not follow the same pitch excursion 

patterns in terms of post-pivot pitch prominence; with regard to pitch expectation 

patterns in the range of large intervals, music was noticeably different from speech 

due to constraints from factors such as tonal stability which has no counterpart in 

speech. Therefore, the results have provided new evidence for the view (Peretz, 2006, 

2012; Zatorre and Baum, 2012) that speech and music melody tend to require 

specialized pitch patterns unique to their own respective communication purposes, 

although commonalities also exist.  

5.2 Relations between music and speech 

5.2.1 Music and speech: overlapping 

On the one hand, the results of this thesis suggest that music and speech are 

overlapping in some aspects, particularly in terms of dynamics and timbre: dynamics 
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in both music and speech were high in anger and happiness while low in sadness; 

timbre of isolated musical instrument sounds conveyed emotional connotations in a 

way similar to affective speech; high pitch corresponded to great prominence.  

This thesis has shown that the overlapping aspects between music and speech as 

mentioned above can be interpreted from a bio-evolutionary perspective. In terms of 

dynamics and timbre, the results are consistent with evolutionary accounts on 

emotion: anger corresponded to high dynamics in speech and music because 

evolutionarily anger, like all other emotions, originates from natural selection 

pressure on animals (Darwin, 1872). The evolutionary function of anger is to 

facilitate the fight or attack response in situations that threaten survival (Darwin, 

1872). High dynamics in anger (as in angry speech and piano performance shown in 

this thesis) reflects great physical strength and energy triggered by the fight response 

(Xu et al., 2013a). Furthermore, anger was also found in this thesis associated with 

rough timbre in music and speech. Rough sound timbre, meanwhile, correlates to 

large body size (e.g., lions) due to simple physical laws (Morton, 1977). In a 

physical confrontation (i.e., fight), a large body size stands at a better chance of 

beating off enemies. Therefore, anger carries the evolutionary message of a large 

body size projection (Xu et al., 2013a) and hence the rough sound timbre of angry 

musical sounds and speech is a reflection of this message. Happiness, on the other 

hand, is to signal appeasement or associability (Morton, 1977) as well as willingness 

to play (Panksepp, 2005). Hence, it is beneficial for sound signalers to produce 

highly vigorous (i.e., dynamic) sounds in conveying happiness so that they can be 

audible to potential mates and listeners (Xu et al., 2013a), as reflected in happy 

speech and piano performance in this thesis. In addition, in both music and speech, 

happiness was associated with tone-like sound quality, which correlates with small 
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body size (e.g., birds) according to physical laws (Morton, 1977). Evolutionarily, 

small body size signals lack of threat and social attractiveness (Morton, 1977; Xu et 

al., 2013b). Therefore, the tone-like timbre of happy musical sounds and speech both 

project small body size and hence send an inviting signal. With regard to sadness, the 

low dynamics in both piano performance and speech production reflected low 

physical activation level, which could evolutionarily imply a tendency to beg for 

sympathy (Shaver et al., 1987). The differences in timbre between sad instrument 

sounds and sad speech were due to two different kinds of sadness: grieving sadness 

and depressed sadness (Xu et al., 2013a), which have different body size projections. 

Grieving sadness projects a large body size due to its demanding nature, while 

depressed sadness has relatively neutral size projection due to its lack of 

communicative intention (Xu et al., 2013a). This was reflected in the different 

spectrum patterns of sad speech (depressed sadness) and sad instrument sounds 

(grieving sadness) in this thesis. In terms of fear, the relatively high dynamics in 

piano performance and speech production is consistent with the argument that fear 

can be an evolutionarily defensive strategy (LeDoux, 1996). This is evidenced from 

animal alarm calls (when in fear) which is usually used as a useful antipredator 

defensive strategy for the sake of group survival (Caro, 2005). To serve this purpose, 

alarm calls (i.e.., fearful vocalizations) should be reasonably high in dynamics (i.e., 

vigorousness). Similarly, production of musical excerpts of fear could also be highly 

dynamic, analogous to human fearful speech or animal alarm calls. With regard to 

pitch prominence, this thesis showed that in both music and speech, high pitch 

corresponded to a high degree of prominence. This is consistent with the prediction 

of the effort code (Gussenhoven, 2004), which can explain pitch prominence in both 

speech and music from a biological perspective (Cross and Woodruff, 2009).  
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Such cross-domain similarities in dynamics, timbre and pitch between music and 

speech from a bio-evolutionary perspective as shown in this thesis echo previous 

proposals (e.g., Darwin, 1871; Cross, 2009a) that both music and speech can have 

bio-evolutionary implications. It is worth mentioning that while there is sufficient 

support for the evolutionary implications of speech, which has been evidenced from 

anatomy of the human vocal tract, vocal learning, and neurobiology of language 

acquisition (cf. Patel, 2008), it is still a matter of debate whether music has any 

evolutionary bearings at all, i.e., whether music has been specifically adapted as an 

independent trait as put forth in Darwin (1871). Admittedly, music is unlike eating, 

drinking and speech which are indispensable for normal functioning in human 

society (Pinker, 1997). Nevertheless, the evolutionary implications of music may be 

clearer if viewed from the perspective of evolutionary fitness, i.e., the impact of 

music on humans’ personal development and social bonding (Cross, 2009b). For 

example, similar to speech, music is an important way of enhancing neural 

adaptation and brain elasticity (Huttenlocher, 2002), i.e., it provides a platform for 

practicing intellectual abilities (e.g., note reading) and physical exercise (e.g., 

singing or dancing to the tune), during the process of which the cognitive abilities of 

individuals are exercised and fostered (Cross, 2003). Neural imaging studies have 

also provided sufficient support for the role music plays in changing brain structures 

by enlarging certain brain areas as a result of musical training and experience (e.g., 

Münte et al., 2002; Pantev et al., 1998). In terms of social bonding, speech is not the 

only medium through which people interact with each other; music also plays an 

important role in strengthening social bonds through situations such as ritual 

ceremonies and collective music making (Cross, 2009a, 2009b; Kogan, 1997). This 

is because musical activity is by nature cultural and hence inherently has the 
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potential to unify members of society (Kogan, 1997). The mood-regulating function 

of music also prepares for the transmission of individual mood to collective mood 

during the music making process (Sloboda and O’Neill, 2001), and hence music 

could evolutionarily facilitate the regulation of individuals and members of society 

as a whole. Therefore, many theories are pointing to the direction that music, like 

speech, has evolutionary implications. This thesis has further shown that through the 

platform of emotion, music and speech can convey similar evolutionary signals, thus 

providing further evidence for the aforementioned line of argument.  

5.2.2 Music and speech: distinct 

On the other hand, the results of this thesis also imply considerable differences 

between music and speech: speech production overall had higher dynamics than 

piano performance; affective speech and music performance interacted differently 

with physical constraints; there was a significant brain processing advantage for 

speech over musical instrument sounds as evidenced from the ERP results; the use of 

pitch (in terms of prominence and expectation) was largely different in speech than 

music. The reasons could be attributed to the fact that although both music and 

speech can have evolutionary implications as discussed in the above section, music 

does not have an equal status with speech in evolution, particularly with regard to 

communication which is a crucial aspect of evolutionary adaptation. More 

specifically, music is not as efficient as speech for communication, i.e., speech can 

be the evolutionary product primarily selected for communication while music less 

so.  This is evident from the fact that language and speech exist fundamentally for 

communication purposes while music, although also communicates meaning, is 

more of an art form that conveys aesthetic messages (Patel, 2008). From a bio-

physiological perspective, this partly explains why oral-facial muscles have evolved 
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to have fast-twitch fibers and motor protein such as myosin that enable fast 

acceleration and rapid speech to meet different levels of speech demand (Burke, 

1981; Williams and Warwick, 1980). Finger muscles (as in the context of piano 

performance reported in Chapter 2), on the other hand, do not contract as fast as 

speech articulatory muscles (Gentil and Tournier, 1998) due to the presence of long 

tendons, joints and muscle mass between fibers and skeletal joints.  Consequently it 

is not surprising that speech production had higher dynamics than music 

performance as shown in this thesis.  With regard to timbre, speech triggered larger 

ERP amplitude than instrument sounds. This is likely because compared with music, 

speech is more relevant to human communication and hence has developed a 

processing advantage in the human brain (Latinus and Belin, 2011). Deficits in 

speech perception can seriously hamper personal development because humans by 

nature need to be sensitive to speech sounds in order to adapt and survive in society 

(Kuhl, 1988) while in contrast, deficits in music perception (e.g., tone-deafness) are 

much less of a threat to personal development. This can be further evidenced from 

the fact that people suffering from music tone-deafness can still perceive linguistic 

intonation relatively well (Peretz and Hyde, 2003). Hence, the overall higher 

dynamics in speech production than in piano performance and the brain’s processing 

advantage for human speech shown in this thesis reflects the more direct role of 

speech in human communication than music. In addition, the different use of pitch in 

music than in speech as shown in this thesis provides further insight into the 

functional differences between music and speech: music is more relevant to serving 

aesthetic purposes than speech. The constraints of music tonality in both melodic 

accent and expectation reflect the aesthetic strategies in melodic composition 

(Narmour, 1991a). Speech, in contrast, does not need as much tonality constraint as 



136 
 

does music for aesthetic purposes due to the primary role of speech for 

communication. A vivid example (cf. Patel, 2008) is that we seldom hum to 

linguistic intonation contours; instead, we usually hum to music tunes because of the 

aesthetic pleasure the tunes bring to us. Therefore, the differences between music 

and speech shown in this thesis suggest that although both of them have evolutionary 

implications and can be overlapping in many aspects, music and speech still 

maintain distinct functions unique to their respective domains. 

5.3 Implications for exploring music-speech relations and future directions 

In a nutshell, from three perspectives (dynamics, timbre and pitch) essential to music 

and speech, this thesis has shed new light on the overlapping yet distinct relations 

between the two domains.  The implications of such in-depth exploration of the 

relations between music and speech are that firstly, a well-established link between 

the two could facilitate theory formulation in which the principles that apply to 

speech could be used to explain music or vice versa (Juslin and Laukka, 2003).  

Moreover, the formation of such a link between the two domains could shed further 

light on the origins of music and language (Darwin, 1871; Brown, 2000). Thirdly, it 

could help enhance our understanding of the functional and neural characteristics of 

music and speech (Patel and Peretz, 1997), thus contributing to a more 

comprehensive understanding of both domains. Fourthly, it also facilitates the 

exploration into neural plasticity since both music and speech are important ways of 

mediating the function and structure of the brain (Slevc, 2012; Asaridou and 

McQueen, 2013). Such cross-domain investigation could be especially useful for 

studies on children’s mental development due to the adaptive functions of both 

speech and music (Fritz et al., 2013).  
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Future research could examine the transfer effect from music to speech and vice 

versa. While the effect of music on speech processing has been relatively intensively 

investigated, the evidence for language facilitating music cognition has been mixed 

so far and is not as compelling as that for music to language transfer (Slevc, 2012; 

Asaridou and McQueen, 2013). Another line of research would be to explore the link 

between bimusicality (i.e., early exposure to more than one musical culture) and 

bilingualism (Slevc, 2012). In addition, using neurophysiological approaches (fMRI, 

EEG, MEG, etc.) to further examine the parallels and dissociations between the 

sensory-motor aspects of music and speech could shed more light on human sensory-

motor skills in general, with important clinical implications as well (Zatorre, 2013). 

All in all, systematic and in-depth explorations of the relations between music and 

speech can broaden our understanding of human nature in a wider sense and deepen 

our insight into human’s unique ability to construct and appreciate the rich and 

complex sound landscape of the human world.  
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