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Abstract

Choosing the covariates and functional form of the propensity score is an important choice for es-

timating treatment effects. This paper proposes a data-driven way of averaging the estimators over

candidate specifications to resolve the specification uncertainty in the propensity score weighting esti-

mation of the ATT. The proposed procedures minimize the estimated MSE of the ATT estimator in

a local asymptotic framework. We formulate model averaging as a statistical decision problem in a

limit experiment, and derive an averaging scheme that is Bayes optimal with respect to a given prior.

The averaging estimator outperforms selection estimators and the estimators in any of the candidate

models in terms of Bayes asymptotic MSE. Our Monte Carlo studies illustrate the size of the MSE

gains. We apply the averaging procedure to evaluate the effect of a labor market program.
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1 Introduction

A large body of empirical research in economics is concerned with the estimation of the causal impact of

various social programs. When the exposure to or participation in the policy program is not randomized,

researchers often use observational data in conjunction with the assumption that treatment assignment is

random once a set of observable pre-treatment covariates is conditioned on (unconfoundedness). Several

semi-parametric procedures that rely on the unconfoundedness assumption have been proposed, including

propensity score matching (Rosenbaum and Rubin, 1983; and Heckman et al., 1998); covariate matching

(Abadie and Imbens, 2006); regression (Imbens et al., 2005); propensity score weighting (Hirano et al.,

2003); and a combination of the latter two (Hahn, 1998). Imbens (2004) provides an excellent review on

these methods.

A common concern that arises when using such estimators is that the researcher has to choose which

covariates to include as confounders, and which functional form specification is used in modeling the

propensity score or/and the outcome equations. The literature on semiparametric estimation has been

rather silent on a formal treatment of this practical issue. As a result, empirical researchers using these

methods rarely provide formal justification for the chosen specification in reporting the estimation results.

In order to solve this practical issue of specification uncertainty in causal inference, this paper proposes

a method to construct a best causal effect estimator by averaging the estimators obtained in different

candidate specifications. We focus on the average treatment effect for the treated (ATT) as the estimand

of interest, and consider the averaging the propensity score weighting estimators. Building on the idea

of frequentist model averaging proposed by Hjort and Claeskens (2003) and Hansen (2007), our model

averaging procedure aims to construct a point estimator for ATT in the form of a weighted average of the

ATT estimators in the candidate models, where the weights are optimally chosen in a data-driven way to

minimize the mean squared error (MSE) of the averaged estimator.

The model averaging procedure proposed in this paper proceeds as follows. As an input of the

procedure, the researcher provides a most complicated specification (largest model) of the propensity

score in the following parametric form,

Pr (D = 1|X) = G
(
W (X)′ γ

)
,

where D = 1 (treated) or D = 0 (control) is an indicator of the treatment status; X is the set of all

conditioning covariates considered by the researcher; W (X) is a vector of functions of the pre-treatment
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covariates X that can contain interactions and nonlinear transformations of X; and G (·) is a known

link function such as the logit function. Candidate models to be averaged are given as submodels of

the most complicated specification, where each submodel corresponds to a subset vector of W (X) to

be included in propensity score estimation. We assume that the unconfoundedness assumption holds for

the full set of covariates X, and that the ATT parameter is identified and consistently estimated by a

√
n-asymptotically normal estimator in this largest model. We assume that the candidate specifications

are locally misspecified in the sense that the true values of coefficients γ are in a n−1/2-neighborhood of

zero with a radius governed by a localization parameter δ. This local misspecification framework leads

to a useful approximation of the MSE of an averaging estimator as a function of δ. Since δ remains

unknown even in large samples, the optimal averaging weights depend crucially on how the non-vanishing

uncertainty about the localization parameters is dealt with. We pose the problem of choosing optimal

weights as a statistical decision problem in the limit Gaussian experiment (see e.g. Chapter 7 of van der

Vaart, 1998). We then derive the optimal weights in the sense of a Bayes decision in the limit experiment

with respect to a prior for the localization parameters. Our approach to the optimal averaging weights

leads to a weighting scheme that is different from the plug-in based procedure and the inverse-FIC based

weights of Hjort and Claeskens (2003), in which the treatment of the localization parameters, to the best

of our knowledge, lacks a decision-theoretic optimality argument.

As an estimator for the ATT in each candidate model, we employ the normalized propensity score

weight (hereafter NPW) estimator (Imbens, 2004). The NPW estimator for the ATT has several attractive

features compared with the naive propensity score weighted estimator (as in Wooldridge, 2002, equation

18.22). The NPW estimator has a smaller asymptotic variance than the simple ATT estimator when a

parametric specification for the propensity score is employed. The NPW estimator is simple to implement,

and there is evidence from simulation studies that suggests that the finite sample performance of the NPW

estimator is excellent (see Busso et al., 2014). The main reason that we focus on the ATT rather than the

average treatment effect for the whole population (ATE) closely relates to the fact that the semiparametric

efficiency bound for the ATT can be improved if knowledge on a specification of the propensity score is

available, see Hahn (2004); Chen et al. (2008); and Graham et al. (2016). Using the local asymptotic

approximation, the NPW estimator for the ATT in the parsimonious specification can have a smaller

asymptotic variance than in the largest model due to the gain in the efficiency bound for the ATT by

having a parsimonious specification for the propensity score. The parsimonious model, on the other hand,

can be biased due to the local misspecification. As a result, there is a bias-variance trade-off in the ATT
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estimation,1 which the averaging weights aim to optimally balance out.

Standard Bayesian model averaging, which delivers the decision-theoretic (Bayes) optimality in the

finite sample, can be in principle applied to the current problem. However, given the semi-parametric

nature of our model, applying the full Bayesian approach could be challenging if prior knowledge on

the non-parametric components in the model (i.e., regression equations of the potential outcomes) is not

available or difficult to elicit. In our limit experiment approach, we can get around this challenging and

delicate task. This practical gain, however, comes at a cost. First, our MSE criterion relies on the local

asymptotic approximation so that the averaging procedure may perform poorly in finite samples when the

approximation is imprecise. Second, the decision-theoretic optimality that our averaging scheme attains is

in terms of the asymptotic Bayes risk rather than the finite sample Bayes risk. Third, the class of averaged

estimators is constrained to weighted averages of the NPW estimators with weights depending on the

data only through low-dimensional statistics. These constraints, albeit delivering analytical convenience,

potentially exclude an averaging scheme that outperforms the one proposed in this paper.

We conduct Monte Carlo studies in order to examine the finite sample performance of the proposed

procedures. Our Monte Carlo results show that the model averaging estimator outperforms in terms of

MSE the NPW estimators in any of the candidate models including the MSE minimizing one. In our

Monte Carlo specifications, this MSE gain from averaging relative to a correctly specified largest model is

about 10% for a large range of localization parameter values. To illustrate the use of our model averaging

procedure, we apply it to the data set used by LaLonde (1986) to evaluate a job-training program in the

United States.

1.1 Related Literature

The averaging procedure proposed in this paper contributes to the growing literature of frequentist model

averaging. The frequentist model averaging that targets to minimize the MSE for a parameter of interest

is pursued by Hjort and Claeskens (2003) in general parametric models. This paper extends their model

averaging framework to the context of semiparametric estimation of causal effect. In the least squares

regression context, frequentist model averaging with the MSE criterion of the entire regression function

(integrated MSE) is analyzed by Hansen (2007, 2014), Wan et al. (2010), and Hansen and Racine (2012),

Liu and Okui (2013), among others. Magnus et al. (2010) propose a way of designing a prior in the

1This bias-variance trade-off is not available in the propensity score weighted estimation for ATE as shown in Section 2
below.
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Bayesian model averaging based on the frequentist considerations of the mean squared errors. See also

Hjort and Claeskens (2008) for an overview of model averaging and further references. DiTraglia (2015)

and Sueishi (2013) extend the parametric framework of Hjort and Claeskens (2003) to semiparametric

models defined by a set of moment conditions, and develop the focused information criterion (FIC)-

based model averaging for generalized method of moment estimators, with primary applications to linear

instrumental variable models. Liu (2015) proposes a novel procedure for conducting inference for FIC

in linear models. Lu (2015) considers averaging semiparametric estimators for the ATE or ATT in a

manner similar to the frequentist model averaging of Hjort and Claeskens (2003), where the estimator

in each model uses nonparametrically estimated regression or propensity score functions with a different

set of conditioning covariates. In contrast to the approach of Lu (2015), our approach concerns not only

a choice of covariates, but also a functional form specification of the propensity scores. Since averaging

results in shrinking the estimator in the largest model toward the estimators in smaller models, the

averaging estimator can be interpreted as a shrinkage estimator, which has a long history in statistics

since James and Stein (1961). Using a local asymptotic framework in a general parametric model, Hansen

(2016) proposes a shrinkage estimator that uniformly dominates the maximum likelihood estimator in the

largest model. Cheng et al. (2015) show the uniform dominance property of the shrinkage estimator

in the context of generalized method of moments. In contrast to the shrinkage analysis that generally

focuses on estimation of multi-dimensional parameters, the parameter of interest in the current context

is one-dimensional.

Model averaging can be seen as a generalization of model selection, since the latter restricts the

averaging weights to ones and zeros. In this regard, the MSE performance of the averaging procedure

outperforms any of the model selection procedure that relies on the same MSE criterion as our procedure,

e.g., model selection based on FIC proposed by Claeskens and Hjort (2003) in parametric models. FIC-

based model selection in semiparametric models are considered in Hjort and Claeskens (2006), Claeskens

and Carroll (2007), and Zhang and Liang (2011), among others. Vansteelandt et al. (2012) propose a FIC-

based variable selection procedure for the average treatment effect as a focused parameter in a parametric

context. Millimet and Tchernis (2009) provide some simulation evidence in favor of selecting parsimonious

models. When the propensity scores and/or the outcome regression equations are nonparametrically

estimated, the problem of specification choice is reduced to the problem of selecting smoothing parameters

such as the kernel bandwidth or the number of terms in series regression. To our knowledge, Ichimura and

Linton (2001) and Imbens et al. (2005) are the only works that discuss the choice of smoothing parameters
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with explicitly aiming to minimize the MSE of the ATE estimator. Compared with their approach, our

approach is “less non-parametric”, in the sense that our approach imposes a parametric restriction on

the propensity score in the largest model. In practical terms, our parametric restriction is convenient

to deal with multidimensional covariates. Also, the proposed procedure does not require a preliminary

nonparametric estimate of unknown functions (cf. Ichimura and Linton, 2001). Our approach, however,

relies on a user-specified largest model, and is not free from the arbitrariness concern in the choice of

largest model. A similar concern would also arise in the procedure of Imbens et al. (2005), in which a

choice of basis functions as well as their ordering are important inputs specified by the user.

The l1-penalized likelihood procedure (Lasso) proposed by Tibshirani (1996) is a powerful tool in the

variable selection context, especially when the number of candidate regressors is large. Belloni et al. (2014)

recently developed the so-called double-selection lasso method for covariate selection and post-selection

inference for estimation of various treatment effects in the presence of high-dimensional covariates. Our

model averaging approach to covariate selection differs from their Lasso approach in terms of the scope

of applications and the notion of optimality that these procedures aim to achieve asymptotically. First,

our averaging procedure mainly concerns the situations where the number of regressors is much smaller

than the sample size, while with employing the sparsity restrictions, the Lasso approach can effectively

handle situations where the number of regressors is equal to even larger than the sample size. Second,

optimality of our averaging hinges on a decision theoretic optimality in a limit Gaussian experiment, while

theoretical justification of the Lasso-based covariate selection approach invokes the oracle property. In

addition, as one of their remarkable contributions, Belloni et al. (2014) demonstrate that post-selection

inference with their Lasso procedures yields a uniformly valid inference procedure for ATE and ATT. See

also Farrell (2015), who derives uniformly valid inference procedures in a similar setup.

Our derivation of the optimal averaging weights solves a Bayes optimal statistical decision in a limit

normal experiment, which is different from Hjort and Claeskens’s proposal to base the weights on plug-

in estimators. In econometrics, decision-theoretic analyses in limit experiments have been conducted in

various contexts; see Hirano and Porter (2009) for the treatment choice problem, and Song (2014) for the

point estimation problem for interval-identified parameters.

1.2 Plan of the Paper

In Section 2, we introduce the local misspecification framework for ATE and ATT estimation, and derive

the asymptotic MSEs for the NPW estimators of the candidate models. We also examine the bias-variance
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trade-off between large and parsimonious models through the analytical expression of the asymptotic

MSEs. In Section 3, we propose our optimal averaging procedure that minimizes the Bayes risk (a

weighted average of MSE) criterion in the limit experiment. The results of our Monte Carlo studies are

provided in Section 4. Section 5 applies our averaging procedure to LaLonde’s (1986) data set on the

National Supported Work Demonstration job-training program. Section 6 concludes. All proofs of the

propositions and auxiliary lemmas are collected in Appendix A.

2 Estimation of Causal Effects with Locally Misspecified Propensity

Scores

Let {(Yi, Di, X
′
i) : i = 1, . . . , n} be a size n random sample where an observation consists of a scalar

observed outcome Yi ∈ R, a binary treatment status Di ∈ {0, 1}, and a (column) vector of covariates

Xi ∈ X. Suppose that we have L predetermined covariates available for every individual in the sample,

X ′i = (Xi1, . . . , XiL). Each covariate can be either discrete or continuous. We denote the potential

outcomes corresponding to each treatment status as Yi (1) and Yi (0). The observed outcome Yi satisfies

Yi = DiYi (1) + (1−Di)Yi (0). The population average treatment effect (ATE) and the average treatment

effect for treated (ATT) when (Y (1), Y (0), D,X) ∼ P are denoted by τATE = EP (Y (1)− Y (0)) and

τATT = EP (Y (1)− Y (0)|D = 1), respectively.

The starting point of our averaging procedure is to specify a most complicated specification for the

propensity score function, which we refer to as the largest model. Let W (X) ∈ RK be a vector of

regressors with length K that is to be included in the propensity score estimation in the largest model.

W (X) includes an intercept and may contain interactions and nonlinear transformations of X. In the

subsequent asymptotic analysis, we will not let its dimension K grow with the sample size. In practical

terms, the fixed dimension of W (X) means that the number of regressors in the largest model is specified

to be relatively small compared to the sample size. We will use a short-hand notation, Wi = W (Xi) , as

far as no confusion arises.

Each candidate specification for the propensity score corresponds to a subvector of W (X) used in the

propensity score estimation. We index by S a selection of covariates of W . The number of covariates

included in specification S is denoted by |S|. We denote the set of candidate specifications byM and the

number of models in it by |M|. The set M does not have to exhaust all the possible subset vectors of

W (X). For example, some regressors can be included in all the specifications if they are believed to be
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important in predicting treatment status. Let S = ∩{S : S ∈M} be the set of covariates that appear in

every candidate model. We assume that |M| is fixed and does not grow with the sample size. The subset

of covariates to be excluded from S is indexed by its complement, Sc. Hence, Sc is the set of covariates

that are excluded in some candidate model.

The next set of assumptions characterizes sequences of data generating processes {Pn,δ : n = 1, 2, . . . }.

It will form the basis for our local asymptotic analysis, and for the limiting experiment that gives rise to

our optimal averaging procedure.

Assumption DGP:

(i) (Unconfoundedness) The joint distribution of (Y (1) , Y (0) , D,X) satisfies

Pn,δ(Y (1) , Y (0) , D,X) = P0(Y (1) , Y (0) |X) · Pn,δ(D|X) · P0(X), (1)

where P0(Y (1) , Y (0) |X) is the conditional distribution of potential outcomes given the full set of

covariates X and P0(X) is the marginal distribution of X, which are independent of n.

(ii) (Propensity score specification) Pn,δ(D|X) depends on the sample size and Pn,δ(D = 1|X = x) =

G
(
W (x)′ γn

)
, γn ∈ RK with a known monotone and twice continuously differentiable link function

G (·).

(iii) (Localized parameter sequence) γn = γ0 + n−1/2δ, where γ0 ∈ RK is a benchmark centering value of

the coefficient vector and δ ∈ RK is the localization parameter.

(iv) (Local misspecification) Entries of γ0 are zero if the corresponding regressors in W are excluded in

some candidate specification in M.

Following Claeskens and Hjort (2003), we specify the data generating processes to be drifting with n.

Note that the only drifting component is the propensity score and the other parts of the data generating

process do not change with n.2 Decomposition (1) assumes unconfoundedness (selection on observables)

of the treatment assignment with the full set of covariates, i.e., (Y (1), Y (0)) is statistically independent

of D conditional on X.

2We can allow the potential outcome distribution and the marginal distribution of X to drift with the sample size without
affecting the analytical results and the model selection/averaging procedures in this paper. However, for the sake of parsimony
of the exposition, we will leave them independent of n in what follows.
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Assumption DGP (ii) states that the propensity score has a parametric single index specification with

a known link function. The literature on semiparametric estimation of average causal effects commonly

introduces nonparametric propensity scores (e.g., Hahn (1998), Hirano et al. (2003)), while we restrict

our analysis to the case with parametric propensity scores. This assumption may appear restrictive at a

theoretical level, but does not bind much in empirical practice, since, with a finite number of observations,

implementation of nonparametric estimation of propensity score using series estimation can be seen as

estimating the propensity score parametrically with a rich and flexible specification of the regressor vector.

In such a context, what Assumption DGP (ii) essentially excludes are cases with a number of series terms

comparable with the sample size.

Assumption DGP (iii) introduces a drifting sequence of parameters with localization parameters δ.

Assumption DGP (iv) implies that the largest true model shrinks to the parsimonious submodels where

only a subset of W (X) is used in the propensity score estimation. In this sense, the smaller models are

locally misspecified and the value of localization parameters δ measures the degree of misspecification in

terms of the coefficient values. The joint distribution of (Y (1) , Y (0) , D,X) when γ is set at γ0 (i.e.,

δ = 0) is denoted by P0.

Assumption DGP (i) implies that the ATE parameter does not depend on n, τATE0 ≡ EP0(Y (1)−Y (0)),

whereas the ATT parameter does, τATTn ≡ EPn(Y (1) − Y (0)|D = 1), since the marginal distribution of

D depends on γn. Under unconfoundedness, the ATE and ATT parameters satisfy the following moment

conditions: at every n,

EPn,δ

[
DiYi

G (W ′iγn)
− (1−Di)Yi

1−G (W ′iγn)
− τATE0

]
= 0,

EPn,δ

[
DiYi
Qn
− G (W ′iγn) (1−Di)Yi

Qn (1−G (W ′iγn))
− τATTn

]
= 0.

where EPn,δ is the expectation with respect to the data generating process Pn,δ defined in (1) and Qn ≡

Pn,δ (D = 1).

Let γ̂ be the maximum likelihood estimator for γn obtained from the parametric binary regression

based on Assumption DGP (ii), and Q̂ = 1
n

∑n
i=1Di. The normalized propensity score weight (NPW)

estimators for the ATE and ATT in the largest model are

τ̂ATE =

n∑
i=1

(
Di

G (W ′i γ̂)
Yi

/
n∑
i=1

Di

G (W ′i γ̂)
− (1−Di)

(1−G (W ′i γ̂))
Yi

/
n∑
i=1

(1−Di)

(1−G (W ′i γ̂))

)
, (2)
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τ̂ATT =

n∑
i=1

(
DiYi∑n
i=1Di

− G (W ′i γ̂) (1−Di)

(1−G (W ′i γ̂))
Yi

/
n∑
i=1

G (W ′i γ̂) (1−Di)

(1−G (W ′i γ̂))

)
, (3)

where the summation terms in the denominators guarantee that the weights that multiply the observed

outcomes sum up to one.

The |S| × 1 subvectors of W and γ corresponding to the selected covariates in model S are denoted

by WS and γS , respectively. We define the |S| ×K matrix πS such that pre-multiplying a K × 1 vector

by πS yields the subvector corresponding to selection S, i.e., πSW = WS and πSγ = γS hold. Given a

selection of covariates S, let τ̂ATES and τ̂ATTS be the NPW-ATE and NPW-ATT estimators when WS is

included in the estimation of the parametric propensity score, i.e.,

τ̂ATES =

n∑
i=1

 Di

G
(
W ′S,iγ̂S

)Yi/ n∑
i=1

Di

G
(
W ′S,iγ̂S

) − (1−Di)(
1−G

(
W ′S,iγ̂S

))Yi/ n∑
i=1

(1−Di)(
1−G

(
W ′S,iγ̂S

))
 ,

τ̂ATTS =

n∑
i=1

 DiYi∑n
i=1Di

−
G
(
W ′S,iγ̂S

)
(1−Di)(

1−G
(
W ′S,iγ̂S

)) Yi

/
n∑
i=1

G
(
W ′S,iγ̂S

)
(1−Di)(

1−G
(
W ′S,iγ̂S

))
 ,

where γ̂S is the maximum likelihood estimator for γS obtained in the first stage propensity score regression

of Di on WS,i.
3

In addition to Assumption DGP, we impose the following regularity conditions on the sequence of

DGPs to ensure
√
n−local asymptotic normality of the estimators:

Assumption REG: (Regularity conditions and overlap) Let Γ ⊂ RK be the parameter space for γ.

(i) Γ is compact and γ0 is in the interior of Γ.

(ii) Let l(Z, γ) denote the one-observation log likelihood for γ in the first stage propensity score esti-

mation, where Z = (Y,D,W (X)). The largest model and the candidate submodels are globally

3As an alternative to the NPW estimator in model S, we may consider an overidentified GMM estimator. For instance,
using the moment conditions mATT

i (θ) to be defined in Section 3 and an optimal choice of weighting matrix Σ, a GMM

estimator for τATT in model S minimizes
(

1
n

∑
mATT
i (θ)

)′
Σ−1

(
1
n

∑
mATT
i (θ)

)
subject to γSc = 0. Although this GMM

estimator leads to improvement of asymptotic variance, its computation is not as simple as the NPW estimator considered
here. We therefore do not consider such overidentified GMM estimators in our analysis.
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identified in the sense that, for every ε > 0, there exists constant λε > 0 such that

EPn,δ [l(Z, γn)] > sup
γ∈Γ:‖γ−γn‖>ε

EPn,δ [l(Z, γ)] + λε

and

EPn,δ
[
l(Z, γ̃Sn )

]
> sup

γ∈ΓS :‖γ−γ̃Sn‖>ε
EPn,δ [l(Z, γ)] + λε

hold for all n and S ∈ M, where ΓS is the constrained parameter space for γ in model S, ΓS =

{γ ∈ Γ : γSc = 0}, and γ̃n,S is the pseudo-true value in model S defined by γ̃n,S = arg maxγ∈ΓS EPn,δ [l(Z, γ)].

The limiting information matrix for γ,

Iγ ≡ EP0

[
g(W ′γ0)

G(W ′γ0)(1−G(W ′γ0))
WW ′

]

is bounded and nonsingular.

(iii) Let g(a) ≡ d
daG(a) and denote the Euclidean metric of W by ‖W‖. EP0

[
supγ∈Γ

g(W ′γ)
G(W ′γ) ‖W‖

]
<∞

and EP0

[
supγ∈Γ

g(W ′γ)
1−G(W ′γ) ‖W‖

]
<∞.

(iv) Let W k, k ∈ {1, . . . ,K} be the k-th element of W and [WW ′]kl, k, l ∈ {1, . . . ,K}, be the (k, l)-

element of matrix W (X)W (X)′. There exist open neighborhood N of γ0 and λ > 0 such that

EP0

[
sup
γ∈N

∣∣∣∣ Y1

G(W ′γ)

∣∣∣∣2+λ
]
<∞, EP0

[
sup
γ∈N

∣∣∣∣ Y0

1−G(W ′γ)

∣∣∣∣2+λ
]
<∞,

EP0

[
sup
γ∈N

∣∣∣∣ Y1Wk

G(W ′γ)2

∣∣∣∣1+λ
]
<∞, EP0

[
sup
γ∈N

∣∣∣∣ Y0Wk

[1−G(W ′γ)]2

∣∣∣∣1+λ
]
<∞,

EP0

[
sup
γ∈N

∣∣∣∣ [WW ′]kl
[G(W ′γ)(1−G(W ′γ))]2

∣∣∣∣1+λ
]
<∞, for all k, l ∈ {1, . . . ,K} .

Assumption REG (iii) and (iv) imply the overlap condition, 0 < G(W (x)′γ) < 1 for almost every

x ∈ X , which is necessary for identification of ATE. The
√
n-asymptotic normality requires the additional

conditions that restrict the tails of the marginal distribution of W and the distribution of the propensity

scores near zero and one in case G(·) asymptotes to zero and one. Imposing these overlap conditions is

standard in the literature, although the limited overlap can be a concern in empirical applications (see

Crump, Hotz, Imbens, and Mitnik (2008) and Khan and Tamer (2010) for further discussion.)
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Let EP0 (·) and V arP0 (·) be the expectation and variance at probability law P0. In what follows,

T
Pn,δ→ c, or, equivalently, T − c = oPn,δ (1) means that the statistic T converges in probability to c along

{Pn,δ}, i.e., limn→∞ Pn,δ (|T − c| > ε) = 0 for any ε > 0. We use T
Pn,δ
 N (µ,Σ) to mean that the statistic

(vector) T converges in distribution along {Pn,δ} to a normal distribution with mean µ and covariance

matrix Σ, i.e, Pn,δ(T ≤ s) → Φµ,Σ(s) as n → ∞ for all s ∈ Rdim(T ), where Φµ,Σ(·) is the cumulative

distribution function of N (µ.Σ). In addition, the following notation is used:

G = G
(
W ′γ0

)
, g = g

(
W ′γ0

)
=
dG (z)

dz

∣∣∣∣
z=W ′γ0

, Q = P0 (D = 1) .

µ1 (X) = EP0 [Y (1) |X] , µ0 (X) = EP0 [Y (0) |X] , ∆µ (X) = µ1 (X)− µ0 (X) ,

µ0 = EP0(Y (0)), α0 = EP0 [Y (0) |D = 1] , τATT0 = EP0 [Y (1)− Y (0) |D = 1] ,

σ2
1 (X) = V arP0 (Y (1) |X) , σ2

0 (X) = V arP0 (Y (0)|X) ,

h =
D −G

G (1−G)
gW ,

where h ∈ RK is the K × 1 score vector in the first stage maximum likelihood estimation for γ evaluated

at γ = γ0, i.e., EP0 (h) = 0 holds. The following proposition derives the asymptotic distribution of the

NPW estimators for each submodel.

Proposition 2.1 Suppose Assumptions DGP and REG. For each S ∈ M, let hS be a subvector of the

score vector h defined by

hS ≡ πSh =
(D −G (W ′γ0))g (W ′γ0)

G (W ′γ0) (1−G (W ′γ0))
WS .

At the data generating process P0, we define L {h1|h2} as the linear projection of a random variable h1 onto

a random vector h2 and L⊥ {h1|h2} as its orthogonal complement, i.e., L {h1|h2} = EP0 (h1h
′
2)EP0 (h2h

′
2)−1 h2

and L⊥ {h1|h2} = h1 − L {h1|h2} .

The limiting distributions of τ̂ATES and τ̂ATTS along {Pn,δ} are

√
n
(
τ̂ATES − τATE

) Pn,δ
 N

(
0, ω2

ATE,S

)
+ biasATE,S (δ)
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√
n
(
τ̂ATTS − τATTn

) Pn,δ
 N

(
0, ω2

ATT,S

)
+ biasATT,S (δ) ,

where

ω2
ATE,S = SEBATE + EP0

[
L⊥
{
D −G
G

(
µ1(X)− τATE0 − µ0

)
+
D −G
1−G

(µ0(X)− µ0)

∣∣∣∣hS}2
]
,

(4)

biasATE,S (δ) = EP0

[
L⊥
{
D −G
G

(
µ1(X)− τATE0 − µ0

)
+
D −G
1−G

(µ0(X)− µ0)

∣∣∣∣hS}h′Sc] δSc . (5)

ω2
ATT,S = SEBATT,S +

1

Q2
EP0

[
L⊥
{

(D −G)

[
∆µ (X)− τATT0 +

1− 2G

1−G
(µ0(X)− α0)

]∣∣∣∣hS}2
]
,

(6)

biasATT,S (δ) =
1

Q
EP0

[
L⊥
{(

D −G
1−G

)
[µ0 (X)− α0]

∣∣∣∣hS}h′Sc] δSc . (7)

where SEBATE is the semiparametric efficiency bound for τATE obtained by Hahn (1998),

SEBATE = EP0

[
σ2

1 (X)

G
+
σ2

0 (X)

1−G
+
(
∆µ (X)− τATE0

)2]
,

and SEBATT,S is the semiparametric efficiency bound for τATT obtained by Graham et al. (2012) under

the a priori restriction that the propensity score is parametric and the relevant regressors are WS, i.e.,

P (D = 1|X) = G(W ′SγS),

SEBATT,S = EP0

[(
G

Q

)2{σ2
1 (X)

G
+
σ2

0 (X)

1−G
+
(
∆µ (X)− τATT0

)2}]

+
1

Q2
EP0

[
L
{

(D −G)
[
∆µ (X)− τATT0

]
|hS
}2
]
. (8)

Proof. See Appendix A.

Before discussing the analytical insights from this proposition, it is worth clarifying the motivation of

the local asymptotic analysis in the current context. The goal of our analysis is to obtain an estimator

that optimally balances out the finite sample bias-variance trade-off across small to large models. For this
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purpose, a sequence of DGPs (specified in Assumption DGP) is used as a device for deriving a class of

δ-indexed sampling distributions of the NPW estimators, in which the variance and bias approximations

of the estimators appear at the same stochastic order.4 Since consistent estimation of δ is not feasible, a

value of δ that gives accurate MSE approximation in a given situation remains unknown even in large n.

Accordingly, unless one model dominates the others uniformly over δ, a data-driven way of averaging the

models involves a non-trivial step of handling the uncertainty of δ. We discuss this in detail in Section 3.

The following remarks summarize some useful analytical insights about the bias-variance trade-offs in

the NPW estimators.

Remark 2.1 The variance of the submodel NPW-ATE estimator (4) consists of the semiparametric

efficiency bound for ATE derived by Hahn (1998), which does not depend on S, and the variance of

the residuals from a certain linear projection onto hS, the score vector of the parametric propensity score

estimation with regressor vector WS. The fact that the dimension of hS is equal to the dimension of WS

implies that the variance of the residuals is monotonically decreasing in S, implying that the asymptotic

variance of τ̂ATES monotonically decreases as more regressors are included. The bias term in (5) is zero

in the largest model. Therefore, for every δ including δ = 0, the largest model is optimal in terms of the

asymptotic MSE. This somewhat counter-intuitive result is in line with the well-known “propensity score

paradox”5 discussed in e.g. Hirano et al. (2003), and Graham et al. (2012).

Remark 2.2 In contrast to the asymptotic variance for the ATE, the asymptotic variance of the submodel

NPW-ATT estimator (6) is non-monotonic in S. Since SEBATT,S depends on S through the variance

of the linear projection of (D −G)
[
∆µ (X)− τATT0

]
onto hS, SEBATT,S weakly monotonically increases

as more regressors are included in the propensity score, i.e., SEBATT,S ≤ SEBATT,S′ whenever S ⊂ S′.

As in the ATE case, the second term of (6), which captures the inefficiency of the NPW-ATT estimators

relative to the semiparametric variance bound, monotonically decreases with the dimension of WS whenever

S ⊂ S′. As a whole, whether including more regressors in the propensity score inflates the variance of τ̂ATTS

depends on which of the two effects (inflation of SEBATT,S versus the reduction of relative inefficiency)

4If we consider a type of asymptotics where n increases to infinity with a fixed DGP, we would obtain a nonzero bias of
a submodel estimator τ̂S that always has a larger stochastic order than the variance irrespective of the size of misspecifica-
tion. Such asymptotics may provide a poor approximation for the finite sample MSEs for submodels that are only slightly
misspecified.

5The propensity score paradox states that even when the knowledge of propensity score specification is available, using
estimated propensity scores leads to a smaller asymptotic variance of the propensity score weighted ATE estimator. In the
context of variable selection, this means even though some covariates do not appear in the true propensity score, including
them in the propensity score estimation improves the variance of the subsequent propensity score weighted ATE estimator
as far as they help to predict the potential outcomes.
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dominates.6

As in the ATE case, the bias term shown in (7) is given by an inner product of δSc and the correlation

vector of hSc with a certain linear projection residual. Clearly, the bias of a submodel NPW estimator is

zero if δSc is the zero vector. Even when δSc is a nonzero vector, the bias of a submodel NPW estimator

can become zero if these two vectors are orthogonal. This implies that, depending on the value of the

local misspecification parameters, we can reduce the bias of a submodel NPW estimator by dropping some

covariates that are useful for predicting treatment status. Thus, there is no general monotonic relationship

available between the squared bias and the number of included regressors.

Remark 2.3 As shown by the relative inefficiency terms in (4) and (6), the NPW estimators are not

semiparametrically efficient even when the propensity score specification in the submodel is correct. Esti-

mation methods that lead to semiparametrically efficient ATE and ATT estimators with the finite number

of moment conditions are known in the literature. For instance, Graham et al. (2016) propose the

Auxiliary-to-Study Tilting (AST) estimator for the ATT that can achieve SEBATT,S under the assump-

tion that µ1(X) and µ0(X) are linear in a prespecified set of covariate vector used in the tilting step. The

current local asymptotic analysis can be applied to the AST estimators, and the model averaging for the

AST estimators can be developed along the same line of analysis given in the next section.

3 Frequentist Model Averaging for ATT Estimation

As discussed in Remark 2.2, the presence of treatment effect heterogeneity (i.e., ∆µ(X) is not a constant)

lead to nontrivial variance-bias trade offs between the small and large models when we approximate the

MSEs of the NPW-ATT estimators using a local asymptotic framework. As a result, an optimal selection

of regressors that minimizes the MSE of τ̂ATTS can be a proper subset of the regressors in the largest model.

In contrast, such a bias-variance trade-off does not arise for the ATE-NPW estimator (see Remark 2.1).

For this reason, our development of model averaging procedure focuses exclusively on the ATT.

Consider an estimator for the ATT of the following averaging form,

τ̂ATTavg =
∑
S∈M

ĉS τ̂
ATT
S , (9)

6In the special case where the treatment effects are homogeneous, i.e., ∆µ(X) = τATT0 for all X, the first component in
the variance expression SEBATT,S no longer depends on S, so that adding more regressors never inflates the variance of the
NPW-ATT estimator. In contrast, if treatment effects are heterogeneous, a smaller model can have an NPW estimator with
a smaller variance than that of bigger models.
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where ĉ ≡ (ĉS : S ∈ M) is an |M| × 1 vector of data-dependent weights assigned to each candidate

model which satisfies
∑

S∈M ĉS = 1.7 By allowing some ĉS to be negative, we obtain optimal weights as

an interior solution with a closed-form expression, and we can potentially lower the asymptotic MSE of

τ̂ATTavg compared to the case where the weights are constrained to be non-negative.

3.1 Bayes Asymptotic Risk and Optimal Averaging

To facilitate the presentation, we formulate the NPW-ATT estimation by the following set of moment

conditions (see also Busso et al., 2014):

EPn,δ
[
mATT
i (θn)

]
= 0,

mATT
i (θ) ≡


(Di−G(W ′iγ))

G(W ′iγ)[1−G(W ′iγ)]
g (W ′iγ)Wi[

Di + (1−Di)

(
G(W ′iγ)

1−G(W ′iγ)

)] (
Yi − τATTDi − α

)[
Di + (1−Di)

(
G(W ′iγ)

1−G(W ′iγ)

)] (
Yi − τATTDi − α

)
Di

 ,

where θn =
(
γ′n, αn, τ

ATT
n

)′
and αn = EPn,δ(Y (0)|D = 1). Let

MATT ≡ EP0

[
∂

∂θ′
mATT
i (θ)

∣∣∣∣
θ=θ0

]
,

ΣATT ≡ EP0

[
mATT
i (θ0) mATT

i (θ0)′
]
,

which, under Assumptions DGP and REG, we can consistently estimate by

M̂ATT =
1

n

n∑
i=1

∂

∂θ′
mATT
i

(
θ̂
)
,

Σ̂ATT =
1

n

n∑
i=1

mATT
i

(
θ̂
)

mATT
i

(
θ̂
)′
,

7As an alternative class of averaging estimators, one could consider the NPW-ATT estimator with averaged propensity
scores plugged in. Analyzing optimal averaging weights for this class of estimators is beyond the scope of this paper.
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where θ̂ =
(
γ̂′, α̂, τ̂ATT

)′
is the estimator for θ in the largest model (Lemma A.2 in Appendix A). Using

the selection matrix,

ΛS
(|S|+2)×(K+2)

=


πS O

1

O 1


the asymptotic variance and the squared bias terms of

√
n
(
τ̂ATTS − τATTn

)
can be written as

ω2
ATT,S = the final element in the bottom row of (10)(

ΛSM
ATTΛ′S

)−1
ΛSΣATTΛ′S

(
ΛS(MATT )′Λ′S

)−1
,

bias2
ATT,S (δ) = b′SδScδ

′
ScbS , (11)

b′S = the first |Sc| elements of the row vector in the bottom row of(
ΛSM

ATTΛ′S
)−1

ΛSM
ATTΛ′Sc .

By plugging in M̂ATT and Σ̂ATT , we obtain consistent estimators for ω2
ATT,S and bS , while the squared

bias term involves the square of the local misspecification parameters δScδ
′
Sc , for which a consistent

estimator is not available.

Let t̂ be a |M|×1 column vector consisting of
{√

n
(
τ̂ATTS − τATTn

)
: S ∈M

}
and δ̂Sc =

√
nπSc (γ̂ − γ0) =

√
nγ̂Sc , where πScγ0 = 0 follows by Assumption DGP (iv). By noting that the bias expression of (7) can

be written as b′SπScπ
′
ScδSc , we can express the asymptotic distribution of

(
δ̂Sc , t̂

)
as

δ̂Sc
t̂

 Pn,δ
 

 ∆Sc

Zτ

 ∼ N

 δSc

BδSc

 ,

Ω11 Ω12

Ω21 Ω22


 , (12)

where B is a |M|×|Sc| matrix, whose row vector corresponding to model S is b′SπScπ
′
Sc .

8 The covariance

8The proof of Proposition 2.1 given in Appendix A yields the convergence in distribution of the joint distribution of
δ̂Sc and {

√
n (τ̂S − τn) : S ∈M}.
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matrix Ω ≡

Ω11 Ω12

Ω21 Ω22

 is the limit covariance matrix of

 −πScI−1
γ 0 0

T

mATT
i (θ0) ,

where T is a |M|× (K + 2) matrix with each row vector corresponding to model S being the bottom row

vector of −
(
ΛSM

ATTΛ′S
)−1

ΛS . Accordingly, Ω11 = πScI−1
γ π′Sc is a submatrix of I−1

γ .

To establish optimality of averaging weights, define the following class of averaging weights that depend

on data through δ̂Sc =
√
nγ̂Sc and

(
B̂, Ω̂

)
, consistent estimators for (B,Ω):

C ≡

{
ĉ = c(δ̂Sc , B̂, Ω̂) :

∑
S∈M

cS(δ̂Sc , B̂, Ω̂) = 1, c(·, ·, ·) is continuous a.e.

}
. (13)

Note that C does not exhaust the universe of data-dependent averaging weights, since it excludes those

that depend on data additionally through
(
τ̂ATTS : S ∈M

)
.9 We suppress the second and third arguments

of c(δ̂Sc , B̂, Ω̂) if the estimators
(
B̂, Ω̂

)
are replaced by the limiting true value (B,Ω), i.e., c(δ̂Sc) ≡

c(δ̂Sc , B,Ω). We consider the asymptotic trimmed mean-squared error as a performance criterion of

averaging procedure ĉ ∈ C,

R∞(ĉ, δ
Sc

) ≡ lim
ζ→∞

lim inf
n→∞

EPn,δ
[
min

{
n(τ̂ATTavg − τATTn )2, ζ

}]
= lim

ζ→∞
lim inf
n→∞

EPn,δ

[
min

{
(
√
nc(δ̂Sc , B̂, Ω̂)′t̂)2, ζ

}]
,

where the second argument δ
Sc

of R∞(·, ·) signifies that when ĉ is restricted to C, the asymptotic MSE

depends on the underlying data generating process only through the localization parameter δ
Sc

.10 The

trimming is employed to circumvent the technical step of establishing uniform integrability of the sampling

distribution of n(τ̂ATTavg − τATTn )2. Next, we rank the performance of averaging weights by a weighted

9Adopting the shrinkage estimators of the form considered in Hansen (2016) to the current context, we can consider the
weights that depend on data additionally through (τ̂ATTS − τ̂ATT ). Investigation of optimal averaging weights over a larger
class of weights than C is out of scope of this paper.

10Our framework can be extended to different risk criteria such as the trimmed mean absolute deviation criterion. An
advantage of the mean squared error criterion considered here is availability of a closed-form expression of the optimal
averaging weights as shown below.
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average of the asymptotic MSEs with respect to a prior distribution for δ
Sc

, µ(δ
Sc

),

RBayes∞ (ĉ) ≡
ˆ
R∞(ĉ, δ

Sc
)dµ(δ

Sc
).

We hereafter refer to this criterion as Bayes asymptotic MSE.11 Given true (B,Ω), let C(B,Ω) ⊂ C be

the subset of averaging weights such that ĉ = c(δ̂Sc , B̂, Ω̂) is continuous a.e. in δ̂Sc when (B̂, Ω̂) is set at

true (B,Ω). Lemma A.3 in Appendix A shows that for ĉ ∈ C(B,Ω), the Bayes asymptotic risk can be

expressed as

RBayes∞ (ĉ) ≡
ˆ
E∆Sc |δSc

[
c
(
∆Sc

)′
K
(

∆Sc , δSc
)

c
(
∆Sc

)]
dµ(δ

Sc
). (14)

where E∆Sc |δSc
(·) is the expectation with respect to the sampling distribution ∆Sc ∼ N (δSc ,Ω11), and

K
(

∆Sc , δSc
)

is an |M| × |M| symmetric and positive semidefinite matrix,

K
(

∆Sc , δSc
)

= Ω22 − Ω21Ω−1
11 Ω12 (15)

+
(
B − Ω21Ω−1

11

) (
δ
Sc
−∆Sc

)(
δ
Sc
−∆Sc

)′ (
B − Ω21Ω−1

11

)′
+
(
B − Ω21Ω−1

11

) (
δ
Sc
−∆Sc

)
∆′ScB

′ +B∆Sc

(
δ
Sc
−∆Sc

)′ (
B − Ω21Ω−1

11

)′
+B∆Sc∆

′
ScB

′.

Minimization of the Bayes asymptotic MSE (14) in c(·) leads to the Bayes optimal averaging weights

c∗ (·) in the limiting experiment, where the unknown object is δSc and ∆Sc serves as a sufficient statistic

for it. Following the standard approach of limiting experiment analysis, we construct the finite sample

analogue of c∗
(
∆Sc

)
by replacing the true (B,Ω) with their consistent estimators and ∆Sc with δ̂Sc .

We hereafter refer to the procedure that uses the thus-constructed averaging weights as Bayesian Limit

Experiment (BayesLE) averaging. The next proposition provides a closed-form expression of c∗
(
∆Sc

)
and shows that its finite sample analogue minimizes the Bayes asymptotic MSE.

Proposition 3.1 Suppose Assumptions DGP and REG hold. Let µ
(
δSc
)

be a proper prior, and let

11Note that our definition of the Bayes risk in the limit experiment takes the average of the asymptotic risk instead of
taking the limit of the average finite sample risk as considered in Hirano and Porter (2009) in the context of treatment choice.
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Kpost

(
∆Sc

)
be the posterior expectation of K

(
∆Sc , δSc

)
when ∆Sc ∼ N (δSc ,Ω11),

Kpost

(
∆Sc

)
≡ EδSc |∆Sc

[
K
(

∆Sc , δSc
)]
.

(i) If Kpost

(
∆Sc

)
is nonsingular almost surely in ∆Sc, the Bayes optimal model averaging weight in

the limiting experiment, c∗ (·) ≡ arg minc(·)
´
E∆Sc |δSc

[
c
(
∆Sc

)′
K
(

∆Sc , δSc
)

c
(
∆Sc

)]
dµ(δ

Sc
), is unique

almost surely in ∆Sc, and is given by

c∗
(
∆Sc

)
=
[
1′Kpost

(
∆Sc

)−1
1
]−1 [

Kpost

(
∆Sc

)−1
1
]
, (16)

where 1 is the vector of ones with length |M|.

(ii) Let K̂
(

∆Sc , δSc
)

be the sample analogue of K
(

∆Sc , δSc
)

, where (B,Ω) is replaced by
(
B̂, Ω̂

)
.

Denote by K̂post

(
∆Sc

)
the posterior expectation of K̂

(
∆Sc , δSc

)
when the likelihood is ∆Sc ∼ N (δSc , Ω̂11)

and a prior for δSc is µ
(
δSc
)
. Then,

c∗
(
δ̂Sc , B̂, Ω̂

)
=

[
1′K̂post

(
δ̂Sc
)−1

1

]−1 [
K̂post

(
δ̂Sc
)−1

1

]

satisfies RBayes∞ (ĉ) ≥ RBayes∞
(
c∗
(
δ̂Sc , B̂, Ω̂

))
for all ĉ ∈ C(B,Ω).

Proof. See Appendix A.

If µ
(
δSc
)

is specified to be conjugate normal with mean φ and variance Φ, then the conjugate normal

posterior, δ
Sc
|∆Sc ∼ N

(
δSc ,

(
Ω−1

11 + Φ−1
)−1
)

, yields

Kpost

(
∆Sc

)
= Ω22 − Ω21Ω−1

11 Ω12

+
[(
B − Ω21Ω−1

11

)
δSc + Ω21Ω−1

11 ∆Sc
] [(

B − Ω21Ω−1
11

)
δSc + Ω21Ω−1

11 ∆Sc
]′

(17)

+
(
B − Ω21Ω−1

11

) (
Ω−1

11 + Φ−1
)−1 (

B − Ω21Ω−1
11

)′
.

By plugging in B̂ and Ω̂ and replacing ∆Sc by δ̂Sc , we obtain K̂post

(
δ̂Sc
)

and the formula of c∗
(
δ̂Sc , B̂, Ω̂

)
shown Proposition 3.1 (ii) computes the averaging weights that minimizes the Bayes asymptotic MSE.

The main reason that Proposition 3.1 assumes a proper prior is to guarantee that the Bayes asymptotic

MSE is finite. In practice, requiring the researcher to have a proper prior may be restrictive if she/he

does not have a credible prior opinion for δSc , or if she/he wishes to apply a non-informative prior for the
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purpose of reporting a default averaging estimate. If we specify µ
(
δSc
)

to be uniform (the Jeffreys prior

for Gaussian means), then Kpost

(
∆Sc

)
is still well defined.

Kpost

(
∆Sc

)
= Ω22 − Ω21Ω−1

11 Ω12 +
(
B − Ω21Ω−1

11

)
Ω11

(
B − Ω21Ω−1

11

)′
+B∆Sc∆

′
ScB

′, (18)

Furthermore, the posterior risk has a well defined minimizer, given by (16), even if the resulting Bayes

asymptotic MSE (14) is unbounded.12 We recommend using the uniform prior, unless the user has a

strong prior opinion about the value of δ for the covariates. In our Monte Carlo studies and empirical

application, we examine performance of the BayesLE-averaging estimator with the uniform prior.

Remark 3.1 Hjort and Claeskens (2003, Sec. 5.4) propose the following way of obtaining weights. Given

δ
Sc

and weight vector c, the asymptotic MSE of the averaging estimator is written as c′E∆Sc |δSc

[
K
(

∆Sc , δSc
)]

c =

c′
(

Ω22 −BδSc δ′ScB
′
)

c. The weights proposed by Hjort and Claeskens minimize the asymptotically unbi-

ased estimator of the MSE in the limiting experiment,

cHC
(
∆Sc

)
= arg min

c
c′
(

Ω22 −B
(

∆Sc∆
′
Sc − Ω11

)
B′
)

c,

where ∆Sc∆
′
Sc − Ω11 is an unbiased estimator for δ

Sc
δ′
Sc

. The solution to this minimization problem is

given by

cHC
(
∆Sc

)
=

[
1′
(

Ω22 +B
(

∆Sc∆
′
Sc − Ω11

)
B′
)−1

1

]−1 [(
Ω22 +B

(
∆Sc∆

′
Sc − Ω11

)
B′
)−1

1

]
.

Note that cHC
(
∆Sc

)
can be shown to differ from the BayesLE-averaging weights resulting from (17) for

any of the conjugate normal priors as well as the weights corresponding to the uniform prior.13

Remark 3.2 Model selection is a special case of averaging where the feasible weights are restricted to

stepwise constant functions with their range restricted to
{
e1, . . . , e|M|

}
, where em, m = 1, . . . , |M|, is

the m-th column vector of |M|× |M| identity matrix. Let us denote a class of model selection procedures

12One way to justify this averaging scheme would be to claim that the averaging weights corresponding to the uniform
prior are obtained by a limit of the Bayes optimal weights with respect to a sequence of proper priors. Specifically, by noting
that Kpost (∆Sc) of (17) converges to (18) as the prior variance matrix diverges to infinity, the optimal averaging weights
under the uniform prior can be obtained as the limit of the Bayes optimal weights along a sequence of conjugate priors with
diverging prior variances.

13Establishing the existence of a prior for δSc that supports cHC(∆Sc) as Bayes optimal in the limit experiment is left for
future research.
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that select a set of covariates on the basis of (δ̂Sc , B̂, Ω̂) by

Csel =
{

ĉ = c(δ̂Sc ˆ, B, Ω̂) : c(δ̂Sc ˆ, B, Ω̂) ∈
{
e1, . . . , e|M|

}
for all (δ̂Sc , B̂, Ω̂)

}
.

By noting that with non-singular K̂post

(
δ̂Sc
)

, c∗
(
δ̂Sc , B̂, Ω̂

)
derived in Proposition 3.1 is unique and

never takes a corner solution, we can conclude that the optimal model averaging obtained in Proposition

3.1 strictly outperforms any of the model selection procedure in Csel∩C(B,Ω) in terms of Bayes asymptotic

MSE.

Corollary 3.1 Under the assumptions of Proposition 3.1, RBayes∞ (ĉ) > RBayes∞
(
c∗
(
δ̂Sc , B̂, Ω̂

))
holds

for any ĉ ∈ Csel ∩ C(B,Ω).14

The Monte Carlo studies shown in Section 4 below compares the MSE performances of BayesLE-

averaging and the model selection procedure that selects a set of covariates based on the Bayes asymptotic

risk. We find the MSE comparisons are consistent with the theoretical prediction of this corollary.

3.2 Post-averaging Inference

The optimality argument of BayesLE-averaging proposed in Proposition 3.1 concerns point estimation

and has little to say about how to proceed to interval estimation. This section presents a construction of

confidence intervals based on the sampling distribution of the averaging estimator by adopting the two-

stage confidence procedure proposed by Claeskens and Hjort (2008). The proposed confidence intervals

guarantee nominal coverage, although their coverage probability can be conservative.

Let (1 − β) ∈ (0, 1) be a nominal coverage probability and let β1, β2 > 0 satisfy β1 + β2 = β.

Given a value of localization parameter δSc , the weak convergence of
√
n(δ̂′Sc , t̂

′)′ shown in (12) implies

that the averaging estimator of Proposition 3.1 converges to
√
n(τ̂ATTavg − τATTn )

Pn,δ
 c∗(∆Sc)Zτ . Based

on this asymptotic distribution, let CIATT1−β1
(∆Sc , Zτ |δSc) be an interval estimator for ATT that satisfies

Pr
(
τATT0 ∈ CIATT1−β1

(∆Sc , Zτ |δSc)
)

= 1 − β1. Since random variable c∗(∆Sc)Zτ is easy to simulate, it is

straightforward to numerically approximate CIATT1−β1
(∆Sc , Zτ |δSc).

The two step confidence procedure proceeds as follows. In the first step, we construct a confidence set

(ellipsoid) for δSc with confidence level (1− β2) by inverting the likelihood ratio test,

CS1−β2 ≡
{
δSc : (δ̂Sc − δSc)′Ω̂−1

11 (δ̂Sc − δSc) ≤ χ2
1−β2

(dim(δSc))
}
,

14If ĉ deterministically selects a particular candidate model S ∈ M, the corresponding asymptotic Bayes risk RBayes∞ (ĉ)
equals the MSE that follows from equations (2.6) and (2.7), averaged with respect to prior µ(δSc).
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where χ2
1−β2

(dim(δSc)) is the (1 − β2)-th quantile of the χ2-statistic with degree of freedom equal to

the dimension of δSc . In the second step, we construct a confidence interval for ATT, CIATT1−β (δ̂Sc , t̂), by

taking the union of CIATT1−β1
(δ̂Sc , t̂|δSc) over δSc ∈ CS1−β2 . It can be shown that the asymptotic coverage

probability of CIATT1−β (δ̂Sc , t̂) is bounded from below by 1 − β irrespective of the value of δ, and hence

the confidence intervals for ATT are asymptotically uniformly valid at least over the class of propensity

scores that meet Assumptions DGP (i)-(ii) and REG. See Appendix A for a proof of these claims. In

the empirical application presented below, we implement this two-step procedure by taking the union of

CIATT1−β1
(δ̂Sc , t̂|δSc) over randomly sampled values of δSc ∈ CS1−β2 .

4 Monte Carlo Study

In this section, we perform a simulation experiment to study the behavior of the averaging estimator

proposed in Section 3. We show that a bias-variance trade-off exists between a small and a large models

for the NPW-ATT estimator, and find MSE gains for the model averaging estimator.

We will use a model with treatment outcome Y (1) = u1, control outcome

Y (0) = −β1X1 − β2

K∑
k=2

Xk + u0,

and selection equation P (D = 1|X) = G
(
γ
K

∑K
k=1Xk

)
, where G is the logistic function. The outcome

equation error terms (u0, u1) are generated from a zero mean normal distribution. The regressors are

generated, independently of those error terms, from a multivariate normal distribution with mean 0,

standard deviation 1, and pairwise covariance 0.5.

The design parameters and their benchmark values are listed in Table 1.We let the first regressor, X1,

be more important than the remaining regressors by letting its regression coefficient β1 be larger than

the coefficient of each of the remaining regressors, β2. We have normalized the sum of the regression

coefficients to 1, so that the covariate X1 accounts for a share β1 of the model, and the other regressors

share the remaining 1−β1 equally. In the benchmark design, each of the regressors (X2, X3) are only half

as important as the first one. As a result, the first regressor X1 is very important, and should probably

be included in estimation, but there may be some advantage from leaving out X2 or X3.

Note that the parameters n, K, and γ affect the bias-variance trade-off. Increasing the value of K

increases the number of coefficients that have to be estimated, but reduces the bias of leaving out a single
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regressor since the coefficient for each regressor, β2 = (1− β1) / (K − 1), decreases in K. The selection

equation coefficient γ controls the strength of the selection effect, which is assumed to be the same for

all regressors. Increasing γ increases the bias of leaving out a regressor, and affects regressor overlap. We

investigate the role of these parameters in detail in the sensitivity analysis below.

For our simulation design, the average treatment effect is 0. By using the properties of our design, it

can be shown that the average treatment effect on the treated E (Y (1)− Y (0)|D = 1) = E (X|D = 1)β

does not depend on the design parameters (n, β1, σu) but depends on the number of regressors, K, and

on γ, which governs the relationship between the regressors and the treatment indicator.

The model averaging estimator depends on estimators of the matrices B and Ω in equation (12).

Estimators for B and Ω are obtained from the full model using sample analog estimators that were

shown to be consistent in Appendix A. Note that the different submodel estimators are highly correlated.

Therefore, the inversion of Kpost can be problematic. For this reason, we will regularize Kpost before

inversion, using the approach in Carrasco et al. (2007). Results for each model are based on 10000

replications.

We will refer to the model with all regressors as the “full model”, and tothe model that only includes

X1 and a constant term as the “small model”. On top of the submodel estimators, we report the following

three estimators: (1) the infeasible “Best submodel” estimator, which is the submodel estimator with the

lowest MSE across simulations; (2) the “BayesLE-averaging” estimator with improper uniform µ(δSc)

based on all 2K − 1 or 2K−1 − 1 submodel estimators; and (3) the “Selection” estimator, which chooses

the estimator with the lowest estimated MSE.15

Results for the benchmark simulation design. The results for the benchmark simulations can

be found in Table 2. Given a number of regressors K, we either consider the 2K−1 − 1 submodels that

include a constant term and the important regressor X1, or we consider all 2K−1 submodels. The former

corresponds to the more realistic situation that a researcher has some idea about what the important

regressors are, but is unsure about including a number of less important control regressors.

Several findings are worth noting. First, note that all the estimators that leave out the relevant

regressor X1 are severely biased due to omitting the important regressor. Second, there is a clear bias-

variance trade-off: the small model (only X1) outperforms the full model (all regressors). Third, the full

model estimator has the lowest bias. Fourth, the BayesLE-averaging estimator seems to have the best

15The selection estimator is obtained by solving minc∈Csel c
′EδSc |∆Sc

[
K̂ (∆Sc , δSc) |∆Sc = δ̂Sc

]
c, where K̂ (∆Sc , δSc) is

as defined in Proposition 3.1 (ii).
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overall performance in terms of MSE. In particular, it outperforms the selection estimator, and it achieves

the MSE of the best submodel. Finally, the performance of the selection procedure deteriorates slightly

by the inclusion of poorly performing models (i.e. models without X1), whereas including these poorly

performing models leads to a slight improvement the performance of the averaging estimator. The results

in Table 2 suggest that the averaging procedure is robust against the inclusion of poorly performing

models.

Sensitivity analysis. We now conduct a sensitivity analysis to check whether the conclusions from

the simulation results are robust to changes in the design parameters, and to investigate the role of

regressor overlap. The results are presented in Figures 1 and 2. Unless otherwise mentioned, we fix

parameter values to their benchmark values in Table 1. We let n = 100 (left column) and n = 300 (right

column), and we let K = 3 (top row) and K = 6 (bottom row). For each scenario, we plot the results as

a function of γ, the regression coefficient in the selection equation.16

We report results for the full model estimator (based on all covariates), for the small model estimator

(based on X1 only) and for two BayesLE-averaging estimators. The first one (“All”) is based on all 2K−1

submodel estimators that include X1. The second one (“Nested”) combines estimators from nested models

only. By a nested model, we refer to a model with combinations of regressors that can include Xk only if

they include Xk−1. For example, for the case K = 3, the researcher considers three submodel estimators:

one based on including X1; one based on including X1 and X2; and one that uses all regressors. We use

20000 draws for each set of simulation design parameter values.

We first consider the bias for the estimators (Figure 1). The solid line corresponds to the true value of

the ATT, which is increasing in γ . First, note that the full model estimator (dashed line) is not unbiased.

Comparing the left column (n = 100) to the right column (n = 300), suggests that this is a finite sample

bias. The bias is increasing in γ, which is likely to be a result of the decrease in regressor overlap (see

Table 3). Second, note that the bias for the small model is always bigger than the bias of the full model

estimator. The bias of the BayesLE-averaging (“All”) procedure is in between that of the small and full

model estimators. We do not present the bias for BayesLE-averaging (“Nested”), as it is very similar to

that of BayesLE-averaging (“All”).

Next, we consider the relative mean squared error of the small model estimator and the BayesLE-

averaging estimators relative to the full model estimator (Figure 2). First, note that the BayesLE-

averaging procedures outperforms the full model estimator for the full range of the parameter space

16 We evaluate results at γ ∈ {0, 0.1, 0.2, · · · , 1.9, 2}. For values of γ > 2, overlap becomes so poor (see Table 3) that
alternative estimation procedures should be considered.
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Figure 1: Results for sensitivity analysis: bias. Solid line corresponds to the true value of the ATT, τ0.
We plot the simulated expected value of three estimators. Left column n = 100; right column: n = 300.
Top row: K = 3; bottom row: K = 6.
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Figure 2: Results for sensitivity analysis: mean squared error. The mean squared error is relative to that
of the full model (dashed). We plot the simulated relative mean squared error for three estimators. Left
column n = 100; right column: n = 300. Top row: K = 3; bottom row: K = 6.
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considered in our simulations. Second, note that the relative MSE of the small model estimator is non-

monotonic. This is related to the two effects that changing γ has in our simulation design. Increasing γ

(i) increases the bias of leaving out regressors, (ii) decreases overlap, which makes it more favorable to

consider subsets of regressors. Third, note that increasing the number of regressors improves the relative

performance of the small model estimator and for the BayesLE-averaging estimators. Increasing the

number of observations decreases the relative performance. This is not surprising, because increasing n

effectively changes the value of the misspecification parameter δ. Finally, we point out that the value of

the mean squared error of the full model estimator is monotonically increasing in γ (not shown in Figure

2).

5 Empirical application

In this section, we apply the methods discussed in Sections 2 and 3 to the data set analyzed in LaLonde

(1986) and Dehejia and Wahba (1999). In the context of model selection with l1-penalty, this data set

is also analyzed by Farrell (2015). These papers estimate the impact of the National Supported Work

Demonstration (NSW) on earnings. The NSW was implemented as a field experiment. Candidates

were randomized across treatment and control groups. Those who were assigned to the treatment group

benefited from work experience, and some counseling. Due to the experimental implementation, the

difference in post-intervention earnings of treatment and control groups is an unbiased estimator for the

average effect of the NSW program on earnings. LaLonde shows that linear regression, fixed effects,

and selection models fail to reproduce the experimental estimate, using as control group the members

of the Panel Study on Income Dynamic (PSID) and the Current Population Survey (CPS). Dehejia and

Wahba (DW) show that estimates obtained using propensity score methods are closer to the experimental

estimate.

A detailed description of the program and the data can be found in the aforementioned papers.17 As

in DW, we focus on the 185 observations on male participants in the treatment group for which pre-

intervention incomes in both 1974 and 1975 are available. The non-experimental control group that we

use is CPS-1.18 Propensity score covariates and summary statistics are given in Table 4.

The experimental estimate for this subset is $1672 (standard error: $637), after a regression adjustment

17The data is available from Rajeev Dehejia’s website. Last accessed: June 1, 2013. Location:
http://users.nber.org/∼rdehejia/nswdata2.html.

18LaLonde (p. 611) provides details on the CPS-1 sample. We prefer the CPS over the PSID because of the larger sample
size (n = 15992).
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for age, education, and race.19 Using stratification and matching on the estimated propensity score, DW’s

adjusted estimates are $1774 (standard error: $1152) and $1616 (standard error: $751), respectively. DW

do not provide an in-depth discussion of how the covariates for the propensity score were chosen, but they

describe that their results are sensitive to excluding higher order terms and to excluding 1974 earnings.

We consider the set of variables and transformations in Table 4. The treatment and control groups

have sizable differences in terms of their observable characteristics, so a difference in means is unlikely to

be unbiased for the average treatment effect. We consider a scenario with 8 submodels: for each variable

in (hispanic, married, re752), we are unsure whether it should be included in the propensity score. The

other six variables are always included. We use a logit form for the selection equation. Finally, we trim

the 10% of observations with the lowest estimated propensity scores.

Table 5 presents the output for the propensity score estimation in the full and the small model.

Clearly, omitting some of the covariates in the full model leads to biased estimation of γ, see for example

the changes in the coefficient estimate for education. On the other hand, the coefficients are more precisely

estimated in the small model.

Table 6 reports 90% confidence intervals for the experimental estimate, the full model estimate, and

the BayesLE-averaging estimate. For the BayesLE estimator, we use the two-step confidence procedure

described in Section 3.2 with β1 = β2 = 0.05. All confidence intervals are quite wide, which is consistent

with the findings in LaLonde and DW. Post-averaging inference leads to less precise inference than using

standard inference using the full model. We want to stress that the objective of this paper is to come up

with a point estimator that has good MSE performance. The procedure we use is known to be conservative

(Hjort and Claeskens, 2008, p. 211). A promising development for improving this is Liu (2015).

6 Concluding Remarks

We proposed a model averaging procedure for normalized propensity score weighted estimation of the

ATT by extending the framework of the focused information criterion and frequentist model averaging

to the semiparametric estimation of ATT. The aim of these procedures is to construct the most accurate

estimator for ATT in terms of MSE, under the assumption that unconfoundedness holds and that the

propensity scores are correctly specified in a most complicated specification provided by the user. The

resulting procedure is easy to implement, and can offer a reference estimate of the ATT in the presence

of the uncertainty in propensity score specifications. Our Monte Carlo evidence shows that the proposed

19The unadjusted estimate is $1794 with a standard error of $633.
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procedure enjoys good MSE improvement compared to post-model selection estimator as well as the

estimators constructed in the candidate specification. We therefore recommend empirical researchers to

report the model averaged estimate when specification uncertainty is present for the propensity score.

There are several issues and concerns that remain out of the scope of this paper. First, the local

asymptotic approximation becomes less precise when the number of regressors is large relative to the

sample size, so that the proposed procedures will not be suitable to a situation where the most compli-

cated specification has too many regressors. Second, the normal approximation obtained via the local

asymptotics will not be precise when the overlap condition is poorly satisfied. Third, this paper mainly

focusses on point estimation, and relies on existing idea to construct conservative confidence intervals. It

would be interesting to develop theory for the construction of less conservative post-averaging inference.

We leave these important issues for future research.

Appendix

A Lemmas and Proofs

Following Busso et al. (2014), we formulate the NPW estimations for ATE and ATT by the following

system of just-identified moment conditions:

EPn,δ
[
mATE

(
Zi, θ

ATE
n

)]
= EPn,δ


(Di−G(W ′iγn))

G(W ′iγn)[1−G(W ′iγn)]
g (W ′iγn)Wi[

Di
G(W

′
i γn)

+ 1−Di
1−G(W ′iγn)

] (
Yi − τATE0 Di − µ0

)[
Di

G(W
′
i γn)

+ 1−Di
1−G(W ′iγn)

] (
Yi − τATE0 Di − µ0

)
Di

 = 0

EPn,δ
[
mATT

(
Zi, θ

ATT
n

)]
= EPn,δ


(Di−G(W ′iγn))

G(W ′iγn)[1−G(W ′iγn)]
g (W ′iγn)Wi[

Di + (1−Di)

(
G(W ′iγn)

1−G(W ′iγn)

)] (
Yi − τATTn Di − αn

)[
Di + (1−Di)

(
G(W ′iγn)

1−G(W ′iγn)

)] (
Yi − τATTn Di − αn

)
Di

 = 0. (19)

where Zi ≡ (Yi, Di,W (Xi)) is a random vector of an observation whose probability law is induced by

Pn,δ defined in (1), and θATEn ≡
(
γn, µ0, τ

ATE
0

)′ ∈ RK+2 and θATTn ≡
(
γn, αn, τ

ATT
n

)′ ∈ RK+2 are the

parameter vectors solving the population moment conditions for the ATE and ATT, respectively. Note
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that parameters µ0 and τATE0 in θATEn do not depend on n, since the distribution of potential outcomes

do not drift with n. The first K elements of the moment vectors mATE
(
Zi, θ

ATE
n

)
and mATT

(
Zi, θ

ATT
n

)
are the score vector from the propensity score estimation and are common between the ATE and ATT

moment conditions. The sample analogue of these moment conditions yields the NPW estimators (2) and

(3) in the largest model.

Let θATE0 ≡
(
γ′0, µ0, τ

ATE
0

)′
and θATT0 ≡

(
γ′0, α0, τ

ATT
0

)′
. We denote by θ̂ATE =

(
γ̂′, µ̂, τ̂ATE

)′
and

θ̂ATT =
(
γ̂′, α̂, τ̂ATT

)′
the method of moment estimators in the largest model. For each selection of

covariates S ∈M, we define

γS = π′SπSγ +
(
I − π′SπS

)
γ0

θATE,S =
(
γS′, µ, τATE

)′
, θATT,S =

(
γS′, α, τATT

)′
where πS is the selection matrix defined in the main text. γS is a (K × 1) vector obtained by replacing

the elements of γ that are not included in S with their benchmark values γ0 (zeros by Assumption DGP

(iv)). In particular, for a sequence of DGPs {Pn,δ} satisfying Assumption DGP, we define

γSn = π′SπSγn +
(
I − π′SπS

)
γ0,

θATE,Sn =
(
γS′n , µ0, τ

ATE
0

)′
, θATT,Sn =

(
γS′n , αn, τ

ATT
n

)′
.

Let γ̂S be an (|S| × 1) vector of the MLE estimators obtained from the propensity score estimation with

regressors WS . Accordingly, define a (K × 1) vector

γ̂S = π′S γ̂S +
(
I − π′SπS

)
γ0.

Let mATE
n (θ) = 1

n

∑n
i=1 mATE(Zi, θ

ATE) and mATT
n (θ) = 1

n

∑n
i=1 mATT (Zi, θ

ATT ). Using ΛS defined

in the main text, the NPW estimators in model S solve the following (|S|+ 2)-dimensional just-identifying

sample moments,

ΛSmATE
n (θ̂ATE,S) = 0,

ΛSmATT
n (θ̂ATT,S) = 0,
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with

θ̂ATE,S =
(
γ̂S′, µ̂S , τ̂

ATE
S

)′
, θ̂ATT,S =

(
γ̂S′, α̂S , τ̂

ATT
S

)′
,

where τ̂ATES and τ̂ATTS are the NPW estimators for ATE and ATT in model S shown in the main text,

and µ̂S and α̂S are the corresponding value of µ and α solving the moment conditions in model S.

We first show a basic lemma that extends Lemma 4.3 of Newey and McFadden to a triangular array

of random variables involving estimated parameters.

Lemma A.1 Let Zi, i = 1, . . . , n, be i.i.d sequence of random vectors following Pn, n = 1, 2, . . . .

Let θn ≡ θ(Pn) be a sequence of parameter vectors corresponding to Pn. Let a(Z, θ) be a real-valued

function of an observation Z and parameter θ. Suppose θ̂ an estimator for θ satisfies
∥∥∥θ̂ − θn∥∥∥ =

oPn(1), and let {εn}be a converging sequence that satisfies Pn(
∥∥∥θ̂ − θn∥∥∥ ≤ εn) → 1 as n → ∞. If (i)

EPn

[
sup‖θ−θn‖≤εn |a(Z, θ)− a(Z, θn)|

]
→ 0 as n→∞, and (ii) there exists λ > 0 such that EPn

[
|a(Z, θn)|1+λ

]
<

∞, then

∣∣∣∣∣ 1n
n∑
i=1

a(Zi, θ̂)− EPn [a(Z, θn)]

∣∣∣∣∣ = oPn(1).

Proof. By the triangular inequality,

∣∣∣∣∣ 1n
n∑
i=1

a(Zi, θ̂)− EPn [a(Z, θn)]

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

a(Zi, θ̂)−
1

n

n∑
i=1

a(Zi, θn)

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

a(Zi, θn)− EPn [a(Z, θn)]

∣∣∣∣∣ .
(20)

To show the first term in the right hand side converges, let us define event Ωn ≡
{∥∥∥θ̂ − θn∥∥∥ ≤ εn} and
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random variable ∆n(Z) = sup‖θ−θn‖≤εn |a(Z, θ)− a(Z, θn)|. We then have for any η > 0,

Pn

(∣∣∣∣∣ 1n
n∑
i=1

a(Zi, θ̂)−
1

n

n∑
i=1

a(Zi, θn)

∣∣∣∣∣ > η

)

≤Pn

({∣∣∣∣∣ 1n
n∑
i=1

a(Zi, θ̂)−
1

n

n∑
i=1

a(Zi, θn)

∣∣∣∣∣ > η

}
∩ Ωn

)
+ Pn(Ωc

n)

≤Pn

({
1

n

n∑
i=1

∆n(Zi) > η

})
+ o(1)

≤EPn [∆n(Zi)] /η + o(1)

=o(1),

where the second like uses
∣∣∣ 1
n

∑n
i=1 a(Zi, θ̂)− 1

n

∑n
i=1 a(Zi, θn)

∣∣∣ ≤ 1
n

∑n
i=1 ∆n(Zi) on event Ωn, the third

line follows by the Markov inequality, and the last line follows from assumption (i).

Note that assumption (ii) implies EPn

[
|ak(Z, θn)− EPn [ak(Z, θn)]|1+λ

]
<∞. Hence, the law of large

numbers for a triangular array of random variables (see e.g., Lemma 11.4.2 of Lehmann and Romano

(2005)) yields
∣∣ 1
n

∑n
i=1 ak(Zi, θn)− EPn [ak(Z, θn)]

∣∣ = oPn(1). Hence, the conclusion follows.

The next lemma collects consistency and asymptotic normality results in our local asymptotic analysis,

which are useful to prove Proposition 2.1 and the claims given in Section 3 of the main text.

Lemma A.2 Let {Pn,δ} ∈ P be a sequence of data generating processes indexed by localization parameter

δ. Under Assumptions DGP and REG in the main text, the following claims hold:

(i)
∥∥∥θ̂ATE − θATEn

∥∥∥ = oPn,δ (1) and
∥∥∥θ̂ATT − θATTn

∥∥∥ = oPn,δ (1).

(ii)
∥∥∥θ̂ATE,S − θATEn

∥∥∥ = oPn,δ (1) and
∥∥∥θ̂ATT,S − θATTn

∥∥∥ = oPn,δ (1) for every S ∈M.

(iii) Let MATE ≡ EP0

[
∂
∂θ′m

ATE
(
Z, θATE0

)]
and MATT ≡ EP0

[
∂
∂θ′m

ATT
(
Z, θATT0

)]
. Let θ̄ATE and

θ̄ATT be estimators for θATE and θATT that satisfy
∥∥θ̄ATE − θATEn

∥∥ = oPn,δ(1) and
∥∥θ̄ATT − θATTn

∥∥ =

oPn,δ(1), respectively. Then,

∥∥∥∥∥ 1

n

n∑
i=1

∂

∂θ′
mATE

(
Zi, θ̄

ATE
)
−MATE

∥∥∥∥∥ = oPn,δ (1) ,

∥∥∥∥∥ 1

n

n∑
i=1

∂

∂θ′
mATT

(
Zi, θ̄

ATT
)
−MATT

∥∥∥∥∥ = oPn,δ (1) ,
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(iv) Denote the variance-covariance matrices of mATE
(
Zi, θ

ATE
0

)
and mATE

(
Zi, θ

ATE
0

)
by ΣATE and

ΣATT , respectively. Let θ̄ATE and θ̄ATT be estimators for θATE and θATT as defined in (iii).

∥∥∥∥∥ 1

n

n∑
i=1

mATE
(
Zi, θ̄

ATE
)
mATE

(
Zi, θ̄

ATE
)′ − ΣATE

∥∥∥∥∥ = oPn,δ (1) ,

∥∥∥∥∥ 1

n

n∑
i=1

mATT
(
Zi, θ̄

ATT
)
mATT

(
Zi, θ̄

ATT
)′ − ΣATT

∥∥∥∥∥ = oPn,δ (1) ,

(v) 1√
n

∑n
i=1 mATE

(
Zi, θ

ATE
n

) Pn,δ
 N

(
0,ΣATE

)
and 1√

n

∑n
i=1 mATT

(
Zi, θ

ATT
n

) Pn,δ
 N

(
0,ΣATT

)
.

Proof. Since a proof for the ATT case is similar to the case of ATE, we only focus on proving the claims

of the ATE case for the sake of brevity. To prove (i), we first show that under the given assumptions,

‖γ̂ − γn‖ = oPn,δ(1) holds. Let l(Zi, γ) be the one-observation likelihood for γ in the largest model and

ln(γ) = n−1
∑n

i=1 l(Zi, γ). To establish the uniform weak consistency of the sample likelihood function

along {Pn,δ}, i.e., supγ∈Γ

∣∣ln (γ)− EPn,δ [l(Z, γ)]
∣∣ = oPn,δ (1), consider the mean value expansion of l(Z, γ)

in γ and bounding from above the absolute derivative term by a parameter-free envelope,

|l (Z, γ)− l (Z, γ̃)| ≤F̃ (W ) ‖γ − γ̃‖ for all γ, γ̃ ∈ Γ, where

F̃ (W ) =

{
sup
γ∈Γ

g(W ′γ)

G(W ′γ)
+ sup

γ∈Γ

g(W ′γ)

1−G(W ′γ)

}
‖W‖ (21)

Compactness of Γ and Assumption REG (iii) then imply that F (W ) ≡ F̃ (W )diam(Γ) is an integrable

envelope of the class of functions F = {|l (·, γ)− l (·, γ̃)| : γ ∈ Γ} with a fixed γ̃ with respect to the L1(P0)-

norm ‖ · ‖1. Following the argument of Example 19.7 of van der Vaart (1998) and using the fact that the

covering number of a class of functions with radius r is bounded from above by the bracketing number

with radius 2r, the covering number of F is bounded from above by

N (ε ‖F‖1 ,F , ‖ · ‖1) ≤ κ
[

1

2ε

]K+2

<∞,

for every ε > 0 and for the L1 (P0)-norm ‖·‖ on F , where κ is a constant that depends on K and Γ. This

leads to the bounded entropy number condition for F . Since F (W ) is integrable uniformly over {Pn,δ},

i.e., EPn,δ [F (W )] = EP0 [F (W )] <∞ for any {Pn,δ} by its construction, Theorem 2.8.1 of van der Vaart
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and Wellner (1996) yields the desired uniform law of large numbers,

sup
γ∈Γ

∣∣ln (γ)− EPn,δ [l(Z, γ)]
∣∣ = oPn,δ (1) . (22)

Combined with compactness of Γ, continuity of EPn,δ [l (Z, γ)] in γ (implied by Assumption DGP (ii)),

and the global identification assumption about γn (Assumption REG (ii)), Theorem 2.1 of Newey and

McFadden (1994) leads to ‖γ̂ − γn‖ = oPn,δ(1).20

The estimator for (µ, τATE) in the largest model is

µ̂ =

(
1

n

n∑
i=1

1−Di

1−G(W ′i γ̂)

)−1(
1

n

n∑
i=1

(1−Di)Yi
1−G(W ′i γ̂)

)
, τ̂ATE =

(
1

n

n∑
i=1

Di

G(W ′i γ̂)

)−1(
1

n

n∑
i=1

DiYi
G(W ′i γ̂)

)
−µ̂.

Given‖γ̂ − γn‖ = oPn,δ(1), we apply Lemma A.1 to the sample averages in the numerator and de-

nominator of µ̂ separately. For a converging sequence {εn} such that Pn,δ(‖γ̂ − γn‖ ≤ εn) → 1, let

∆n(Z) = sup‖γ−γn‖≤εn |
1−D

1−G(W ′γ) −
1−D

1−G(W ′γn) | and ā(W ) ≡ supγ∈N
1

1−G(W ′γ) , which is by assumption

REG (iv), integrable EPn,δ(ā(W )) = EP0(ā(W )) <∞. For all large n such that {γ : ‖γ − γn‖ ≤ εn} ⊂ N

is true, EPn,δ(∆n(Z)) = EP0

[
(1−G(W ′γn)) sup‖γ−γn‖≤εn |

1
1−G(W ′γ) −

1
1−G(W ′γn) |

]
implies that the inte-

grand of this expectation is bounded from above by integrable envelope 2ā(W ) and converges to zero

pointwise at almost all W as n → ∞ by the continuity of G(·). The dominated convergence theo-

rem then implies EPn,δ(∆n(Z)) → 0 as n → ∞, which validates Condition (i) of Lemma A.1 with

a(Z, θ) = 1−D
1−G(W ′γ) . Condition (ii) of Lemma A.1 also holds by Assumption REG (iv). Hence, Lemma

A.1 shows
∣∣∣ 1
n

∑n
i=1

1−Di
1−G(W ′i γ̂)

− 1
∣∣∣ = oPn,δ(1). Following a similar argument, Assumption REG ensures

that Conditions (i) and (ii) of Lemma A.1 hold for a(Z, θ) = (1−D)Y
1−G(W ′γ) , where an integrable envelope

can be set at ā(Z) ≡ supγ∈Γ
(1−D)Y

1−G(W ′γ) . We therefore obtain
∣∣∣ 1
n

∑n
i=1

(1−Di)Yi
1−G(W ′i γ̂)

− E(Y0)
∣∣∣ = oPn,δ(1), and

by the continuous mapping theorem, |µ̂− µ0| = oPn,δ(1). A similar argument applied to τ̂ATE leads to∣∣τ̂ATE − τATE0

∣∣ = oPn,δ(1). Hence,
∥∥∥θ̂ATE − θATEn

∥∥∥ = oPn,δ(1).

In order to show (ii), it suffices to verify
∥∥γ̂S − γn∥∥ = oPn,δ(1), since stochastic convergence of the

rest of parameters in θ̂ATE,S and θ̂ATT,S follows by the same argument as in the proof of claim (i) of the

current lemma. Consider

∥∥γ̂S − γn∥∥ ≤ ∥∥γ̂S − γ̃Sn∥∥+
∥∥γ̃Sn − γSn∥∥+

∥∥γSn − γn∥∥ . (23)

20Theorem 2.1 of Newey and McFadden (1994) consider fixed DGP asymptotics. Their proof can be adjusted to the case
with a drifting sequence of DGPs.
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In what follows, we prove each term in the right hand side vanishes asymptotically. By (22), the uniform

law of large numbers of the sample log likelihood holds also over the constrained parameter space ΓS =

{γ ∈ Γ : γSc = 0}. Hence, combined with the compactness of the parameter space of γ, continuity of the

population log-likelihood, and the global identification of γ̃Sn in the constrained parameter space ΓS lead

to
∥∥γ̂S − γ̃Sn∥∥ = oPn,δ(1) by Theorem 2.1 of Newey and McFadden (1994). Assumptions DGP (iii) implies

that the third term in the right hand side of (23) is o (1). We show by contradiction that the second

term in the right hand side of (23) is o (1). Suppose for some ε > 0,
∥∥γ̃Sn − γSn∥∥ > ε holds for all large n.

Since
∥∥γSn − γn∥∥ = o(1) and EPn,δ [l(Z, γ)] is continuous in γ, it holds EPn,δ [l(Z, γ

S
n )] = EPn,δ [l(Z, γn)] +

o(1). Note that both γSn and γ̃Sn belong to ΓS , and hence EPn,δ [l(Z, γ
S
n )] = EPn,δ [l(Z, γn)] + o(1) and∥∥γ̃Sn − γSn∥∥ > ε contradict the global identification assumption of γ̃Sn (Assumption REG (ii)). We hence

conclude
∥∥γ̃Sn − γSn∥∥ = o(1).

To show (iii), consider the derivative matrix of the ATE moment conditions,

∂

∂θ′
mATE

(
Z, θATE

)
=


−g2+(D−G)(g′−g2+2g2G)

[G(1−G)]2
WW ′ 0 0[

−Dg
G2 + (1−D)g

(1−G)2

]
(Y − τATED − µ)W ′ −D

G −D
G −

1−D
1−G

−Dg
G2 (Y − τATED − µ) −D

G −D
G

 ,

where we omit the argument of G(W ′γ), g(W ′γ), and g′(W ′γ) ≡ d
dag(a)

∣∣
a=W ′γ

and notate them by G, g,

and g′, respectively. Having obtained ‖γ̂ − γn‖ = oPn,δ(1), the boundedness of g and g′ (Assumption DGP

(ii)) and Assumption REG (iv) guarantee that every element in this derivative matrix satisfy the two condi-

tions of Lemma A.1. Hence, by Lemma A.1, we conclude that
∥∥ 1
n

∑n
i=1

∂
∂θ′m

ATE
(
Zi, θ̄

ATE
)
− EPn,δ

[
∂
∂θ′m

ATE (Z, θn)
]∥∥ =

oPn,δ (1) holds. The convergence of EPn,δ
[
∂
∂θ′m

ATE (Z, θn)
]

to MATE follows by the continuity of G(·),

g(·), and g′(·), and an application of the dominated convergence theorem.

To show (iv) consider,

mATE
(
Z, θATE

)
mATE

(
Z, θATE

)′

=


(D−G)2g2

G2(1−G)2WW ′
[
Dg
G2 (Y1 − E(Y1))− (1−D)g

(1−G)2 (Y0 − E(Y0))
]
W ′ Dg

G2 (Y1 − E(Y1))W ′

· D
G2 (Y1 − E(Y1))2 + 1−D

(1−G)2 (Y0 − E(Y0))2 D
G2 (Y1 − E(Y1))2

· · D
G2 (Y1 − E(Y1))2

 .

Bounded g(·) and Assumption REG (iv) guarantee conditions (i) and (ii) of Lemma A.1. Hence, similarly

to the proof of (iii), the conclusion is obtained by applying Lemma A.1.
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To show (v), note that Assumption REG (iv) implies the Lindeberg condition for the ATE moment

conditions. Therefore, the Lindeberg-Feller central limit theorem for a triangular array of random vectors

leads to

(
ΣATE
n

)−1/2

(
1√
n

n∑
i=1

mATE
(
Zi, θ

ATE
n

)) Pn N (0, IK+2) ,

where ΣATE
n = EPn,δ

[
mATE

(
Z, θATEn

)
mATE

(
Z, θATEn

)′]
. Since ΣATE

n → ΣATE as n → ∞, the desired

conclusion follows.

Proof of Proposition 2.1. (ATE case) The NPW-ATE estimator in submodel S solves

0 = ΛSmATE
n

(
θ̂ATE,S

)
.

By the mean value expansion around θATEn , we have

0 = ΛSmATE
n

(
θATEn

)
+ ΛS

[
∂

∂θ′
mATE
n

(
θATE∗

)]


γ̂S − γn

µ̂S − µ0

τ̂ATES − τATE0



= ΛSmATE
n

(
θATEn

)
+ ΛS

[
∂

∂θ′
mATE
n

(
θATE∗

)]
Λ′S


γ̂S − γn,S

µ̂S − µ0

τ̂ATES − τATE0

− Λ′Sc


γn,Sc − γ0,Sc

0

0


 ,

where θATE∗ is a convex combination of θ̂ATE,S and θATEn . Here, the second equality is obtained by

plugging in γ̂S = π′S γ̂S + π′Scγ0. By Lemma A.2 (ii),
∥∥θATE∗ − θATEn

∥∥ = oPn,δ (1). Lemma A.2 (iii) then

leads to ∂
∂θ′mn

(
θATE∗

)
−MATE = oPn,δ (1). By Lemma A.2 (v) and Assumption DGP (iii), the asymptotic
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distribution of
√
n


γ̂S − γn,S

µ̂S − µ0

τ̂ATES − τATE0

 is obtained as

√
n


γ̂S − γn,S

µ̂S − µ0

τ̂ATES − τATE0



=−
(
ΛSM

ATEΛ′S
)−1

ΛS
(√
nmATE

n

(
θATEn

))
+
(
ΛSM

ATEΛ′S
)−1

ΛSM
ATEΛ′Sc


δSc

0

0

+ oPn,δ (1)

Pn,δ
 −

(
ΛSM

ATEΛ′S
)−1

ΛS ×N
(
0,ΣATE

)
+
(
ΛSM

ATEΛ′S
)−1

ΛSM
ATEΛ′Sc


δSc

0

0

 (24)

In order to compute the asymptotic variance of
√
n
(
τ̂ATES − τATE0

)
, we focus on the variance of the

bottom element of − (ΛSMΛ′S)−1 ΛSmATE
(
Zi, θ

ATE
0

)
. The expectation of the derivative matrix of the

full moment conditions at P0 is given by

MATE = EP0

(
∂

∂θ′
mATE

(
Zi, θ

ATE
0

))

=


−EP0 (hh′) 0 0

EP0

[(
− g
G

(
µ1 (X)− τATE0 − µ0

)
+ g

1−G (µ0 (X)− µ0)
)
W ′
]
−2 −1

0′ −1 −1

 .

Hence,

ΛSM
ATEΛ′S =


−EP0 (hSh

′
S) 0 0

EP0

[(
− g
G

(
µ1 (X)− τATE0 − µ0

)
+ g

1−G (µ0 (X)− µ0)
)
W ′S

]
−2 −1

0′ −1 −1

 ,

(
ΛSM

ATEΛ′S
)−1

=


−EP0 (hSh

′
S)−1 0 0

−EP0

(
g

1−G (µ0 (X)− µ0)W ′S

)
EP0 (hSh

′
S)−1 −1 1

EP0

((
g
G

(
µ1 (X)− τATE0 − µ0

)
+ g

1−G (µ0 (X)− µ0)
)
W ′S

)
EP0 (hSh

′
S)−1 1 −2

 .
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By noting

EP0

( g
G

(
µ1 (X)− τATE0 − µ0

)
W ′S

)
= EP0

(
D −G
G

(
µ1 (X)− τATE0 − µ0

)
h′S

)
and

EP0

(
g

1−G
(µ0 (X)− µ0)W ′S

)
= EP0

(
D −G
1−G

(µ0 (X)− µ0)h′S

)
,

we can express the bottom element of − (ΛSMΛ′S)−1 ΛSmATE
(
Zi, θ

ATE
0

)
as

− EP0

[(
D −G
G

(
µ1 (X)− τATE0 − µ0

)
+
D −G
1−G

(µ0(X)− µ0)

)
h′S

]
EP0

(
hSh

′
S

)−1
hS,i

−
(
Di

Gi
+

1−Di

1−Gi

)(
Yi − τATE0 Di − µ0

)
+ 2

(
Di

Gi
+

1−Di

1−Gi

)
(Yi − τDi − µ0)Di

=L⊥
{(

D −G
G

(
µ1 (X)− τATE0 − µ0

)
+
D −G
1−G

(µ0(X)− µ0)

)∣∣∣∣hS}+
Di

Gi
(Y1i − µ1 (Xi))

−
(

1−Di

1−Gi

)
(Y0i − µ0(Xi)) +

(
∆µ(Xi)− τATE0

)
.

These five terms are mean zero and mutually uncorrelated. The sum of their variances therefore gives

the asymptotic variance of
√
n
(
τ̂ATES − τATE0

)
.

Regarding the bias term, (24) shows that it is given by the bottom element of the second term in the

right hand side, which is calculated as

− EP0

[(
D −G
G

(
µ1 (X)− τATE0 − µ0

)
+
D −G
1−G

(µ0(X)− µ0)

)
h′S

]
EP0

(
hSh

′
S

)−1
EP0

(
hSh

′
Sc
)
δSc

+ EP0

[(
D −G
G

(
µ1 (X)− τATE0 − µ0

)
+
D −G
1−G

(µ0(X)− µ0)

)
h′Sc

]
δSc

=EP0

[
L⊥
{(

D −G
G

(
µ1 (X)− τATE0 − µ0

)
+
D −G
1−G

(µ0(X)− µ0)

)∣∣∣∣hS}h′Sc] δSc .
(ATT case) The asymptotic distribution of the NPW-ATT estimator follows by replacing MATE and

ΣATE in (24) with MATT and ΣATT . Since

MATT =


−EP0 (hh′) 0 0

EP0

(
g

1−G (µ0 (X)− α0)W ′
)
−2Q −Q

0′ −Q −Q

 ,
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(
ΛSM

ATTΛ′S
)−1

is obtained as

(
ΛSM

ATTΛ′S
)−1

=


−EP0 (hSh

′
S)−1 0 0

− 1
QEP0

(
g

1−G (µ0 (X)− α0)W ′S

)
EP0 (hSh

′
S)−1 −Q−1 Q−1

1
QEP0

(
g

1−G (µ0 (X)− α0)W ′S

)
EP0 (hSh

′
S)−1 Q−1 −2Q−1

 .

By noting identity EP0

(
g

1−G (µ0 (X)− α0)W ′S

)
= EP0

(
D−G
1−G (µ0 (X)− α0)h′S

)
, we can express the bot-

tom element of −
(
ΛSM

ATTΛ′S
)−1

ΛSmATT
(
Zi, θ

ATT
0

)
as

− 1

Q
EP0

(
D −G
1−G

(µ0 (X)− α0)h′S

)
EP0

(
hSh

′
S

)−1
hS,i

− 1

Q

[
Di + (1−Di)

(
Gi

1−Gi

)]
(Yi − τDi − α0)

+
2

Q

[
Di + (1−Di)

(
Gi

1−Gi

)]
(Yi − τDi − α0)Di

=− 1

Q
L

{(
D −G
1−G

)
[µ0 (X)− α0]

∣∣∣∣hS}+
Di

Q
(Yi − µ1 (X))− 1−Di

Q

Gi
1−Gi

(Yi − µ0 (X)) (25)

+

(
D −G
Q

)[
µ1 (X)− α0 +

G

1−G
(µ0 (X)− α0)− τ0

]
+
G

Q
(∆µ(X)− τ0) .

The first term of (25) admits the following decomposition,

− 1

Q
L

{(
D −G
1−G

)
[µ0 (X)− α0]

∣∣∣∣hS}
=

1

Q
L
{

(D −G)(∆µ(X)− τATT0 )|hS
}

− 1

Q
L

{
(D −G)

[
µ1 (X)− α0 +

G

1−G
(µ0 (X)− α0)− τATT0

]∣∣∣∣hS} .
Hence, we can express (25) as

1

Q
L
{

(D −G)(∆µ(X)− τATT0 )|hS
}

+
1

Q
L⊥
{

(D −G)

[
µ1 (X)− α0 +

G

1−G
(µ0 (X)− α0)− τATT0

]∣∣∣∣hS}
+
Di

Q
(Yi − µ1 (X))− 1−Di

Q

Gi
1−Gi

(Yi − µ0 (X)) +
G

Q

(
∆µ(X)− τATT0

)
.

Since these five terms are mean zero and mutually uncorrelated, the sum of their variances gives the

asymptotic variance of
√
n
(
τ̂ATTS − τATTn

)
.
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To compute the bias term, focusing on the bottom element of
(
ΛSM

ATTΛ′S
)−1

ΛSM
ATTΛ′Sc


δSc

0

0


leads to

− 1

Q
EP0

[
D −G
1−G

[µ0 (X)− α0]h′S

]
EP0

(
hSh

′
S

)−1
EP0

(
hSh

′
Sc
)
δSc

+
1

Q
EP0

[
D −G
1−G

[µ0 (X)− α0]h′Sc

]
δSc

=
1

Q
EP0

[{
D −G
1−G

[µ0 (X)− α0]− EP0

[
D −G
1−G

[µ0 (X)− α0]h′S

]
EP0

(
hSh

′
S

)−1
hS

}
h′Sc

]
δSc

=EP0

[
1

Q
L⊥
{(

D −G
1−G

)
[µ0 (X)− α0]

∣∣∣∣hS}h′Sc] δSc .

The next lemma proves the representation of the Bayes asymptotic MSE (14) given in the main text.

Lemma A.3 Suppose Assumptions DGP and REG. Let (B̂, Ω̂) be consistent estimators for (B,Ω) along

{Pn,δ}. For any ĉ ∈ C(B,Ω), the Bayes asymptotic MSE can be represented as (14) in the main text.

Proof. Fix δ
Sc

. Since (B̂, Ω̂)
Pn,δ→ (B,Ω) by the assumption and δ̂Sc

Pn,δ
 ∆Sc , for any ĉ ∈ C(B,Ω),

ĉ = c
(
δ̂Sc , B̂, Ω̂

)
Pn,δ
 c(∆Sc) holds by the continuous mapping theorem. Combined with the weak

convergence of t̂
Pn,δ
 Zτ (see equation (12) in the main text), the asymptotic MSE can be written as

R∞(ĉ, δSc) = lim
ζ→∞

E∆Sc ,Zτ |δSc
[
min

{
(c(∆Sc)

′Zτ )2, ζ
}]

= E∆Sc |δSc

[
c(∆Sc)

′EZτ |∆Sc ,δSc

(
ZτZ

′
τ

)
c(∆Sc)

]
.

The claim follows by noting

EZτ |∆Sc ,δSc

(
ZτZ

′
τ

)
=
[
BδSc + Ω21Ω−1

11

(
∆Sc − δSc

)] [
BδSc + Ω21Ω−1

11

(
∆Sc − δSc

)]′
+
(
Ω22 − Ω21Ω−1

11 Ω12

)
=K

(
∆Sc , δSc

)
.
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Proof of Proposition 3.1. (i) Solving the Bayes optimal ĉ(·) with risk criterion (14) is equivalent to

solving for the posterior Bayes action ĉ(∆Sc) for every possible realization of ∆Sc . Hence, let ∆Sc be

given, and consider minimizing the posterior risk for c
(
∆Sc

)
subject to the normalization constraint,

min
c(∆Sc)

c
(
∆Sc

)′
EδSc |∆Sc

[
K
(
∆Sc , δSc

)]
c
(
∆Sc

)
,

s.t. c
(
∆Sc

)′
1 = 1,

If Kpost

(
∆Sc

)
= EδSc |∆Sc

[
K
(
∆Sc , δSc

)]
is nonsingular, this is a quadratic minimization problem with

a strictly convex objective function. It therefore has a unique solution and the standard Lagrangian

optimization procedure yields c∗
(
∆Sc

)
of the proposition. Note that with proper µ

(
δSc
)
, the minimized

Bayes asymptotic MSE is bounded, because by considering a weight vector that assigns 1 to the largest

model, we have

ˆ
E∆Sc |δSc

[
c∗
(
∆Sc

)′
K
(

∆Sc , δSc
)

c∗
(
∆Sc

)]
dµ
(
δSc
)
5 ω2

largest

ˆ
dµ
(
δSc
)

= ω2
largest <∞,

where ω2
largest is the asymptotic variance of the NPW-ATT estimator in the largest model.

(ii) Let φ(· : δSc , Ω̂11) be the probability density function of the multivariate normal distribution with

mean δSc and covariance matrix Ω̂11. Note that K̂post(δ̂Sc) can be written as

K̂post(δ̂Sc) =

´
δSc

K̂(δ̂Sc , δSc)φ(δ̂Sc : δSc , Ω̂11)dµ(δSc)´
δSc

φ(δ̂Sc : δSc , Ω̂11)dµ(δSc)
.

By (15), K̂(δ̂Sc , δSc) is continuous in δ̂Sc and Ω̂11 in the neighborhood of true Ω11. The Gaussian prob-

ability density function φ(δ̂Sc : δSc , Ω̂11) is also continuous in δ̂Sc and Ω̂11 in the neighborhood of true

Ω11. The dominating convergence theorem then shows that K̂post(δ̂Sc) is continuous in δ̂Sc and Ω̂11 in the

neighborhood of true Ω11. Therefore K̂post(δ̂Sc)
Pn,δ
 Kpost(∆Sc) and c∗(δ̂Sc , B̂, Ω̂)

Pn,δ
 c∗(∆Sc) hold by

the continuous mapping theorem. Hence, c∗
(
δ̂Sc , B̂, Ω̂

)
attains the lower bound of the Bayes asymptotic

MSE, RBayes∞
(
c∗
(
δ̂Sc , B̂, Ω̂

))
= inf ĉ∈C(B,Ω)R

Bayes
∞ (ĉ).

Proof of asymptotic validity of CIATT1−β (δ̂Sc , t̂).

Let δ
Sc

be given. By the construction of CIATT1−β1
(·, ·|δSc) and the weak convergence of (δ̂

Sc
, t̂) shown
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in ((12)), it holds

1− β1 = lim
n→∞

Pn,δ

(
τATTn ∈ CIATT1−β1

(δ̂
Sc
, t̂|δSc)

)
≤ lim

n→∞
Pn,δ

(
τATTn ∈ CIATT1−β1

(δ̂
Sc
, t̂|δSc), δSc ∈ CS1−β2

)
+ lim
n→∞

Pn,δ
(
δSc /∈ CS1−β2

)
≤ lim

n→∞
Pn,δ

(
τATTn ∈ CIATT1−β (δ̂

Sc
, t̂)
)

+ β2

where the third line follows by noting that on the event δSc ∈ CS1−β2 , the union confidence intervals

CIATT1−β (δ̂
Sc
, t̂) contain CIATT1−β1

(δ̂
Sc
, t̂|δSc). Hence, limn→∞ Pn,δ

(
τATTn ∈ CIATT1−β (δ̂

Sc
, t̂)
)
≥ 1 − β1 − β2 =

1− β. The valid coverage does not depend on the value of δ nor a construction of the sequences {Pn,δ},

and thereby the asymptotic coverage is uniformly valid over the class of DGPs satisfying Assumptions

DGP (i) - (ii) and REG.
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Tables

Parameter Description Benchmark value

n Number of observations 100
K Number of regressors 3
β1 Outcome equation coefficient of X1 0.5
β2 Outcome equation coefficient of Xk, k > 1 0.5/(K − 1)
γ Selection equation coefficient 1
σu Conditional st. dev. outcome equation 2

Table 1: Parameters for the simulations in Section 4, and their benchmark values.
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Submodels with X1 All submodels
Estimator Bias SD MSE Bias SD MSE

Small:{X1} −0.162 0.471 0.249 −0.162 0.471 0.249
{X1, X2} −0.065 0.502 0.256 −0.065 0.502 0.256

Full:{X1, X2, X3} −0.016 0.522 0.273 −0.016 0.522 0.273
{X1, X3} −0.064 0.501 0.255 −0.064 0.501 0.255
{X2} N/A N/A N/A −0.244 0.472 0.282
{X2, X3} N/A N/A N/A −0.121 0.502 0.267
{X3} N/A N/A N/A −0.244 0.474 0.284

Best submodel −0.162 0.471 0.249 −0.162 0.471 0.249
BayesLE-averaging −0.075 0.493 0.249 −0.125 0.481 0.247

Selection −0.036 0.524 0.275 −0.055 0.526 0.280

Table 2: Simulation results for the benchmark setup.
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K γ P (p (X) ≥ 0.9|D = 1) P (p (X) ≥ 0.95|D = 1) P (p (X) ≥ 0.99|D = 1)

3 0.5 0.131 0.038 0.001
3 1 0.476 0.332 0.113
3 2 0.732 0.645 0.456
6 0.5 0.388 0.250 0.064
6 1 0.669 0.573 0.375
6 2 0.832 0.800 0.664

Table 3: Probability of exceeding certain propensity score values for the treatment group, for various
values of K and γ.
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Variable Description Always in? Treated CPS-1

age Age (years) Yes 25.82 33.23
education Years of schooling Yes 10.35 12.03
black 1 if black Yes 0.84 0.07
re74 1974 earnings ($) No 2096 14017
re75 1975 earnings ($) Yes 1532 13651
hispanic 1 if hispanic No 0.06 0.07
married 1 if married Yes 0.19 0.71
age2 - Yes
re752 - No

Observations 185 15992

Table 4: Variables and transformation in our application. Column “Always in?” denotes whether we
choose to include these covariates in the propensity score specification for each submodel. The last two
columns report the sample means for the observations with Di = 1 and Di = 0, respectively.
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Full model Small model
Variable SE γ̂ SE

age 0.64 0.64 0.62 0.08
education −0.19 0.03 −0.21 0.03
black 3.99 0.26 3.65 0.21
hispanic 1.59 0.41
married −1.40 0.24 −1.39 0.23
re74 −0.07 0.03
re75 −0.29 0.06 −0.27 0.03
age2/100 −1.06 0.14 −1.04 0.14
re752 1.52 0.87

n 14559 14559

Table 5: Estimates and standard errors for the propensity score parameters in the full and small model.
For the ease of comparison on the importance of each regressor, each coefficient estimate is multiplied by
the standard deviation of the regressor.
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Method Estimate SE 90%-CI

Experimental 1672 637 [627, 2717]
Full model 1358 753 [123, 2593]
Bayes 1468 - [110, 2873]

Table 6: Estimates and confidence intervals for three procedures.
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