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Abstract 

Resolution of inflammation has emerged as an active process in immunobiology with cells of 

the mononuclear phagocyte system being critical in mediating efferocytosis, wound 

debridement and bridging the gap between innate and adaptive immunity. A number of 

different lipid species have been shown to contribute to various aspects of inflammatory 

resolution. Here we investigated the roles of the CYP450 derived epoxy-oxylipins in a well-

characterised model of sterile resolving peritonitis in the mouse. Epoxy-oxylipins were 

produced in a biphasic manner during the peaks of both acute (4h) and resolution phases 

(24-48h of the response). The epoxygenase inhibitor SKF525A (epoxI) given at 24h 

selectively inhibited arachidonic acid and linoleic acid derived CYP450-epoxy-oxlipins and 

resulted in a dramatic 3-fold influx in monocytes. The epoxI recruited monocytes were 

strongly GR-1+, Ly6chi, CCR2hi, CCL2hi, and CX3CR1lo. In addition, expression of F4/80 and the 

recruitment of CD3+ T-cells, CD19+ B-cells and MHCII+ CD11c+ dendritic cells were 

suppressed. sEH (Ephx2)-/- mice which have elevated epoxy-oxylipins, demonstrated 

opposite effects to EpoxI treated mice: reduced Ly6chi monocytes, and elevated F4/80hi 

macrophages and B-, T- and dendritic cells. EpoxI recruited cells had greatly elevated CCL2 

levels, which could be inhibited ex vivo by 11,12-EET or 14,15-EET. Moreover, Ly6chi, Ly6clo 

monocytes, resident macrophages and recruited dendritic cells all showed a dramatic 

change in their resolution signature following in vivo epoxI treatment. In particular, markers 

of macrophage differentiation F4/80, CD11b, MerTK, and CD103 were reduced, and both 

monocyte-derived macrophages and resident macrophages showed greatly impaired 

phagocytosis of zymosan and efferocytosis of apoptotic thymocytes following epoxI 

treatment. These findings demonstrate that epoxy-oxylipins have a critical role in monocyte 
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linage recruitment and activity to promote inflammatory resolution and represent a novel 

internal regulatory system governing the establishment of adaptive immunity. 

 

 

Significance statement:  

A number of lipid mediators are known to contribute to inflammatory resolution. Fatty acid 

metabolites of CYP450 enzymes are found in abundance, however their roles in 

inflammatory resolution are not known. Targeted lipidomics revealed CYP450-epoxy-

oxylipins were present during acute inflammation and inflammatory resolution. Using mice 

lacking soluble epoxide hydrolase, the major metabolizing pathway for CYP450-derived fatty 

acid mediators, and CYP450 epoxygenase inhibition specifically during resolution, we show 

CYP450-dervied lipids dramatically limit the accumulation of inflammatory monocytes 

during resolution. Moreover all cells of the monocyte lineage examined showed a dramatic 

alteration in their pro-resolution phenotype following epoxygenase inhibition.  These 

findings demonstrate that the CYP450-epoxy-oxylipins pathway has a critical role in 

monocyte linage recruitment and resolution activity during inflammatory resolution. 



 4 

\body 

Introduction 

Monocytes and monocyte-derived macrophages play a critical role in chronic inflammation 

in part via the production and release of lipid mediators (1). One such lipid precursor, 

arachidonic acid, is metabolised into families of biologically active mediators by 

cyclooxygenase, lipoxygenase and CYP450 (CYP) pathways (2, 3). CYPs metabolise 

arachidonic acid by: i) an epoxygenase activity that catalyzes the conversion of arachidonic 

acid to epoxyeicosatrienoic acids (EETs); ii) a lipoxygenase-like activity that metabolizes 

arachidonic acid to mid-chain hydroxyeicosatetraenoic acids (HETEs); and iii) - and -1-

hydroxylase activity, which produces ω-terminal HETEs (3). In addition to arachidonic acid, 

CYPs with epoxygenase activity can also metabolise alternative polyunsaturated fatty acids 

such as linoleic acid and docosahexaenoic acid in to a series of products including 

epoxyoctadacamonoenoic acids (EpOME)s and 19,20-epoxydocosapentaenoic acid (EpDPE) 

respectively, whose functions remain poorly understood (3-5).   

 The main polyunsaturated fatty acid-metabolising CYPs belong to the CYP2 family, in 

particular, the CYP2J and CYP2C subfamilies (3, 4, 6, 7). Moreover, these CYP-lipid 

metabolizing enzymes are the primary sources of eicosanoids in small blood vessels, the 

kidney, liver, lung, intestines, heart, and pancreas (3, 7). In most organs, EETs and related 

epoxygenase products are metabolically unstable and are rapidly metabolised. The major 

pathway that regulates EET metabolism is that catalysed by epoxide hydrolases (8) which 

convert EETs to less biologically active dihydroxyeicosatrienoic acids (DHET)s (9). EpOMEs 

similarly get converted in to dihydroxyoctadecenoic acids (DiHOME)s while 19,20-EpDPE 

gets converted in to 19,20-dihydroxydocosapentaenoic acid (DiHDPA). Elevating the levels 

of endogenous CYP products by disrupting (knockout) or inhibiting soluble epoxide 
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hydrolase (sEH), reduces neointima formation (10), atherosclerosis, abdominal aortic 

aneurysm, dyslipidaemia (11), hypertension (12) and diabetes (13) in different mouse 

models; all of which to some extent one could argue have a degree of non-resolving 

inflammation. 

 Over the last 15 years there has been a vast increase in our knowledge of fatty acid 

mediators that regulate inflammatory processes, particularly newly identified mediators 

such as the resolvins that mediate the resolution of inflammation (14-16). However, unlike 

cyclooxygenase and lipoxygenase products, the roles of CYP450 pathways in chronic 

inflammation remains unclear. The arachidonic acid products of the CYP epoxygenases, the 

EETs, can regulate vascular tone, smooth muscle cell mitogenesis, platelet aggregation, 

steroidogenesis and endothelial and vascular smooth muscle cell activation (4, 5, 7, 17-19). 

We recently published that in human monocytes and macrophages, epoxygenases and some 

of their arachidonic acid products were anti-inflammatory through their ability to activate 

the peroxisome-proliferator activated receptor (PPAR), in particular PPAR (20, 21). 

Overexpression of epoxygenase enzymes CYP2J2 and CYP2C8, or genetic disruption of sEH  

(sEH-/-) inhibit LPS induced pulmonary inflammation (22)(23), and sEH-/- mice or treatment 

with sEH inhibitors are highly effective against inflammatory and neuropathic pain (24-27).  

 Monocytes are heterogeneous in mice and in man.(28) In mice, monocyte subsets 

can be divided based on the expression of Ly6c, Gr1, CC-chemokine receptor 2 (CCR2), and 

CX3C-chemokine receptor 1 (CX3CR1). Ly6chi monocytes are Gr1+, CCR2+, and CX3CR1lo, 

whereas Ly6clo monocytes are Gr1-, CCR2-, and CX3CR1hi (29, 30). Lipid mediators that 

regulate the recruitment and phenotype of monocytes are poorly understood. 

Herein, using a sterile model of inflammatory resolution dependent on monocyte 

recruitment, we found CYP-epoxygenase products not only accumulate in a temporal 
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manner with monocyte recruitment, but also limit pro-inflammatory monocyte recruitment 

and promote a pro-resolution phenotype in cells of the monocyte linage. 

Results 

CYP450 derived lipid metabolites form part of the coordinated eicosanoid fatty acid 

metabolite response in acute inflammation and resolution. The naive mouse peritoneal 

cavity contained high levels of linoleic acid (9- and 13-HODE), and arachidonic acid (8-, 12- 

and 15-HETE) derived lipoxygenase products as well as 9,10-, and 12,13-DiHOME, which are 

epoxide diols of the linoleic acid epoxygenase products 9,10-EpOME and 12,13-EpOME 

(Figure 1). The COX, CYP450, 5-LO, and EPA/DHA derived mediators, including prostanoids, 

leukotrienes, EETs, and their metabolites were found at much lower levels (Figure 1). The 

LC/MS/MS assay we use was primarily designed to measure CYP450 and related products. 

We don’t currently measure some of the other newly characterized lipid species known to 

regulate inflammatory resolution such as the resolvins, but clearly enzymatic pathways and 

lipid precursors for these pathways are all also present. During the acute inflammatory 

response elicited by zymosan (4h) there was the expected burst of prostanoids, increases in 

5-, 11-, 19- and 20-HETE, and also increases in the CYP450 epoxygenase derived oxylipins 

5,6-, 8,9-, 11,12-, 14,15-DHET and 17,18-DHEQ (Figure 1C, and 1D; supplemental Figure 1). 

The DHETs are the epoxide hydrolase diols of the P450 metabolites and could readily be 

detected, whereas parental EETs were not seen. The 15/12-lipoxygenase products initially 

found at high levels in the naive cavity dropped dramatically during acute inflammation (9- 

and 13-HODE and 8-, 12- and 15-HETE) with only 9-HODE and 8-HETE returning to baseline 

levels over the 48h time course (Figure 1C & E; supplemental Figure 1). After acute 

inflammation, which is driven primarily by PMNs, resolution begins and is associated with an 

accumulation of pro-resolution monocytes peaking 24-48h after the initial inflammatory 
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insult. After a drop at 24h, this influx in monocytes was associated with a second phase of 

epoxy-oxylipin production of arachidonic acid (DHETs), linoleic acid (DiHOMEs), EPA (17,18-

DHEQ) and DHA (19,20-DiHDPA) epoxygenase products (Figure 2A and 2B). Moreover, this 

phase was associated with biosynthesis of new lipid products, as the addition of a selective 

epoxygenase inhibitor (epoxI; SKF525A; 30mg/kg i.p.) to the zymosan treated mice from 24h 

onwards led to a selective and specific inhibition of arachidonic acid and linoleic acid epoxy-

oxylipins (Figure 2C). The epoxI had no significant effect on COX, LO or CYP450-lipoxygenase 

like products (supplemental table 2), indicating the epoxI used is highly selective for the 

CYP-epoxygenase pathway. 

 We screened the mouse Cyp2 family to investigate which enzymes were present in 

the resolution phase inflammatory cell populations, and found Cyp2c44, Cyp2j5, Cyp2j6, 

Cyp2j9, Cyp2j13 epoxygenases along with Cyp2u1 (HETE and DHA metabolism) and Cyp2s1 

(xenobiotic and retinoic acid metabolism) (Table 1; supplemental figure 2). 

 

Epoxygenase inhibition during resolution induces a profound accumulation of Ly6chi 

monocytes. Epoxygenase inhibition was accompanied by a 3-fold increase in monocyte 

numbers during the 24-48h period of inhibition, and a small but significant increase in PMNs 

(Figure 3A). These epoxI-recruited monocytes were strongly GR1+ (ly6c and Ly6g antigens, 

Figure 3B), and Ly6chi expression was confirmed by RT-PCR (Figure 3C). Moreover, these 

recruited cells were CCR2hi (Figure 3D), CX3CR1lo (Figure 3E), and CCL2hi (Figure 3F) at the 

mRNA level. CCL2 peptide was found to be highly elevated in the peritoneal cavity of the 

epoxI treated mice (vehicle 8+/-8 pg/ml; epoxI 266+/- 190 pg/ml CCL2; n=3. Substantial 

levels of CCL2 were produced exclusively from cells elicited from epoxI treated mice ex vivo 

(Figure 3G), suggesting they could be a major source of this elevated CCL2.  EETs are too 
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short lived to be given as a bolus dose in vivo, therefore to test whether EETs were anti-

inflammatory in mouse monocytes, we added-back authentic 14,15-EET (1M; 7h) to 

zymosan elicited cells ex vivo. 14,15-EET reduced Ccl2 (Figure 3H), iNOS (Figure 3I), and IL-12 

(Figure 3J) mRNA expression in these cells ex vivo. Addition of 14,15-EET was not universally 

anti-inflammatory in these elicited cells as TNF mRNA expression remained unaltered 

(Figure 3H).  These results are consistent with our previous findings, which reported an anti-

inflammatory role of epoxygenases in classically activated human monocytes and 

macrophages in vitro (21). 

 

Soluble epoxide hydrolase (sEH)-/- mice have an opposing phenotype to epoxygenase 

inhibited mice during resolution. To confirm the role of epoxy-oxylipins during resolution 

we compared the findings of epoxI treated mice with sEH-/- mice.  sEH is considered the 

main pathway for epoxy-oxylipin metabolism and inactivation. Compared to the epoxI 

treated mice, which have reduced epoxy-oxylipins, sEH-/- mice have elevated oxylipins (31). 

In zymosan treated mice, Ly6chi monocytes peaked at 48h with epoxI treatment 

(supplemental figure 3), whereas at 48h in sEH-/- mice, Ly6chi monocytes were reduced 

compared to wild type controls (Figure 4A). There was a small increase in Ly6g+ cells at 48h 

with epoxI, whereas in sEH-/- mice, Ly6g+ monocytes were slightly reduced compared to wild 

type controls (Figure 4B). With epoxI treatment, although there was no change in numbers 

of macrophages (F4/80) positive cells (5.4±0.5 compared to 5.9±2.2 cells /ml x106), there 

was a reduction in the levels of F4/80 expression on the epoxI-elicited macrophages (Figure 

4C). In corollary, the opposite was found in sEH-/- mice: CD11b++ F480++ cells were greatly 

elevated compared to wild type controls (Figure 4C). CD19+ B-cells (Figure 4D), and CD3+ T-

cells (Figure 4E) were reduced by epoxI, and elevated in sEH-/- mice. There was also a similar 
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trend to reduction of MHCII+ CD11c+ dendritic cells by epoxI, with a significantly elevation of 

these MHCII+ CD11c+ dendritic cells in sEH-/- mice. Therefore, in all the major indices of 

inflammatory cell accumulation tested, epoxy-oxylipin inhibition with epoxI showed 

opposing actions to epoxy-oxylipin elevation with the use of global sEH-/-.  

 

Cells of the monocyte lineage have a disrupted resolution phenotype following 

epoxygenase inhibition. Using a recently identified novel panel of qRT-PCR of rM markers 

(32) we examined the total inflammatory cell population for a changes in the resolution 

phenotype. The total epoxI elicited cell population were: Timd4lo, Tgfb2lo and Plxdc2lo and 

IL1f9hi, CD86hi and Ms4a7hi compared cells from vehicle / zymosan alone treated animals 

(supplemental Figure 3). At indicated time points there was also a significant difference in 

Ccnb2 (increased with epoxI), and Aspa and Stfa2l1 (decreased with epoxI; Supplemental 

Figure 2). Since epoxy-oxylipins appear to have the most dramatic effect on monocyte 

lineage cell recruitment, we examined these targets in FACs sorted Ly6chi and Ly6clo 

monocytes populations, resident macrophages and recruited dendritic cells (DCs) (Figure 5).  

Normal resolution Ly6chi monocytes were Plxcd2hi, Aspahi, and F5hi; Ly6clo monocytes were 

Ccnb2hi, Timd4hi, Stfa2l1hi; resident macrophages IL1F9hi, and dendritic cells Ccr2hi and 

IL1F9hi (Figure 5). Treatment with epoxI caused a significant down-regulation of Plxcd2 in 

Ly6chi monocytes and DCs, Ccna2 in Ly6chi and Ly6clo monocytes, resident macrophages  and 

DCs , Ccnb2 in Ly6clo monocytes, and DCs, Aspa in Ly6chi and Ly6clo monocytes, F5 in Ly6chi, 

resident macrophages and DCs, Tgfb2 in Ly6chi and Ly6clo monocytes, resident macrophages  

and DCs, and Timd4 in Ly6clo monocytes, resident macrophages  and DCs (Figure 5A); an 

upregulation of Ccr2 in Ly6clo monocytes, resident macrophages  and DCs, Ccl2 in Ly6chi 

monocytes, resident macrophages and DCs, Ms4A7 in Ly6chi monocytes, resident 
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macrophages  and DCs, CD86 in Ly6clo monocytes, and DCs, and IL1F9 in Ly6chi and Ly6clo 

monocytes (Figure 5B), whereas Stfa2l1 was upregulated in Ly6chi and resident 

macrophages but inhibited in Ly6clo monocytes. These findings collectively point towards a 

more inflammatory phenotype accompanying epoxygenase inhibition, with a clear induction 

in either or both Ccl2 and Ccr2 in all the cell types, and a decrease in resolution monocyte 

markers of apoptosis and repair (Timd4 and Tgfb2 respectively). 

 

Epoxygenase inhibition disrupts resolution phase macrophage differentiation and leads to 

impaired phagocytosis and efferocytosis. To examine functional changes in the monocyte 

lineage we examined Ly6c+ monocytes, resident macrophages and monocyte-derived 

macrophage populations. As previously shown Ly6C+ monocytes were elevated, monocyte 

derived macrophages were reduced and resident macrophage levels remained unchanged 

(Figure 6A-C). Resident macrophages on a cell per cell level showed reduced expression of 

differentiation markers and phagocytosis receptors: F4/80, CD11b, MerTk, Timd4 and 

CD103, but an increase in CD64 (Figure 6C). A similar reduction in F4/80, MerTK, Timd4 and 

CD103 was also observed in monocyte-derived macrophages (Figure 6C). In contrast, Ly6c+ 

monocytes demonstrated a small but significant increases in markers of differentiation: 

CD11b, Timd4 and CD64, which was again accompanied by a decrease in CD103 (Figure 6C).  

 Using the ImageStream system we were easily able to identify phagocytosis from 

particles and bodies sticking to cells (Figure 7A). Ly6c+ monocytes had a small but significant 

decrease in ability to phagocytose zymosan, but not apoptotic cells (Figure 7B). In contrast, 

resident macrophages and monocyte-derived macrophages (Figure 7B) both showed greatly 

reduced ability to phagocytose FITC-labelled zymosan A and efferocytose apoptotic cells ex 

vivo.  
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Discussion 

Our findings show epoxy-oxylipin generating pathways constitute an important control 

point limiting the accumulation of pro-inflammatory Ly6chi monocytes and the pro-

inflammatory and clearance activity of cells of the monocyte lineage during inflammatory 

resolution. Similar to cyclooxygenases and lipoxygenases, the epoxygenase pathways of 

arachidonic acid metabolism are activated during both acute inflammation and resolution. 

There has been a great recent interest in the therapeutic potential of sEH inhibitors as novel 

anti-inflammatories. sEH inhibitors or genetic disruption of sEH in mice reduce inflammation 

in models of endotoxin induced pulmonary inflammation (33), ischemia-reperfusion injury 

(34, 35), subarachnoid hemorrhage (36), the murine ovalbumin model of asthma (37) and in 

more chronic models including atherogenic diet induced fatty liver disease and adipose 

tissue (38) and atherosclerosis (39, 40). In contrast, the expression and roles of epoxy-

oxylipins during inflammatory resolution have not been investigated. 

 Human monocytes in vitro express CYP2J and CYP2C enzymes, and in particular 

CYP2J2 can be induced by TLR4 /LPS activation (21). Rodents have expanded CYP2J and 

CYP2C subfamilies compared to man, and we found the recently identified epoxygenase 

CYP2C44 (41) along with CYP2J6 and CYP2J9 to be present in all inflammatory exudates 

tested, though these findings do not rule out contributions from other local stromal or 

vascular cells. To test the role of epoxygenases we used the epoxI SKF525A, which we 

routinely use in our in vitro assays (18-20, 42, 43) and we found to have an IC50 for human 

CYP2J2 of 1M (20). SKF525A is routinely used in vivo within the range of 5-50mg/kg (44-

47), and although reported as a selective epoxygenase inhibitor, SKF525A had not been 

examined in the in vivo setting followed by a lipidomic analysis to confirm this. We choose 

SKF525A as our epoxI as it is soluble in aqueous solutions (in our case PBS), so could be 
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tolerated far better over longer periods with limited vehicle effect. In our experiments only 

epoxygenase products and not prostanoids or lipoxygenase products were inhibited (by 

approximately 50%) with 30mg/kg of the epoxI (supplemental table 2). The epoxI was given 

at 24h to look at resolution specifically, so the true levels of inhibition may be higher as the 

kinetics of preformed metabolite removal in the cavity over the 24-48h time period is not 

known.  

The combination of these experiments using epoxI, and sEH-/- mice leads to the 

conclusion that epoxy-oxylipins are produced during resolution by the resident and 

incoming inflammatory cells and act in a paracrine/autocrine manner to limit Ly6chi 

monocyte accumulation and monocyte macrophage pro-inflammatory phenotype. 

Following epoxI treatment at the onset of resolution, the elicited cells were predominantly 

GR1+, Ly6chi, CX3CR1lo, and produced large amounts of the major Ly6chi chemokine CCL2. 

CCL2 was undetectable from zymosan alone elicited cells. Interestingly, while limiting Ly6chi 

monocyte recruitment epoxy-oxylipins promoted the differentiation of monocytes in to 

F4/80++ macrophages. In vitro we previously found, epoxygenases and 11,12-EET promote 

macrophages bacterial phagocytosis which was associated with a reduction in CD11b (42). 

Similarly, here resident and monocyte derived macrophages had reduced CD11b, along with 

markers of the mature macrophage phenotype and phagocytosis MerTK and Timd4; the 

latter being particularly important for efferocytosis (48). These markers correlated with the 

both resident and monocyte-derived macrophages from epoxI treated mice to have a 

dramatic reduction in the ability to phagocytose fresh zymosan and efferocytose apoptotic 

cells. LyC6+ monocytes had small but significantly elevated CD11b, and CD64 expression but 

reduced CD103. There was however little change in the ability of monocytes to phagocytose 

material apart from a small reduction in the ability to phagocytose zymosan ex vivo. These 
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findings suggest epoxy-oxylipins not only limit the recruitment of pro-inflammatory 

monocytes, but also limit resident and monocyte-derived macrophages ability to clear 

inflammatory stimuli and apoptotic cells further indicating a prominent role for 

epoxygenase pathways in promoting the resolution phenotype. Interestingly, CD19+ B-cells 

and CD3+ T-cells were also increased in sEH-/- mice (and reduced with epoxI treatment). 

Lymphocytes are dispensable for resolution in this model (49), but form an important part 

of a defense mechanism against reinfection (49). Although we have yet to investigate fully 

which lymphocyte subtypes are present, these findings nonetheless also provide the first 

evidence for a role for epoxy-oxylipins in acquired immune responses along with the roles in 

resolution reported here.  

These findings all point to a pro-resolution role for epoxy-oxylipins on the pro-

inflammatory monocyte lineage. CCL2 is known to be a central mediator of monocyte 

recruitment. EpoxI treated animals produced large amounts of CCL2, as did the 

inflammatory cell population taken ex vivo. When we examined individual cell types CCL2 

was induced by epoxI in Ly6Chi monocytes, resident macrophages and DCs, whereas its 

receptor CCR2 (already expressed in Ly6Chi monocytes) was also induced in Ly6clo 

monocytes, resident macrophages and DCs. Using gene array analysis we have previously 

identified a panel of novel resolution monocyte markers (32) including the T-cell co-

stimulator CD86, the IL-1 family gene-9 (IL-1f9; IL-36), and the CD20-like family member 

Ms4a7; these were all elevated after epoxI treatment, while the phosphatidylserine 

apoptotic cell receptor Timd4, Tgfb2 and Plxdc2 were all decreased. The roles of a number 

of these novels markers are still not known in resolution, but clearly epoxI mediated 

changes in expression along with changes to functional clear antigens and apoptotic cells 
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represent cells of a phenotype of highly dysregulated resolution compared to the typical 

resolution monocyte cell population.  

 Recently, the major rat monocyte epoxygenase Cyp2j4 was knocked out using a zinc 

finger nuclease-mediated gene targeting approach (50). The resultant bone marrow derived 

macrophages showed a highly profibrotic enriched transcriptome and activity, and an 

induction of PPAR (50). Although not an identical phenotype to those observed in our 

study, this adds to the literature showing lipid metabolizing CYPs have a critical role to play 

in the inflammatory phenotype of cells in the monocyte lineage. 

 EETs are too unstable to give as a bolus dose in vivo. Therefore, we tested the direct 

anti-inflammatory effects of monocyte epoxygenases ex vivo. 14,15-EET, the most abundant 

epoxygenase derived EET produced in the peritoneal cavity inhibited inflammatory cell 

activation iNOS and IL-12 ex vivo, from zymosan treated mice. Interestingly, the linoleic acid 

epoxygenase products 9,10-EpOME and 12,13-EpOME are highly expressed in the naive 

cavity, and with the exception of 9,10-EpOME, which drops rapidly during acute 

inflammation, change very little. Our results indicate therefore a potential change in 

substrate utilization by epoxygenases from linoleic acid in homeostasis to arachidonic acid 

during inflammation. Linoleic acid epoxygenase products are generally considered pro-

inflammatory and cytotoxic (51-53), while the EETs are anti-inflammatory. How this concept 

fits with the high levels of EpOMEs and DiHOMEs in the naive peritoneal cavity is intriguing 

and points to novel as yet undiscovered homeostatic roles for these mediators in the 

peritoneal cavity. In contrast, to the EETs, which inhibited Ccl2 in monocytes ex vivo, 9,10-

EpOME induced Ccl2 (supplemental figure 4), suggesting substrate utilization may be an 

additional layer of control over the effects of the epoxygenase pathway. High EpOME levels 

have been found in acute respiratory distress syndrome and in patients with extensive burns 
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(54), however, the roles of EpOMEs in inflammation and homeostasis remain relatively 

poorly understood, though it is becoming clearer that many of the cytotoxic effects 

attributed to them are in fact due to their sEH metabolite DiHOMEs (53, 55-57). Clearly 

more work is needed to elucidate the function of these linoleic acid epoxygenase products 

in homeostasis as well as pathophysiology. At this stage we cannot rule out potential effects 

of DHA and EPA CYP metabolites, but since we saw no significant change in their production 

with epoxI we have here focused on arachidonic acid and linoleic acid epoxy-oxylipins.  

 The levels of 12/15-lipoxygenase 9,10- and 12,13-HODE and 12-, and 15-HETE were 

high in the peritoneal cavity and consistent with the report that high levels of resident 

macrophages contain 12/15-lipoxygenase in mice where it regulates immune function. Our 

findings are also consistent with this report in that 12/15-lipoxygenase products drop during 

acute inflammation (in our experiments only 9-HODE returned back to basal levels by 48h), 

and support the findings that 12/15-lipoxygenase has an important homeostatic 

immunoregulatory role in this model (58). 

 In conclusion, we have characterized the epoxygenase pathways during a model of 

inflammatory resolution. Inhibition of epoxygenases during this resolution phase 

established a pro-inflammatory environment that allows the recruitment of pro-

inflammatory Ly6c monocytes and macrophages with a highly dysregulated resolution/ 

clearance phenotype, while mice where epoxygenase products are elevated have an 

enhanced resolution phenotype. An efficient and active epoxygenase pathway therefore 

joins similar pro-resolution lipid pathways such as the resolvins in the requirement for 

effective inflammatory resolution. Drugs that elevate epoxygenase products, or 

epoxygenase product mimetics therefore represent novel resolution targets for chronic 

inflammatory disorders.  
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Materials and Methods 

Materials: EETs were purchased from Cayman Chemical Company (Cambridge Bioscience, 

Cambridge, UK). SKF525A was purchased from Biomol (Affiniti Research Products, Exeter, 

UK. Cytokines and the MCP-1 ELISA were obtained from R&D Systems (Abingdon, 

Oxfordshire, UK). The TNF ELISA was from eBioscience. (Hatfield, Herts, UK). Unless stated, 

all other reagents were purchased from Sigma-Aldrich (Poole, Dorset, UK).  

 

Animal Models. All experiments were completed in adult male mice on a pure C57BL/6 

background. Control C57BL6/J mice were bred under standard conditions and maintained in 

a 12 h light/dark cycle at 22°C and given food and tap water ad libitum in accordance with 

United Kingdom Home Office regulations. Mice with targeted disruption of sEH were re-

derived and backcrossed onto a C57BL/6 genetic background for more than 10 generations, 

as previously described (31, 59, 60). The sEH-/- mice have significantly higher circulating 

epoxide:diol ratios compared to wild-type littermates consistent with functional sEH 

disruption (59, 61). Peritonitis was induced by i.p. injection of 1mg type A zymosan in 0.5ml 

PBS after 15 sec of sonication on ice. Inflammatory cells were retrieved at the time points 

described in the Results section by injecting 2ml sterile PBS. Cells were counted by 

hemocytometer, and exudates were stored at −80°C until further analysis. In some 

experiments the epoxI SKF525A (30 mg/kg) or sterile PBS (0.5ml vehicle), was given i.p. 24h 

after zymosan injection, and at 12h time points thereafter up until 96h. These studies 

received institutional review board approval for the use of mice from the United Kingdom 

Home Office. 
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Lipid analysis. Eicosanoids and other fatty acid metabolites were extracted from 

inflammatory exudates by solid-phase extraction and eluted in ethyl acetate, essentially as 

described (22); extended details in supplemental methods. Lipids were separated by 

reverse-phase HPLC on a 2- 150-mm, 5-m Luna C18 column (Phenomenex, Torrance, CA, 

USA) and quantified using a MDS Sciex API 3000 triple quadrupole mass spectrometer 

(Applied Biosystems) with negative mode electrospray ionization and multiple reaction 

monitoring, as described (12). The relative response ratios of each analyte were used to 

calculate concentrations, while correcting for surrogate losses via quantification relative to 

internal standards. The sensitivity of analytes ranges from 0.25-25pg. 

 

FACS analysis and cell sorting. Flow cytometry and cell sorting was done on LSR-II/LSR-

Fortessa and FACSAria (BD Biosciences), respectively. Cells were incubated with Fc-Blocker 

(AbD Serotec) and fluorescent-labeled antibodies. Data were analyzed with FlowJo 7.0.1 

software (Tree Star) using fluorescence minus one controls as the reference for setting 

gates. Antibodies were obtained from BD Biosciences (F4/80, CD11b, CD11c, Ly6c, Ly6g, Gr1, 

CD3, CD19, CD4, CD8, CD62l, CD44, MerTK, CD64, CD103, Timd4 and major 

histocompatibility complex (MHC)-II)(62). To identify resident macrophages (62) PKH26-

PCLred (2 mL of 500 nM; Sigma) was injected i.p. 3h before injection of zymosan. In cell sort 

experiments, monocytes and macrophages were sorted from a population of CD19- and 

CD3- cells as either Ly6c+F4/80+ and Ly6c−F4/80+. For identification of Ly6g+ neutrophils and 

Ly6c+ monocytes a combination of Gr-1 and anti-Ly6c or anti-Ly6g was also used. Resident 

macrophages were characterized as PKHred++, DCs were characterized by PKHred- MHC-II+, 

Ly6chi monocytes as LyC6hi PKHred+ MHC-II-, and Ly6clo as Ly6clo PKHred- as previously 

described (62). 
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Cell culture ex vivo. The peritoneal lavage was treated with ACK lysis buffer to remove 

erythrocytes. After being washed, peritoneal cells were suspended in DMEM supplemented 

with 10% FBS and 50 μg/ml penicillin/streptomycin. The cells (2x106) were seeded in wells 

of a 12-well plate and left to adhere for 45 min in a humidified CO2 incubator. Non-adherent 

cells were removed by three washes using DMEM. Remaining adherent cells (approximately 

1x106 cells) were incubated in 0.5ml DMEM in the presence or absence of 1M 14,15-EET or 

11,12-EET or vehicle (0.3% EtOH). After 6h, cell-free supernatants were removed and cells 

lysed using Trizol for subsequent RNA extraction.  

 

RT-PCR. Cells analyzed by qRT-PCR were lysed and RNA isolated using TrizolTM (Invitrogen). 

The panel of resolution markers: Timd4 (T-cell immunoglobulin and mucin domain 

containing 4), Tgfb2, Plxdc2 (Plexin domain-containing protein 2), IL1f9 (Interleukin-1 family 

member 9), CD86, Ms4a7 (membrane-spanning 4-domains, subfamily A, member 7), Ccna2 

(cyclin A2), Ccnb2 (cyclin B2), F5 (coagulation factor V), Aspa (aspartoacylase), and Stfa2l1 

(stefin A2 like 1) were measured by qRT-PCR as previously described (32). Resolution 

monocytes (r)M were previously found to be enriched for cell cycle/proliferation genes as 

well as Timd4, and Tgfb2, key systems in the termination of leukocyte trafficking and 

clearance of inflammatory cells. Ly6c, CX3CR1, Ccl2, Ccr2, Cyp2j5, Cyp2j6, Cyp2j9, Cyp2j13, 

Cyp2c29, Cyp2c38, Cyp2c39, Cyp2c44, Cyp2c50, Cyp2c54, Cyp2c55, Cyp2a1, Cyp2u1, Cyp2s1 

and -actin were measured by RT-PCR. Primers are detailed in supplemental table 1. 

 

Efferocytosis and Phagocytosis assays. Apoptotic cells (thymocytes) were produced from 

the thymuses of 3 naïve control c57/bl mice killed 24h pre-sort. Harvested thymuses were 

passed through a 70  mesh and then lysed with ACK buffer for 3 min. Cells were washed 2x 
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with RPMI 1640 with 100 U/ml pen-strep. To induce apoptosis, thymocytes were 

resuspended in media at 2 x 106 cells/ml and exposed to UV radiation (~300 nm) for 20 min 

followed by incubation for 16-24 h at 37oC with 5% CO2. Cells were then washed with PBS 

and labelled with 2uM CFSE according to manufacturer’s protocol (Life technologies 

CellTrace CFSE). 

 Sorted cell populations, 2x105 cells/well were plated in 24 well plates and 

resuspended in X-Vivo 15 media (Lonza) containing 10% FBS, 2mM EDTA, and 1x pen-step. 

Cells were then challenged with apoptotic thymocytes (5: 1 monocyte / macrophage) or 

FITC labelled zymosan A BioParticles (10 particles: 1 monocyte / macrophage) for 30min at 

37oC; 5% CO2.  Phagocytosis was stopped by placing the plates on ice. Cells were detached 

using 10 mM EDTA containing 4 mg/ml lignocaine for 20 min. Cells were stained for either 

F4/80 or Ly6C (APC) for 20 min (see FACs sections above), before being washed 2x with PBS 

containing 2 mM EDTA. Cells were then fixed using 4% PFA in PBS and analysed on 

ImageStreamX Mk2 (MerckMillipore).  
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Figure Legends 

Figure 1. LC/MS/MS analysis of oxylipin generating pathways in the mouse peritoneal 

cavity during acute inflammation and resolution initiated by zymosan A. A) Absolute levels 

of oxylipins determined in a naive peritoneal cavity lavage fluid of male C57bl/6 mice. B) 

Sum of the oxylipins generated cyclooxygenase (COX), CYP450 (CYP), CYP450-lipoxygenase 

like (CYP-L) or lipoxygenase pathways (LO) using either arachidonic acid (AA), linoleic acid 

(LA), docosahexaenoic acid (DHA) or eicosapentaenoic acid as a substrate in the naïve 

peritoneal cavity. C) Heatmap showing fold changes in oxylipins formation following 

zymosan A treatment (1mg i.p.) from 0 to 4h (peak of acute inflammation), 24h and 48h 

(resolution). D) and E) show fold normalized (SQRT) of oxylipins produced by COX-AA 

(prostanoids), CYP-AA (DHETs), CYP-L-AA (19- and 20-HETE), CYP-DHA (19,20 EpDPE and 

19,20-DiHDPA), CYP-EPA (17,18-DHEQ) and 5-LO-AA (5-HETE) pathways (D) and CYP-LA 

(EpOMEs and DiHOMEs), 8/12/15-LO (8-, 12- and 15-HETE), and LO-LA (HODEs) pathways (E) 

in response to zymosan A over 48h. Pathways in D and E represent two distinct responses to 

challenge with zymosan A. The data represents the mean ± s.e.m from n=4-8 mice per 

group. 

 

Figure 2. Epoxygenase products form in a biphasic manner mirroring acute inflammation 

and inflammatory resolution: selective inhibition of CYP-AA and CYP-LA products by epoxI. 

Mean fold change in (A) CYP-AA products: DHETs and (B) CYP-LA (DiHOME), CYP-DHA 

(DiHDPA) and CYP-EPA (DHEQ) products 0-48h. Each mediator was normalized to its paired 

levels found in the naive cavity in each experiment; the levels found in the naive cavity given 
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an arbitrary value of 1. * denotes p<0.05 by one-sample t-test from 0h. † denotes p<0.05 by 

unpaired t-test between the values observed at 24 and 48h. (C) Mean fold change in 

epoxygenase product formation in the presence or absence of EpoxI (30mg/kg). EpoxI was 

given at 24h and 36h Epoxy-oxylipins were measured at 48h and represented as fold to the 

levels observed in the naive cavity at 0h.  * denotes p<0.05 by unpaired t-test. 

 

Figure 3. Epoxygenase inhibition during resolution causes Ly6c-hi monocyte recruitment, 

and Ccl2 generation. (A) Change in lymphocytes, monocytes/ macrophages and PMNs in the 

peritoneal cavity of mice 48h post-zymosan treatment. At 24h and 36h mice were given 

either sterile PBS or epoxI (30mg/kg; i.p.). Total cell numbers were counted on a heamo-

cytometer and the proportion of each cell type determined by FACs. The data represents 

the mean ± s.e.m from n=6 mice per group. * denotes p<0.05 by unpaired t-test between 

vehicle (Cont; PBS) and epoxI treated mice. (B) Example of FACs analysis of total cell (top 

panels) and GR+ populations (bottom panels) of cells elicited by zymosan alone (control; left) 

or in the presence of epoxI (right) in terms of size (FSc) and granularity (SSc), while bottom 

panels show the change in the GR1+ cell population. Relative expression of Ly6c (C), Ccr2 (D), 

CXCR1 (E), and Ccl2 (F) mRNA compared to -actin in elicited cells from zymosan+ control or 

epoxI treated mice taken at 48h. (G) CCL2 generation from cells from zymosan+ control or 

epoxI treated mice. Cells were elicited at 36h and left for a further 8h ex vivo and CCL2 

measured by ELISA. (H) Ccl2, (I) iNOS, (J) IL-12 and (K) TNF mRNA expression in zymosan 

elicited cells at 36h treated with 14,15-EET or 11,12-EET. Cells were elicited at 36h and 

treated for a further 7h with EETs. The data represents the mean ± s.e.m from n=3-4 mice 

per group. * denotes p<0.05 by unpaired t-test between vehicle (Cont; PBS) and epoxI 

treated mice. 
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Figure 4. Endogenous oxylipins regulate Ly6chi monocyte,  F4/80 macrophage, CD19 and 

CD3 cell populations during resolution. Changes in (A) Ly6chi cell populations, (B) Ly6g+ cell 

populations, (C) F4/80 expression (mean fluorescent intensity; mfi; left) and F4/80++ cell 

populations (right); (D) CD19+, (E) CD3+ and (F) MHCII+ CD11c+ dendritic cell populations: in 

control and epoxI treated mice (solid black bars) in the left hand panels; and in wild type 

(wt) and sEH-/- mice in the right hand panels. The proportion of cells in each group were 

determined by FACs and related back to cell numbers. The data represents the mean ± s.e.m 

from n=4-5 mice per experimental group; * indicates p<0.05 by 2-way ANOVA, or unpaired 

t-test.  

 

Figure 5. Epoxygenase inhibition alters the resolution phenotype of recruited cells of the 

monocyte lineage.  Inflammation was initiated by zymosan (1mg i.p.), and mice treated with 

vehicle control (PBS) or epoxI (30mg/kg i.p.) at 24h and 36h. Cells were collected and pooled 

from n=10 mice and Ly6chi, Ly6clo monocytes, resident macrophages and recruited dendritic 

cells were sorted on a FACSAria as detailed in the Methods. A qRT-PCR resolution monocyte 

panel (n=3-6) was then used to examine the phenotype of each cell type. In the presence of 

epoxI: (A) Plxcd2, Ccna2, Ccnb2, Aspa, F5, Tgfb2 and Timd4 were found to be down-

regulated in the cell types; (B) Ccr2, Ccl2, Ms4A7, CD86 and IL1F9 were up-regulated in the 

cell types; (C) Stfa2l1 was up and down regulated in a cell type specific manner. (D) Top 

table summarizes the relative basal levels of each transcript in each cell type, the bottom 

table summarizes the effect of epoxI on the different transcripts. * indicates p<0.05 by 

unpaired t-test. 
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Figure 6. Epoxygenase inhibition regulates monocyte and macrophage differentiation.  

Inflammation was initiated by zymosan (1mg i.p.), and mice treated with vehicle control 

(PBS) or epoxI (30mg/kg i.p.) at 24h and 36h. Cells were collected at 48h and pooled from 

n=9-18 mice. Ly6c+ monocytes, resident macrophages and monocyte-derived macrophages 

were sorted on a FACSAria as detailed in the Methods. (A) Representative Zebra Plots of the 

cell populations from control and epoxI treated mice expressing Ly6c and F4/80, with 

labeled populations representing [A] Ly6c+ monocytes, [B] resident macrophages, and [C] 

monocyte derived macrophages.  (B) Representative Dot Plots of the Ly6c+, resident 

macrophage (Resi-M) and monocyte-derived macrophage (Mono-M) from control and 

epoxI treated mice expressing PKH-26 and CD11b (top panels) and CD64 and MerTK (bottom 

panels). (C) Changes in cell numbers, and expression (mean fluorescent intensity; MFI in 

relative light units; RLU) for F4/80, CD11b, MHCII, CD103, CD64, MerTK and Timd4 (TM4) in 

the Ly6c+, Resi-M Mono-M cell populations.  Data is mean ± s.e.m from n=3-6 

pooled samples and * indicates p<0.05 by unpaired t-test. 

 

 

Figure 7. Epoxygenase inhibition reduces the phagocytic activity of monocyte-derived and 

resident macrophages.  Inflammation was initiated by zymosan (1mg i.p.), and mice treated 

with vehicle control (PBS) or epoxI (30mg/kg i.p.) at 24h and 36h. Cells were collected at 48h 

and pooled from n=9-18 mice. Ly6c+ monocytes, resident macrophages and monocyte-

derived macrophages were sorted on a FACSAria as detailed in the Methods. Sorted cells 

were then tested for their ability to phagocytose CFSE labelled-apoptotic cells (thymocytes) 

or FITC-labelled-zymosan BioParticles over 30min. Cells were gated using F4/80 or LyC6 and 

on an ImageStreamX Mk2. (A) ImagesStream analysis differentiates cells which 
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phagocytosed apoptotic cells or zymosan (internalization score >0) from those where 

particles or bodies just stick to the cell (internalization score 0).  (B) Ex vivo phagocytosis of 

apoptotic cells (left panels) and zymosan (right panels) by Ly6c+, resident macrophage (Resi-

M) and monocyte-derived macrophage (Mono-M) cell populations from control and epoxI 

treated mice. Data is mean ± s.e.m from n=3-6 pooled samples and * indicates p<0.05 by 

unpaired t-test. 

 

 

Figure 8. Role of epoxy-oxylipins in the resolution. The resolution of zymosan initiated 

inflammation involves monocytes, dendritic cells, T and B cell recruitment and the 

differentiation of monocytes in to resolution type macrophages. In this process (as revealed 

by epoxI treatment and sEH -/- mice), epoxy-oxylipins, most likely EETs, limit Ccl2 and Ccr2 

expression, Ly6chi monocyte accumulation, T and B cell recruitment and encourage the 

formation of mature phagocytotic resolution macrophages. Ly6chi monocytes, Ly6clo 

monocytes, dendritic cells, monocyte-derived and resident macrophages are all activated in 

the presence of epoxI. 
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