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Abstract: 
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1. Introduction 

The expansion of access to secondary schooling is at the center of development policy in 

most of the developing world. Analyzing the effects of such expansions requires 

knowledge of the impact of education on earnings for those affected by the expansions.  

In contrast with the standard model, much of the recent literature on the returns to 

schooling emphasizes that returns vary across individuals, and are correlated with the 

amount of schooling an individual takes (e.g., Card, 2001, Carneiro, Heckman and 

Vytlacil, 2011). In terms of the traditional Mincer equation, ubSaY   (where Y is 

log wage and S is years of schooling), b is a random coefficient potentially correlated 

with S. This has dramatic consequences for the way we conduct policy analysis. 

In this model one could define multiple average returns of interest, which are 

substantially different from each other. The individual at the margin between two levels 

of schooling may have very different returns from all the infra-marginal individuals. 

Standard instrumental variables estimates of the returns to schooling estimate the Local 

Average Treatment Effect (or LATE; Imbens and Angrist, 1994), which may or may not 

be close to the return to the marginal person (who is more likely to be affected by the 

expansion of secondary schooling than anyone else in the economy). Furthermore, 

different policies may affect different groups of individuals. 

This paper studies the returns to upper secondary schooling in Indonesia in a setting 

where b varies across individuals and it is correlated with S (which in this paper is a 

dummy variable indicating whether an individual enrolls in upper secondary school or 

not). We find that the return to upper secondary schooling for the marginal person (who 

is indifferent between going to secondary schooling or not) is substantial, but much lower 

than the returns for the average person enrolled in upper secondary schooling (14.2% vs. 

26.9% per year of schooling). Finally, we simulate what would happen if distance to 

upper secondary schooling was reduced by 10% for everyone in the sample, and we 

estimate that the return to upper secondary schooling for those induced to attend 

schooling by such an incentive is 14.2%. 

When evaluating marginal expansions in access to school, the relevant quantities are 

the returns and costs for the marginal student, not the returns and costs for the average 

student. In spite of the importance of this topic, there are hardly any estimates of average 
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and marginal returns to schooling in developing countries. Two exceptions using Chinese 

data are Heckman and Li (2004) and Wang, Fleisher, Li and Li (2011). 

We estimate a semi-parametric selection model of upper secondary school attendance 

and wages using the method of local instrumental variables (Heckman and Vytlacil, 

2005). Our data comes from the Indonesia Family Life Survey. Carneiro, Heckman and 

Vytlacil (2011) use a similar model to estimate the returns to college in the US. Although 

they examine a different country, time period, and level of schooling, they also find that 

the returns to education vary across individuals in the US, and that the return to education 

for the marginal student is well below the return to college for the average student (see 

also Carneiro and Lee, 2009, 2011). These papers document, across very different 

environments, how important it is to account for heterogeneity in the returns to schooling. 

This paper also proposes a methodological innovation. In the presence of multiple 

control variables, the construction of various parameters (average returns for different 

groups of individuals) using the framework of Heckman and Vytlacil (2005) requires the 

estimation of conditional densities, where the conditioning set is of high dimensionality.  

These estimators are notoriously difficult to implement. We use instead a simulation 

method that avoids such a high dimensional non-parametric estimation problem (in 

contrast, Carneiro, Heckman and Vytlacil, 2010, 2011, impose a restrictive index 

assumption to reduce the dimensionality of the problem). 

Since schooling is endogenously chosen by individuals, we require an instrumental 

variable for schooling. We use as the instrument the distance (in kilometers) from the 

community of residence to the nearest secondary school (see also Card, 1995). Distance 

takes the value zero if there is a school in the community of residence. This variable is a 

strong determinant of enrolment in upper secondary school. One could be concerned that 

the forces driving the location of schools and parents are correlated with wages, implying 

that distance is an invalid instrument. Below we discuss this problem in detail. 

In addition, we are not able to reliably measure distance to school at the time of the 

relevant schooling decision, and use current distance instead. One major drawback of this 

approach is that schooling is likely to be correlated with migration to more urban areas, 

which are areas where distance to school is smaller. 
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We control for several family and village characteristics, namely father’s and 

mother’s education, an indicator of whether the community of residence was a village, 

religion, whether the location of residence is rural, province dummies, and distance from 

the village of residence to the nearest health post. In order for our instrumental variable to 

be valid our assumption would have to be that if we take two individuals with equally 

educated parents, with the same religion, living in a village at age 12 which is located in 

an area that is equally rural, in the same current province, and at the same current 

distance of a health post, then current distance to the nearest secondary school is 

uncorrelated with direct determinants of wages other than schooling. We discuss under 

what circumstances these assumptions are more likely to hold, and also discuss potential 

consequences of deviations from these assumptions. 

Our instrumental variable estimates of the returns to schooling are higher than the 

returns to schooling for Indonesia estimated in Duflo (2000), with the qualification that 

the dataset, the instrumental variable, and the time period are not the same. Pettersson 

(2010) finds similar rates of return using the same year and same data as us, but a 

different sample and a different instrument variable. 

The standard errors in our instrumental variables estimates greatly exceed those of the 

standard least squares estimates, but this is typical in the literature on the returns to 

education, and in that sense our paper does not differ than many other papers on this 

topic. This imprecision transpires to our semi-parametric estimates since they rely 

essentially on an instrumental variable method. In spite of this, we strongly reject the null 

hypothesis that there is no selection on returns to education in our data, which justifies 

our procedure and the emphasis we place on heterogeneous returns. 

This paper proceeds as follows. Section 2 discusses the data. Section 3 reviews the 

econometric framework. Section 4 presents our empirical results. Section 5 concludes. 

2. Data 

We use data from the third wave of the Indonesia Family Life Survey (IFLS) fielded 

from June through November, 2000. For a detailed description of the survey see Strauss, 

Beegle, Sikoki, Dwiyanto, Herawati and Witoelar (2004). In the appendix we list the 

main variables we use. 
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The IFLS is a household and community level panel survey that has been carried out 

in 1993, 1997 and 2000.  The sample was drawn from 321 randomly selected villages, 

spread among 13 Indonesian provinces containing 83% of the country’s population. The 

sub-sample we use consists of males aged 25-60 who are employed, and who have 

reported non-missing wage and schooling information. We consider salaried workers, 

both in the government and in the private sector. We exclude females from the analysis 

because of low labor force participation, and we exclude self-employed workers because 

it is difficult to measure their earnings. The dependent variable in our analysis is the log 

of the hourly wage. Hourly wages are constructed from self-reported monthly wages and 

hours worked per week. The final sample contains 2608 working age males. 

In our empirical model we collapse schooling into two categories: i) completed lower 

secondary or below, and ii) attendance of upper secondary or higher. While this division 

groups together several levels of schooling, it simplifies the model and is standard in the 

literature (e.g., Willis and Rosen, 1979). The transition to upper secondary schooling is of 

interest in the Indonesian context given its current effort to expand secondary education. 

We present both the return to upper secondary schooling, and an annualized version of 

this parameter, obtained by dividing the estimated return by the difference in average 

years of schooling completed by those with lower secondary or less, and those with upper 

secondary or more. Upper secondary schooling corresponds to 10 or more years of 

completed education. In order to compare our estimates with the literature (say, Duflo, 

2000), in Appendix B we also present least squares (OLS) and IV estimates of returns 

using a continuous education variable, corresponding to years of completed schooling. 

The control variables in our models are indicator variables for age, indicators for the 

level of schooling completed by each of the parents (no education, elementary education, 

secondary education, and an indicator for unreported parental education), an indicator for 

whether the individual was living in a village at age 12, indicators for the province of 

residence, an indicator of rural residence, and distance (in kilometers) from the office of 

the head of the community of residence to the nearest community health post. 

Our instrumental variable for schooling is the distance (in kilometers) from the office 

of the community head to the nearest secondary school (i.e., of all the schools in each 
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community, we take the one that is closest to the office of the head). The distance is self-

reported by the community head in the Service Availability Roster of the IFLS.
1
 

Table 1 presents descriptive statistics for the main variables used in our analysis. It 

shows that individuals with upper secondary or higher levels of education have, on 

average, 108% higher wages than those with lower education. They have 7.79 more years 

of schooling. They are younger than those without and upper secondary education. They 

are more likely to have better-educated parents, to have lived in towns or cities at age 12, 

and to live closer to upper secondary schools, than those with less education. 

3. Theoretical Framework 

3.1. A Semi-Parametric Selection Model 

This section of the model follows Heckman and Vytlacil (2005). We repeat part of 

the presentation in that paper because it lays out the empirical model we use, and 

provides the basis for discussing a new approach to estimating some of our parameters. 

We consider a standard model of potential outcomes applied to schooling, as in Willis 

and Rosen (1979) or Carneiro, Heckman and Vytlacil (2010, 2011). Consider a model 

with two schooling levels: 

0000

1111

UXY

UXY








 (1) 

0 if 1  sUZS 
 

(2) 

1Y  are log wages of individuals if they have upper secondary education and above, 0Y  are 

log wages of individuals if they do not have upper secondary education, X is a vector of 

observable characteristics which affect wages, and 01  and UU  are the error terms. Z is a 

vector of characteristics affecting the schooling decision. 

In theory, agents decide whether to enroll or not in upper secondary schooling based 

on the expected net present value of earnings with and without upper secondary 

                                                 
1
 We would have liked to use instead the distance between the community of residence in childhood and 

the nearest school in childhood. It is in theory possibly to construct such a variable because there should be 

information about the opening date for all schools in the sampled communities. Unfortunately, many of 

these dates are missing, and using this information would result in a drop in our sample size of more than 

50%, and in hopelessly imprecise estimates. Our assumption is that current residence and current school 

availability are good approximations to the variables we need (as in Card, 1995). We show below that this 

measure of distance to school is a good predictor of upper secondary school attendance, and discuss in 

detail how likely is it that our assumption holds, and the consequences of its invalidity. 
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schooling, and costs, which can be financial or not. There can be liquidity constraints. 

There is heterogeneity and we expect agents with the highest returns to upper secondary 

schooling ( 01 YY  ) to be more likely to enroll in higher levels of schooling. Costs and 

returns to schooling can be correlated. Willis and Rosen (1979) and Carneiro, Heckman 

and Vytlacil (2011) show how we can approximate the schooling decision just described 

with a model such as the one in equation (2).  

It is convenient to rewrite equation (2) as: 

VZPS  )( if 1  (3) 

)( and )()( SUU UFVZFZP
SS

   and 
SUF  is a cumulative distribution function of Us . V 

is uniformly distributed by construction. This is an innocuous transformation given that 

US can have any density, but it is very convenient, as shown below. 

Observed wages can be written as: 

01 )1( YSSYY 
 

(4) 

And the return to schooling can be written as:  

01010101 )( UUXYY  
 

(5) 

Notice that the return to schooling varies across individuals with different X’s and 

different U1, U0. This is an important feature of this framework and of our paper, which 

emphasizes heterogeneity in returns (and the distinction between the returns for average 

and marginal individuals). 

In order to credibly identify the parameters of the model in equations (1) and (2), it is 

important that standard IV-type assumptions are satisfied. In particular, we require that Z 

is independent of ( 01,UU ) given X, and that Z is correlated with S (see Heckman and 

Vytlacil, 2005, for the full set of assumptions). 

In practice, we will appeal to an even stronger assumption: that X and Z are 

independent of U1, U0, US. This stronger assumption is quite standard in empirical 

applications of a selection model of the type described here. We discuss the advantages 

of using this stronger assumption in the empirical section (see also Carneiro, Heckman 

and Vytlacil, 2011). One way to make this assumption more palatable in practice is to 

interpret the coefficients on X in the wage equations as capturing not only the impact of 

those variables, but also the impacts of changes in unobservables on wages, as they are 
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projected into the X. Nevertheless, we will assume that the remaining unobservables are 

not only orthogonal to X, but they are fully independent of X. 

The marginal treatment effect (MTE) is the central parameter of our analysis. In the 

notation of our paper it can be expressed as: 

   

 vVxXUUEx

vVxXYYEvxMTE





,|)(

,|,

010101

01

    
(6)

 

The MTE measures the returns to schooling for individuals with different levels of 

observables (X) and unobservables (V), and therefore it provides a simple characterization 

of heterogeneity in returns. 

 To be specific, suppose that X is maternal education. )( 01   could be positive 

or negative depending on whether children with more educated mothers have higher or 

lower than average returns to schooling. The first case would indicate that maternal 

schooling and child schooling are complementary inputs in the production of skill (which 

eventually feeds into wages), while the second case would say that they are substitutes. 

 Similarly, one possible interpretation of V is as the negative of unobserved ability: 

individuals with high values of V (or low ability) are less likely to enroll in school than 

those with low values of V. Then,  vVxXUUE  ,|01  would tell us how the returns 

to schooling varied with unobserved ability. If individuals with high ability also had 

higher returns, then this function should be declining in V. 

In addition, Heckman and Vytlacil (2005) show how to construct several 

parameters of interest as weighted averages of the MTE. For example: 

 

|

|

|

( ) ( , ) ( | )

( ) ( , ) ( | , 1)

( ) ( , ) ( | , 0)

V x

V x

V x

ATE x MTE x v f v x dv

ATT x MTE x v f v x S dv

ATU x MTE x v f v x S dv



 

 







        (7) 

where ATE(x) is the average treatment effect, ATT(x) is average treatment on the treated, 

ATU(x) is average treatment on the untreated (conditional on X=x), and 𝑓𝑉|𝑋(𝑣|𝑥) is the 

density of V conditional on X.
2
 The MTE can be used to build many other parameters. 

                                                 
2
 Notice that 𝑓𝑉|𝑥(𝑣|𝑥) = 1, because v|x is uniformly distributed by assumption. Heckman and Vytlacil 

(2005) do not use exactly this representation of the parameters.  For example, they write: 𝐴𝑇𝑇(𝑥) =
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A less standard parameter but equally (if not more) important is the policy relevant 

treatment effect (PRTE), introduced in the literature by Heckman and Vytlacil (2001b). It 

measures the average return to schooling for those induced to change their enrolment 

status in response to a specific policy (see also the related parameter of Ichimura and 

Taber, 2000). Obviously, this parameter depends on the policy being evaluated.  

Consider a determinant of enrolment Z, which does not enter directly in the wage 

equation. The policy shifts Z from Z=z to Z=z’. We can write the PRTE as: 

𝑃𝑅𝑇𝐸(𝑥) = ∫ 𝑀𝑇𝐸(𝑥, 𝑣)𝑓𝑉|𝑥(𝑣|𝑥, 𝑆(𝑧) = 0, 𝑆(𝑧′) = 1)𝑑𝑣 

3.2. Estimating the MTE 

Assuming that the unobservables in the wage (1) and selection (2) equations are 

jointly normally distributed, the MTE could be estimated using a standard (parametric) 

switching regression model (see Heckman, Tobias and Vytlacil, 2001). Assume: 

),0(~,, 10 NUUU s   
(8) 

where   represents the variance and covariance matrix. Under this assumption: 

 9)()()()(),|(),( 10,1,

010101 vxvVxXYYEvxMTE

S

S

S

S

U

U

U

U 







  

where 2

SU denotes variance of sU , 2

i variance of iU  with i = 0,1, 2

,iUS
 covariance 

between sU and iU , 2

, ji the covariance between iU and jU  and Φ is the c.d.f. of the 

standard normal. Therefore MTE can be constructed by estimating parameters 

 ,,,, 0101  and the matrix  . 

One advantage of imposing restriction (8) is that the resulting model is well studied, 

and can be readily estimated using a variety of statistical packages. However, this model 

relies on strong assumptions about the distribution of the error terms in equations (1-2), 

which can be unattractive in several circumstances. For example, these restrictions 

impose that the MTE is a linear function of sU  ( )(1 VFU
SUS

 ), as in equation (9). 

                                                                                                                                                 
∫ 𝑀𝑇𝐸(𝑥, 𝑣)ℎ𝑇𝑇(𝑣|𝑥)𝑑𝑣, where ℎ𝑇𝑇(𝑣|𝑥)is a parameter weight (in this case, the parameter for TT). Our 

representation is equivalent since ℎ𝑇𝑇(𝑣|𝑥) in their paper can be shown to be equal to 𝑓𝑉|𝑥(𝑣|𝑥, 𝑆 = 1). 
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To relax these restrictions, and allow for more flexible functions for the MTE, we use 

the method of local instrumental variables that imposes no distributional assumptions on 

the unobservables of the model (Heckman and Vytlacil, 2000), besides the assumption 

that X and Z are independent of U1, U0, US (which is also important for credible 

estimation of the model under normality assumptions).  

This is a two step procedure. The first step of this procedure is to estimate a 

regression of the outcome Y, on X and P. We can write it as: 

      
     

    )(                  

,,1|                  

,|),|(

010100

01010100

010010100

PKPXPX

PPXSUUEPXPX

PXUUSUSXSXEPXYE













 (10) 

K(P) is a function of P, which we want to be flexible. Therefore, we will estimate it using 

a non-parametric procedure, such as, for example, local linear regression. 

Once this regression is estimated, notice that, taking the derivative of (10) with 

respect to P we get the MTE: 

 
, 1 0

| ,
( , ) | ( ) '( )X x P v

E Y X P
MTE x v X K P

P
  


   


 (11) 

Therefore , the local instrumental variables estimator of Heckman and Vytlacil (2005) for 

the model of equations (1) and (3) just requires running a regression of Y on X and P and 

taking the derivative of the estimated regression function with respect to P. Notice that 

the regression in (10) is partially linear, where X and XP are partially linear, and the 

function K(P) is nonparametrically estimated. 

V can take values from 0 to 1, which means that the MTE is defined over the whole 

unit interval. However, in practice it is only possible to estimate the MTE over the 

observed support of P, since we will not be able to estimate K’(P) for values of P that are 

not observed (unless we impose a functional form which allows some extrapolation). In 

our data the support of P is almost the full unit interval, so we are able to estimate the 

MTE close to its full support. However, this will not be true in all applications of this 

method, which may mean estimating the MTE only over small ranges of values for V. 

In fact, if we had assumed that Z is independent of ( 01,UU ) given X, instead of full 

independence between (Z,X) and ( 01,UU ), it would be difficult to estimate the MTE over 

a large support, as emphasized in Carneiro, Heckman and Vytlacil (2011). The reason is 
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that, in that case, we have to consider estimation of the whole model conditioning non-

parametrically in X. And for each value of X it is only possible to estimate the MTE over 

the support of P conditional on X, which usually will be much smaller than the 

unconditional support of P (see Carneiro, Heckman and Vytlacil, 2011). The whole 

method can become impractical in that case, which is why we rely instead on the 

assumption of full independence of (Z,X) and ( 01,UU ), which is common in empirical 

applications of selection models (and it allows us to use the full support of P). 

Equations (10) and (11) can be estimated using standard methods. In particular, we 

use the partially linear regression estimator of Robinson (1988) to estimate ( 01, ), 

which entails two steps. The first step is a set of non-parametric regressions Y, and of 

each element of X and XP (the variables entering linearly in the model) on P (the variable 

entering non-parametrically in the model). We use local linear regression to estimate 

these regressions. Then we save the residuals of all these regressions. Finally, we regress 

the residualized outcome on the residualized X and XP, to estimate 0 and  01   . 

For the second step of this method, which involves estimating K(P), we start by 

computing the residual   0100   PXXYR . K(P) (and K’(P)) is estimated 

using a non-parametric regression of R on P (we use locally quadratic regression; Fan and 

Gijbels, 1996, suggest using a local polynomial of order n+1 if the goal is to estimate a 

derivative of order n). Notice that ( 01, ) cannot be identified separately from K(P).  

A simple test of heterogeneity and selection on unobserved characteristics is a test of 

whether K’(P) is flat (or of whether E(Y |X, P) is nonlinear in P). If K’(P) is flat (if it does 

not depend on P) then heterogeneity is not important, or individuals do not select on it. 

One important limitation of this procedure, and of the program evaluation literature 

relying on the propensity score, is that we never observe P, but we need to estimate it. 

This means that P will have estimation error. The main consequence of this, as argued by 

Abadie and Imbens (2012) in the context of matching, is that one needs to adjust the 

estimated standard errors of the treatment to account for this estimation error. 

With finite samples we may also worry about measurement error bias, although it is 

not clear how it affects our estimates. In non-linear models the usual attenuation intuition 

fails, as discussed in Chesher (1991), and the literature reviewed in Schennach (2013). 
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3.3 Average Marginal Returns to Education 

Economic decisions involve comparisons of marginal benefits and marginal costs. 

Therefore it is important to estimate the average returns to schooling for individuals at the 

margin between enrolling or not. They would be those who are the most likely to change 

their upper secondary schooling decision in response to a change in education policy. 

The definition of who is marginal depends on the policy being considered. This is 

made clear in Carneiro, Heckman and Vytlacil (2010, 2011), who focus on three 

particular definitions of individuals at the margin: 

 ) , ) , ) 1 .s

P
i P V ii Z U iii

U
          

ε is a small positive number.  These parameters are defined by taking the limit as ε goes 

to zero. They correspond to three different marginal policy changes. 

The three policy changes considered are (i) a policy that increases the probability of 

attending college (P) by an amount α, so that 𝑃𝛼 = 𝑃0 + 𝛼; (ii) a policy intervention that 

has an effect similar to a shift in one of the components of Z, say Z
k
, so that 𝑍𝛼

𝑘 = 𝑍𝑘 + 𝛼 

and 𝑍𝛼
𝑗

= 𝑍𝑗  for 𝑗 ≠ 𝑘; (iii) and a policy that changes each person’s probability of 

attending college by the proportion (1+ α), so that 𝑃𝛼 = (1 + 𝛼)𝑃0. 

In this paper we estimate the average marginal returns to upper secondary schooling 

in Indonesia according to the definition of marginal in ii) above, although we could have 

chosen a different one. The MTE provides a general characterization of heterogeneity in 

returns and from it we can construct various other parameters. 

Carneiro, Heckman and Vytlacil (2010) show how it is possible to write the average 

marginal treatment effect (or AMTE) as a weighted average of the MTE: 

𝐴𝑀𝑇𝐸(𝑥) = ∫ 𝑀𝑇𝐸(𝑥, 𝑣)𝑓𝑋,𝑉(𝑣||𝑍𝛾 − 𝑈𝑠| < 𝜀, 𝑥)𝑑𝑣 (12) 

3.4 IV vs Average and Marginal Returns 

Heckman (2011) provides a discussion of structural and program evaluation 

approaches to evaluating policy. He argues that IV estimates conflate the definition and 

the identification of the parameter: IV estimates identify the Local Average Treatment 

Effect (LATE) corresponding to the instrument being used. 
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The methods developed by Heckman and Vytlacil (2005) allow you to use exactly the 

same data and identifying assumptions that one would use in a standard IV setup 

(Vytlacil, 2002), but estimate a wider range of parameters. Notice that, in parallel with 

the MTE, IV estimates can (and should) always be constructed and presented. 

Although the pointwise standard errors for the MTE are surely higher than the IV 

standard errors, the precision with which one can estimate several other parameters, 

which are weighted averages of the MTE, is of a similar order as the precision of the IV 

estimates, which are also a weighted average of the MTE (Heckman and Vytlacil, 2005). 

In particular, we will be able to estimate, conditional on observing enough support, 

parameters such as the average treatment effect, or treatment on the treated, or the policy 

relevant treatment effect for a particular policy question (Heckman and Vytlacil, 2001). 

And even with limited support one can estimate different versions of the AMTE just 

mentioned above, by computing the corresponding weights. 

In practice, however, applications of selection models do impose some simple 

structure in the equations that they add to the standard IV models, mainly because of data 

limitations. This is true even when using semi-parametric methods, as in this paper. One 

should make these functions flexible, and examine robustness to different specifications. 

3.5 Estimating vs. Simulating the Weights: A New Procedure 

So far this section has shown how to recover the MTE from the data, and how to 

construct economically interesting parameters as weighted averages of the MTE. 

Heckman and Vytlacil (2005) and Carneiro, Heckman and Vytlacil (2010, 2011) provide 

formulas for the necessary weights in equations 7 and 12, conditional on X: 
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where  Xpf XP ||  and  XpF XP ||  are respectively the p.d.f and the c.d.f. of P 

conditional on X,  Xuf SXUS
||  and  XuF SXUS

||  are respectively the p.d.f and the c.d.f. 

of SU  conditional on X, and  XpF XP |'|  is the c.d.f. of P conditional on X when Z=z’. 

In practice it is difficult to implement these formulas since they involve estimation of 

conditional density and distribution functions, such as  Xpf XP ||  and  XpF XP || , and 

X is generally a high dimensional vector (there are 28 variables in X in our empirical 

work). It is impractical to estimate these functions, even with enormous amounts of data. 

Therefore, Carneiro, Heckman and Vytlacil (2010, 2011) aggregate X into an index, 

namely  01   XI . They then proceed by estimating conditional densities and 

distributions of P with respect to I, which requires conditioning only on one variable. 

This makes the whole procedure feasible. But there is no theoretical basis for this 

aggregation. It is very much ad-hoc, which makes it quite unattractive. The only reason to 

implement it is because it is essential to get a dimensionality reduction in the problem, 

and this seemed to be a natural one, although as good as many others. 

In this paper we use an alternative procedure, which avoids making this aggregation, 

and sidesteps the problem of estimating a multidimensional conditional density function.  

Notice that the selection equation relates S, X, Z, and V (which is uniform by 

construction). Our idea is that, using the estimated parameters, we can simulate (instead 

of estimating) the following objects: 

𝑓𝑉|𝑋(𝑣|𝑆 = 1, 𝑥), 𝑓𝑉|𝑋(𝑣|𝑆 = 0, 𝑥), 𝑓𝑉|𝑋(𝑣||𝑍𝛾 − 𝑈𝑆| < 𝜀, 𝑥) 

For example, in order to simulate 𝑓𝑉|𝑋(𝑣|𝑆 = 1, 𝑥) all we need to do is to draw many 

values of 𝑢𝑆 (which is assumed to be logistic) for each value of x, and select all the cases 

where the selection equation (2) predicts that S=1. Then all we need to do is to estimate 

the average value of the MTE for the simulated population for whom S=1. This 

simulation procedure is simple, and its steps are described in detail in Appendix A. 
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4. Empirical Results 

4.1 Is Distance to School a Valid Instrument? 

To account for the potential endogeneity of the schooling decision we instrumented 

schooling with the distance to the nearest secondary school.
3
 In order for it to be a valid 

instrument distance to school needs to satisfy two conditions: i) it should affect the 

probability of school enrolment and ii) it should have no direct effect on adult wages. 

We show that condition i) is satisfied. Condition ii) is controversial. There are two 

main issues to discuss. First, families and schools may not randomly locate across 

locations in Indonesia. Second, we can only use distance measured from the current 

municipality of residence, and not distance measured at the time of the schooling 

decision. Although papers such as Carneiro, Heckman and Vytlacil (2011) have been able 

to measure distance at the time of the schooling decision, this is not always the case in the 

literature. The first papers using this instrumental variable (Card, 1993, 1995) only have 

contemporaneous distance measures, exactly as in our paper, although they are able to 

observe individuals at a much younger age than we do. The main problem of this 

approximation is that educated individuals may move to more urban areas which also 

have more schools, so the first stage relationship could have the causality reversed. 

It is instructive to examine the consequences of these two issues in a simple model. 

We start by looking at a fixed coefficient model with no heterogeneity in returns (in 

terms of equation (1), 𝛽1 = 𝛽0 and 𝑈1 = 𝑈0), since it provides us with clear and intuitive 

results. We then discuss briefly what could happen in a random coefficients model like 

the one we have in this paper, although the problem there is much less clear. 

Take the following model: 

𝑦 = 𝜏𝑆 + 𝑢 

𝑆 = 𝜎𝑑∗ + 𝑣 

𝑑 = 𝜌𝑆 + 𝛿𝑑∗ + 𝜀             (14) 

where y is the outcome (wages), S is schooling (upper secondary education), 𝑑∗ is 

distance at the time of the secondary school decision (which is unobserved), and d is 

current distance (measured at the time of the outcome). There is no heterogeneity in any 

                                                 
3
 Distance to the nearest school has been used by Card (1995), Kane and Rouse (1995), Kling (2001), 

Currie and Moretti (2003), Cameron and Taber (2004) and Carneiro, Heckman and Vytlacil (2011). 
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of the parameters of this model, namely in 𝜏. We expect that 𝜏 > 0 (positive return to 

schooling) and 𝜎 < 0 (negative effect of distance to school on attendance of upper 

secondary school). In principle, 𝜌 < 0, capturing the idea that schooling can induce 

migration towards a job in a large city where schools are abundant. 𝛿 measures inertia 

and it is probably between 0 and 1, and 𝜀 are other migration shocks. Migration to larger 

cities (or lower d) and wages should be correlated: 𝐶𝑜𝑣(𝑢, 𝜀) < 0. 

In this model 𝜏 is the sole parameter of interest, measuring the return to education. 

Let 𝜏∗ be the instrumental variable estimate of 𝜏 when we use d as the instrument. Then: 

𝑝𝑙𝑖𝑚𝜏∗ =
𝐶𝑜𝑣(𝑦, 𝑑)

𝐶𝑜𝑣(𝑆, 𝑑)
= 𝜏 + 𝜌

𝐶𝑜𝑣(𝑢, 𝑆)

𝐶𝑜𝑣(𝑆, 𝑑)
+ 𝛿

𝐶𝑜𝑣(𝑢, 𝑑∗)

𝐶𝑜𝑣(𝑆, 𝑑)
+

𝐶𝑜𝑣(𝑢, 𝜀)

𝐶𝑜𝑣(𝑆, 𝑑)
 (15) 

In this model there are three sources of potential bias for 𝜏. To start with, 𝐶𝑜𝑣(𝑢, 𝑑∗) 

could be different from (smaller than) zero. For example, Carneiro and Heckman (2002) 

and Cameron and Taber (2004) show that individuals living closer to universities in the 

US have higher levels of cognitive ability and come from better family backgrounds. In 

Indonesia, those with better educated parents are also located closer to secondary schools.  

In addition, if regions where schools are abundant are also regions where other 

infrastructure is abundant, we may confound the impact of school availability on wages 

with the impact of infrastructure on wages (see Jalan and Ravallion, 2002). This will be 

true unless labor is perfectly mobile, which is unlikely to be the case in Indonesia. 

However, as argued in Duflo (2004), perhaps the response of other (private or public) 

infrastructure to school construction and to a better skilled workforce is very slow. 

It is possible that school location is exogenous after we account for a detailed set of 

individual and regional characteristics, namely: age, parental education, religion, an 

indicator for rural residence at age 12, dummies for the province of residence, and 

distance to the nearest health post. We also show that removing these regional controls 

hardly affects our results, indicating that this problem may be unimportant in our setting. 

Under the assumption that these are rich enough controls, 𝛿
𝐶𝑜𝑣(𝑢,𝑑∗)

𝐶𝑜𝑣(𝑆,𝑑)
= 0. Otherwise: 

𝛿
𝐶𝑜𝑣(𝑢,𝑑∗)

𝐶𝑜𝑣(𝑆,𝑑)
> 0 (since 𝐶𝑜𝑣(𝑆, 𝑑) < 0). 

Then, we expect that 𝐶𝑜𝑣(𝑢, 𝜀) could be negative, if individuals moving to more 

urban locations (with lower d) have higher wages. This would mean that 
𝐶𝑜𝑣(𝑢,𝜀)

𝐶𝑜𝑣(𝑆,𝑑)
> 0. We 
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also expect 𝐶𝑜𝑣(𝑢, 𝑆) > 0 if those with high levels of ability also have high levels of 

schooling, resulting in 𝜌
𝐶𝑜𝑣(𝑢,𝑆)

𝐶𝑜𝑣(𝑆,𝑑)
> 0 (since, as mentioned above, it is likely that 𝜌 < 0). 

Again, it is possible that, even if these terms are positive, they are small, if the set of 

controls we include in the model are rich enough to capture the sources of simultaneity. 

For example, variables such as rural or urban location at age 12, combined with variables 

such as distance to the nearest health post in the current residence, and province of 

residence, may account for the most relevant migration patterns for each individual. In 

that case, endogenous migration from rural to urban areas is hopefully controlled for (so 

that 𝜌 = 0 and 𝐶𝑜𝑣(𝑢, 𝜀) = 0), and the reverse causality problem minimized.
4
 

If 𝜏 is a random coefficient with mean 𝜏̅ then we can write the wage equation as: 

𝑦 = 𝜏𝑆 + 𝑢 = 𝜏̅𝑆 + 𝑢 + (𝜏 − 𝜏̅)𝑆 

It has already been mentioned repeatedly in this paper (and in the literature) that, in 

this case, there can be many potentially interesting parameters of interest. However, to 

simplify the discussion, suppose we are interested in estimating 𝜏̅. Then, with IV we get: 

𝑝𝑙𝑖𝑚𝜏∗ = 𝜏̅ + 𝜌
𝐶𝑜𝑣(𝑢 + (𝜏 − 𝜏̅)𝑆, 𝑆)

𝐶𝑜𝑣(𝑆, 𝑑)
+ 𝛿

𝐶𝑜𝑣(𝑢 + (𝜏 − 𝜏̅)𝑆, 𝑑∗)

𝐶𝑜𝑣(𝑆, 𝑑)

+
𝐶𝑜𝑣(𝑢 + (𝜏 − 𝜏̅)𝑆, 𝜀)

𝐶𝑜𝑣(𝑆, 𝑑)
 

Now it is much harder to sign each of these three bias terms, especially if there is some 

correlation between S and (𝜏 − 𝜏̅).  Nevertheless, if, as above, we can assume that the 

rich set of observable variables we include in the regressions are enough to make 𝜌 = 0 

and 𝐶𝑜𝑣(𝑢 + (𝜏 − 𝜏̅)𝑆, 𝜀) = 0, then, if 𝑑∗ can be assumed to be independent of all the 

unobservables in the model (conditional on the controls), we can still estimate the MTE 

(even though, even in this case, 
𝐶𝑜𝑣(𝑢+(𝜏−�̅�)𝑆,𝑑∗)

𝐶𝑜𝑣(𝑆,𝑑)
 is not likely to be equal to zero). 

Below we will report MTE estimates that are valid under the assumptions that u is 

independent of Z and X, 𝜌 = 0 and 𝐶𝑜𝑣(𝑢 + (𝜏 − 𝜏̅)𝑆, 𝜀) = 0. In order to gain some 

insight about the sensitivity of our estimates to violations of one of these assumptions, we 

                                                 
4
We checked whether distance to the nearest secondary school was correlated with pre-secondary 

educational outcomes of each individual (elementary school completion, grade repetition, work in school), 

which are correlated with the early ability of the child. In Table A1 in the appendix we regress each early 

schooling variable on distance, and our results show no correlation between distance and these variables. 
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present simulations illustrating potential changes to the IV estimate as 𝜌 becomes 

increasingly different from zero. 

Table 2 shows that distance to the nearest secondary school is a strong predictor of 

enrolment in secondary school. We run a logit regression where the dependent variable is 

an indicator taking value 1 if an individual ever attended upper secondary school. 

Regressors include distance to the nearest secondary school and all the control variables 

mentioned above. The table displays marginal effects of each variable on the probability 

of enrolling in upper secondary education. We include as a control the distance to the 

nearest health post, as a proxy for location characteristics. Unlike distance to school, 

distance to health post does not predict school enrollment. Children of highly educated 

parents are more likely to attend upper secondary school than children of parents with 

low levels of education. Catholics and Protestants are more likely to attend secondary 

school than Muslims (the omitted category). Children in rural areas are less likely to 

attend upper secondary school than children in urban areas. 

This model is fairly flexible in the sense that the impact of distance on secondary 

school attendance varies with X. In particular, we interact distance to school with age 

(which, for a fixed year, also captures cohort), religion, parental education, and rural 

residence. It is useful to estimate such a rich model for two related reasons. First, because 

of its flexibility. Second, by allowing the impact of the instrument to vary with the 

variables in X we are able to use extra variation in the instrument. As a result, the 

standard errors in the IV estimates and in the selection model are smaller than if we just 

used a simpler model without these interactions. Therefore, the estimates in this paper 

come from this model, while estimates of a simpler model without interactions are shown 

in the Appendix. Average derivatives are computed at the mean value of the X variables. 

Table 3 also displays p-values for the test of the null hypothesis that distance to 

school does not affect upper secondary school attendance. We perform a joint test on all 

coefficients involving distance. We reject that distance to school does not determine 

upper secondary school attendance. 

In spite of this, one could worry that the instruments are weak. The F-statistic for a 

specification where distance to the nearest school is used as the only instrument is 5.86 

(F(1,303)), and it is equal to 2.22 (F(13,303)) in the case where we use interactions 
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between distance and the controls. However, the instrument used in the estimation of the 

semi-parametric selection model in the paper is P, the estimated propensity score, which 

is obviously a very strong instrument (F(1,303)=27), even after including all the controls 

mentioned above (below we mention IV results with very flexible specifications of the 

outcome equation, which minimize the danger that results are driven by nonlinearities of 

the logit function). In addition, the consequences of weak instruments for the estimation 

of selection models such as the ones we present in this paper are not well studied. 

4.2 Standard Estimates of the Returns to Schooling 

In order to more easily make a comparison between our data and estimates and those 

in the literature we start by presenting standard OLS and IV estimates of the returns to 

schooling. Throughout the paper schooling takes two values: 0 for less than upper 

secondary, and 1 for upper secondary or above. We use the log hourly wage in 2000 as 

our dependent variable. The full set of controls consists of: age (or cohort), parental 

education, religion, an indicator for whether the individual was living in a city or in a 

village at age 12, an indicator for whether the individual lived in a rural area at age 12, 

dummies for the province of residence, and distance to the nearest health post. 

We present ordinary least squares (OLS) and IV results. This is shown in Table 4. 

Recall from table 1 that individuals with upper secondary schooling or above have on 

average 13.13 years of schooling, while those with less than upper secondary have on 

average 5.34 years of schooling. The difference between the two groups is 7.79 years of 

schooling. Using this figure to annualize the returns to upper secondary education we 

have an OLS estimate of 9% and an IV estimate of 12.9% (without annualizing returns 

we have OLS and IV estimates of 70.5% and 100% respectively).
5
 

These estimates are higher than (but of comparable magnitude to) those in Duflo 

(2001), although we use more recent data. Petterson (2010) finds a return of 14% using 

the same data as we do, but a different sub-sample and instrument. 

As in most of the literature, our IV estimates of the return to education are larger than 

OLS estimates. However, it is well known that this depends on the instrument, a point 

which is explored in Cameron and Taber (2006). More importantly, as discussed in 

                                                 
5
 With a more flexible model where we include all two way interactions between the controls the IV point 

estimate is 0.184 with a standard error of 0.076. 
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Heckman and Vytlacil (2005), OLS does not necessarily correspond to the average return 

to schooling for any group in the population. 

In section 4.1 we discussed several potential problems with the instrument, in 

particular the possibility that endogenous migration can lead to reverse causality from 

schooling to the instrument, current distance to school. It is interesting therefore to 

examine what could happen as 𝜌 and 𝐶𝑜𝑣(𝑢, 𝜀) in equation (14) become increasingly 

different from zero. In Appendix C we describe these simulations in detail. Both sets of 

simulations show that, when we deviate from the assumptions of the model, the implied 

IV estimate falls (as predicted from calculations based on the fixed coefficient model). 

There is more sensitivity of this estimate to 𝐶𝑜𝑣(𝑢, 𝜀) than to 𝜌. 

Appendix table A2 presents OLS and IV estimates where we use years of schooling 

as the main explanatory variable (as opposed to upper secondary schooling). The OLS 

estimate of the return to a year of schooling is 9.6%, while the IV estimate is 15.7%. In 

appendix table A3 we also present IV estimates of returns for models where we do not 

interact the instrument with the variables in X. The point estimate is smaller than the one 

in Table A2, and the standard error is larger, but the main pattern remains: the IV 

estimate is much higher than the OLS estimate. In a model with heterogeneous returns, it 

is not surprising that the instrumental variable is sensitive to the choice of instrument. In 

appendix table A4 we present results were we omit regional dummies from the model. 

Our IV estimate is very similar to the ones in tables A2 and A3. Finally, in Appendix 

table A5 we go back to estimating annualized returns to upper secondary education, 

presenting estimates using different sets of instruments, and different ways of annualizing 

the returns. There is some variation across columns, but this is natural in a context where 

different instruments are used to estimate a model of heterogeneous returns, since 

different instruments lead to different parameters (Heckman, Urzua, and Vytlacil, 2006). 

It is important to mention the role of experience. As in most of the literature, our 

modeling of experience is unsatisfactory. Experience affects wages and is endogenously 

determined. In addition, experience is likely to affect the returns to education. 

In our data, we cannot even observe work experience, and therefore include age (and 

its square) in the model instead. Although the IV estimates we just presented do not allow 
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the returns to schooling to depend on age, the semi-parametric model we estimate below 

allows for an interaction between schooling and age, which we comment on below. 

4.3 Average and Marginal Treatment Effect Estimates 

We start with the semi-parametric model. The first step is to construct P, for which 

we use a parametric model. We take the predicted probability of ever attending upper 

secondary school from a logit regression of upper secondary school attendance on the X 

and Z variables of section 3. Table 3, discussed above, reports the coefficients of the logit 

model. All variables work as expected. 

It is only possible to identify the MTE over the support of P. Therefore, we need to 

examine the density of P for individuals who attend upper secondary school or above, 

and those who do not. This is done in Figure 1, which shows the distributions of the 

predicted propensity score (P) for these two groups. The supports for these two 

distributions overlap almost everywhere, although the support at the tails is thin for low 

values of P among those with upper secondary school or above. We construct the MTE as 

described in Section 2. In order to estimate K(P) we run a local quadratic regression of R 

on P, using a Gaussian kernel and a bandwidth of 0.27.
6
 The implied MTE(x,v) is 

computed by calculating the slope on the linear term of the local quadratic regression (the 

coefficients on X in the outcome equations are presented in Appendix Table A6). 

Figure 2 displays the estimated MTE (which we evaluate at the mean values of the 

components of X). The MTE is monotonically decreasing for all values of V. Returns are 

very high for individuals with low values of V (individuals who are more likely to enroll 

in upper secondary school or facing low costs). The figure demonstrates substantial 

heterogeneity in the return to schooling, which ranges from 34% for individuals with V 

around 0.1 to 13% for those with V close to 0.5, and becomes negative for those with 

values of V close to 1. The fact that returns are the lowest for individuals who are least 

                                                 
6
 The bandwidth is determined by leave-one-out cross validation, although below we also present estimates 

with much lower values for the bandwidth. We focus on equation (10), and estimate this equation for a very 

large set of bandwidths with values between 0 and 1. We pick the bandwidth that minimizes the mean 

squared error. To compute the mean squared error for each value of the bandwidth we estimate equation 

(10) N times, with N being the sample size, omitting one observation at a time. We then use the model to 

predict the value of the omitted observation and compute the corresponding residual, which we then square. 

Finally, we average the squared residuals across all N repetitions. The reason why we pick a local quadratic 

polynomial is because Fan and Gijbels (1996) suggest that if we want to estimate the n
th

 derivative of a 

function, say K(P), then we should use a polynomial of order n+1. 



 22 

likely to go to school is consistent with a simple economic model where agents sort into 

different levels of schooling based on their comparative advantage. 

All our confidence intervals are estimated using the bootstrap. In each bootstrap 

iteration we perform every single step of the estimation procedure. To be precise, we first 

draw bootstrap samples from the raw data. We use a block-bootstrap procedure, where 

the block is the village of residence (the cluster). Then, for each sample, we proceed from 

the first step, which is the estimation of P, and we proceed all the way towards the last 

step, which is the estimation of the treatment parameters. We perform 250 replications, 

and using the bootstrap replications we can construct Highest Posterior Density (HPD) 

95% confidence intervals for the MTE and the treatment parameters (which are the 

shortest intervals in the distribution of the parameter that hold 95% of the data).
7
 

Unfortunately the confidence intervals on our estimated MTE are quite wide. As 

mentioned above, this problem had appeared before in our discussion of standard IV 

estimates, and the standard errors of our estimates are not much larger than those reported 

in the literature (Card, 2001). However, it is still possible to reject that the MTE is flat, 

and therefore, that there is selection in returns and that our concern with heterogeneity is 

important. Appendix Table A7 tests and rejects that adjacent segments of the MTE are 

equal (see Carneiro, Heckman and Vytlacil, 2011). 

Once we have established that selection in returns is important, one way to obtain 

smaller standard errors is to estimate a parametric model. This would require us to 

consider heterogeneity and selection in returns using a less flexible model, but which 

delivers much more precise estimates. This is exemplified in figure 3, which shows that 

the standard errors improve dramatically when we estimate the MTE assuming joint 

normality of (U1, U0, US). The shape of the MTE is declining as before, although the 

normality assumption does not allow the MTE to have a flat section as in Figure 2, so the 

MTE is declining everywhere, again taking negative values for very high values of V. In 

principle, it would be possible to consider more flexible parametric models. 

Table 4 presents average returns to upper secondary schooling for different groups of 

individuals. The return to upper secondary school for a random person (ATE) is 13.8%.  

                                                 
7
 The fact that our estimate of P has estimation error is reflected in the standard errors. However, we 

assume that any measurement error type bias disappears as the size of the sample grows, and therefore, 

measurement error does not affect the consistency of our estimates. 
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The return for those individuals who were enrolled in upper secondary schooling (ATT) 

is considerably higher, at 21.8%. The return that individuals who did not go to upper 

secondary school would experience had they gone there (ATU) is 8.1%. Average 

parameters are estimated with the assumption of full support (although figure 1 shows a 

very small lack of support in the left tail of the distribution of P). Estimates of the return 

to the marginal student (AMTE) are robust to the lack of full support (Carneiro, Heckman 

and Vytlacil, 2010, 2011). The return to the marginal student is 14.0%, well below the 

return to the average student in upper secondary school (21.8%).
8
 

Finally, the last line of Table 4 (PRTE) reports the average return for those induced to 

attend upper secondary school by a particular policy shift: a 10% reduction in distance to 

an upper secondary school. This is the parameter needed to understand the impacts of 

such an education expansion. By coincidence, it is remarkably similar to the MPRTE. 

In the appendix we show that results are similar but more imprecise when we do not 

interact Z and X in the selection equation. This is reassuring, and shows the importance of 

using a more flexible model for the precision of our estimates. We also present estimates 

of treatment effects for much lower values of the bandwidth, which show some 

sensitivity in the point estimates for ATE, TT, and TUT (as expected), especially for very 

low bandwidths, but little sensitivity for the two policy parameters, MPRTE and PRTE.
9
 

4.4. Estimates by Age Group 

The individuals in our sample have between 25 and 60 years of age, which is a very 

large age range. It is plausible that the returns to schooling vary with the age of the 

individual, either because of genuine age effects, or because of cohort effects. 

Distinguishing the two is well known to be a very difficult problem. 

We include an age polynomial in the model, which accounts for age profiles, and we 

allow the age profile to vary with schooling (by interacting the age polynomial with 

upper secondary school attendance). Nevertheless, we cannot reject that the age profiles 

                                                 
8
 These are apparently high returns, but they are not out of line with other estimates for Indonesia by Duflo 

(2001) and Petterson (2010). A review of the studies on the returns to secondary and higher education in 

developing countries by Psacharopuolos and Partinos (2004) further indicates that private returns to 

secondary and higher education range from around 18 percent in non-OECD Asian countries to almost 28 

percent in countries of Sub-Saharan Africa. So, our results are very much within the range found in the 

literature for developing countries, even if they are high for developed country standards. 
9
 See tables A3 , A8 and A9 which present the tables just reported, but for the case where we exclude these 

interactions, as well as figures A1, A2 and A3. Table A10 reports results for much lower bandwidths. 
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are not affected by schooling (see Table A7 in the Appendix), although one could argue 

that our specification of age effects is restrictive. 

The model laid out so far does not allow the MTE to vary with age (apart from its 

mean), since we assume the MTE is separable in observables and unobservables. It is 

possible that age or cohort have an impact not only on average wage profiles, but also on 

the MTE. In order to investigate this possibility we divide the sample into two groups: 

individuals with an age above 37, and individuals with age equal to or below 37 (which is 

the median age in our sample). Our main results are in Appendix Table A10, which 

shows ATT, ATE and ATU estimate for these two age groups. These results are 

nevertheless less robust than the ones reported before, since the instruments become 

weak predictors of schooling in the selection equation once we divide the sample in these 

two halves. Average returns to schooling are generally much higher for the older age 

group. Also, for the older age group the MTE is declining with V, whether we estimate 

the model using the semi-parametric LIV estimator, or a parametric normal selection 

model. For the younger age group the results are sensitive to which method is used.
10

 

4.5. Comparison with Carneiro, Heckman and Vytlacil (2011) 

As pointed out above, in this paper we introduce a procedure that relaxes the 

assumptions in previous applications of this method, namely Carneiro, Heckman and 

Vytlacil (2011). In order to compare the two methods we conducted a simple Monte 

Carlo simulation, for sample sizes like the ones used in this paper. We describe the 

simulation in detail in the Appendix D, and here we report the most important results. 

We find that both procedures work relatively well in our simulation. However, the 

procedure in this paper performs better. For the three parameters we look at, the ATE, the 

                                                 
10

 Throughout the paper we have use data only on wage earners. This is standard in the literature, mainly 

because they have a well defined wage measure. However, one could also include self-employed 

individuals in the sample. This is what we do in Table A12 in the Appendix, which has 3 columns: one 

corresponding to our baseline results, one including only self-employed individuals, and a third one 

including both self-employed and wage earners in the sample. The point estimates are different across 

samples but the patterns are similar. We prefer to use our baseline specification in our main text not only 

because we have a more uniform wage measure for this subsample, but also because the instrumental 

variable is a stronger predictor of schooling than in the other samples (especially when compared with the 

sample including only self-employed, for which we do not have a strong first stage). Table A13 has our last 

sensitivity exercise, where we omit all post schooling controls from the model. There is very little change 

in the point estimates relative to the baseline model. 
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TT, and the TUT, the mean squared error is almost half as large for the procedure used in 

this paper as in the procedure in Carneiro, Heckman and Vytlacil (2011). 

5. Conclusion 

Indonesia has an impressive record of educational expansion since the 1970s. The 

enrollment rates are nearly universal for elementary schooling and are around 75% for 

secondary education. There is an ongoing effort to extend universal education attainment 

to the secondary level. And although enrollment in secondary education continues to rise 

we find striking inequality in returns to education. Individuals who are more likely to be 

attracted by educational expansions at the upper secondary level (marginal) have lower 

average returns than those already attending upper secondary schooling. In this paper we 

document a large degree of heterogeneity in the returns to upper secondary schooling in 

Indonesia. We estimate the return to upper secondary education to be 7 to 8 percentage 

points higher (per year of schooling) for the average than for the marginal student. 

Therefore, efforts aimed at educational expansion will attract students with lower 

levels of returns. However, returns are still fairly high for the marginal person. It is 

difficult to know what would happen to returns if there were large education expansions, 

because our framework does not allow us to say anything about the equilibrium impacts 

of such policies. Our estimates indicate that the quality of the average student would 

probably decline, and if demand is downward sloping, we may also expect the price of 

skill to decline. However, this is outside the scope of our model. 

What is behind such a large inequality in the returns to schooling? There is a growing 

body of literature that argues that human capital outcomes later in life (including the 

ability to learn) are largely influenced by what happens early in life (e.g., Carneiro and 

Heckman, 2003). It is therefore important for the design of schooling policy to determine 

whether the inequality in secondary schooling outcomes can be remedied at earlier 

stages, for example during early childhood, or during the elementary school years. 
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Table 1: Sample statistics for the treatment and control groups 

  
Upper secondary or higher 

(Treatment group) 

Less than upper secondary  

(Control group) 

 N = 1085 N = 1523 

Log hourly wages 8.198 7.481 

Years of education 13.133 5.341 

Distance to school in km 1.053 1.564 

Distance to health post in km 0.889 1.079 

Age 37.058 38.675 

Religion Protestant 0.050 0.022 

Catholic 0.029 0.009 

Other 0.062 0.043 

Muslim 0.860 0.927 

Father uneducated 0.130 0.383 

…elementary 0.503 0.507 

...secondary and higher 0.330 0.061 

...missing 0.020 0.037 

Mother uneducated 0.201 0.425 

…elementary 0.484 0.406 

...secondary and higher 0.204 0.022 

...missing 0.098 0.133 

Rural household 0.240 0.476 

North Sumatra 0.057 0.063 

West Sumatra 0.047 0.058 

South Sumatra 0.048 0.032 

Lampung 0.016 0.027 

Jakarta 0.181 0.095 

Central Java 0.085 0.163 

Yogyakarta 0.092 0.054 

East Java 0.121 0.180 

Bali 0.056 0.038 

West Nussa Tengara 0.050 0.048 

South Kalimanthan 0.040 0.020 

South Sulawesi 0.035 0.035 

Source: Data from IFLS3. Sample restricted to males aged 25-60 employed in salaried jobs in government 

and private sectors. Hourly wages constructed based on self-reported monthly wages and hours.   
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Table 2: Upper school decision model – Average Marginal Derivatives 

  Coef Average Derivative 

Dist. to secondary school in km -0.123
***

 -0.0300
**

 

 

(0.040) (0.0127) 

Age 0.077
*
 0.0130 

 

(0.044) (0.0090) 

Age Squared -0.096
*
 -0.0162 

 

(0.055) (0.0111) 

Protestant 0.730
***

 0.1382
***

 

 

(0.264) (0.0484) 

Catholic 1.211
***

 0.2123
**

 

 

(0.395) (0.0890) 

Other religions 0.245 0.0552 

 

(0.363) (0.0878) 

Fathers education elementary 0.766
***

 0.1342
***

 

 

(0.127) (0.0217) 

Father higher education 1.835
***

 0.3769
***

 

 

(0.178) (0.0320) 

Mother education elementary 0.443
***

 0.0852
***

 

 

(0.123) (0.0230) 

Mother higher education 1.851
***

 0.3730
***

 

 

(0.237) (0.0418) 

Rural -0.593
***

 -0.1143
***

 

 

(0.110) (0.0276) 

Distance to health post in km -0.017 0.0000 

 

(0.040) (0.0083) 

Location fixed effect Yes 

Mean of dependent variable 0.416 

 (0.010) 

Test for joint significance of 

instruments: Chi-square/p-value 

9.42/0.0021 

 

Note: This table reports the coefficients and average marginal derivatives from a logit regression of upper 

secondary school attendance (a dummy variable that is equal to 1 if an individual has ever attended upper 

secondary school and equal to 0 if he has never attended upper secondary school but graduated from lower 

secondary school) on several variables. Type of location is controlled for using province dummy variables. 

A dummy variable for missing parental education is included in the regressions but not reported in the 

table. The first column presents coefficients of logit where only distance to school is used an IV. In the 

second column average derivatives (computed at the average values of X) are presented and instruments 

include distance to secondary school and interactions with all the Xs. Reference categories are Muslim, not 

educated.  Standard errors (in parenthesis) are robust to clustering at the community level, with significance 

at 
***

 p<0.01, 
**

 p< 0.05, 
*
 p<0.1 indicated.  
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Table 3:  Annualized OLS and IV estimates of the return to upper secondary schooling 

  OLS IV 

Upper secondary (annualized) 0.090
***

 0.129
***

 

 

(0.005) (0.048) 

Age 0.052
***

 0.048
**

 

 

(0.019) (0.020) 

Age Squared -0.042
*
 -0.037 

 

(0.023) (0.025) 

Protestant 0.182
**

 0.142 

 

(0.084) (0.104) 

Catholic 0.059 0.001 

 

(0.189) (0.202) 

Other religions 0.109 0.097 

 

(0.126) (0.125) 

Fathers education elementary 0.135
***

 0.091 

 

(0.048) (0.070) 

Fathers education secondary or higher 0.215
***

 0.101 

 

(0.067) (0.153) 

Mother’s education elementary -0.052 -0.080 

 

(0.048) (0.060) 

Mother’s education secondary or higher -0.031 -0.128 

 

(0.078) (0.136) 

Rural household  0.111
**

 0.152
**

 

 

(0.045) (0.068) 

Distance to health post in km -0.023 -0.020 

 

(0.018) (0.017) 

Location controls YES YES 

Mean of dependent variable 7.779 

 (0.932) 

Number of observations 2,608 2,608 

Test for joint significance of instruments: F-stat/p-value 2.22/0.00 

R2 0.210 0.190 

Note: This table reports the coefficients for OLS and 2SLS IV for regression of log of hourly wages on 

upper school attendance (a dummy variable that is equal to 1 if an individual has ever attended upper 

secondary school and equal to 0 if he has never attended upper secondary school but graduated from lower 

secondary school), controlling for parental education, religion and location. Excluded instruments are 

distance to secondary school and interactions with parental education, religion and age. Type of location is 

controlled using province dummies. A dummy variable for missing parental education is included in the 

regressions but not reported in the table. Reference categories are Muslim for religion, and not educated for 

education.Standard errors (in parenthesis) are robust to clustering at the community level with significance 

at 
***

 p<0.01, 
**

 p< 0.05, 
*
 p<0.1 indicated. 

 
  



 33 

Table 4: Estimates of Average Returns to Upper Secondary Schooling 

Parameter Non parametric Estimate Normal selection model 

   

ATT 0.218 0.203 

 (-0.002, 0.353) (-0.015,0.246) 

ATE 0.138 0.067 

 (0.025, 0.254) (-0.016,0.199)  

ATU 0.081 -0.029 

 (-0.121, 0.326) (-0.082,0.175)  

MPRTE 0.140 0.104 

 (-0.049, 0.338) (-0.017, 0.246) 

PRTE 0.145 0.100 

 (-0.053, 0.337) (-0.015,0.251) 

   

Note: This table presents estimates of various returns to upper secondary school attendance for the semi-

parametric and normal selection models: average treatment on the treated (ATT), average treatment effect 

(ATE), treatment on the untreated (ATU), marginal policy relevant treatment effect (MPRTE), and the 

policy relevant treatment effect (PRTE) corresponding to a 10% reduction in distance to upper secondary 

school.  Returns to upper school are annualized to show returns for each additional year.  Bootstrapped 

Highest Posterior Density 95% intervals are reported in parentheses. 
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Figure 1: Propensity score (P) support for each schooling group S = 0 and S = 1 

 
Note: P is estimated probability of going to upper secondary school. It is estimated from a logit regression 

of upper school attendance on Xs, distance to school, interactions of X and distance to school (Table 4). 
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Figure 2: Marginal treatment effect with 90% Confidence Interval – Semi-parametric regression 

estimates 

 
 

Note: To estimate the E(Y1-Y0|X, Us) function we used a partial linear regression of log wages on X and K(P) ,with a 

bandwidth of 0.27. X includes age, age squared, religion, parental education, rural and province dummy variables. 90% 

confidence interval constructed using 250 boostrap repetitions. Values of V on the x-axis. 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ar

gi
n

al
 T

re
at

m
e

n
t 

Ef
fe

ct
 

Values of V 

MTE

90% Confidence Interval



 36 

 

 

 

Figure 3: MTE with 90% Confidence Interval – Parametric normal selection model estimates 

 

 
 

Note: Parametric MTE estimated using a switching regression model with normally distributed errors. 
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Appendix A 

 

Simulation-based approach for estimating average treatment effects in equations 7 and 

12.  

 

Step 1: Estimate MTE(x, v) as described in section 3. 

 

Step 2: For each individual in the sample construct the corresponding P(Z). Then, since 

𝑉~𝑈𝑛𝑖𝑓[0,1], take a grid with n values uniformly spaced between 0 and 1 (recall that we 

assumed that V was independent of X and Z). Assign all n values of V in the grid to each 

individual. Since there are 2608 individuals in the sample, we can then create a simulated 

dataset of size 2608
*
n (we use n=1000). Evaluate the MTE(x,v) for each value of X and 

each value of simulated V. 

 

Step 3: In this simulated dataset both X and V are observed for all 2608
*
n observations. In 

addition, we have estimates of MTE(x,v) for each of them. Therefore it is trivial to 

construct the following quantities: 

𝐴𝑇𝐸 = ∬ 𝑀𝑇𝐸(𝑥, 𝑣)𝑓𝑋,𝑉(𝑥, 𝑣)𝑑𝑥𝑑𝑣 

𝐴𝑇𝑇 = ∬ 𝑀𝑇𝐸(𝑥, 𝑣)𝑓𝑋,𝑉(𝑥, 𝑣|𝑆 = 1)𝑑𝑥𝑑𝑣 = ∬ 𝑀𝑇𝐸(𝑥, 𝑣)𝑓𝑋,𝑉(𝑥, 𝑣|𝑃 > 𝑉)𝑑𝑥𝑑𝑣 

𝐴𝑇𝑈 = ∬ 𝑀𝑇𝐸(𝑥, 𝑣)𝑓𝑋,𝑉(𝑥, 𝑣|𝑆 = 0)𝑑𝑥𝑑𝑣 = ∬ 𝑀𝑇𝐸(𝑥, 𝑣)𝑓𝑋,𝑉(𝑥, 𝑣|𝑃 ≤ 𝑉)𝑑𝑥𝑑𝑣    

by respectively averaging the MTE for everyone in the simulated sample, for those who 

have P>V, and for those with P≤V. 

 

Step 4: There is one parameter that remains to be estimated: the AMTE. The version of 

the AMTE we use in this paper defines marginal individuals as those for whom: 

|𝑍𝛾 − 𝑈𝑠| < 𝜀 

Carneiro, Heckman and Vytlacil (2010) show that this is equivalent to estimating the 

average return to schooling for those induced to enroll in upper secondary schooling 

when one of the components of Z, say the intercept, changes my a marginal amount. This 

is exactly what we do in our simulations: we change the intercept of the selection 

equation marginally and we see which members of our simulated dataset change their 

schooling decision. Finally, we average the MTE for this group. 
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Appendix B 

Table A1: Regression of elementary education experiences on distance to school 

  Failed grade 
Number of 

repeats 
Worked 

Dist. to nearest secondary school in km 0.007 0.011 -0.001 

 (0.007) (0.008) (0.005) 

Mean of dependent variable  0.227 0.258 0.087 

 (0.427) (0.6158) (0.285) 

Number of observations 2,248 2,244 2,250 

R2 0.041 0.043 0.043 

Note: Sample restricted to males with the repeated grade information non-missing. The individual and 

family controls include age, age squared, religion, fathers and mother’s schooling levels completed, 

distance to local health outpost, rural and province dummies. All regressions include individual and family 

controls, and location fixed effects. Standard errors (in parenthesis) are robust to clustering at the 

community level, with significance at 
***

 p<0.01, 
**

 p< 0.05, 
*
 p<0.1 indicated. 
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Table A2: OLS and IV estimates of the return to a year of schooling 

  OLS First stage IV 

  Coef se 

Average 

Marginal 

Derivative 

se Coef Se 

Years of education 0.096
***

 0.005 

  

0.157
***

 0.037 

Age 0.058
***

 0.017 0.027 0.078 0.055
***

 0.018 

Age Squared -0.047
**

 0.022 -0.062 0.098 -0.042
*
 0.022 

Muslim 
  

  
  

Protestant 0.084 0.082 2.033 0.381 -0.037 0.118 

Catholic 0.003 0.152 2.196 0.856 -0.117 0.149 

Other religions 0.055 0.121 0.987 0.754 0.002 0.128 

Father uneducated  
  

  
  

… elementary 0.062 0.048 1.759 0.228 -0.049 0.080 

… secondary or higher 0.135
**

 0.067 3.627 0.312 -0.083 0.144 

Mother uneducated  
  

  
  

… elementa -0.086
*
 0.046 1.000 0.216 -0.147

**
 0.063 

…  secondary or higher -0.119 0.078 3.173 0.344 -0.316
**

 0.145 

Rural household  0.149
***

 0.044 -1.146 0.301 0.234
***

 0.073 

Distance to health post in km -0.020 0.015 0.037 0.084 -0.015 0.013 

Location controls 
  

Yes 

 
  

Dist to nearest sec school      -0.298
***

 0.102     

Number of observations 2,608 

  

2,608 

Test for joint significance of 

instruments: F-Stat/p-value 
 3.62/0.000 

 

 

R2 0.260     0.204 

Note: This table reports the coefficients for OLS and 2SLS IV for regression of log of hourly wages on 

years of schooling controlling for parental education, religion and location. We report average marginal 

derivatives for the first stage equation. Excluded instruments are distance to secondary school and 

interactions with parental education, religion, age and distance to health center. Type of location is 

controlled using province dummies. A dummy variable for missing parental education is included in the 

regressions but not reported in the table. Standard errors (in parenthesis) are robust to clustering at the 

community level, with significance at 
***

 p<0.01, 
**

 p< 0.05, 
*
 p<0.1 indicated. 
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Table A3: IV estimates of the return to a year of schooling without distance and X interactions 

  IV First stage   

  coef se coef se 

Years of education 0.144
***

 0.053 

  Age 0.056
***

 0.017 0.036 0.077 

Age Squared -0.043
*
 0.022 -0.072 0.096 

Muslim 
  

  Protestant -0.011 0.141 2.050
***

 0.380 

Catholic -0.091 0.164 2.229
**

 0.906 

Other religions 0.014 0.128 0.839 0.778 

Father uneducated  
  

  … elementary -0.025 0.102 1.800
***

 0.231 

… secondary or higher -0.036 0.198 3.525
***

 0.316 

… education missing -0.034 0.109 0.353 0.444 

Mother uneducated  
  

  … elementary -0.134
*
 0.073 0.973

***
 0.215 

…  secondary or higher -0.274 0.185 3.180
***

 0.331 

… education missing -0.183
***

 0.063 0.367 0.301 

Rural household  0.215
**

 0.091 -1.144
***

 0.302 

Distance to health post in km -0.016 0.013 0.007 0.082 

W Java 
  

  N Sumatra 0.114 0.088 -0.615 0.500 

W Sumatra 0.282
**

 0.112 -0.704 0.476 

S Sumatra 0.137 0.125 0.667 0.476 

Lampung -0.044 0.108 0.149 0.477 

Jakarta -0.077 0.078 0.752
*
 0.421 

C Java 0.051 0.091 -0.937
*
 0.498 

Yogyakarta -0.303
***

 0.100 1.128
**

 0.570 

E Java -0.007 0.066 -0.300 0.411 

Bali -0.197 0.159 1.027 0.946 

W Nusa Tenggara -0.176 0.107 0.715 0.839 

S Kalimantan 0.298
***

 0.114 1.726
***

 0.540 

S Sulawesi 0.032 0.097 0.226 0.702 

Dist to nearest sec school      -0.244
***

 0.072 

Number of observations 2,608 
 

Test for joing significance of instruments: 

F-stat/p-value  
11.34/0.00 

R2 0.206 

 Note: This table reports the coefficients for 2SLS IV for regression of log of hourly wages years of 

schooling, controlling for parental education, religion and location. Excluded instruments are distance to 

secondary school. Type of location is controlled using province dummies. Dummy variable for missing 

parental education is included in the regressions but not reported in the table. Reference categories are 

Muslim, and not educated. Standard errors (in parenthesis) are robust to clustering at the community level, 

with significance at 
***

 p<0.01, 
**

 p< 0.05, 
*
 p<0.1 indicated. 
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Table A4: IV estimates of the return to a year of schooling without regional dummies 

  IV 

  coef Se 

Years of education 0.135
***

 0.034 

Age 0.059
***

 0.018 

Age Squared -0.046
**

 0.022 

Muslim 
  

Protestant -0.032 0.100 

Catholic -0.153 0.154 

Other religions -0.109 0.091 

Father uneducated  
  

… elementary -0.006 0.077 

… secondary or higher -0.004 0.141 

… education missing -0.002 0.107 

Mother uneducated  
  

… elementary -0.074 0.057 

…  secondary or higher -0.190 0.131 

… education missing -0.156
***

 0.060 

Rural household  0.227
***

 0.072 

Distance to health post in km -0.008 0.014 

 

    

Number of observations 2,608 

Test for joing significance of instruments: F-stat/p-value 4.08/0.00 

R2 0.22 

Note: This table reports the coefficients for 2SLS IV for regression of log of hourly wages years of 

schooling, controlling for parental education, religion and location. Excluded instruments are distance to 

secondary school. Type of location is controlled using province dummies. Dummy variable for missing 

parental education is included in the regressions but not reported in the table. Reference categories are 

Muslim, and not educated. Standard errors (in parenthesis) are robust to clustering at the community level, 

with significance at 
***

 p<0.01, 
**

 p< 0.05, 
*
 p<0.1 indicated. 

 

 
Table A5: IV estimates of the return to upper secondary schooling – Additional sensitivity results 

 Basic No Z*X Interactions IV using P 

Upper Secondary 0.129
***

 0.282* 0.095** 

(annualized by 7.79) (0.048) (0.144) (0.047) 

Upper Secondary 0.112
***

 0.244* 0.082** 

(annualized by 8.99) (0.042) (0.125) (0.041) 

Note: This table reports the coefficients for OLS and 2SLS IV for regression of log of hourly wages on 

upper school attendance (a dummy variable that is equal to 1 if an individual has ever attended upper 

secondary school and equal to 0 if he has never attended upper secondary school but graduated from lower 

secondary school), controlling for parental education, religion and location. Excluded instruments are 

distance to secondary school and interactions with parental education, religion and age in the first column 

(our main specification in the paper), distance to secondary school in the second column, and the estimated 

propensity score in the third column. Type of location is controlled using province dummies. A dummy 

variable for missing parental education is included in the regressions but not reported in the table. 

Reference categories are Muslim for religion, and not educated. We present estimates normalized by 7.79 

(first line), the average difference in years of schooling between those with and without upper secondary 

school attendance, and 8.99 (second line), the estimated coefficient of an IV regression of years of 

completed education on upper secondary school attendance (using our basic specification). Standard errors 

(in parenthesis) are robust to clustering at the community level with significance at 
***

 p<0.01, 
**

 p< 0.05, 
*
 

p<0.1 indicated. 
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Table A6: Outcome equation: Partial linear regression estimates 

  Coeffients Standard Errors 

Age 0.070
*
 0.042 

Age Squared -0.076 0.051 

Protestant -0.022 0.368 

Catholic -0.816 0.634 

Other religions 0.786
*
 0.406 

Father with elementary education 0.042 0.192 

… secondary or higher 0.103 0.675 

… education missing 0.425 0.292 

Mother with elementary education -0.144 0.156 

…  secondary or higher -1.570
*
 0.938 

… education missing -0.173 0.170 

Rural household 0.288
*
 0.161 

Distance to health post in km -0.016 0.030 

N Sumatra 0.333 0.214 

W Sumatra 0.177 0.218 

S Sumatra 0.233 0.309 

Lampung 0.253 0.294 

Jakarta -0.248 0.233 

C Java 0.071 0.153 

Yogyakarta -0.127 0.301 

E Java -0.071 0.149 

Bali -1.022
**

 0.478 

W Nusa Tenggara -0.267 0.325 

S Kalimantan 0.013 0.451 

S Sulawesi -0.434 0.274 

N Sumatra -0.550 0.465 

S Sumatra -0.134 0.595 

C Java -0.197 0.415 

Yogyakarta -0.127 0.602 

E Java 0.326 0.357 

Bali 1.660
*
 0.898 

W Nusa Tenggara 0.192 0.711 

S Kalimantan 0.367 0.860 

W Sumatra
*
P 0.465 0.535 

Lampung
*
P -0.993 0.839 

Jakarta
*
P 0.394 0.452 

S Sulawesi
*
P 0.979 0.598 

Age
*
P -0.069 0.097 

Age Squared
*
P 0.124 0.121 

Protestant
*
P 0.130 0.639 

Catholic
*
P 1.171 0.931 

Other religions
*
P -1.261

*
 0.703 

Father with elementary
*
P 0.053 0.605 

Father with secondary/higher
*
P 0.002 1.280 

Father education missing
*
P -1.322 0.942 

Mother with elementary
*
P 0.187 0.393 

Mother with secondary/higher
*
P 1.977 1.433 

Mother education missing
*
P 0.109 0.458 

Rural 
*
P -0.275 0.362 

Distance to health post
*
P 0.037 0.082 

Number of observations 2,608 
R2 0.080 
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note:  
***

 p<0.01, 
**

 p<0.05, 
*
 p<0.1 The table presents the coefficients on X and P

*
X from the  Robinson’s 

(1988) double residual semi-parametric regression estimator. The logit estimated pscore (P) enters the 

equation nonlinearly according to a non-binding function and estimated using a gaussian kernel regression 

with bandwidth equal to 0.27.  
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Table A7: Test for heterogeneity in returns: compare adjacent sections of the semi-parametric MTE 

 

Ranges of US for 

LATE
j
 

(0,0.1) (0.1,0.2) (0.2,0.3) (0.3,0.4) (0.4,0.5) (0.5,0.6) (0.6,0.7) (0.7,0.8) (0.8,0.9) 

Ranges of US for 

LATE
j+1

 
(0.1,0.2) (0.2,0.3) (0.3,0.4) (0.4,0.5) (0.5,0.6) (0.6,0.7) (0.7,0.8) (0.8,0.9) (0.9,1) 

Difference in 

LATEs 
-0.078 -0.039 -0.013 -0.012 0.00 0.005 -0.014 -0.024 -0.04 

p-value 0.00 0.00 0.00 0.00 0.597 0.759 0.005 0.00 0.00 

Note: In order to compute the numbers in this table we construct groups of values of Us and average the 

MTE within these groups, where 𝑈𝑆

𝐿𝑗
and 𝑈𝑆

𝐻𝑗
are the lowest and highest values of Us defined for interval j. 

Then we compare the average MTE across adjacent groups and test whether the difference is equal to zero 

using the bootstrap with 250 replications. Take, for example, the first column of the table. In the first line 

we show the average value the MTE takes when X is fixed at its mean and V takes values between 0 and 

0.1, while the second line corresponds to values of V between 0.1 and 0.2. The third line shows the 

difference between the first two lines, and the fourth line reports the p-value of a test of whether this 

difference is equal to zero. We reject equality in almost all columns of the table at the 5% significance 

level. Therefore, we reject that the MTE is flat, even with the large standard errors shown in figure 2. 

 

 

Table A8: Testing for equality of LATEs over different Intervals of MTE – Model Without 

Interactions between X and Z 

(𝐇𝟎: 𝐋𝐀𝐓𝐄𝐣 (𝐔𝐒

𝐋𝐣
, 𝐔𝐒

𝐇𝐣
) − 𝐋𝐀𝐓𝐄𝐣+𝟏 (𝐔𝐒

𝐋𝐣+𝟏
, 𝐔𝐒

𝐇𝐣+𝟏
) = 𝟎) 

Ranges of US for 

LATEj 
(0,0.1) (0.1. 0.2) (0.2,0.3) (0.3,0.4) (0.4,0.5) (0.5,0.6) (0.6,0.7) (0.7,0.8) (0.8,0.9) 

Ranges of US for 

LATEj+1 
(0.1. 0.2) (0.2,0.3) (0.3,0.4) (0.4,0.5) (0.5,0.6) (0.6,0.7) (0.7,0.8) (0.8,0.9) (0.9,1) 

Difference in 

LATEs 
-0.078 -0.04 -0.014 -0.012 -0.010 -0.011 -0.012 -0.014 -0.014 

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Note: In order to compute the numbers in this table we construct groups of values of Us and average the 

MTE within these groups, where 𝑈𝑆

𝐿𝑗
and 𝑈𝑆

𝐻𝑗
are the lowest and highest values of Us defined for interval j. 

Then we compare the average MTE across adjacent groups and test whether the difference is equal to zero 

using the bootstrap with 250 replications. 

 
Table A9: Estimates of Average Returns to Upper Secondary Schooling with 95% confidence 

interval – Model Without Interactions between X and Z 

Parameter Non parametric Estimate Normal selection model 

ATT 0.217 0.198
*
 

 (-.1, 0.525) (-0.041,0.438) 

 

ATE 0.13 0.065 

 (-0.06, 0.32) (-0.099, 0.231) 

 

ATU 0.07 -0.028 

 (-0.227, 0.365) (-0.217, 0.160) 

   

   

Note: This table presents estimates of various returns to upper secondary school attendance for the semi-

parametric and normal selection models: average treatment on the treated (ATT), average treatment effect 

(ATE), treatment on the untreated (ATU), and marginal policy relevant treatment effect (MPRTE).  Returns 

to upper school are annualized to show returns for each additional year.  Bootstrapped 95% confidence 

interval are reported in parentheses, with significance at 
***

 p<0.01, 
**

 p< 0.05, 
*
 p<0.1 indicated.  
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Table A10: Estimates of Average Returns to Upper Secondary Schooling for different bandwidths 

Bandwidth 0.05 0.10 0.15 

    

ATT 0.800 0.456 0.347 

 (0.0632, 0.8018) (0.026,0.555) (-0.001,0.454) 

ATE 0.155 0.062 0.090 

 (-0.183, 0.425) (-0.109,0.318) (-0.050,0.296)  

ATU -0.311 -0.22 -0.094 

 (-0.584, 0.509) (-0.388,0.434) (-0.297,0.337)  

MPRTE 0.106 0.119 0.130 

 (0.068, 0.815) (0.030,0.575) (-0.013, 0.449) 

PRTE 0.109 0.125 0.136 

 (0.075, 0.870) (0.048,0.578) (-0.036,0.444) 

    

Note: This table presents estimates of various returns to upper secondary school attendance for the semi-

parametric and normal selection models: average treatment on the treated (ATT), average treatment effect 

(ATE), treatment on the untreated (ATU), marginal policy relevant treatment effect (MPRTE), and the 

policy relevant treatment effect (PRTE) corresponding to a 10% reduction in distance to upper secondary 

school.  Returns to upper school are annualized to show returns for each additional year.  Bootstrapped 

Highest Posterior Density 95% intervals are reported in parentheses. 

 

 

Table A11: Estimates of Average Returns to Upper Secondary Schooling – by age group 

Parameter Non parametric Estimate Normal selection model 

Respondents younger than the  median age of 37 years old 

ATT 0.006 0.003 

 (-0.230, 0.280) (-0.078, 0.242) 

ATE 0.078 -0.046 

 (-0.072, 0.198) (-0.087, 0.162) 

ATU 0.141 -0.088 

 (-0.107, 0.304) (-0.140, 0.149) 

   

Respondents older than the median age of 37 years old 

ATT 0.291 0.184 

 (0.025, 0.435) (0.001, 0.264) 

ATE 0.057 0.071 

 (-0.086, 0.288) (-0.007, 0.267) 

ATU -0.080 0.006 

 (-0.344, 0.387) (-0.054, 0.305) 

   

Note: This table presents estimates of various returns to upper secondary school attendance for the semi-

parametric and normal selection models: average treatment on the treated (ATT), average treatment effect 

(ATE), and treatment on the untreated (ATU).  Returns to upper school are annualized to show returns for 

each additional year.  Bootstrapped Highest Posterior Density 95% intervals are reported in parentheses. 

  



 46 

Table A12: Estimates of Average Returns to Upper Secondary Schooling for different subsamples 

Sample Only Wage 

Earners 

Only Self-

Employed 

Both 

    

IV 0.129 0.212 0.106 

 (0.048) (0.142) (0.070) 

ATT 0.218 0.218 0.213 

 (-0.002, 0.353) (-0.106,0.419) (0.002,0.342) 

ATE 0.138 0.099 0.104 

 (0.025, 0.254) (-0.204,0.422)  (-0.018,0.271) 

ATU 0.081 0.066 0.051 

 (-0.121, 0.326) (-0.344,0.493)  (-0.127,0.296) 

MPRTE 0.140 0.192 0.143 

 (-0.049, 0.338) (-0.134, 0.399) (0.021,0.382) 

PRTE 0.145 0.174 0.141 

 (-0.053, 0.337) (-0.123,0.417) (0.002,0.342) 

    

Note: This table presents estimates of various returns to upper secondary school attendance for the semi-

parametric and normal selection models: average treatment on the treated (ATT), average treatment effect 

(ATE), treatment on the untreated (ATU), marginal policy relevant treatment effect (MPRTE), and the 

policy relevant treatment effect (PRTE) corresponding to a 10% reduction in distance to upper secondary 

school.  Returns to upper school are annualized to show returns for each additional year.  Bootstrapped 

Highest Posterior Density 95% intervals are reported in parentheses. In the case of the IV estimates we 

report standard errors in parenthesis. 

 

Table A13: Estimates of Average Returns to Upper Secondary Schooling Omitting Post-Schooling 

Controls 

IV 0.116 

 (0.045) 

ATT 0.228 

 (-0.015, 0.383) 

ATE 0.145 

 (0.018, 0.277) 

ATU 0.085 

 (-0.179, 0.315) 

MPRTE 0.137 

 (-0.015, 0.383) 

PRTE 0.150 

 (-0.015, 0.383) 

  

Note: This table presents estimates of various returns to upper secondary school attendance for the semi-

parametric and normal selection models: average treatment on the treated (ATT), average treatment effect 

(ATE), treatment on the untreated (ATU), marginal policy relevant treatment effect (MPRTE), and the 

policy relevant treatment effect (PRTE) corresponding to a 10% reduction in distance to upper secondary 

school.  Returns to upper school are annualized to show returns for each additional year.  Bootstrapped 

Highest Posterior Density 95% intervals are reported in parentheses. In the case of the IV estimates we 

report standard errors in parenthesis. 
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Figure A1: Propensity score (P) support for each schooling group S = 0 and S = 1 

(without distance and Xs interactions) 

 
Note: P is estimated probability of going to upper secondary school. It is estimated from a logit regression 

of upper school attendance on Xs, distance to school (Table A2). 

 

 

 
Figure A2: Marginal treatment effect with 90% Confidence Interval – Semi-parametric regression 

estimates (without distance and Xs interactions) 

 
Note: To estimate the E(Y1-Y0|X, Us) function we used a partial linear regression of log wages on X and K(P) ,with a 

bandwidth of 0.27. X includes age, age squared, religion, parental education, rural and province dummy variables. 90% 

confidence interval constructed using 250 boostrap repetitions. Values of V on the x-axis. 
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Figure A3: MTE with 90% Confidence Interval – Parametric normal selection model estimates  

(without distance and Xs interactions)
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Appendix C - Simulating the consequences of violations of instrument validity 

Take the following model of section 4.1: 

𝑦 = 𝜏𝑆 + 𝑢 

𝑆 = 𝜎𝑑∗ + 𝑣 

𝑑 = 𝜌𝑆 + 𝛿𝑑∗ + 𝜀  (14) 

where y is the outcome (wages), S is schooling (upper secondary education), 𝑑∗ is 

distance at the time of the secondary school decision (which is unobserved), and d is 

current distance (measured at the time of the outcome). 

This is a possible representation of the IV model that we estimate in the paper, which 

also includes control variables X. 𝜏 may be a random coefficient. In this appendix we 

briefly examine what could potentially happen to the IV estimates we present in the paper 

if 𝜌 ≠ 0, if 𝐶𝑜𝑣(𝑢, 𝜀) ≠ 0, or both. 

We start by examining examine what could happen as 𝜌 becomes increasingly 

different from zero, and we now present some simple simulations which illustrate what 

could happen. We assume that 𝐶𝑜𝑣(𝑢, 𝜀) = 0. 

As mentioned above, for a small subsample, we have estimates of both d and 𝑑∗. For 

this subsample, we estimate equation (14) and, after adding the control variables used in 

the rest of the paper, we obtain an estimate of 𝜌 of -0.13, with a 95% confidence interval 

going from -0.3 to 0.04. Since we do not expect 𝜌 > 0, in our simulation we consider 

values for this parameter between -0.3 and 0. 

The simulation works in a very simple way. Take 10 different values of 𝜌 equally 

spaced between -0.03 and -0.3 (including the extremes of this interval) we construct a 

new pseudo instrument: �̃� = 𝑑 − 𝜌𝑆 (we understand that we could have chosen to divide 

this by 𝛿, but since it is just a constant, we can ignore it). This gives us ten different 

values for �̃� which we can use to generate ten different IV estimates, which go from 

0.128 when 𝜌 = −0.03 to 0.051 when 𝜌 = −0.30. The original IV estimate is 0.129 and 

all the simulated IVs are below it, as predicted by the simple model we wrote above. The 

entire set of simulated values is as follows: 

𝜌 0 -0.03 -0.06 -0.09 -0.12 -0.15 -0.18 -0.21 -0.24 -0.27 -0.30 

�̂�𝐼𝑉 0.129 0.129 0.125 0.115 0.101 0.085 0.070 0.060 0.054 0.052 0.051 
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The second set of simulations attempts to examine what happened to our IV estimate 

if the assumption that 𝐶𝑜𝑣(𝑢, 𝜀) = 0 was violated. In order to conduct these simulations 

in the simplest possible way we start by adding an additional equation to the system 

defined by (14): 

𝜀 = 𝜋𝑢 + 𝜖 

where 𝐶𝑜𝑣(𝑢, 𝜖) = 0.  

Then we can write: 

𝑢 = 𝑦 − 𝜏𝑆 

𝑑 = 𝜌𝑆 + 𝛿𝑑∗ + 𝜋𝑢 + 𝜖 = (𝜌 − 𝜋𝜏)𝑆 + 𝛿𝑑∗ + 𝜋𝑦 + 𝜖 (15) 

As above, we estimate 𝜋 by running a regression of 𝑑 on S, 𝑑∗, and y. 𝜋 is the 

coefficient on y. Then, assuming now that 𝜌 = 0, and that 𝜏 equals the current IV 

estimate (since we need to plug a value for this parameter), we compute the following 

alternative instrument for ten different values of 𝜋 between -0.01 and -0.1 (since -0.01 is 

the lower limit of the estimated 95% confidence interval for this parameter when we 

estimate equation (15)). 

The set of simulated values is as follows: 

𝜋 0 -0.01 -0.02 -0.03 -0.04 -0.05 -0.06 -0.07 -0.08 -0.09 -0.10 

�̂�𝐼𝑉 0.129 0.115 0.100 0.086 0.071 0.058 0.046 0.034 0.023 0.013 0.005 
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Appendix D - Comparison with Carneiro, Heckman and Vytlacil (2011) – Monte 

Carlo Simulation 

In this appendix we compare the procedures in this paper and the one in Carneiro, 

Heckman and Vytlacil (2011). The MTE is estimated exactly in the same way in the two 

procedures, so there is no difference there. The only difference is in the calculation of the 

treatment parameters, as weighted averages of the MTE. 

We simulate the model described in equations (1) and (2) of our paper. There are two 

regressors, which we call 𝑥1 and 𝑥2, and two instrumental variables, which we call 𝑧1 and 

𝑧2. These variables are simulated to be normal and independent of each other, with means 

equal to -2, 2, -1, and 1, and with variances equal to 4, 4, 9 and 9, respectively. 

In order to simulate the unobservables of the model, we start by constructing three 

independent standard normal random variables, 𝑒1, 𝑒2 and  𝑒3. Then: 

 𝑈1 = 0.012𝑒1 + 0.01𝑒2 

𝑈0 = −0.05𝑒1 + 0.02𝑒3 

𝑉 = −𝑒1 

Finally: 

𝑌1 = 0.24 + 0.8𝑥1 + 0.4𝑥2 + 𝑈1 

𝑌0 = 0.02 + 0.5𝑥1 + 0.1𝑥2 + 𝑈0 

𝑆 = 1 𝑖𝑓 0.2 + 0.3𝑧1 + 0.1𝑧2 − 𝑉 > 0 

Given these parameters, we simulate 1000 datasets with 2000 observations each, and 

then estimate ATE, TT and TUT for each of them, using the procedure in our paper, and 

the procedure in Carneiro, Heckman and Vytlacil (2011). The table below compares the 

results. 

In each line of the table we have a different treatment parameter. In the first column, 

labeled True, we present the true value of each parameter. The second column, labeled 

CHV, shows the mean and standard deviation of the estimates of each parameter using 

the method in Carneiro, Heckman and Vytlacil (2011). The third column, labeled MSE-

CHV, shows the corresponding mean squared error. The fourth column, labeled CLNR, 

shows the mean and standard deviation of the estimates using the method developed in 

this paper. Finally, the last column, labeled MSE-CLNR, shows the corresponding 

standard error. 
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 True CHV MSE-CHV CLNR MSE-CLNR 

ATE 0.2200 0.2036 

(0.0600) 

0.0039 0.2246 

(0.0356) 

0.0013 

TT 0.2558 0.2380 

(0.0676) 

0.0049 0.2584 

(0.0487) 

0.0024 

TUT 0.1842 0.1704 

(0.0685) 

0.0049 0.1908 

(0.0500) 

0.0025 

 

 


