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ABSTRACT 26 

Effective population size (Ne) is a key parameter in population genetics. It has important 27 

applications in evolutionary biology, conservation genetics, and plant and animal breeding, because 28 

it measures the rates of genetic drift and inbreeding and affects the efficacy of systematic 29 

evolutionary forces such as mutation, selection and migration. We review the developments in 30 

predictive equations and estimation methodologies of effective size. In the prediction part, we focus 31 

on the equations for populations with different modes of reproduction, for populations under 32 

selection for unlinked or linked loci, and for the specific applications to conservation genetics. In 33 

the estimation part, we focus on methods developed for estimating the current or recent effective 34 

size from molecular marker or sequence data. We discuss some underdeveloped areas in predicting 35 

and estimating Ne for future research. 36 

 37 

 38 

Introduction 39 

 40 

The concept of effective population size, introduced by Sewall Wright (1931, 1933), is central to 41 

plant and animal breeding (Falconer and Mackay, 1996), conservation genetics (Frankham et al., 42 

2010; Allendorf et al., 2013), and molecular variation and evolution (Charlesworth and 43 

Charlesworth, 2010), as it quantifies the magnitude of genetic drift and inbreeding in real-world 44 

populations. A substantial number of extensions to the basic theory and predictions were made 45 

since the seminal work of Wright, with main early developments by James Crow and Motoo 46 

Kimura (Kimura and Crow, 1963a; Crow and Kimura, 1970) and later by a list of contributors. 47 

Several review papers (Crow and Denniston, 1988; Caballero, 1994; Wang and Caballero, 1999; 48 

Nomura, 2005a), and population genetics books (Fisher, 1965; Wright, 1969; Ewens, 1979; 49 

Nagylaki, 1992) have summarised the existing theory in predicting the effective size of a population 50 

at different spatial and time scales under various inheritance modes and demographies. 51 

Comparatively, methodological developments (reviewed by Schwartz et al., 1999; Beaumont, 52 

2003a; Wang, 2005; Palstra and Ruzzante, 2008; Luikart et al., 2010; Gilbert and Whitlock, 2015) 53 

in estimating the effective size of natural populations from genetic data lag behind, but are 54 

accelerating in the past decade thanks to the rapid developments of molecular biology. 55 

The classical developments of effective population size theory are based on the rate of 56 

change in gene frequency variance (genetic drift) or the rate of inbreeding. The effective population 57 

size is defined in reference to the Wright-Fisher idealised population, i.e. a hypothetical population 58 

with very simplifying characteristics where genetic drift is the only factor in operation, and the 59 

dynamics of allelic and genotypic frequencies across generations merely depend on the population 60 
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census (N) size. The effective size of a real population is then defined as the size of an idealised 61 

population which would give rise to the rate of inbreeding and the rate of change in variance of 62 

gene frequencies actually observed in the population under consideration, which correspond to the 63 

so-called inbreeding and variance effective sizes, respectively (Crow and Kimura, 1970).  64 

Predictions of the effective population size can also be obtained from the largest nonunit 65 

eigenvalue of the transition matrix of a Markov Chain which describes the dynamics of allele 66 

frequencies. Such derived effective size is called eigenvalue effective size (see Ewens, 1979, p. 104-67 

112), which is equivalent to the random extinction effective size (Crow, 1954; see also Haldane, 68 

1939). The transition matrix can be written for many genetic models, and is particularly useful for 69 

complex scenarios such as populations varying in size, having age structures or being subject to 70 

demographic changes (e.g., Wang and Pollak, 2002; Charlesworth, 2001; Pollak, 2002; Engen et 71 

al., 2005). A less often used approach is that for the mutation effective size, defined by the 72 

probability of identity in state of genes rather than identity by descent under an infinite allele model 73 

of mutations with a defined mutation rate (Whitlock and Barton, 1997). 74 

Later developments based on coalescence theory (Wakeley, 2008) have also proved to be 75 

useful in the prediction of effective population size, particularly in the evolutionary context for 76 

predicting genetic variability at the molecular level (Charlesworth, 2009; Nicolaisen and Desai, 77 

2012, 2013). The coalescence theory states that the chance of coalescence of any two random gene 78 

copies in one generation time is 1/2N, which is the same as the rate of increase in identity by 79 

descent occurred from one generation to the next one. Thus, the probability of coalescence t 80 

generations ago is [1 − (1 2𝑁⁄ )]𝑡−1(1 2𝑁⁄ ). Therefore, the average time of coalescence of two 81 

randomly chosen genes is 𝑇 =  1 2N  
1

1
1 1 2

t

t
t N




   = 2𝑁. The coalescent effective 82 

population size refers to the expected time of coalescence T, in generations, of gene copies such that 83 

T = 2Ne (Nordborg and Krone, 2002; Wakeley and Sargsyan, 2009). 84 

In this paper, we present a general overview of the main developments for predicting the 85 

effective population size (Ne). The review does not attempt to be exhaustive, and some of the 86 

material mentioned in previous reviews will not be repeated. We mainly focus on populations with 87 

different modes of reproduction, populations under selection, and populations under genetic 88 

management in captive breeding conservation programmes, complementing previous reviews and 89 

adding material not covered or only partially covered by them. We also review the developments in 90 

estimating contemporary effective sizes from genetic marker data, focusing on the estimation 91 

principles and ignoring the technical details that were covered in the original papers. The 92 

underlying assumptions, application scopes, robustness and accuracies of different estimation 93 

methods are discussed and compared. 94 
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 95 

Prediction of the effective population size 96 

 97 

In this section, we will summarize the main predictive equations for the asymptotic effective 98 

population size reached after a number of generations in a regular breeding system. In this case, all 99 

of the above approaches generally lead to the same predictive equations of Ne except for a few 100 

particular scenarios. For example, in a regular breeding system for an undivided population the 101 

asymptotic inbreeding and variance effective sizes converge. Only in situations such as when the 102 

population is subdivided permanently in independent sublines with completely independent 103 

pedigrees (Wang, 1997a, b), or when the population is decreasing or increasing in size, these types 104 

of Ne will differ permanently. In fact, many of the equations shown below have been derived by two 105 

or more of the above approaches, and we will only mention some of these. For clarity and a better 106 

understanding of the main principles, several simplifying assumptions will also be made in this 107 

prediction section. Unless otherwise stated, we will assume that populations do not change size 108 

through time and are large enough so that second order terms of 1/Ne can be safely ignored. These 109 

terms are generally of little relevance, but make the derivations and the Ne equations rather 110 

cumbersome. Finally, a single undivided population with discrete generations under a regular 111 

breeding scheme will be generally assumed unless otherwise indicated, so that prediction equations 112 

refer to asymptotic (Caballero, 1994) effective population sizes. 113 

 114 

Populations with different modes of reproduction 115 

 116 

As a starting point, we consider the simple equation derived by Wright (1938) which takes account 117 

of the variance of the contributions from parents to progeny (𝑆𝑘
2) in a population of constant size N, 118 

𝑁𝑒 =
4𝑁

2+𝑆𝑘
2 .           (1) 119 

This expression also assumes a population either containing only hermaphrodites or comprising 120 

equal numbers of males and females, diploid autosomal inheritance, and random mating (including 121 

selfing for hermaphrodites). In eqn (1), the term 𝑆𝑘
2 accounts for the genetic drift caused by the 122 

variable contributions among parents, whereas the first term “2” in the denominator accounts for the 123 

genetic drift caused by the Mendelian segregation of heterozygotes (i.e. the drift in allele frequency 124 

arising from the fact that the progeny from a heterozygote can alternatively receive one or the other 125 

allele). It can also be seen as the variance in contributions between paternal and maternal genes at a 126 

locus within an individual or part of the variance in contribution between grandparents (the term 𝛿2 127 

in eqn 2 of Wang and Hill [2000]).  128 
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An illustrative generalisation of eqn (1) to the case of different numbers of males (Nm) and 129 

females (Nf) is  130 

𝑁𝑒 =
16𝑁𝑚𝑁𝑓 / (𝑁𝑚 + 𝑁𝑓)

2+𝑆𝑘
2  ,         (2) 131 

with 𝑆𝑘
2 =

𝑁𝑓

𝑁𝑚+𝑁𝑓
[𝑆𝑚𝑚

2 + 2 (
𝑁𝑚

𝑁𝑓
) 𝑆𝑚𝑚,𝑚𝑓 + (

𝑁𝑚

𝑁𝑓
)

2

𝑆𝑚𝑓
2 ]      132 

   +
𝑁𝑚

𝑁𝑚+𝑁𝑓
[𝑆𝑓𝑓

2 + 2 (
𝑁𝑓

𝑁𝑚
) 𝑆𝑓𝑚,𝑓𝑓 + (

𝑁𝑓

𝑁𝑚
)

2

𝑆𝑓𝑚
2 ],   (3) 133 

where 𝑆𝑥𝑦
2  is the variance of the number of offspring of sex y from parents of sex x, and 𝑆𝑥𝑚,𝑥𝑓 is 134 

the covariance of the numbers of male and female offspring from parents of sex x. Eqn (2)  is the 135 

same as that derived by Hill (1979), although it is expressed in a different form. It reduces to the 136 

classical equation of Wright (1933, 1939) for a Poisson distribution of progeny number (i.e. 137 

𝑆𝑥𝑦
2 = 𝑁𝑦/𝑁𝑥, 𝑆𝑥𝑚,𝑥𝑓 = 0 for sex x, y = m, f), 138 

𝑁𝑒 =
4𝑁𝑚𝑁𝑓 

𝑁𝑚+𝑁𝑓
 ,           (4) 139 

which shows that unequal numbers of males and females in a population introduce a systematic 140 

variance in contribution between male and female parents and thus a reduction in effective size. 141 

Predictive formulae for the effective size of X-linked genes were originally given by Wright 142 

(1933) and later extended by other authors (see Caballero, 1995). Later developments have also 143 

been made for Y-linked and maternally transmitted genes (Charlesworth, 2001; Laporte and 144 

Charlesworth, 2002; Evans and Charlesworth, 2013). 145 

The generalisation of eqn (1) to the case of a partially selfed population (in which there is 146 

partial selfing with proportion β, random mating otherwise), is 147 

 𝑁𝑒 =
4𝑁

2(1−)+𝑆𝑘
2(1+)

  ,         (5) 148 

(Crow and Morton, 1955), where  149 

 = β / (2 – β)           (6) 150 

(Haldane, 1924) quantifies the deviation from Hardy-Weinberg equilibrium or the correlation of 151 

genes within individuals relative to the genes taken at random from the population (Wright, 1969). 152 

The value of α in a large random mating population is approximately zero (slightly negative when 153 

second order terms are considered; see eqn (23) below and Wang, 1996a). For the case of biparental 154 

inbreeding such as partial full-sib mating in dioecious species, the expression is the same as (5) 155 

except that the term (1 + α) should be replaced by (1 + 3α) (Caballero and Hill, 1992). The 156 

equilibrium value of α for biparental inbreeding is also different from (6) (e.g. Ghai, 1969). 157 
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The generalisation of eqn (5) for different numbers of males and females was made by 158 

Wang (1996b), adding some covariance terms not considered by Caballero (1994; eqn 17). Wang’s 159 

(1996b) equation also allows for different numbers of males and females varying over generations. 160 

An excess of inbred matings ( > 0 in eqn [5]) has the effect of increasing the correlation of 161 

genes within individuals and decreasing the frequency of heterozygotes by a factor of . It results in 162 

a decrease in the genetic drift due to a decrease in Mendelian segregation variance, and an increase 163 

in the genetic drift due to an increase in the variance of contributions among individuals. Compared 164 

with random mating ( = 0), whether an excess ( > 0) or a deficit ( < 0) of inbred matings may 165 

increase or decrease Ne depends on the variance in family size, 𝑆𝑘
2. For the case of partial selfing 166 

(eqn 5), inbreeding ( > 0) increases Ne when 𝑆𝑘
2 < 2 and decreases Ne when 𝑆𝑘

2 > 2. At exactly 167 

𝑆𝑘
2 = 2, selfing has no effect on Ne. 168 

Predictions of the effective size for X-linked genes in non-random mating populations were 169 

given by Wang (1996c). Nomura (2002a, 2005b) also provided predictions of the effective size for 170 

a variety of mating systems in animals (see also Balloux and Lehmann [2003]). For example, for 171 

harem polygamy, where successful males generally mate with most or all of the females in their 172 

harem, and the females generally mate with only one male, the effective size, for a Poisson 173 

distribution of progeny number, is better approximated by 174 

𝑁𝑒 =
4𝑁𝑚𝑁𝑓 

2𝑁𝑚+𝑁𝑓
 ,           (7) 175 

rather than by eqn (4), showing the larger impact of male number for this type of mating system. 176 

Other predictions of Ne for different mating systems and overlapping generations have been 177 

provided by Nunney (1993).  178 

 Expression (5) can also be obtained following the concept of long-term contributions from 179 

ancestors to descendants developed by Wray and Thompson (1990) in the context of populations 180 

under selection. As suggested by Woolliams and Thompson (1994) and shown by Caballero and 181 

Toro (2000, 2002), the expressions can be approximated by 182 

𝑁𝑒 ≈
2𝑁

(1+𝑉∞)(1−)
 ,          (8) 183 

where V is the variance of long-term contributions from ancestors to descendants. For random 184 

mating ( = 0), V = 1 and Ne = N, as expected. 185 

For a proportion β of partial selfing, 𝑉∞ ≈ 𝑆𝑘
2 [2(1 − 𝛽)]⁄  if  is not too close to one 186 

(Caballero and Toro, 2000), which, when substituted into (8), gives eqn (5). When the numbers of 187 

selfed and nonselfed progeny are independently Poisson distributed, 𝑆𝑘
2 ≈ 2 + 2𝛽 (see Nomura, 188 

1999a for a more precise prediction), and both eqn (5) and (8) reduce to  189 

𝑁𝑒 =
𝑁

1+
           (9) 190 
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(Li, 1976, p. 562; Pollak, 1987; Caballero and Hill, 1992; Nordborg and Krone, 2002). For a 191 

population with Poisson distribution of family size and complete selfing, (9) reduces to Ne = N/2. 192 

Equation (8) can also be applied to the scenario of partial full-sib mating with the appropriate 193 

approximation for 𝑉∞ (Caballero and Toro, 2000). 194 

Predictions of the effective size for populations with mixed sexual and asexual reproduction 195 

systems and discrete and overlapping generations have been developed by Yonezawa (1997). 196 

Assuming a monoecious plant species carrying out asexual propagation with a proportion   in a 197 

population of constant size N (i.e. an average progeny number of one and two for asexual 198 

propagation and sexual reproduction, respectively), eqn (5) of Yonezawa (1997) can be rearranged 199 

to 200 

𝑁𝑒 =
4𝑁

[2(1−)+𝑆𝑘
2(1+)](1−𝛿)+4𝛿𝑆𝑐

2(1+)
  ,       (10) 201 

where 𝑆𝑐
2 is the variance of the number of asexually produced progeny among plants. If there is no 202 

asexual reproduction (  = 0), eqn (10) reduces to (5), as it should. If all reproduction is asexual (  203 

= 1), (10) reduces to 204 

𝑁𝑒 =
𝑁

𝑆𝑐
2(1+)

 .           (11) 205 

Interestingly, if the number of asexually produced progeny is Poisson distributed (𝑆𝑐
2 = 1), the 206 

expression is the same as for a sexually reproducing partially selfed population where the numbers 207 

of selfed and nonselfed progeny are independently Poisson distributed, i.e. eqn (9). If all individuals 208 

are homozygotes ( = 1), Ne = N/2, the same as for a fully selfed population. 209 

 An extension of eqn (10) to overlapping generations was also given by Yonezawa (1997). 210 

Equation (10) assumes that sexual and asexual contributions are independent. Predictions relaxing 211 

this assumption and extensions to more complex models were given by Yonezawa et al. (2000, 212 

2004). Analytical expressions for these models of mixed sexual and asexual species were also given 213 

by Orive (1993) and Balloux et al. (2003) using coalescence theory. 214 

 Predictions of effective size for haplo-diploid species can generally be made by the standard 215 

formula for sex-linked genes (see review by Caballero, 1994). Some situations occur, however, 216 

where reproduction of these species is more complex than assumed by the simplest models. For 217 

example, in many eusocial Hymenoptera species, males can be produced by workers rather than 218 

only by queens. Predictions of Ne for this scenario have been developed by Nomura and Takahashi 219 

(2012). 220 

 221 

Populations under selection 222 

 223 
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In the absence of selection or when selection acts on a non-inherited trait, the effective size is 224 

simply a function of the variance of the number of offspring per parent, as in eqn (5). However, 225 

predictions of Ne are more complicated when selection acts on an inherited trait, such as when 226 

artificial selection is carried out for a quantitative trait in animal or plant breeding, or when natural 227 

selection acts on fitness traits against deleterious mutations or in favour of advantageous ones. In 228 

these scenarios, the drift process is amplified over generations because the random associations 229 

originated in a given generation between neutral and selected genes remain in descendants for a 230 

number of generations until they are eliminated by segregation and recombination. This problem 231 

was first addressed by Robertson (1961) and later on by other authors (e.g., Wray and Thompson, 232 

1990; Woolliams et al., 1993; Santiago and Caballero, 1995) for directional selection in quantitative 233 

traits. Extensions of the model were made later for populations under natural selection, linkage, 234 

overlapping generations and animal breeding schemes, as will be reviewed below. 235 

 236 

Selection assuming unlinked genes: When selection acts on an inherited trait, changes in gene 237 

frequency at a focal neutral locus are positively correlated over generations because the selective 238 

values randomly associated with the neutral locus are not completely removed by segregation and 239 

recombination from one generation to the next. For unlinked genes and weak selection, the random 240 

association generated by sampling in a single generation is halved in consecutive generations by 241 

segregation and recombination. Therefore, the accumulative selective association has a limiting 242 

value 𝑄 = ∑ (1/2)𝑖 = 2∞
𝑖=0  times the value of the original random association (Robertson, 1961), 243 

and the corresponding variance of the long-term contributions of copies of the neutral gene will 244 

increase by a factor Q
2
. With regards to drift, the effective variance of contributions of individuals 245 

(with average 2) increases due to selection by the same factor up to 4Q
2
C

2
, where the term C

2
 is the 246 

genetic variance of the individual trait measures (for the quantitative trait subject to artificial 247 

selection, or fitness-related traits in the case of natural selection) relative to the mean of the trait in 248 

the population. This variance has to be added to the expected variance of random contributions not 249 

caused by selection (𝑆𝑘
2 ) to predict the total variance of contributions. In reality, the associations are 250 

also reduced each generation to a proportion equal to the fraction of genetic variance remaining 251 

after selection (G) which, in turn, can be increased by the correlation between the selective 252 

advantages of male and female parents (r), and the series becomes 253 

𝑄 = ∑ [𝐺(1 + 𝑟)/2]𝑖∞
𝑖=0 =

2

2−𝐺[1+𝑟]
        (12) 254 

(Santiago and Caballero, 1995). In the case of partial selfing (or partial full-sib mating), the term r 255 

in eqn (12) should be replaced by β (the proportion of inbred matings), because the correlation 256 

between the expected selective values of males and females (r) is approximately one for inbred 257 
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matings (which take place with proportion β) and approximately zero for non-inbred matings, i.e. 258 

𝑄 = 2 [2 − 𝐺(1 + 𝛽)]⁄  .        259 

 Therefore, the equation accounting for selection as an extension of eqn (5) is 260 

𝑁𝑒 =
4𝑁

2(1−)+(𝑆𝑘
2+4𝑄2𝐶2)(1+)

  .        (13) 261 

Nomura (1999b, 2005a) showed that eqn (13), obtained by a genetic drift approach, could 262 

also be derived from an inbreeding approach by considering the variance of long-term contributions 263 

as used by Wray and Thompson (1990) and Wray et al. (1990), when appropriate corrections are 264 

made in the latter (see also Woolliams and Bijma, 2000). 265 

The application to different numbers of males and females was given by Santiago and 266 

Caballero (1995). That equation, however, lacked the same covariances as the equation without 267 

selection, as shown by Nomura (1997a) and Wang (1998). For random mating (α = 0) and Poisson 268 

distribution of family sizes (𝑆𝑘
2 = 2), eqn (13) reduces to the simplest expression (Robertson, 1961), 269 

𝑁𝑒 =
𝑁

1+𝑄2𝐶2 .           (14) 270 

 Equation (14) can be expressed in terms of heritability (h
2
) of fertility, as shown by Nei and 271 

Murata (1966) and Nomura (2002b). Let Vk be the observed variance of family sizes, which would 272 

be 𝑉𝑘 = 𝑆𝑘
2 + 4𝐶2 if the decay in the cumulative effect of selection is ignored (i.e., Q = 2). The first 273 

term, 𝑆𝑘
2 = 𝑉𝑘(1 − ℎ2), is the non-heritable component of this variance, and the second term, 274 

4𝐶2 = 𝑉𝑘ℎ2, is the heritable component. Thus, substituting these into eqn (14) yields 275 

𝑁𝑒 =
4𝑁

2+(1+3ℎ2)𝑉𝑘
           (15) 276 

(Nei and Murata, 1966). The extension of eqn (15) to dioecious populations was developed by Nei 277 

and Murata (1966) assuming random union of gametes. A more general equation was developed by 278 

Nomura (2002b), who also suggested a form of the equation that avoids estimating the heritability, 279 

𝑁𝑒 =
4𝑁

2+𝑉𝑘+3(𝑐𝑜𝑣𝑘,𝑚+𝑐𝑜𝑣𝑘,𝑓)
 ,         (16) 280 

where 𝑐𝑜𝑣𝑘,𝑓 and 𝑐𝑜𝑣𝑘,𝑚 are the offspring-mother and offspring-father covariances of sibship size, 281 

respectively. 282 

 The prediction of effective population size under selection with overlapping generations was 283 

considered by Nomura (1996) and Bijma et al. (2000). As for the non-selection case (Hill, 1979), Ne 284 

is the same as that for populations with discrete generations having the same non-selective and 285 

selective components of variance in lifetime progeny numbers, and the same number of individuals 286 

entering the population each generation. Another interesting result is that the average age of parents 287 

in populations under selection is smaller than that in populations under no selection, as, in the 288 

former, younger parents tend to have higher selective advantages. 289 
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Genetic marker data can be used to assist selection (i.e. marker assisted selection, MAS) for 290 

a quantitative trait. Nomura (2000) investigated the predictive equation of Ne in this scenario and 291 

showed that it depends on the relative values of the genetic (r, 0.5 for full-sib families) and 292 

phenotypic (t) correlation between family members, where t ≈ h
2
/2 + c

2
, h

2
 is the trait heritability 293 

and c
2
 is the fraction of the phenotypic variance due to the shared common environments of family 294 

members. When an index (I) is considered using individual phenotype (P) and molecular marker 295 

(M) information with given weights, i.e. I = BPP + BMM, the effective size with MAS is reduced 296 

relative to that for phenotypic selection alone (eqn [14]) when t < r, and is increased when t > r. 297 

The prediction of effective population size under index selection was addressed by Wray et 298 

al. (1994), Caballero et al. (1996b) and Nomura (1998b, 2005a). Assume truncation selection is 299 

carried out based on an index selection of the individual phenotype (P) and the mean phenotype of 300 

its full-sib family (Pf, including the individual), I = Bw (P – Pf) + Bb (Pf), where Bw and Bb are the 301 

corresponding selection weights. The effective size can then be predicted using eqn (14), where 302 

𝑄 = 2 (1 + 𝑘𝐵𝑏)⁄  and 𝐶2 = 𝑆𝑘
2 + 4𝑖2(𝜌𝐼 − 𝜌𝐴) + 4𝑖2𝜌𝐴, where 𝜌𝐼 is the correlation of full sibs for 303 

the index values, 𝜌𝐴 is the correlation of full sibs due to the breeding value of the parents, k = i (i – 304 

x), i is the selection intensity and x is the truncation point in the standardised normal distribution. 305 

This predictive equation corrects a typographical error in a sign in the equation of Caballero et al. 306 

(1996b, p.77). When the whole pedigree information is available, estimation of breeding values can 307 

be made by Best Linear Unbiased Prediction (BLUP) selection. Predictions of the effective size 308 

under this selection method were investigated by Nomura et al. (1999), Bijma and Woolliams 309 

(2000), and Bijma et al. (2001). 310 

Other extensions for the prediction of the effective population size under selection refer to 311 

sex-linked loci (Nomura, 1997b; Wang, 1998), gynodioecious species, (i.e. species which have both 312 

hermaphrodite and female individuals, Laporte et al., 2000), open nucleus schemes (Nomura, 313 

1997c; Bijma and Woolliams, 1999), and selection on traits affected by maternal effects 314 

(Rönnegård and Woolliams, 2003). 315 

 316 

Selection at linked loci: The above formulations predict the rates of inbreeding that are usually 317 

calculated by tracing paths in genealogies of individuals. However, the real rates of inbreeding are 318 

expected to be larger than those predictions when selection acts on a system of linked genes. The 319 

reason for this is that the two gene copies at a neutral locus in an individual have different 320 

probabilities of propagation to the next generation, because they are embedded in homologous 321 

chromosomes with different alleles at linked selected loci. The problem of predicting Ne in 322 

populations under purifying selection with linkage (the background selection model; Charlesworth, 323 

2013) was addressed by Hudson and Kaplan (1995) and Nordborg et al. (1996) focusing on the 324 
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effect of selection on nucleotide diversity, by Santiago and Caballero (1998) analysing the 325 

cumulative effect of selection over generations with a genetic drift approach (the Robertson effect), 326 

and by Nicolaisen and Desai (2012, 2013) using the coalescence theory. All these papers derived 327 

the same equation for the asymptotic Ne, which is a function of the haploid deleterious mutation rate 328 

U, the effect s of mutations and the length L of the whole-genome or genome segment given in 329 

Morgans, 330 

𝑁𝑒 = 𝑁𝑒−𝑈 (𝑠+ 𝐿/2)⁄  .          (17) 331 

This equation is the exponential version of eqn (14), 𝑁𝑒 = 𝑁𝑒−𝑄2𝐶2
, which was derived from the 332 

multiplicative fitness model assumed under background selection. Here, C
2
 = Us is the variance for 333 

fitness and the cumulative term, Q, for a rate of recombination c between the neutral and selected 334 

loci, is 𝑄𝑐 = ∑ [(1 − 𝑠)(1 − 𝑐)]𝑖 ≈ 1/(𝑠 + 𝑐)∞
𝑖=0  (Santiago and Caballero, 1998). If the focal 335 

neutral locus is located in the middle of the genome segment and the selected loci are uniformly 336 

scattered, the average value of the Qc
2
 terms over the segment is Q

2
 = 1/[s(s + L/2)]. Substituting 337 

this and C
2
 = Us in eqn (14), we obtain eqn (17). 338 

It is important to note that this equation predicts the magnitude of drift or inbreeding in the 339 

long-term. For the focal neutral allele, this magnitude is effectively reached after a number of 340 

generations counted since it first appeared by mutation. Until that moment, drift at the neutral locus 341 

is expected to increase with time. The increasing drift acting on neutral mutations in consecutive 342 

generations can be predicted by the partial Ne(t) values for generation t forward in time that can be 343 

calculated using the partial cumulative terms 𝑄𝑐(𝑡) = ∑ [(1 − 𝑠)(1 − 𝑐)]𝑖 =𝑡
𝑖=0 (1 − 𝑒−(𝑠+𝑐)𝑡)/(𝑠 +344 

𝑐) (Santiago and Caballero, 1998). An equivalent conclusion was reached by Nicolaisen and Desai 345 

(2012, 2013) from the point of view of the coalescent process. The consecutive Ne(–t) values that 346 

predict the increasing probability of coalescence under selection t generations backwards in time 347 

(thus, the negative sign) reach an asymptotic value given by eqn (17) and the predictions of the 348 

partial Ne values given by both methods, forward and backward, are exactly the same for any 349 

generation t, 350 

𝑁𝑒(𝑡) = 𝑁𝑒(−𝑡) = 𝑁𝑒
−

𝑈𝑠

𝐿/2
∫ 𝑄𝑐(𝑡)

2 𝑑𝑐
𝐿/2

0 .        (18) 351 

Illustrations of the decline in Ne(t) over generations are given in Fig. 3 of Santiago and Caballero 352 

(1998) and Fig. 3 of  Nicolaisen and Desai (2013). This shows that the distortion of coalescent 353 

genealogies under selection and the cumulative effect of selection over generations are both 354 

specular images of the same process. Moreover, the pattern of neutral variation in populations under 355 

selection can be predicted by accumulating the expected distributions of neutral mutations 356 

originated in all the previous generations with the corresponding consecutive effective sizes given 357 

by the Ne(t) values (Santiago and Caballero, 1998; Nicolaisen and Desai, 2012, 2013). This means 358 
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that the intensity of genetic drift varies over mutations that occurred at different generations 359 

backward in time. Therefore, strictly speaking, there is not a single Ne value representing the 360 

intensity of the drift process and, consequently, the amount and spectrum of variation under 361 

selection, even in populations at mutation-selection-drift equilibrium. 362 

If mutations are advantageous (selective sweep model), predictions are generally 363 

cumbersome, because the genetic variance at selected loci is a function of the gene frequencies. 364 

Moreover, the stochastic distribution of selective sweeps over time is far away from the constant 365 

flux of variation usually assumed to simplify derivations. Wiehe and Stephan (1993) and Gillespie 366 

(2000) derived equations for the expected heterozygosity at neutral loci using a model in which 367 

recurrent favourable mutations pass quickly through the population to fixation, wiping out linked 368 

variation. The first key simplification in these derivations is that the time of fixation of favourable 369 

mutations is so short relative to the time scale of genetic drift that it can be considered as occurring 370 

instantaneously. The second simplification is that the rate of recovery of neutral variation after a 371 

selective sweep is very slow when compared with the rate of occurrence of the sweeps. The 372 

recurrent substitutions lead to a roughly constant level of neutral variation in a stochastic process 373 

that is often referred to as “genetic draft”. A simple solution for Ne can be obtained by directly 374 

applying the concept of variance of long-term contributions to an evolutionary time-scale: 375 

𝑁𝑒 =
𝑁

1+2𝑁𝜃𝑦2           (19) 376 

(Gillespie, 2000), where   is the rate of selective sweeps and y is the final frequency of the neutral 377 

copy that was initially associated with the favourable mutation when it first appeared. The 378 

frequency of this neutral copy is expected to increase to Ny copies after the sweep, and the 379 

frequency of each of the other 2N – 1 copies is expected to be reduced to (1 – y) copies. Therefore, 380 

the variance of the expected long-term contributions for a single selective sweep is about 2Ny
2
. As 381 

selective sweeps occur at a rate , the second term of the denominator in equation (19) is the total 382 

variance of the expected long-term contributions, that is Q
2
C

2
 in equation (14). 383 

 384 

Effective population size in conservation practices 385 

 386 

The concept of effective size is key to conservation genetics practices, as it summarises the past 387 

history of the population regarding inbreeding and genetic drift, and provides the prospects for the 388 

sustainability of the population if the current effective size is maintained in the future. The effective 389 

population size is directly related to the statistics widely used to monitor conservation breeding 390 

schemes, such as the number of genome equivalents 𝑁𝑔𝑒 ≈ 𝑁𝑒 𝑡⁄  (Lacy, 1995), where t is the 391 

number of generations of management. 392 
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Minimising the loss of genetic variation is one of the main objectives of captive breeding 393 

programmes. This is achieved through minimising genetic drift and, therefore, maximising Ne. A 394 

classical strategy to follow is the equalisation of family sizes. By choosing one couple from each 395 

pair of parents, the variance of parental contributions is null (𝑆𝑘
2 = 0) and, from eqn (1), Ne ≈ 2N 396 

(Wright, 1938; Crow, 1954), which is twice the effective size of an unmanaged population with a 397 

Poisson distribution of family size. This is known as minimal inbreeding and it is the recommended 398 

procedure for applications in germplasm collection and regeneration in plants (see, e.g., Vencovsky 399 

et al., 2012). However, effective sizes larger than 2N can actually be obtained by population 400 

subdivision (Wright, 1943; Wang and Caballero, 1999) and other strategies, as shown below. The 401 

extension of the strategy in the case of different numbers of males and females was developed by 402 

Gowe et al. (1959). In their selection scheme, each male contributes one son and rfm = Nf /Nm 403 

daughters, and each female contributes one daughter and has a probability of Nm/Nf of contributing 404 

one son. Thus, 𝑆𝑓𝑚
2 = (𝑁𝑚 𝑁𝑓⁄ )[1 − (𝑁𝑚 𝑁𝑓⁄ )] and all of the other variances and covariances in 405 

eqn (2) are zero. Substituting these into eqns (2-3) gives 406 

𝑁𝑒 =
 16𝑁𝑚𝑁𝑓

3𝑁𝑓+𝑁𝑚
 .          (20) 407 

Compared with no selection (random Poisson distribution of the number of offspring per parent, 408 

eqn 4), this scheme can increase Ne by a proportion of (𝑟𝑓𝑚 + 3)/(3𝑟𝑓𝑚 + 1). When the 409 

female/male ratio, rfm =Nf /Nm , is 2 , for example, Ne is increased by 71.4%. 410 

Wang (1997c) proposed an alternative design which produces further increases in Ne of 411 

about 17% when rfm = 2. In this scheme, among the rfm females mated with each male, one is 412 

selected at random to contribute one son, and each of the remaining rfm – 1 females contributes one 413 

daughter. In this scenario, 𝑆𝑓𝑚
2  is as for eqn (20), but  𝑆𝑓𝑓

2 = 2𝑁𝑚 𝑁𝑓⁄ , and a negative covariance is 414 

induced between the numbers of male and female offspring from female parents, 𝑆𝑓𝑚,𝑓𝑓 =415 

− 𝑁𝑚 𝑁𝑓⁄ . Substituting these terms into eqns (2-3), 416 

𝑁𝑒 =
 16𝑁𝑚𝑁𝑓

2

3𝑁𝑓
2+2𝑁𝑚

2 −𝑁𝑚𝑁𝑓
 .          (21) 417 

The benefit of this scheme over that from Gowe et al. (1959) is decreased as rfm gets larger. For sex-418 

linked loci a benefit is also produced if males are the heterogametic sex. The above equations refer 419 

to random mating of parents. Wang (1997c) also proposed a system of non-random mating in which 420 

each male is mated with one of the groups of half-sib females that are not sisters of the male. This is 421 

a sort of population subdivision where the half sibs are like “subpopulations” and there is random 422 

migration of males and no migration of females among the “subpopulations” (see Wang and 423 

Caballero, 1999). The mating scheme can further increase Ne over that predicted by eqn (21).  424 
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Wang´s (1997c) method applies to a single generation. Sánchez et al. (2003) extended the 425 

method across generations to account for long-term contributions, further improving its efficiency. 426 

With the availability of pedigree or molecular marker information, a more general method, based on 427 

finding the contributions from parents to progeny which minimise the average coancestry among 428 

the progeny (minimum coancestry contributions), is the most widely proposed criterion to maintain 429 

genetic diversity (Toro and Pérez-Enciso, 1990; Ballou and Lacy, 1995; Fernández et al., 2003; 430 

Meuwissen, 2007). This method has been shown to minimise the variance of the long-term 431 

contributions from ancestors to descendants and, therefore, to maximise effective population size 432 

(Caballero and Toro 2000, 2002). 433 

The above methods are all designed to reduce the variation in family sizes, the term 𝑆𝑘
2 in 434 

eqn (1) and its corresponding components when the numbers of males and females are different 435 

(eqn 2). It is also possible to increase the effective population size by decreasing the Mendelian 436 

segregation variance, which is represented by the constant term “2” in eqn (1). This latter can be 437 

achieved by the use of Marker Assisted Selection (MAS) to minimise the variation in contribution 438 

between the paternally and maternally derived genes at a locus (Wang and Hill, 2000). Thus, for 439 

example, for equal numbers of males and females and equalisation of individual contributions, Ne 440 

can be expressed as 441 

𝑁𝑒 =
 2𝑁

𝑃𝑚,𝑚𝑓+𝑃𝑓,𝑚𝑓
 ,          (22) 442 

where 𝑃𝑚,𝑚𝑓 (𝑃𝑓,𝑚𝑓) is the probability that the two genes coming from the male (female) parent and 443 

contributing to their male and female progeny are copies of the same gene. By MAS it is possible to 444 

reduce these probabilities below the value of 0.5 expected under no control of Mendelian 445 

segregation, depending on the amount of marker information, the genome size and the number of 446 

marker-genotyped offspring per family, achieving values of Ne larger than 2N. MAS can also be 447 

used in a more general framework of different numbers of males and females to minimise global 448 

genetic drift and inbreeding (Wang, 2001a). 449 

An alternative and complementary method is to use reproductive technologies for meiosis 450 

manipulation, such as in vitro culture of premeiotic germ cells and microinjection of primary 451 

spermatocytes into oocytes. By using more than one gamete from a single meiosis, variation from 452 

Mendelian segregation can be partially or completely removed (Santiago and Caballero, 2001). 453 

Thus, for example, if equalisation of family sizes is carried out and the gametes from both male and 454 

female parents are managed to come from the same meiosis in each case, the resulting effective size 455 

becomes 3N, rather than the typical 2N. 456 

The control of the increase in inbreeding and genetic drift in conservation programmes is 457 

mainly addressed by reducing the variances of genetic contributions between paternally and 458 
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maternally derived genes within and between individuals by equalizing family sizes and minimizing 459 

Mendelian segregation variance, as discussed above. A minor contribution to this control can also 460 

be achieved by the avoidance of inbred matings and other types of non-random mating. The simple 461 

avoidance of sib mating has a very minor effect (Wang, 1997d) and methods such as the maximum 462 

avoidance of inbreeding (MAI) proposed by Wright (1921) have a higher, although still relatively 463 

low, impact. These can be carried out after the design of parental contributions has been 464 

implemented (Caballero et al., 1996a; Meuwissen, 2007). Alternatively, avoidance of inbreeding 465 

and optimal parental contributions can be realized in a single step (Fernández et al., 2004) by the 466 

so-called mate selection method. Systems of mating involving circular (half-sib mating) (Kimura 467 

and Crow, 1963b; Theodorou and Couvet, 2010) or rotational schemes (Nomura and Yonezawa, 468 

1996) generally reduce the ultimate rate of inbreeding, but at the cost of higher initial rates 469 

(Robertson, 1964), so that their use in conservation is not recommended because the high risk of 470 

extinction from inbreeding depression. Some methods are of particular application in selection 471 

programmes, such as the compensatory mating proposed by Santiago and Caballero (1995), where 472 

individuals from large families are mated to individuals from small ones. This produces negative 473 

correlations between the drift caused by selection and the drift caused by sampling, partly 474 

counteracting the cumulative effect of selection represented by the term Q in eqn (12). This system 475 

of mating in combination with MAI allows for a substantial reduction of inbreeding (Caballero et 476 

al., 1996a).  477 

A conservation strategy of high relevance in fisheries is supportive breeding (Hare et al. 478 

2011), where a population is typically divided into a captive and a wild group and the offspring of 479 

the captive group are released into the wild habitat to mix with the offspring from the wild group. 480 

Because the captive group (permanent or transitional) is bred to produce a lot of offspring that are 481 

released into the wild group at each generation, the variance in family size is greatly elevated 482 

artificially and thus the Ne of the entire population is reduced. Ironically, the more successful the 483 

supportive program is in augmenting the wild population, the greater the reduction in Ne and the 484 

greater the loss of genetic diversity in the total population (supportive + wild). This paradox is 485 

overcome only when successful supportive breeding in augmenting the wild population is carried 486 

out over a long period of time such that the excessive drift and inbreeding in the initial generations 487 

of supportive breeding is compensated for by weaker drift and inbreeding in later generations 488 

because of the increase in census size. Ryman and Laikre (1991), Ryman et al. (1995) and Wang 489 

and Ryman (2001) have provided approximations for the inbreeding and variance effective sizes, 490 

respectively, which can be different in this case, with one generation of supportive breeding. 491 

Nomura (1998a) obtained an expression of Ne from the change in coancestry, which agrees with the 492 
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variance effective size, as expected. In this scenario, with various census sizes and a mixture of 493 

groups, predictions depend, however, on the generations considered (see Ryman et al. 1999).  494 

For endangered species in the wild, estimating the effective population size and monitoring 495 

its changes over time is important in understanding the genetic health, evaluating the risk of 496 

inbreeding and inbreeding depression and thus the risk of extinction, assessing the effectiveness of 497 

the genetic managements (e.g. human-aided migration/relocation, habitat protection or 498 

modification), and projecting the future demographic trajectories of the populations. Simulations 499 

(Tallmon et al. 2010) showed that monitoring the effective size is most often a more robust means 500 

of identifying stable and declining populations than monitoring census size. If a population is 501 

detected to have a small or declining Ne, the managers of the populations should be alerted to 502 

investigate the causes and to take effective measures for reversing the course. Using noninvasive 503 

sampling (e.g. from faeces, feathers, hair, …), genetic marker data can be obtained from a 504 

population even without observing (disturbing) the animals. The data can then be analysed 505 

normally, except for accounting for the possibility of genotyping errors and allowing for a high 506 

frequency of missing data (e.g. Wang 2004), in estimating Ne. For example, in a long-term 507 

monitoring project, Kamath et al. (2016) sampled and genotyped (at 20 microsatellite loci) 729 508 

Yellowstone grizzly bears (Ursus arctos) born in the period 1962-2010 from an isolated and well-509 

studied population in the Greater Yellowstone Ecosystem. They used the data to study the 510 

population demographic trajectories, estimating the changes in Ne and generation interval, over this 511 

time period.    512 

 513 

Methods for estimating the effective population size from genetic data 514 

 515 

Given the concepts of effective size, different approaches can be used to predict the effective size of 516 

a population from its demographic parameters such as census size and variance of reproductive 517 

success. In parallel, different methodologies can also be developed to estimate the realized effective 518 

size of a population from its genetic properties revealed by genetic markers, such as temporal 519 

changes in allele frequency and linkage disequilibrium.  520 

 Quite a few methods (Schwartz et al., 1999; Beaumont, 2003a; Wang, 2005; Palstra and 521 

Ruzzante, 2008; Luikart et al., 2010; Gilbert and Whitlock, 2015) have been developed and applied 522 

to estimating Ne in widely different spatial and time scales, from ancient, past to current (parental) 523 

population sizes. Herein we focus on the effective size of the current generation or just a few 524 

generations in the past, as this time scale is the most relevant for conservation genetics (Luikart et 525 
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al., 2010) and plant and animal breeding, and is most likely to yield accurate estimates in current 526 

practices. 527 

 528 

Heterozygosity excess 529 

 530 

Compared with an infinitely large population at Hardy-Weinberg equilibrium, a population 531 

generated from a number of Nm male parents and a number of Nf female parents is expected to show 532 

a deficit of homozygotes and an excess of heterozygotes at a neutral locus when Nm, Nf, or both, are 533 

small. This is because male and female parents are expected to have different allele frequencies due 534 

to drift. The smaller the value of Nm or Nf, the greater the difference between paternal and maternal 535 

allele frequencies and thus the greater the excess in heterozygosity of the offspring population. 536 

There is a simple functional relationship between the Ne of the parental population and the amount 537 

of heterozygosity excess in the offspring population (e.g. Robertson, 1965; Wang, 1996a). For a 538 

Wright-Fisher ideal population except for separate sexes with Nm male and Nf female parents, the 539 

heterozygosity excess is expected to be 540 

𝐷 ≈ −
1

8𝑁𝑚
−

1

8𝑁𝑓
= −

1

2𝑁𝑒
,         (23) 541 

where 𝑁𝑒 = 4𝑁𝑚𝑁𝑓/(𝑁𝑚 + 𝑁𝑓) is the effective size of the parental population given by eqn (4). 542 

The value of 𝐷 is negative, indicating an excess of heterozygosity and a corresponding deficit of 543 

homozygosity. For a non-ideal population with arbitrary distributions of family sizes, (23) is still 544 

valid when Nm and Nf are replaced by Nem and Nef respectively, the effective numbers of male and 545 

female breeders. 546 

Eqn (23) suggests that measuring the heterozygosity excess, 𝐷, at a number of marker loci in 547 

a population yields an estimate of the parental population effective size. Pudovkin et al. (1996) 548 

proposed such a Ne estimator by accounting for the sampling effect, 549 

𝑁̂𝑒 =
1

2𝐷̂
+

1

2(𝐷̂+1)
,          (24) 550 

where the observed heterozygosity excess is estimated by 𝐷̂ = 𝐻̂𝑒/(𝐻̂𝑒 − 𝐻̂𝑜), 𝐻̂𝑒 = 2𝑝̂(1 − 𝑝̂) is 551 

the expected heterozygosity from the observed gene frequency 𝑝̂, and 𝐻̂𝑜 is the observed 552 

heterozygosity. 𝐷̂ is calculated for each allele in a multiallelic locus and for each locus, and the 553 

average value is used in (24) (Luikart and Cornuet, 1999). The accuracy of the estimator was 554 

evaluated by Pudovkin et al. (1996) using simulations, and was applied to a few empirical datasets 555 

(Luikart and Cornuet, 1999). The method is simple, and is implemented in several computer 556 

programs (e.g. Zhdanova and Pudovkin, 2008; Jones and Wang, 2010; Do et al. 2014). However, 557 

the method has a low precision and accuracy, frequently providing infinitely large estimates of Ne 558 

for small populations. The estimator is also highly sensitive to non-random mating (e.g. population 559 
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subdivision, close relative mating), which also causes deviation from Hardy-Weinberg equilibrium. 560 

Its poor performance renders it useless in applications to empirical dataset analysis, except when the 561 

actual population size is very small and marker information is ample.    562 

 563 

Linkage disequilibrium 564 

 565 

In a large unselected random mating population, alleles are independent within and between loci, 566 

producing Hardy-Weinberg equilibrium and linkage equilibrium. In a finite population, however, 567 

random genetic drift leads to associations between alleles at a locus and between alleles of different 568 

loci. The former results in heterozygosity excess, and the latter leads to gametic linkage 569 

disequilibrium (LD). In addition to drift, LD can also be induced by factors such as migration and 570 

direct or indirect (e.g. hitchhiking) selection (Hedrick et al., 1978). For neutral loci unlinked with 571 

selected loci in an isolated population under random mating, LD would come exclusively from 572 

genetic drift and can be used to estimate Ne (Hill, 1981). 573 

 A LD estimator of Ne for a random mating population at equilibrium is based on the 574 

formulation (Hill, 1981), 575 

𝐸[𝑟2] = 𝑉[𝑟] =
(1−𝑐)2+𝑐2

2𝑁𝑒𝑐(2−𝑐)
+

1

𝑛 
 ,        (25) 576 

where c is the recombination rate (c = 1/2 for unlinked loci), r is the correlation of allele frequencies 577 

between two loci due to LD, and n is the sample size (number of sampled individuals). In an 578 

equilibrium population, allele frequencies at two neutral loci are expected to be uncorrelated (i.e. 579 

E[r] = 0), such that the expectation of squared r, E[r
2
], is equal to the variance of r, V[r]. Eqn (25) 580 

shows that V[r] is composed of two distinctive parts. The first comes from genetic drift, determined 581 

by Ne and linkage c. The second comes from sampling, determined by sample size n. Using the 582 

genotypes at a number of loci of n sampled individuals, we can estimate V[r], which can then be 583 

inserted in (25) to obtain an estimate of Ne if the recombination fraction c between loci is known. 584 

Note that a slightly different expression for the population V[r] (i.e. the first part on the right-hand 585 

side of eqn 25) was derived by Sved (1971) from an identity by descent approach. For a dioecious 586 

population with monogamy, the right side of (25) should be increased by c / (2Nec(2 – c)) (Weir and 587 

Hill, 1980). 588 

  Hill (1981) also derived the formula for the sampling variance of the estimator such that 589 

uncertainties of the Ne estimates can also be evaluated. For the case of no linkage, Waples (2006) 590 

showed by simulations that the LD estimator can seriously underestimate Ne when sample size is 591 

small. He derived empirical equations to correct for the bias caused by small sample sizes, and 592 

showed by simulations that the accuracy of the modified estimator is comparable to the temporal 593 
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method described in the next section. To facilitate the applications of the LD estimator, Waples and 594 

Do (2008) published a computer program, LDNE, and further evaluated its performance in 595 

comparison with the temporal method, using simulated data (Waples and Do, 2010). They 596 

concluded that, under similar conditions in terms of marker information and the actual population 597 

size, LD estimator can yield Ne estimates that have equivalent or better qualities than the temporal 598 

estimators, except when the sampling interval of the temporal method is long. 599 

 The LD estimator is simple to calculate, and requires just a single sample of multilocus 600 

genotypes instead of two or more samples, as is with the temporal method (see below). It is 601 

especially suitable for species with a long generation interval where obtaining two samples 602 

separated by a couple of generations means many years, and for genetic monitoring (Schwartz et 603 

al., 2007) to track population trajectories on a yearly basis. As a result, the LD estimator has gained 604 

popularity in recent years (Palstra and Ruzzante, 2008; Luikart et al., 2010). However, some 605 

assumptions inherent to the LD estimators are often violated in real populations, and as a result may 606 

lead to biased Ne estimates. For example, it is assumed that LD is produced solely from the finite 607 

population size, and other confounding factors, such as non-random mating and population 608 

structure, are absent. Any departure from random mating (e.g. an excess or deficit of close relatives 609 

mating including selfing) will affect LD, and thus LD based estimates of Ne. Waples et al. (2014) 610 

evaluated the effect of age structure on LD estimators, and found that LD calculated from mixed-611 

age adult samples is overestimated and thus Ne is underestimated in all of 21 simulated species with 612 

different life tables. Similarly, the LD in a subpopulation is reduced by a constant and high rate of 613 

immigration and elevated by a low rate of immigration, compared with that of an isolated 614 

population of the same Ne. Therefore, as observed by Waples and England (2011) in their 615 

simulation study, LD calculated from a sample from a subpopulation leads to an overestimate or an 616 

underestimate of local Ne when immigration rate is high or low, respectively. In the former case, the 617 

estimated local Ne converges to the global Ne of the entire population (Waples and England, 2011). 618 

 LD is highly dependent on the recombination rate between loci (Hill, 1981). Pairs of closer 619 

linked loci have higher LD, and thus provide better information about Ne (suitably defined in time 620 

scale) if the linkage information among loci is known. Although Hill (1981) derived his LD 621 

estimator of Ne allowing for an arbitrary level of linkage, and he advocated the use of linked 622 

markers, most often unlinked markers are used in practice because either truly unlinked markers are 623 

used or potentially linked markers are used but their linkage relationship is unknown. LD of 624 

markers of different recombination rates sheds light on the effective size of the population in 625 

different time periods in the past (Wang, 2005). Quite a few methods (Hayes et al. 2003; Barbato et 626 

al. 2015; Mezzavilla and Ghirotto 2015; Saura et al. 2015) have been developed to exploit the LD 627 
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information from many densely spaced markers on a chromosome segment in inferring the Ne at 628 

different time points in the past.  629 

 630 

Temporal changes in allele frequency 631 

 632 

For an infinitely large population under Hardy-Weinberg equilibrium, both allele frequencies and 633 

genotype frequencies remain unchanged over time. In reality, these frequencies never stay constant, 634 

and change systematically due to the forces of mutation, selection and migration, stochastically due 635 

to the random force of genetic drift, or both. In the absence of the action of all of the systematic 636 

forces in a population, any observed allele frequency change must come solely from genetic drift 637 

and can thus be used to infer the rate of drift or the Ne of the population. Based on this logic, 638 

Krimbas and Tsakas (1971) proposed to measure allele frequency changes at a number of marker 639 

loci between two temporally separated samples of individuals, and thereby to estimate the Ne of the 640 

population during the sampling interval. This so-called ‘temporal method’ was subsequently 641 

developed by many others in both (allele frequency) moment (e.g. Nei and Tajima, 1981; Pollak, 642 

1983; Waples, 1989) and likelihood (e.g. Williamson and Slatkin, 1999; Anderson et al., 2000; 643 

Wang, 2001b; Berthier et al., 2002; Beaumont, 2003b; Laval et al., 2003) approaches.  644 

Moment estimators calculate a standardized variance in the temporal changes of allele 645 

frequency, F, from marker genotypes in two temporally spaced samples. F is essentially similar to 646 

Wright’s FST, the differences being that F measures the temporal differentiation for the same 647 

population and it also includes sampling effect. There are a few F estimators (e.g. Nei and Tajima, 648 

1981; Pollak, 1983) available, the one being widely applied was derived by Nei and Tajima (1981). 649 

This estimator is calculated by  650 

𝐹̂ =
1

𝑘
∑

(𝑥𝑖−𝑦𝑖)2

(𝑥𝑖+𝑦𝑖)/2−𝑥𝑖𝑦𝑖

𝑘
𝑖=1 ,         (26) 651 

for a locus with k alleles, where xi and yi are the observed frequencies of allele i in the first and 652 

second samples respectively. For multiple loci, 𝐹̂ is obtained by averaging single locus estimates. 653 

The expectation of 𝐹̂ depends on the sampling schemes (sampling with or without replacements), 654 

and is a function of Ne and sample sizes to account for genetic drift and sampling effects. Solving 655 

the expectation equation of 𝐹̂ for Ne yields the temporal estimate of the (harmonic) mean Ne during 656 

the sampling period (Nei and Tajima, 1981; Waples, 1989). 657 

Moment estimators rely on the summary statistic, F, which is simple to calculate. However, 658 

they do not use the full allele frequency information and are thus less accurate than the probabilistic 659 

methods. The latter, likelihood or Bayesian, are much more complicated in statistical modelling and 660 

in computation. In general, temporal methods provide good estimates of Ne when it is not large, 661 
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sampling interval is not too short (e.g. one generation), and the assumptions of the methods are 662 

satisfied, using a typical set of 10-20 microsatellites. Likelihood methods generally have higher 663 

accuracy and precision than moment methods, especially for markers with rare alleles, as verified 664 

by several extensive simulations (e.g. Wang, 2001b; Berthier et al., 2002; Tallmon et al., 2004). 665 

They are however much more computationally demanding than moment methods, which complete 666 

an analysis almost instantly. Recently, the computational efficiency of likelihood methods has been 667 

improved substantially by Hui and Burt (2015), using a hidden Markov algorithm and applying 668 

continuous approximations to allele frequencies and transition probabilities. The new method can 669 

deal with Ne values as high as several millions, and is implemented in an R package called NB.   670 

 A constraint on the applications of temporal approaches is the requirement of at least two 671 

samples taken at one or preferably more generations apart. The longer this sampling interval, t, is, 672 

the stronger the drift signal will be in the temporal data, and the more accurate the Ne estimate will 673 

become. The extent of drift is proportional to t and is inversely proportional to Ne. For the same 674 

population and the same sampling intensity (in terms of the number of markers, number of samples, 675 

and number of individuals per sample), increasing the sampling interval t could improve the 676 

accuracy of the temporal methods tremendously, as has been repeatedly verified by simulations 677 

(e.g. Nei and Tajima, 1981). Moment estimators have especially low accuracy when t is small (say, 678 

t < 3) because of the weak drift signal and also because of the approximations made to the 679 

estimators. In practice, it is unfortunately difficult or unrealistic to increase t, especially for long-680 

lived species having a long generation interval. 681 

 Compared with other Ne estimating approaches, the temporal approach makes fewer 682 

assumptions and is more robust to some complications (realities) in real populations. For example, 683 

the approach is robust to population structure. It applies to a single unsubdivided population under 684 

non-random mating (including selfing), and to a subdivided population when sampling is 685 

representative and the aim is to estimate the Ne of the entire subdivided population rather than that 686 

of a single subpopulation. It is also robust to age structure in a population with overlapping 687 

generations, so long as the sampling interval t is large (e.g. Nei and Tajima, 1981). When t is small, 688 

however, Waples and Yokota (2007) showed by simulations that typical sampling regimes 689 

(sampling only newborns, only adults, and all age classes in proportions) result in biased Ne 690 

estimates. Jorde and Ryman (1995) developed a moment estimator of Ne applicable to populations 691 

with overlapping generations. They derived an age-structure correction factor, which, when applied 692 

to the standard moment estimator for populations with discrete generations, leads to unbiased Ne 693 

estimates for populations with overlapping generations. Unfortunately, however, the correction 694 

factor is a function of numerous age-specific survival rates and age-specific reproduction rates of 695 

the focal population. These rates are usually unknown. In fact, once all these rates are known for a 696 
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population, the Ne of the population can be calculated from standard Ne prediction equations (e.g. 697 

Felsenstein, 1971; Hill, 1972, 1979) without the need of genetic data. A method to calculate the Ne 698 

of a population with overlapping generations from its demographic parameters has been 699 

implemented in an R-package Neff (Grimm et al. 2016).   700 

 The standard temporal approach for a single unsubdivided population was also extended to 701 

estimate the Ne of a subpopulation which is connected to other subpopulations by gene flow (Wang 702 

and Whitlock, 2003). Although both drift and immigration change allele frequencies of a 703 

subpopulation, the detailed patterns of the changes are different between drift and immigration. 704 

Using temporal samples from a focal subpopulation and a sample from a large source population 705 

(the island-mainland model) or from two focal subpopulations (the island-island model), a moment 706 

estimator and a likelihood estimator can yield joint estimates of Ne and migration rates, m. 707 

Simulations showed (Wang and Whitlock, 2003) that both moment and likelihood estimators gave 708 

reasonably good estimates of Ne and m under typical sampling intensities. However, no estimators 709 

are available for the more general case of multiple (n > 2) subpopulations. Part of the difficulty is 710 

with the number, n
2
, of parameters to be jointly estimated, including n effective sizes and n(n – 1) 711 

migration rates. More work is badly needed in this direction as spatial and temporal genotype data 712 

are becoming easy to collect thanks to the rapid developments in molecular technologies. 713 

 One of the assumptions in the temporal approach is the absence of selection so that any 714 

change in allele frequency comes solely from drift and thus indicates the effective size of the 715 

population. For most marker loci, the assumption is valid, especially for a small population over a 716 

short sampling interval of just a few generations. However, over a long period, some loci could be 717 

affected by adaptive selection or purging selection and their allele frequencies could change faster 718 

or slower than those of neutral loci unaffected by selection. Allele frequencies at neutral loci could 719 

also evolve faster or slower because of linkage disequilibrium with those under selection. The 720 

temporal methods have been extended to estimate Ne of a population and the selection coefficient, s, 721 

of a locus from time-series data of allele frequencies (e.g. Bollback et al., 2008; Mathieson 722 

and McVean, 2013; Foll et al., 2015). These methods are usually Bayesian, based on 723 

hidden Markov models to explain the observed allele frequency changes due to drift and selection. 724 

How well these methods perform has yet to be checked, perhaps by a simulation study. 725 

 726 

Relatedness and relationship 727 

 728 

The pattern of genetic relatedness or relationship between individuals in a population has a direct 729 

functional relationship with the inbreeding effective size of the population (Wang, 2009). Two 730 

individuals taken at random from a population with a smaller Ne will have a higher probability of 731 



24 
 

sharing the same father, mother, or both. More generally, the mean and variance in pairwise 732 

relatedness within a generation are expected to increase with decreasing Ne. Based on this logic, 733 

Nomura (2008) proposed a method to use the increase in average coancestry between two 734 

consecutive generations to estimate Ne. He showed by simulations that his coancestry method is 735 

more biased, but more precise than the heterozygosity excess method. The overall accuracy 736 

(measured by mean squared errors) of the two methods is similar. A major problem which causes 737 

the bias of the method, as recognized by Nomura (2008), is that some non-sib pairs must be selected 738 

from a sample of individuals to act as reference in estimating the mean coancestry. The selection of 739 

non-sib pairs is difficult and somewhat subjective, because it is now well-known that classifying 740 

dyads into even well separated relationship categories, e.g. full sibs, half sibs, parent offspring, and 741 

unrelated, from pairwise relatedness estimates is highly error prone (e.g. Blouin et al., 1996). 742 

Although many marker-based pairwise relatedness estimators are unbiased, they have high 743 

sampling errors with no exceptions (Wang, 2014). 744 

 A more robust and powerful method is to estimate the frequencies of half-sib (sharing a 745 

single parent) and full-sib (sharing both parents) dyads, QHS and QFS, in a sample taken at random 746 

from a single cohort of a population (Wang, 2009; Waples and Waples, 2011). Wang (2009) 747 

derived a formula of Ne in terms of half- and full-sib frequencies, using both an inbreeding and a 748 

drift approach, 749 

1

𝑁𝑒
=

1+3𝛼

4
(𝑄𝐻𝑆 + 2𝑄𝐹𝑆) −

𝛼

2
(

1

𝑁𝑚
+

1

𝑁𝑓
).       (27) 750 

The equation has the parameter α as in eqn (5), so that the Ne for a population under non-random 751 

mating (e.g. partial selfing) can be estimated. While QHS and QFS can be estimated from a sibship 752 

assignment analysis of the multilocus genotypes (Wang and Santure, 2009; Jones and Wang, 1010), 753 

α can be estimated from the same data with a FST-like approach (Wang, 2009). Alternatively, α can 754 

be assumed to be zero for an outbred population when marker genotype frequencies do not deviate 755 

significantly from those expected under Hardy-Weinberg equilibrium. The difficulty comes from 756 

the estimation of the numbers of breeding males, Nm, and females, Nf, because sibship analysis 757 

generally makes no distinctions between paternal and maternal sibships from autosomal marker 758 

data, except in some specific situations (Wang, 2009). However, as detailed in Wang (2009), the 759 

bias brought about by the last term of eqn (27),  
𝛼

2
(

1

𝑁𝑚
+

1

𝑁𝑓
), is usually negligible because α is 760 

usually small and the estimate of 
1

𝑁𝑚
+

1

𝑁𝑓
 by a sibship analysis is also not too far from its true 761 

value. 762 

There are several advantages of this sibship approach compared with other single-sample 763 

approaches to Ne estimation. First, sibship can be inferred more accurately than other quantities 764 
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such as relatedness, which leads to more accurate estimates of Ne. Second, the approach applies to 765 

non-random mating populations, as an inbreeding coefficient α (eqn 5; equivalent to Wright’s FIS) 766 

can be calculated from the genotype data and incorporated into the Ne estimate. Similarly, the 767 

approach is also robust to population subdivision, as discussed by Wang (2009). Third, it applies to 768 

diploid species, haplodiploid species, dioecious as well as monoecious species with selfing. Fourth, 769 

a great advantage is that it provides not only an estimate of the summary parameter Ne, but also 770 

some information about the numbers of male and female parents and variance in family sizes 771 

through the sibship assignment analysis. This detailed information is especially valuable for 772 

conservation management, as a low Ne due to high variance in family size or a low number of 773 

parents would imply different management strategies. Simulations verified that the approach is 774 

much more accurate than the heterozygosity excess method, and is similar in accuracy to the 775 

temporal methods (Wang, 2009). However, it is unclear how its accuracy compares with that of the 776 

LD method. More work is needed to clarify this issue. 777 

 The above sibship frequency approach assumes a population with discrete generations. For a 778 

population with overlapping generations, the estimate provided by the sibship frequencies in a 779 

sample of single-cohort individuals is the effective number of breeders, Nb. This parameter 780 

summarizes the effects of variation in reproductive success between age classes, between sexes, and 781 

between individuals within an age-sex class on genetic drift in a single breeding season, instead of 782 

in a life time. It is less useful than Ne, and no population genetics equations are in terms of Nb. 783 

However, in the absence of an estimate of Ne, Nb provides some information about the risks of 784 

inbreeding and loss of genetic variation in conservation populations (e.g. Waples and Antao 2014; 785 

Whiteley et al. 2015). For the case of overlapping generations, Wang et al. (2010) proposed a 786 

parentage assignment method to estimate the Ne and generation interval from the sex, age, and 787 

multilocus genotype information of a single sample of individuals taken at random from a 788 

population. Essentially the method estimates the life table by parentage assignments, and both Ne 789 

and generation interval are then calculated from the life table. Simulations showed that the method 790 

yields unbiased and reasonably accurate estimates of Ne under realistic sampling and genotyping 791 

effort. Application of the method to empirical data yields sensible Ne estimates that are supported 792 

by other sources of information from the population (Kamath et al. 2015).   793 

 794 

Multiple sources of drift/inbreeding information 795 

 796 

The above approaches to Ne estimation use a single source of information, such as heterozygote 797 

excess, LD, temporal allele frequency changes, and sibship/parentage frequencies. Each piece of 798 

information reflects a facet of the stochastic process (genetic drift or inbreeding), and combining 799 
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multiple pieces of information may potentially allow for a better delineation of the process and thus 800 

yield a more accurate estimate of Ne. Tallmon et al. (2008) proposed to use approximate Bayesian 801 

computation (ABC) to estimate Ne from a sample of microsatellite genotypes. Their method, 802 

implemented in a computer program ONESAMP, calculates and uses eight summary statistics 803 

which are known to have functional relationships with Ne from population genetics theory or 804 

simulations. These statistics include, among others, the number of alleles per locus, expected 805 

heterozygosity, linkage disequilibrium, Wright’s FIS, the mean and variance of multilocus 806 

homozygosity. In essence, the ABC approach simulates populations of different Ne and tries to find 807 

the Ne value that yields the same or similar summary statistics to those calculated from the real data. 808 

Tallmon et al. (2008) demonstrated this ABC approach by analysing an introduced increasing 809 

population of ibex Capra ibex. 810 

 It is arguable that the ABC approach uses more information than other approaches. On one 811 

hand, it uses multiple sources of information such as heterozygosity, number of alleles, and LD. 812 

However, on the other hand, for each source of information, it uses a summary statistic rather than 813 

the full information that is used by the probability methods (likelihood or Bayesian). Furthermore, it 814 

is unclear how these different summary statistics should be optimally weighted, given that these 815 

statistics are, apparently, highly correlated and may reflect the inbreeding and drift processes of 816 

different time scales. For a population changing in size, these different summary statistics are 817 

relevant for Ne in different time scales. For example, FIS (like heterozygosity excess) is pertinent to 818 

the parental Ne, LD implicates Ne in the past few or more generations (depending on the linkage of 819 

the markers), while the number of alleles can be determined by the ancient Ne many generations (in 820 

the order of Ne or 1/u, whichever is smaller, where u is mutation rate) ago. So far an extensive 821 

simulation study to compare the accuracy of ABC and other approaches is lacking, but is urgently 822 

needed. 823 

 824 

Discussion 825 

 826 

Since the seminal work of Wright (1931, 1933), great progress has been made on the pivotal 827 

population genetics parameter, Ne, in its concepts (e.g. inbreeding, variance, eigenvalue effective 828 

sizes, etc.), its predictions for various species under different mating systems and population 829 

structures, and its estimation methodologies using various marker information. In parallel, estimates 830 

of Ne, from both demographic and genetic data, have been made for many populations in the past 30 831 

years, thanks to the rapid developments in both molecular technologies and statistical and 832 

computational methodologies. 833 
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Much work has been done to predict the effect of selection on Ne. However, developing useful 834 

predictive models on the effect of selection acting on an inherited trait remains difficult. The reason 835 

is that the impact of linked genes propagates over a number of generations, resulting in a long-term 836 

effect that is difficult to combine in a simple equation with parameters referred to only one 837 

generation time. Coalescence theory runs into similar difficulties in predicting Ne, because the 838 

probabilities of coalescence for consecutive generations are not independent under selection on an 839 

inherited trait. In addition to the variation of Ne across generations, there is also variation over the 840 

genome. It is nowadays quite clear that there is a significant heterogeneity in levels and patterns 841 

of genetic variation across the genome caused by selection (Charlesworth, 2009; Gossmann et al., 842 

2011), which complicates the inferences of Ne.  843 

Another important remaining problem about selection is the interrelationship between Ne and 844 

genetic variation. Most equations of Ne are linear functions of the census size N where genetic 845 

variation of the selected trait is an independent variable. However, genetic variation itself depends 846 

on Ne. Ignoring this fact is irrelevant for some purposes, but is troublesome in some models of 847 

closely linked loci. This reciprocal dependence is in the basis of the Hill-Robertson effect (Hill and 848 

Robertson, 1966) and Muller´s ratchet (Haigh, 1978), both being different aspects of the same issue, 849 

an additional reduction of genetic variance due to genetic drift induced by selection.  850 

 Demographic estimation of Ne can be made by application of the predictive equations 851 

reviewed here when information on census sizes, variances of progeny numbers, type of mating 852 

system, and other demographic data, are available. The lack of these data and the increasing 853 

availability of genetic markers make the estimation of Ne through genetic data to be, however, the 854 

leading procedure. Most factors affecting the populations in real situations imply a reduction of the 855 

effective size relative to the census size. In fact, the observed ratio Ne / N has been found to be 856 

about 10%-20% (Frankham, 1995; Palstra and Fraser, 2012) on average in meta-analyses across 857 

many species and populations. Overall, these figures are in agreement with theoretical expectations 858 

obtained from some of the predictive equations presented in this review when fluctuations in 859 

population size are considered (Vucetich et al., 1997). However, this average Ne / N ratio may be an 860 

overestimate, as marine species are under-represented in these meta-analyses and can have 861 

extremely low Ne / N ratios. 862 

 Each Ne estimation method with genetic data is based on a certain population genetics model 863 

and has a number of assumptions. It is important to realize that, when these assumptions are 864 

violated, which is unfortunately the rule rather than the exception in the real world, an estimation 865 

method may yield invalid or biased estimates of Ne. For example, most methods reviewed herein 866 

assume an isolated random mating population with discrete generations. Yet in practice such 867 

populations are rare. The robustness of different methods has not been fully investigated. 868 
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Another important issue is the interpretation of the estimates obtained from a certain method. 869 

First, what is the spatial scale relevant to a Ne estimate? Is it the effective size of the local 870 

population from which samples are taken, or that of the metapopulation of which the sampled local 871 

population is a part? Apparently, the local and metapopulation effective sizes are very different in 872 

quantities and in applications. Local and metapopulation Nes signify the intensities of inbreeding 873 

and genetic drift processes at the local and global levels, respectively. A small local Ne but a large 874 

global Ne (i.e. many small interconnected populations) and a large local Ne but a small global Ne (i.e. 875 

a few large interconnected populations) have different ecological, evolutionary, and conservation 876 

genetics implications.  877 

Second, what is the temporal scale relevant to a Ne estimate (Waples 2005)? Is it the Ne of the 878 

sampled population, of the parental population, of an ancestral population or the average Ne over 879 

several/many previous generations? The heterozygosity excess method and sibship methods 880 

estimate the parental population Ne, temporal methods estimate the (harmonic) average Ne over the 881 

generations in the sampling interval, while LD and ABC methods estimate the average Ne over an 882 

unspecified number of previous generations (Wang, 2005). Of course the temporal scale becomes 883 

irrelevant for a population with a constant unchanging demography. In practice, however, a natural 884 

population never stays the same.  885 

Third, does the estimate refer to inbreeding or variance effective size? The question is 886 

irrelevant for the case of an isolated population with a constant demography or an incompletely 887 

subdivided (i.e. with migration) population of constant size, as the inbreeding (NeI) and variance 888 

(NeV) effective sizes are the same. Otherwise, however, NeI and NeV can be dramatically different. A 889 

decreasing (increasing) population will always have a NeI greater (smaller) than NeV, because the 890 

former and latter depend on the stochastic processes in the parental and the offspring generations, 891 

respectively (Crow and Kimura, 1970; Caballero, 1994; Wang and Caballero, 1999). Although 892 

usually unspecified in the original work describing the estimators, they estimate NeI, NeV or a 893 

combination of both. The heterozygosity excess and sibship method estimate NeI, while the 894 

temporal methods estimate NeV. It is unclear what the LD and ABC methods estimate, but they 895 

likely estimate a combination of both NeI and NeV. 896 

Fourth, are the estimators unbiased and accurate when their underlying assumptions are met 897 

and are violated? Most estimators are not fully evaluated for their performances and statistical 898 

behaviours by simulation studies, especially those that are computationally intensive. In measuring 899 

the overall accuracy of an estimator, both precision and bias should be considered, and better 900 

incorporated into a single measurement, such as mean squared errors. It is better to measure the 901 

mean squared errors of 1/(2Ne) rather than Ne, because the latter can be infinitely large and, more 902 

importantly, it is invariably 1/(2Ne) rather than Ne that enters a population genetics equation (Wang 903 
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and Whitlock, 2003). The dominating factor in determining accuracy is precision and bias when 904 

marker information is scarce and ample, respectively. 905 

 More work is also needed in developing estimators that make fewer restrictive assumptions 906 

and thus are more widely applicable to real populations. A common challenge to the current 907 

estimators is population genetic structure, including age structure (i.e. overlapping generations) and 908 

spatial structure (i.e. population subdivision with migration). Blindly applying an estimator 909 

developed for a single isolated population with discrete generations under random mating to an age- 910 

or space-structured population may yield unpredictable results. 911 

 Most current estimators have good performance for a population with a small Ne, partly 912 

because the drift or inbreeding signal is strong. For a large population with Ne in the thousands or 913 

more, drift and inbreeding in the population is weak and is thus difficult to pick up by the typical 914 

sampling intensity (say, ~100 individuals, 10-20 microsatellites). With the rapid developments of 915 

genotyping (sequencing) technology, an increasing number of studies use many genome-wide 916 

markers to investigate population structure and demography. Use of thousands of SNPs may 917 

compensate for the weak signal of stochasticity in a large population, and thus may allow for a good 918 

estimate of large Ne. Future work is needed in evaluating current methods to estimate large Ne using 919 

many markers. It can be reasonably assumed that, for an accurate estimate of Ne (say, a narrow 95% 920 

confidence interval of roughly [0.5Ne, 2Ne]) by any efficient method, a sample size of individuals, 921 

of the total number of effective alleles across loci, or of both in the order of Ne might be required.  922 

 A related issue with large Ne and many markers is the computational efficiency of likelihood 923 

or Bayesian estimators. Efficient algorithms, such as that proposed recently for the likelihood 924 

temporal estimator (Hui and Burt, 2015), are urgently needed to deal with big datasets. Another 925 

option is to exploit the modern multicore and multi-cpu computers and to parallel computer 926 

program codes using techniques such as MPI (Message Passing Interface) and OpenMP. 927 

 In some applications, the parameter, Ne, is all that is required in describing the current and 928 

predicting the future genetic variation in a population, and the demographic details that determine 929 

Ne are irrelevant. In other applications such as the conservation management of endangered species, 930 

however, both Ne and the demographic details of the population are useful in designing the most 931 

effective management to maintain the genetic diversity (Wang, 2009). When a population is 932 

estimated to have a small Ne and thus is prone to the loss of genetic variation, we may ask what the 933 

causes are. Is the small Ne caused by a small number of breeders, by a large variance in 934 

reproductive success among breeders, by an unbalanced sex ratio, etc? Different causes imply 935 

different optimal management strategies. The utility of future Ne estimators could be improved if 936 

they provided joint estimates of Ne and important demographic quantities such as variance of 937 

reproductive success. 938 
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