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Abstract    

This chapter describes two case examples of the use of mobile technology for math-
ematics. Building on the assumption that mobile learning has a positive effect on 
student attitudes and academic outcomes, including STEM subjects (Hsi, 2007; Wu 
et al., 2012) we develop a theoretical lens for future studies for ‘mobile mathemat-
ics’. The two case examples describe how mobile technology could provide oppor-
tunities for ‘mathematics outside the classroom’. The first example describes a dy-
namic Ferris wheel, the second a static cathedral. Both examples demonstrate how 
‘geo-location’ and ‘augmented reality’ features allow mobile technologies to bridge 
formal and informal mathematics learning (Lai, Khaddage and Knezek, 2013).  
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learning 

1 Introduction 

This chapter capitalizes on the potential of, and synergy with, informal learning 
using mobile devices (Laurillard, 2009). Whilst research is limited, evidence sug-
gests that mobile learning has a positive effect on student attitudes and academic 
outcomes including STEM subjects (Hsi, 2007; Price, Davies, Farr, Jewitt, Roussos, 
& Sin, 2014; Wu, Wu, Chen, Kao, Lin, & Huang, 2012). Lowrie (2005) argues that 
the technology-rich contexts that are used at school are often different than the tech-
nology that children regularly use at home, and so it is important for educational 
research to consider the impact that technology not commonly found in school, can 
have on children’s meaningful mathematics learning. In a study that explored op-
portunities for engaging children in mathematical activities through the use of a 



 

 

location-based game with mobile handheld technology, Wijers, Jonker and Drijvers 
(2010) collected data from observations, online storage game data, an online survey, 
and interviews and report findings that indicate enhanced student engagement. Lud-
wig and Jesberg (2015) explored the potential of mobile technology by provided 
‘geo located’ modelling tasks, that is, ‘maths trails’ that were guided by the GPS 
options of mobile phones. Another development concerns the use of ‘augmented 
reality’ in informal learning environments: a field experiment in a mathematics ex-
hibition showed that visitors performed significantly better on knowledge acquisi-
tion (Sommerauer & Müller, 2014). Despite a lack of mobile learning research in 
informal contexts (Wright & Parchoma, 2011), we aim to better understand the con-
cept of mobile learning and how mobile technologies can be used to bridge formal 
and informal mathematics learning (Lai, Khaddage, & Knezek, 2013). We hypoth-
esize that the planned activities for the different geolocations will provoke curiosity 
(Arnone, Small, Chauncey, & McKenna, 2011) and improve learning and interest 
in mathematics because:  

• Visitors to these locations are likely to attend in a friendship or family 
group. In this sociocultural context, visitors become learners and 
learning takes place through social interaction with others in a soci-
ocultural context in which they act and interact in shared experiences 
(Vygotsky, 1978);   

• The locations, and their planned activities within them, are intriguing 
and this physical factor may influence how visitors feel about learning 
in this context. Learning outcomes can be a result of the ease with 
which the activity can be accomplished and how well it demonstrates 
scientific and mathematical concepts; 

• Visitors are engaged in multiple ways e.g., physically, socially, emo-
tionally and cognitively; 

• Visitors have control over whether to engage in the activities or not;  
• The mathematical ideas are experienced in an authentic and dynamic 

fashion. 

In the following we further elaborate on the key dimensions of our study. 

2 Theoretical perspectives  

What is distinct in ‘mobile learning’? 
Mobile technologies, such as portable and handheld devices, with powerful social 
networking, communication and geo-location capabilities, have become ubiquitous 
worldwide and offer immense opportunities and new potential in education (Dhir, 
Gahwaji, & Nyman, 2013; Domingo & Gargante, 2016; Larkin & Calder, 2016). 
Mobile technology devices have become widely available, convenient and less ex-
pensive, with each successive generation being equipped with new features and 



 

 

sophisticated applications (Wu et al., 2012). The immense power of mobile tech-
nology is underlined by the fact that society and mobile technology interact with, 
and shape each other. Despite its ubiquitous nature, increased affordability and 
functionality, the integration of mobile technology devices in education is consid-
erably limited and the effectiveness of mobile learning needs to be evidenced in a 
more systematic way. 
To a large extent mobile learning or learning with mobile technology builds on the 
same foundations as that of technology-enhanced learning. It is not our intention to 
review the complete literature on the topic; we refer to the large body of literature 
available (e.g. Voogt & Knezek, 2008). We will focus specifically on the ‘mobile’ 
aspect, ‘mobile learning’ (m-learning), which differs from the broader technology 
topics by its ability to obtain and supply information at any time, resulting from its 
built-in wireless connectivity (Kukulska-Hulme & Traxler, 2005). However, it is 
problematic to conclude a concise definition of m-learning due to the ambiguity of 
the concept of m-learning itself (Kukuska-Hulme, 2009). As so often in technology-
oriented literature it revolves around the question whether m-learning is about the 
mobility of the learning technology or the mobility of the learner him or herself? 
The same question is noted by Traxler (2009). To illustrate this with an extreme 
example, imagine a student brings his or her desktop computer outside, or a student 
places his or her mobile phone on the desk in a classroom and types in an essay. In 
other sources there seems to be a distinct emphasis on one, the other or both, without 
really concluding a clear definition of m-learning. Consequently, we focus on m-
learning from the perspective of the mobility of the learner, which resonates with 
the views of O’Malley, Vavoula, Glew, Taylor, Sharples, and Lefrere (2005) sug-
gesting that m-learning happens when the learner is not at a fixed, predetermined 
location and takes advantage of the learning opportunities offered by mobile tech-
nologies. Kukulska-Hulme and Traxler (2005) approached m-learning as learners’ 
engagement in educational activities and communications with others via wireless 
technologies in mobile devices, without any specific location. Mobile learning takes 
place whenever and wherever the learners desire (Keengwe & Bhargava, 2014; 
Traxler, 2009). In addition, the affordances of mobile technologies offer to learners 
different levels of engagement and may provide inquiry-based learning activities 
inside the school, but also in out-of-school environments (Churchill & Churchill, 
2008). What these perspectives have in common is that the learner is central and 
mobile. 
In a review synthesis of 164 studies on m-learning from 2003 to 2010, Wu et al. 
(2012) revealed two major research strands. The first strand concerns the effective-
ness of mobile learning and the second one the design of mobile learning systems. 
A significant number of studies revealed positive, neutral and negative findings re-
garding the effectiveness of mobile learning. From a methodological perspective, 
surveys and experiments were used as the primary research methods. As the review 
is already somewhat older, mobile phones and PDAs were the most widely used 
devices for mobile learning. The authors suggest that these findings might be dis-
placed by emerging technologies, which has become evident in the case of tablet 



 

 

computers. Crompton and Burke (2014) concluded similar findings to Wu et al 
(2012) from a mathematics specific review. They found that: (a) most of the studies 
focus on effectiveness, followed by learning design, (b) mobile phones were the 
most widely used device, and (c) the use of mobile devices for mathematics learning 
was most common in elementary (5-11 years old) school settings. 
There is an ongoing need to examine the pedagogies that are suitable for mobile 
learning from the perspective of learners’ needs and not based only on the af-
fordances of the new technological features (Traxler, 2009). Mobile learning de-
vices have been considered as a new type of computing platform that can be used 
to push beyond the restrictions of traditional pedagogies, provided they are designed 
and implemented in a way that takes into consideration the social and cultural con-
text of learning (Crompton & Traxler, 2015). 

 
What are the advantages of Augmented Reality (AR)? 
Another development concerns the use of ‘augmented reality’ in informal learning 
environments. When reality is augmented, technology adds an additional ‘layer’ to 
reality. It combines real and virtual objects, has real-time interaction and three-di-
mensional affordances (Azuma, 1997). With AR devices users can actually see 3D 
objects, work with complex spatial problems and involve spatial relationships. In 
addition, AR technologies help learners engage in authentic exploration in the real 
world and conduct investigations of the real-world surroundings. As Sommerauer 
and Müller (2014) indicate, advances in mobile technologies (especially 
smartphones and tablets with built-in cameras, location options and internet access) 
have made augmented reality (AR) applications available for the broad public. Their 
pretest–posttest crossover field experiment with 101 participants at a mathematics 
exhibition aimed to measure the effect of AR on acquiring and retaining mathemat-
ical knowledge in an informal learning environment. The study was based on prin-
ciples from the cognitive theory of multimedia learning (CTML), suggesting that 
people learn better from words and pictures than from words alone (Mayer, 2010). 
AR might, when designed correctly, address several design principles for effective 
multimedia instruction: firstly, the multimedia principle by overlaying pictorial con-
tent with text; secondly, the spatial and temporal contiguity principles by aligning 
virtual and physical information, for example, in three dimensions; thirdly, the mo-
dality principle by integrating auditory elements. Finally, the signaling principle 
could be obtained by highlighting essential information in a learning environment 
through cues, for example geographic location information and triggers (Som-
merauer & Müller, 2014).  
 
Multiple representations in task design 
Building on the dynamic nature of mobile learning and the affordances of AR tech-
nologies, we can also position AR in relation to prior research on task design in 
mathematics education, with a particular emphasis on the potential role of multiple 
representations. This was a prominent focus within the technology chapter of the 
22nd ICMI study on task design (Watson & Ohtani, 2015). This study argued that 



 

 

often “abstract generalizations come about when critical aspects from multiple 
mathematical representations and discourses fuse and blend together” (p. 216). In 
addition, Whiteley and Mamolo (2013) used a framework of conceptual blending. 
It was found that teachers and students had multiple ways of reasoning about the 
task and created different conceptual blends for these representations. Earlier, Kaput 
(1986) had already argued that a multiple representational environment supported 
by technology might enhance high-level engagement with mathematics. So alt-
hough AR might realize the potential of doing exactly that, it is important that the 
bridging and moving between tools and representations are key task design consid-
erations. In moving between different representations we can also think about the 
distinction between a real situation, a real model as overlay on the real situation and 
an abstract mode, as per the modelling cycle by Blum and Leiss (2007). This cycle 
takes as starting point the ‘real situation’ from which a ‘situation’ or ‘real’ model is 
inferred. The process of ‘mathematising’ then transports it to a mathematical model, 
which is used to get mathematical results. Finally, the interpretation of these results 
leads to the final, real results, perhaps leading to an adjustment of the situation 
model.    

 
Bridging formal and informal learning 
Mobile learning has the potential to bring out-of-school contexts and problems into 
the classroom for learning mathematics, and take school mathematics into out-of-
school contexts because mobile technologies have the ability to work within the 
specific context and environment of the learning (Khaddage, Muller, & Flintoff, 
2016). The importance of informal learning has been stressed in research (Cox, 
2013). Children can learn anywhere and anytime outside a formal learning environ-
ment resulting to an increased desire to continue interacting, playing and exploring 
from different perspectives. Informal learning is self-directed, has an intentional-
interest, is non-assessment driven and spins-off mainly from leisure activities (Lai, 
Khaddage, & Knezek, 2013). Sawaya and Putnam (2015) suggested that this can be 
achieved by utilizing the affordances of mobile devices, such as computing input, 
consuming content, capturing surrounding context, communicating and collaborat-
ing with others and creating content. Thus, a suggestion could be to investigate in 
depth the ways in which mobile technologies can be used to bridge formal and in-
formal mathematics learning (Lai, Khaddage, & Knezek, 2013; Wright & Par-
choma, 2011). Along with Sawaya and Putmans’ (2015) framework regarding mo-
bile devices affordances, Lai, Khaddage and Knezek (2013) described a Mobile-
Blended Collaborative Learning model that only describes three categories of mo-
bile application tools, namely tools for collaboration, tools for coordination and 
tools for communication. We suggest that a category, let’s call it ‘tools for augmen-
tation’, given the affordances described previously, also might facilitate formal and 
informal learning, simply because they augment ‘reality’ (which we see as informal) 
with a virtual layer (which can be the formal content, for example, provided by 
curriculum content). In addition, it could be suggested that children’s out of school 
experiences might be utilized effectively to bridge the gap between home and school 



 

 

(primary and secondary) or home and university. Jay and Xolocotzin (2015), based 
on the results of an intervention program, asserted that there is enough content and 
motivation in children’s out of school mathematics activities to be explored in ways 
that may help students’ build their own mathematical structures. They suggest that 
this can be achieved by making connections between the abstract content of math-
ematics lessons and the multiple ways in which mathematical concepts are involved 
in out-of-school activities. 
 
Students’ mathematical learning processes and activities 
Mobile learning could provide immense pedagogical benefits when mobile technol-
ogies are used as educational tools (Keengwe & Bhargava, 2014). Research findings 
suggested that mobile learning is associated with autonomous learning, students’ 
active engagement and easy-access to information through internet resources (Spec-
tor, 2015). Mobile technology devices allow students to become contributors of 
knowledge and co-designers of activities by posing their own real-world scenarios 
and utilizing the affordances of the handheld devices, such as gathering measure-
ment data, building structures, conducting virtual/augmented experiments or creat-
ing multimedia videos. In addition, such devices encourage pupils to take control of 
their own learning and manage their self-directed learning and individual develop-
ment (Spector, 2015). Individual development refers to the enhancement of inquiry 
exploration and self-regulation strategies. The virtual and augmented affordances 
of the devices facilitate students move from passive-reproducers of information to 
content creators and thus the further development of reasoning skills, such as anal-
ysis, synthesis, evaluation, decision-making, modeling, explanation and problem 
solving. In addition, mobile learning encourages collaborative learning and pro-
motes social interaction and collaborative feedback. 

 
We contend that there are numerous potentialities for m-learning that can be ex-
plored in relation to the above themes. Here, we describe two case scenarios, one 
for using AR for mathematics involving the London Eye attraction, next to the river 
Thames in central London, the second situated at a cathedral in the ancient capital 
of England, Winchester. We describe the scenarios from the viewpoint of the learner 
and other actors around him/her. We hope to show that elements of aforementioned 
themes, namely mobile learning, augmented reality, a combination of informal and 
formal learning, and multiple representations, might come together in one m-learn-
ing experience. 
 
 
 

3 Case one: The London Eye 



 

 

Many cities in developed countries around the world boast an observation (or Ferris) 
wheel of some type that sits proudly on the landscape and inevitably captures the 
curiosity of onlookers. One such wheel is ‘The London Eye’, developed to mark the 
new millennium. It dominates the London skyline and, as the most popular paid 
visitor attraction in London, it attracts over 3.75 million visitors per year.  Some 
mathematics educators have capitalized on it to create classroom-based resources 
to support both an introduction to mathematical concepts (Knights, 2014) or to con-
solidate/assess prior learning (Thomas & Gitonga, 2013). Central to both of these 
approaches was the prominence of the image of The London Eye, alongside the use 
of technology to support the further analysis of the mathematics represented by its 
physical features. This case example demonstrates how, by moving the learning 
outside of the classroom to the venue, and combining potential functionality from 
mobile technology such as smartphones, new mathematical activity can be proposed 
and, more importantly, experienced. 

On approaching The London Eye on foot, by wheeled vehicle or by boat, its position 
on London’s South Bank and the curvature of the river Thames make it inevitable 
that the Eye is seen from different angles. A (mathematical) question such as, 
‘Where does The London Eye look most like a circle?’ is far from trivial as one 
considers the best place to stand for a circular view.   Similarly, the other extreme, 
‘Where can you view The London Eye at its thinnest?’ takes you to a place on the 
Golden Jubilee Bridge (West) (Figure 1), which runs alongside Hungerford Bridge. 

 

Figure 1 Viewing The London Eye from the Golden Jubilee Bridge (West) 

However, these static photographic images mask the most striking feature of this, 
and any other Ferris wheel – it is moving at a constant speed of rotation. In the case 



 

 

of The London Eye, it stops very occasionally to enable disabled visitors to embark 
and disembark from its ‘capsules’. So, imagine that the observer, in our case a 
learner of lower secondary age, is standing with a friend or older family member at 
a marked location on the Golden Jubilee Brigade (or possibly, their mobile device 
has sent an alert to inform them that they are in an augmented reality mathematics 
space). As they look up at the Eye through the lens of their Smartphone, a mathe-
matical question pops up to provoke their curiosity: ‘Why do the capsules look like 
they are closer together at the top of The London Eye when compared to the mid-
dle?’ 

Again, a few moments of thinking time pass before our learner is asked whether she 
would like a hint - a prompt to touch one of the capsules on the smartphone screen, 
so as to mark its changing position over time. Simultaneously, a line segment that 
indicates this distance is displayed – augmenting reality (Figure 2, right side). The 
actual measurement can also be displayed. 

 

Figure 2 Augmented reality of The London Eye from the perspective of the Golden Jubilee Bridge 
(West) 

Additionally, the sequence of data, the marked capsule position from the horizontal 
mid-line at fixed time intervals, is stored – and can be auto-displayed as either a 
table or a graph in response to the learners’ own curiosity. Of course the same data 
can be collected and displayed whilst the learner is inside the capsule and experi-
encing The London Eye first-hand. An in-ride app, if it were to be designed, could 



 

 

be viewable on individual personal devices (or accessed via the many tablets pro-
vided in each capsule by the venue), could offer simultaneous screens showing the 
external views of the London Eye alongside the actual positional data of the indi-
vidual capsules for the period of the ride. In this case, learners are prompted to make 
predictions in relation to the magnitude of, and relationships between, key data.  By 
engaging learners with their personal experience of seeing how their own capsule’s 
height varies in relation to those immediately adjacent to them and the ground be-
low, their ride becomes a rich 2-D trigonometric experience as they experience for 
themselves the journey of a point on a trigonometric graph.  

The transition from this early experience of (constant) circular motion as a model 
of height against time towards more formal trigonometric graphing could follow 
sequentially by going to stand at another AR mathematics spot that is facing The 
London Eye (Figure 3). 

 

Figure 3 Viewing The London Eye from the Embankment 

The same sequence of questions still applies, but the different perspective allows 
for alternative approaches that involve optional AR tools. Initially, to justify or ex-
plain that the upper and lower capsules indeed are close to each other (in the hori-
zontal plane) than those nearest the mid-line, a still image could be augmented as in 
Figure 4. 
 

 



 

 

 
Figure 4 An augmented view of The London Eye from the Embankment showing how the height 
of the capsules vary during the ride. 

Working from the moving image, for which you (the reader) need to know that 
the London Eye moves counter-clockwise when viewed from this perspective, the 
learner is again invited to mark a capsule, which results in an AR experience 
whereby the moving image is annotated with a ‘mid-line’ and an angle measure that 
shows the marked capsule’s position on the wheel – in this case as an angular meas-
ure relative to the ‘three o’clock’ position to fit with the usual mathematical con-
vention (see Figure 5, right side). 

 



 

 

 
Figure 5 An augmented view of The London Eye from the Embankment – establishing reference 
points and highlighting changes in position. In the dynamic experience, the measured height would 
change as capsule moves during its journey. 

 
Automated data collection from the image would then be collected and adjusted 

to generate a model for the capsule’s motion over the journey. This could be made 
visible to the learner as measurement data that could be viewed and shared both in 
tabular form and graphically (see Figure 6). 



 

 

 
Figure 6 An augmented view of The London Eye from the Embankment – modeling the capsule’s 
relative position during the ride graphically. 

Any or all of our learners’ explorations could be shared via social platforms – 
and of course hopefully with her teachers, who could use this real experience as the 
basis for more formal learning. 

 

4 Case two: augmenting a cathedral 

The second case example revolves around Winchester Cathedral, Hampshire, 
United Kingdom. Winchester used to be the ancient capital of England and its ca-
thedral is one of the largest cathedrals in Europe, with the longest nave and greatest 
overall length of any Gothic cathedral in Europe. Upon arriving on the scene a stu-
dent’s mobile phone send an alert to indicate that the cathedral has some interactive 
features. The web-based app shows the student’s geolocation and GPS coordinates 
and indicates that the cathedral is at the starting point of mathematical activities 
related to proportionality and ratios. The student can point his or her mobile device 
to the cathedral, after which the installed app recognizes the cathedral and provides 
some relevant information (see Figure 7). An interface is provided for some further 



 

 

information on the web and custom information for this specific augmented loca-
tion. 

 
Figure 7 Information of Winchester Cathedral is provided. 

There is a feature to download some off-line resources such as task sheets, as 
part of a broader geo-located Augmented Reality package for the location. The 
package contains some classroom activities. Next to the information an icon also 
indicates that there are interactive AR activities for proportionality at this location. 
Clicking on the toolkit icon provides an additional ‘layer’ with some interactive 
features. In the case of the cathedral, a Dynamic Geometry System (DGS) can be 
used to calculate some proportions on the actual view (Figure 8). 

 

.  
Figure 8 Dynamic Geometry is transposed on the view of Winchester Cathedral. 

 
The platform also shows the lengths of the lines. An in-built clinometer can be 

used to determine the viewing angle. With some further tools, such as the geometry 



 

 

tool, a sketchpad and an aerial view of the area, the student can further model the 
situation, hinted by prompts and hints from the platform (Figure 9). 

 

 
Figure 9 A geographical map of the surroundings of Winchester Cathedral are presented next to 
abstract diagrams of the situation. The top left is a geometric diagram, bottom left is a learner 
drawn diagram. Note that the letters in this diagram do not match those in Figure 8; they are, 
however, related as the vertical AB corresponds with the height of the cathedral. 

 
The model the student has made is followed up by a quick pop quiz on the topic. 

An extension task, which the student can save for later also appears, emphasising 
connections between a (real) view of the cathedral in perspective and an abstract 
diagram, overlaying lines of the cathedral and a point on the horizon. Layers of the 
view can be turned on and off at will. It provides the student a means to go from 
reality (‘real situation’) to an abstract model. The work is shared and commented 
on via the interactive, social functions of the platform (Figure 10). 

 
Figure 10 A mobile portal site provides information about the geo-location and social media func-
tions. 



 

 

The scenario in this example can also be extended to a classroom. Students are 
able to experience the majesty of the cathedral but virtually. The functionality of 
the tools makes it possible for the teacher to make use of the location-based re-
sources in the classroom. By pointing the device at an image of the cathedral, it can 
serve as a ‘trigger image’ whereby the AR app presents a layer over the cathedral 
with the same functionalities as in the actual location. The location can be seen in a 
wider geographical map, disclosing that there are several other augmented spots in 
the area, for example at nearby Stonehenge. In addition to the same resources as the 
‘real’ location, the classroom also provides some other features that are difficult to 
present on mobile screens. In addition to AR, there is scope to provide a Virtual 
Reality (VR) experience: using a mobile device to experience the grandeur of the 
real cathedral, with interactive features added in. The augmented cathedral has pro-
vided a way to address proportionality ‘in real life’ as well as to relate it to the 
abstract concepts. 

5  Towards a theoretical lens for augmented mathematics 

Based on a synthesis of the literature we argued that the integration of augmented 
reality in mathematics teaching might ‘augment’ learning for mathematics and con-
tribute in developing students’ reasoning skills (Spector, 2015). The above case ex-
amples made explicit the need to further investigate the role of several key dimen-
sions, or design decisions. We propose that these design decisions can be grouped 
by three heuristics: observe, engage, and create. 

 
Observe mathematics 
We propose that the starting point should be the object of interest. Thus, the ob-

ject of interest (the geo-location) should have interesting characteristics that can 
contribute in exploring salient mathematical concepts and properties. We should tap 
into learners’ mathematical curiosity by making geo-locations the trigger: ‘what are 
the mathematical questions that might come into the learners’ head?’ A pertinent 
question related to this is, who initiates this process? - the learner, the teacher or 
perhaps the technology. In the theoretical section we had made clear that we see the 
learner as leading, but acknowledge that teacher and technology could impose con-
straints on their initiatives. If we indeed take the learner as starting point, this re-
conceptualizes the ‘any time, any place’ assumptions of many perspectives of mo-
bile learning, as the mathematical questions that are generated from a leisure activ-
ity are the guiding principles of one’s self-directed learning process. Rather than 
focusing on the technology, we suggest that the focus should be on reality and math-
ematics. The locations where AR can be meaningfully applied is conditional on the 
inherent mathematics for any particular location. Luckily, mathematics is quite 
prevalent in most locations, whether they are man-made, like our two case examples 
or a natural phenomenon like a pattern from nature. If we make mathematics central 
to AR task design then in our view this also means linking the concrete reality to 



 

 

the mathematical abstract (and back again). AR can then serve as a tool to support 
the modelling cycle, by providing the mean to create, apply, adapt mathematical 
models during the processes of interpreting and explaining real-world based prob-
lems (e.g. see Blum & Leiss, 2007; Doerr & English, 2003). Real-world based prob-
lems might arise from two-types of geo-locations, namely dynamic and static. Dy-
namic geo-locations are related to situations from the perspective of the user’s 
visual and kinesthetic experience, such as roller-coaster rides or an airplane’s take-
off or landing. In these types of geo-locations, AR functions as a composer of the 
viewers’ and the experiencers’ perspectives. In static-geolocations, such as historic 
buildings, monuments, bridges and natural spots, AR facilitates mainly the in-depth 
study of the spot, by providing measurements. For instance, an AR experience may 
provide data to explore the golden ratio of measurements associated with the Par-
thenon or to calculate the height of the Eiffel tower based on the measures from a 
‘selfie’ picture. 
 

Engage in mathematical content: development issues. 
A second key decision, following from the mathematical content and context, 

concerns the appropriateness of using AR. Is it relevant, or deemed beneficial, to 
experience mathematics in the particular surroundings? If so, then a key factor in 
this experiential learning is pre-requisite mathematical knowledge and experiences. 
What prior mathematical knowledge or experience might be desirable? We 
acknowledge that this is a major prerequisite of what we should refer to as experi-
ential learning. If a mathematical topic, according to the teacher or designer, is best 
learned without context and location-based experience, it might be difficult to make 
a case for AR. After all, one of the major advantages is that m-learning augmented 
by AR can make human experience of the surroundings, ‘alive’ and transpose ab-
stract mathematical concepts on the outside world. Through this AR augmented ex-
perience that integrates the real world with abstract mathematic concepts, the learn-
ers might formulate and test hypotheses, solve problems and create explanations for 
what they observe (Bossé, Lee, Swinson, & Faulconer, 2010). We are in no way 
saying that every topic should be experiential. In fact, there are topics where context 
might impede the acquisition of more abstract mathematical knowledge. Neverthe-
less, it should be a key consideration while thinking about the adoption of AR. The 
existence of mathematics in a certain geographical location does not necessarily 
mean that the location is suitable for augmentation. The decision of augmenting 
should be made on well-explicit criteria, such as the whether the integration of real-
world and digital-augmented learning resources has the potential to engage learners 
in manipulating virtual manipulatives and the underlying mathematic properties 
from a variety of perspectives. 

 
Create: depth of experience 

A third key decision pertains to the depth of the AR experience and the extent to 
which the learner might assume ownership of the mathematical activity and create, 
share and/or communicate their productions. By exploiting different layers of AR 



 

 

users can be engaged in the interesting mathematical features of the geo-located 
spot and concretely conceptualize the problem to be explored by inspecting the spot 
from a variety of different perspectives that facilitate their understanding. The dif-
ferent layers and perspectives provided by AR provides learners with data to elab-
orate their thinking, seek patterns, clarify concepts, synthesize ideas, pose their own 
questions, and create and own mathematical models. This can be achieved by work-
ing collaboratively through the social affordances of mobile technology devices. 
Users can also extend their understandings to new situations and make connections 
(connect the characteristics of the location with the collected data and the mathe-
matical models). We suggest that both case examples showed this: the London Eye 
by linking the wheel to location data and a model of the wheel, the cathedral by 
linking locations to geometric constructions that could aid calculations of height. 
The whole scenario could be completed with a reflection regarding the underlying 
mathematical concepts related to each spot. These considerations all reduce to de-
cisions about how much students can manipulate or interact with the environment, 
and, for example, whether the technological device responds back (feedback). Mo-
bile technology devices can offer some form of validation and opportunities to fur-
ther probing and development of students’ mathematical thinking. 
 
By imagining what mathematical content students need to observe, how they need 
to engage with the content and how they can create their own experience, quality 
AR tasks can be designed more readily. 

6 Conclusion 

In this chapter we have given an overview of how mobile learning and augmented 
reality might play a role in learning mathematics. After describing some relevant 
features of the issues involved in the study, we set out to describe two scenarios in 
which mobile learning, augmented reality, a combination of informal and formal 
learning, and multiple representations, came together. We concluded with three core 
aspects that need to be taken into account when designing such tasks. Firstly, it is 
important to reflect on the importance of the involved mathematics concepts and 
more importantly on how the integration of AR and the geo-location can trigger 
mathematical curiosity. Secondly, how appropriate it is to apply experiential learn-
ing to the topic at hand and to what extent the mathematical prerequisites of the 
activity meets learners’ knowledge or experience. Finally, the depth of the learning 
experience depends on the technical functionalities of the software, and therefore 
the envisaged technical tool needs to be taken into account. This has less to do with 
technology per se but more with the learning opportunities that can be offered by 
the affordances of the technology, and the learning design of the tasks. The above 
mentioned core aspects provide designers important design parameters that should 
take into account regarding what students need to observe, need to do to get 



 

 

engaged, and what they need to create. The scenarios presented here are practical 
examples of its application.  
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