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Abstract—The distribution of flow sizes is a quantity of interest
fundamental to traffic engineering and network modelling and
only likely to become more important in the future. The recovery
of the flow-length distribution from (sampled) packet data is
referred to as flow-inversion. Traditional packet sampling meth-
ods cause distortions in a recovered distribution of flow-length.
We propose an improved method for inverting data sampled
using the technique known as sample-and-hold. We show that the
technique improves upon existing inversion techniques illustrated
using both real and artificial data sets. The technique described
may have applications to other inversion problems.

I. INTRODUCTION

Sampling is a critical part of today’s network measurement
and monitoring. The volume of data traversing core routers
makes it practically impossible for them to keep track of all
the packets and their sources and destinations. Hence nearly all
commercial routers nowadays implement sampling the packets
and forming flow records, with the dominant format being that
of Cisco NetFlow 1.

Although sampling eases the measurement and monitoring
burden on core routers, it also lends itself to inaccuracies.
Many smaller flows are missed and the longer flows can be
truncated due to various time-outs. Much has been written on
the problem of estimating statistics for flows, eg [1]–[3] and
many others. The inversion problem is of critical importance
for network operators. Aside from flow length being an
obvious part of auditing and accounting, flow length estimation
and inversion in general provides an effective mechanism to
improve the accuracy of traffic-matrix computation [4]. In day-
to-day network operations, the increasing adoption of stream-
ing media and peer-to-peer applications makes it vital for an
operator to be able to keep track of the larger flows, identifying
heavy-hitters on the network and developing appropriate traffic
shaping strategies in order to ensure adherence with the quality
of service agreement levels.

It is common for network administrators to investigate the
performance of a network by collecting sampled information
about packets. The sampling method known as sample-and-
hold is a method for sampling which is aimed at better
estimates of long flows [1], [5]. This paper describes an
inversion method for packet data sampled using sample-and-
hold and tests it on real and artificial data sets.

1http://www.cisco.com/univercd/cc/td/doc/cisintwk/intsolns/netflsol/
nfwhite.htm

A. Background and related work

A flow in a network is a set of packets which have the same
5–tuple (source IP address, destination IP address, source port,
destination port and protocol). The flow length distribution
is the set of probabilities that randomly selected flows have
given lengths. Assume that for a given sample of packets there
is some maximum flow length M (this may not be known)
and therefore the distribution is {θ1, . . . , θM}. where θi is the
probability that a randomly selected flow is of length i. The
flow inversion problem is the problem of estimating the flow
length distribution from sampled packet data.

One common sampling scheme is to sample every N th
packet. A similar sampling scheme is to sample in an in-
dependent and identically distributed (iid) manner (that is
simply sampling each packet with a given probability p).
The differences between these two methods can be important
[6]. Duffield et al [2] used a Maximum Likelihood Estimator
(MLE) based method for flow inversion on both schemes but
encountered problems with adjusting the process to get accu-
rate results. Hohn and Veitch [3] discuss inversion methods for
iid sampling and come up with mathematically sound solutions
although these have some practical limitations. Ribeiro et al [7]
use several methods to estimate the flow distribution from iid
sampled packets. Using features of the TCP protocol (sequence
numbers and the SYN flag) they give an MLE for flow lengths
but only for “short” flows (in their paper, less than one hundred
packet flows).

The majority of sampling techniques distort the flow dis-
tribution and are subject to one or more of the following
problems: short flows may be totally missed; it is hard to
estimate the length of long flows; flows may be misranked
[8] and large flows may be split due to flow expiry [2].
Recent work on the flow inversion problem includes [2], [3],
[7]. Previous researchers have noted that different sampling
techniques may be desirable to improve the ability to recover
longer flows [1], [5]. One such sampling method found in
the literature is sample-and-hold. This method has advantages
for the flow inversion problem. Cohen et al [9], [10] have
produced an inversion method to recover the flow-length
distribution from data sampled using sample-and-hold. The
authors of this paper independently derived their method but
improved upon its accuracy. In addition [9], [10] detail many
ways to get useful statistical properties from data sampled
using the sample-and-hold technique (and variants thereof).
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The sample-and-hold method involves tracked flows. For
each tracked flow its 5–tuple, as described in Section I, is
stored. Every packet which is in the set of tracked flows is
sampled. If a packet is not in the tracked set then this flow may
be added to the set of tracked flows with a fixed probability
p ∈ (0, 1). (Note that to prevent the number of tracked flows
growing until it consumes all available memory some method
is needed to expire old flows. For a summary of some flow
expiry issues see [11].)

The proportion of packets sampled for a given p is

Psamp(p) = 1− 1− p−∑M
i=1 θi(1− p)i+1

p
∑M

k=1 kθk

,

where θi and M are as defined in the previous section.
The original description of sample-and-hold [5] proposed a

probability varying with packet length, 1 − (1 − p)b, where
p ∈ (0, 1) and b is the length of the packet in bytes (it can be
thought of as considering sampling every byte with probability
p).

II. METHODOLOGY

A. Inverting sample-and-hold

The basic flow inversion for sample and hold is now given.
A similar solution was independently discovered [9, Lemma
6.1] although the derivation is different. For each packet not
in the set of tracked flows there is a probability p that the flow
will be added to the set of tracked flows. Define q = 1− p.

Let φi be the probability that i packets are sampled in a
randomly chosen flow (note φ0 �= 0 – some flows may have
no packets sampled). Now,

φi =

{∑∞
j=i pqj−iθj i > 0∑∞
j=0 qjθj i = 0.

Let Xi, i ∈ N be the distribution of flow lengths observed.
The expectation value for Xi is given by,

E [Xi] = P [Sample length = i|Sample length > 0]

=
φi∑∞

k=1 φk
=

∑∞
j=i qjθj

qi
∑∞

j=1 qjθj

∑j
k=1 q−k

.

Evaluating
∑j

k=1 q−k gives,

E [Xi] =
(1− q)

∑∞
j=i qjθj

qi
∑∞

j=1 qj(q−j − 1)θj
=

(1− q)
∑∞

j=i qjθj

qi[1−∑∞
j=1 qjθj ]

. (1)

Subtracting qE [Xi+1] from E [Xi] and rearranging gives the
final answer θi = (E [Xi]− qE [Xi+1])/(1− q + qE [X1]).

This is an exact solution but E [Xi] is unknown. Obviously
Xi is an unbiased estimator for E [Xi] and it can be seen that,
therefore, an unbiased estimator for θi is

θ̂i =
Xi − qXi+1

1− q + qX1
. (2)

This is similar to [9, Lemma 6.1]. Their version does not give
the normalising constant 1/(1−q+qX1) but this could trivially
be calculated since the θi must sum to one. Note that this

equation is not guaranteed to be in the range [0, 1]. In particular
negative values regularly occur when Xi+1 � Xi. Obviously
one could arbitrarily set negative values to zero but this would
have two undesirable effects, firstly the estimator would no
longer be unbiased and secondly the estimated distribution
would then sum to more than one. Because these negative
values are more likely to occur in the tail of the distribution,
introducing a minimum of zero and rescaling the distribution
would also produce a bias by increasing the probability of
longer distributions.

B. Improving this inversion

If E [Xi] is known then the previous calculations would
completely solve the problem. While Xi is an unbiased
estimator for E [Xi] it may have a high coefficient of variance.
In particular, when E [Xi] is small a problem occurs since
Xi is the observed proportion of flows of length i then it
must, by definition, be an integer divided by the total number
of observed flows. Consider, for example, a sample with
one thousand observed flows, then Xi can take values in
{0, 0.001, 0.002, . . .}. If the true value of E [Xi] is 0.00001
then Xi will not be a reasonable estimate. Since it is likely
that nearby values of E [Xi] are close for large i then êi, an
improved estimator for E [Xi] for large i, might be given by
a weighted sum of nearby values.

êi =

∑n(i)
j=−n(i) wjXj+i

∑n(i)
k=−n(i) wk

, (3)

where the wj are a series of weights and n(i) is a window
size which depends on i. The question then is how to select
wj and also n(i).

Firstly, the problem of picking the weights will be dealt
with. A common assumption with flow distributions is that
they have a heavy-tail. Assume initially that the flow length
distribution is a Zeta distribution (this assumption will be
weakened later to heavy-tailed and the consequences of the
assumption not being met will be examined experimentally)
θi = ζ(α)i−α for some α ∈ (1, 3) where ζ(α) is the Riemann–
Zeta function. Assume that the data has been sampled us-
ing sample-and-hold with probability parameter p (and let
q = 1−p as usual). Therefore, substituting the above formula
for θi for the zeta distribution into (1) gives

E [Xi] =
(1− q)q−i

∑∞
j=i qjζ(α)j−α

1−∑∞
j=1 qjζ(α)j−α

= Cq,αq−i
∞∑

j=i

qjj−α, (4)

where Cq,α is a constant fixed for a given q and α. It is given
by

Cq,α =
ζ(α)(1− q)

1−∑∞
j=1 qjζ(α)j−α

.
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From (4) for i + 1 and i− 1 then

E [Xi+1] = E [Xi] q−1 − Cq,αq−1i−α

E [Xi] = qE [Xi+1] + Cq,αi−α

E [Xi−1] = qE [Xi] + Cq,α(i− 1)−α

Substitute to get

E [Xi] = qE [Xi+1] +
(

i− 1
i

)α

[E [Xi−1]− qE [Xi]]

= qE [Xi+1] +

(
1 +

∞∑
k=1

(
α

k

)
(−i)−k

)

[E [Xi−1]− qE [Xi]]

=
qE [Xi+1] + E [Xi−1]

1 + q
+

(∑∞
k=1

(
α
k

)
(−i)−k

)
[E [Xi−1]− qE [Xi]]

1 + q
,

where
(
α
k

)
= 1/k!

∏k−1
j=0 (α−j). For α ∈ (1, 3) then |(αk

)| < 2
since

(
α
k

)
= [(α − 1)/1][(α − 2)/2] · · · [(α − k + 1)/k] and

the modulus of each of the terms is less than 1 apart from the
first which is at most 2. Since

∑∞
k=1(−i)−k = 1/(i− 1) then

the right hand term is O(1/i). Therefore

E [Xi] =
qE [Xi+1] + E [Xi−1]

1 + q
+ ε,

where ε ∼ O(1/i) is an error term and

|ε| ≤ 2(E [Xi−1]− qE [Xi])
i− 1

,

hence a good approximation for large i is given by

E [Xi] � qE [Xi+1] + E [Xi−1]
1 + q

.

Similar manipulations will yield that for k � i,

E [Xi] � qkE [Xi+k] + E [Xi−k]
1 + qk

, (5)

although the bounds on the error term grow weaker as k gets
larger.

This leads to a possible scheme for choosing the weights
wj in (3),

wj =





1 j = 0
qj(1− j/[n(i) + 1]) n(i) ≥ j > 0
(1 + j/[n(i) + 1]) −n(i) ≤ j < 0.

(6)

This includes a linear fall off which reduces the wj to 0 outside
the window n(i) in addition to the qj factor from (5). In fact
this linear fall off makes no major difference and the results
are largely unaffected without it.

An obvious question is how this is affected when the distri-
bution is not a zeta distribution. For a heavy-tailed distribution
where θi = Ki−α for large i, some K > 0 and α ∈ (1, 3) will
yield exactly the same result. Many heavy-tailed distributions
have this approximate form. The question of what happens
if the distribution does not have a heavy-tail is dealt with
empirically in section III-B.

C. The final estimation procedure

A final issue remaining is the choice of window size n(i).
The critical issue is how many sampled flows had a given
size i packets. If the number of sampled flows of size i is
high then Xi is likely to be a good estimate of E [Xi]. So for
i = 1 a window size of zero (which means simply êi = Xi)
is likely to still get a reasonable estimate. On the other hand,
for large i, in a given sample it is likely that there were no
flows at all with size exactly i packets and the window size
should be increased. However, if the window size is too large
the error in (5) will also become large. One obvious strategy
is to set a desired number of sampled flows within the window
size. Let T to be the desired number of samples within the
window. That is, the window size should be adjusted so that T
or more flows were observed with packet lengths in the range
i − n(i) to i + n(i). The estimation procedure then becomes
the following.

1) Set i := 1 and the sample window used is n := 1.
2) Get an estimate for E [Xi] using the weights in (6) in

conjunction with (3).
3) Use this to get an estimate for θi using (2).
4) If fewer than T flows were observed with packet lengths

in the range i − n to i + n then increase the sample
window n := n + 1.

5) Set i := i + 1. If i is less than the largest flow length
available in the observed data then go to step 2.

Note that the last step terminates the algorithm when
observations run out. This is practically necessary but does
mean that the inverted distribution will, by necessity, not
estimate the tail of the original distribution. For reasons of
practicality, in these experiments, a maximum window size of
1,000 was enforced. This is because, in extreme cases with
a few very fat flows of 100,000 packets the algorithm was
having to estimate the flow size at hundreds of thousands of
points using a window size of tens of thousands.

III. RESULTS

The results on simulated and real data are shown in the
following sections. The experiments are first performed on
simulated data with a zeta distribution in section III-A. Sim-
ulated data using a non-heavy tailed distribution is tried in
section III-B. Real data from several sources is tested in
section III-C.

In this section, the graphs are presented on a logscale as
a complimentary cumulative distribution function (CCDF),
P [X > x] versus x where x is a given flow length. In
fact the data given here are troublesome to display in any
form. Because of the nature of the estimation procedure, the
estimated probabilities can be negative as noted in [9] and this
remains true even for the improved estimates. The CCDF is no
longer strictly non-increasing and can become negative hence
some values cannot be seen on a logscale.

The errors in estimating the sample distribution are given
by the following procedure. Let oi be the value of the CCDF
at point i before sampling. Let ei be the estimated value of

978-1-4244-2219-7/08/$25.00 (c)2008 IEEE

Authorized licensed use limited to: University College London. Downloaded on March 24, 2009 at 09:16 from IEEE Xplore.  Restrictions apply.



 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100  1000

P
 (

X
 >

 x
)

x

Original distribution
Sampled distribution

Sample inverted (simple method)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100  1000

P
 (

X
 >

 x
)

x

Original distribution
Sample inverted (simple method)
Sample inverted (with window 20)

Fig. 1. The distribution of sampled and reconstructed flow lengths for packets
where flow lengths have a zeta distribution.

the CCDF at point i after inversion. Let l be the lowest flow
length of interest and h be the highest flow length of interest.
Two error measures are used here, the mean error (which is a
measure of bias in the data)

εm(l, h) =
∑h

i=l oi − ei

h− l + 1
and the mean absolute error

εa(l, h) =
∑h

i=l |oi − ei|
h− l + 1

.

The notation εm(1,−) or εa(1,−) will be used to indicate the
error over all flow lengths from 1 to the maximum flow length
present in the reconstructed sample (which is the maximum
flow length in the sampled data).

A. Results on simulated data with a zeta distribution

The top part of figure 1 shows results using simulated data
for a million packets. The flows in this experiment have a zeta
distribution with α = 2 and the simplest correction method
using (1). The figure (and all figures in this section) plots
P [X > x] vs x on a logscale. The most obvious thing from
this plot is the severe distortion to the flow length distribution.

As can be seen, the reconstruction is very good for x < 5,
quite good for x < 10 but becomes very poor for x > 20.

The lower part of figure 1 shows the same data set recon-
structed with the algorithm given in Section II-C with T = 20
and the windows set as in (6). As can be seen, the inversion
is greatly improved when compared with Figure 1.

The top of Table I shows the errors as described in the
introduction to this section using inversion with and without
the window. The method called “Simple” is the reconstruction
just using the method of Section II-A. For methods using
windows parameters from (6) the value of the parameter T
is given. Window parameters T = 1, 20, 100, 500 are shown
here. As will be seen the method is relatively insensitive to
this parameter (a desirable property) and the value 500 is large
enough that errors begin to increase again.

From the table first we can see that the results for the
window method is, largely an improvement on the results
using the simple method. The exceptions are the results where
T = 500 and for εm(1,−) which is slightly worsened. The
reason for this may be that the simple estimator was already an
unbiased estimator for the probability that a flow had a given
length and hence the mean error might be expected to be low
already. The method can be seen not to have great sensitivity
to the value of T and, for example, the results for T = 20 and
T = 100 do not vary greatly.

εm(1, 20) εa(1, 20) εm(1,−) εa(1,−)
Zeta distribution

Simple −0.0012 0.0041 0.0032 0.0069
T = 1 0.00028 0.0039 0.0047 0.0056
T = 20 0.00051 0.0027 0.0048 0.0054
T = 100 0.0027 0.0027 0.0051 0.0054
T = 500 0.0095 0.0095 0.006 0.0063

Normal distribution
Simple −0.18 0.3 −0.14 0.25
T = 1 −0.088 0.27 −0.056 0.22
T = 20 −0.082 0.17 −0.054 0.12
T = 100 −0.086 0.098 −0.052 0.08
T = 500 −0.12 0.12 −0.085 0.11

TABLE I
ERROR ANALYSIS FOR THE ESTIMATION ON THE ZETA DISTRIBUTION AND

NORMAL DISTRIBUTION.

B. Results of simulated data which is not heavy-tailed

The next obvious test is to test on some simulated data
which definitely does not meet the assumption of heavy-tailed
flow lengths. In this section, therefore, a simulated data set
ridiculously far from this assumption is created. The flow
lengths of the data set in this section are chosen to have
a normal distribution with mean 100 and variance 20. This
is obviously a hopelessly unrealistic model for real data but
should test whether the method used fails if the assumption of
heavy tails is not met. Again a million packets are generated
using this assumption and sampled using sample-hold with
p = 0.001.

The bottom half of table I shows the errors calculated using
inversion techniques on the normal distribution data. In this
case, perhaps surprisingly, it can be seen that the window
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Fig. 2. Reconstruction of the QUAINT data using the simple method and a
window with T = 20.

method is a great improvement although this data set does
not meet the assumptions that the method was designed for.
Again the sensitivity to the window parameter T is not great
which is a positive sign. While the errors in the inversion
remain high in this case, the window method much more than
halves them in the best case T = 100.

C. Results on real data

The same tests were performed on four real data sets, two
from the CAIDA website 2, one from the QUAINT project
[12] and one from the NLANR project 3. For full details on
the data consult the references given. The data set CAIDA 1
is 7.5 million packets and 5500 flows. The data set CAIDA
2 is 11 million packets and 7535 flows. The NLANR data is
47 million packets and 26000 flows. The QUAINT data is 2.7
million packets and 1200 flows. In all cases the methodology
was the same. The data was processed into flows using no
sampling to get the base case to compare with and then sample
using sample-and-hold with p = 0.001 and inverted using
the techniques from Section II. Figure 2 shows the CCDF
reconstructed using inversion for the QUAINT data using the
simple method and a windowed method with T = 20.

Table II shows the results for all the real data analysed.
As can be seen, the windowed method provided improved
reconstruction of the flow distribution, in many cases, greatly
so. Because of the larger sample sizes, the errors were in
general lower here than the artificial data tested. As would
be hoped the method is robust to changes in window size and
this is not a critical parameter.

IV. CONCLUSIONS AND FUTURE WORK

This paper has demonstrated a technique for recovering
estimates for the flow length distribution from data sampled
using the sample-and-hold technique. The simplest method

2http:www.caida.org
3http://pma.nlanr.net/Special/leip2.html

εm(1, 20) εa(1, 20) εm(1,−) εa(1,−)
CAIDA data set 1

Simple −0.014 0.016 −0.0016 0.0017

T = 1 −0.012 0.015 1 × 10−5 0.00013
T = 20 −0.012 0.015 1.2 × 10−5 9.8 × 10−5

T = 100 −0.011 0.012 1.6 × 10−5 8.3 × 10−5

CAIDA data set 2
Simple 0.0045 0.0096 −0.00097 0.001
T = 1 0.0055 0.0099 1.1 × 10−5 2.3 × 10−5

T = 20 0.0055 0.0099 1.2 × 10−5 1.9 × 10−5

T = 100 0.0053 0.0081 1.2 × 10−5 1.6 × 10−5

QUAINT data
Simple −0.038 0.067 −0.0087 0.0087
T = 1 −0.029 0.065 −5.1 × 10−5 7.1 × 10−5

T = 20 −0.027 0.061 −5 × 10−5 6.6 × 10−5

T = 100 −0.022 0.059 −4.8 × 10−5 6.4 × 10−5

NLANR data
Simple −0.0076 0.0079 −0.00037 0.00037

T = 1 −0.0073 0.0077 9.5 × 10−7 2.3 × 10−5

T = 20 −0.0073 0.0077 1.1 × 10−6 2.2 × 10−5

T = 100 −0.0073 0.0077 1.2 × 10−6 2.2 × 10−5

TABLE II
ERROR ANALYSIS FOR THE ESTIMATION ON REAL DATA.

used has been seen before in the literature. Inversion tech-
niques involving averaging estimates over a window create
an improved estimate. While these techniques were developed
based on the assumption of heavy-tailed flow distribution, they
remain valid even when this assumption is completely violated
in the data. The improved inversion techniques work very
well on four real data sets. Although the choice of window is
somewhat ad hoc, the method is not sensitive to the specifics
of this choice.

Further research remains to be done in this area. The tech-
niques given here estimate flow lengths only up to the length
of the largest flow available in the sampled data. This will
miss the tail of the real (unsampled) distribution. The exact
choice of window given here is somewhat ad hoc, however,
tests show that the results are not sensitive to the window
parameters used. While some optimisation might be done here,
it seems that there may be diminishing returns in exactly
optimising the choice of window. As mentioned in section
II the CCDF is non-monotone. Mathematical techniques exist
to produce a monotone function which is closest to a non-
monotone function. The most straightforward ideas (negative
probabilities set to zero and then normalised so the sum is one)
would introduce systematic biases into the flow distribution.

The estimates could certainly be improved by other tech-
niques. In particular, long flows are poorly estimated and flows
longer than the maximum flow observed in sampling are not
estimated. This is simply because the authors have no good
method for estimating the maximum flow length in the original
data and this, itself, would seem to be a research problem
of some interest. One approach taken by some authors is to
use features of the TCP protocol (for example SYN flags)
to increase inversion accuracy. Another possibility would be
to look at correlations in the TCP/IP header fields (source
and destination port) since different types of traffic would be
expected to have different flow length distributions.
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