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Abstract 

Cartilage tissue engineering is an emerging therapeutic strategy that aims to regenerate 

damaged cartilages caused by disease, trauma, ageing or developmental disorder. Since 

cartilage lacks regenerative capabilities, it is essential to develop approaches that deliver the 

appropriate cells, biomaterials, and signalling factors to the defect site. Materials and 

fabrication technologies are therefore critically important for cartilage tissue engineering in 

designing temporary, artificial extracellular matrices (scaffolds), which support three-

dimensional cartilage formation. Hence, this work aimed to investigate the use of Poly(3-

hydroxybutyrate), P(3HB)/microfibrillated bacterial cellulose (MFC) composites as 3D-

scaffolds for potential application in cartilage tissue engineering. The compression 

moulding/particulate leaching technique employed in the study resulted in good dispersion, 

and a strong adhesion between the MFC and P(3HB) matrix. Furthermore, the composite 

scaffold produced displayed better mechanical properties than the neat P(3HB) scaffold. 

Addition of 10, 20, 30, and 40 wt% MFC to the P(3HB) matrix, the compressive modulus was 

found to have increased by 35, 37, 64 and 124%, while the compression yield strength  

increased by 95, 97, 98 and 102% resepectively with respect to neat P(3HB). Both cell 

attachment and proliferation was found to be optimal on the polymer-based 3D composite 

scaffolds produced, indicating a non-toxic and highly compatible surface for the adhesion and 

proliferation of the mouse chondrogenic ATDC5 cells. The large pores sizes (60-83 µm) in the 

3D scaffold allowed infiltration and migration of ATDC5 cells deep into the porous network 

of the scaffold material. Overall this work confirmed the potential of P(3HB)/MFC composites 

as novel materials in cartilage tissue engineering. 
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1. Introduction 

Tissue engineering is a promising therapeutic strategy that has the potential to provide solutions 

for the repair or regeneration of diseased or damaged tissues. Tissue engineering was officially 

coined in 1988 at a National Science Foundation workshop, and defined by Langer and Vacanti 

to mean ‘the application of principles and methods of engineering and life sciences towards the 

fundamental understanding of structure-function relationships in normal and pathological 

mammalian tissues and the development of biological substitute to restore, maintain or improve 

tissue function1. The main challenge of tissue engineering is to mimic what happens in nature. 

Whilst, attempts are being made to engineer practically every tissue and organ in the body in 

vitro, work is also proceeding in creating tissue engineered organs such as liver, nerve, kidney, 

pancreas, heart muscle and valves, ligament, bones and cartilages. To date, the highest rates of 

success have been achieved in the areas of skin2, bladder3, airway4 and bone5,6 where tissue-

engineered constructs have been used successfully in patients. In addition, autologous 

chondrocyte implantation (ACI) and matrix-induced autologous chondrocyte implantation 

(MACI) are showing some success for cartilage repair. While major breakthroughs have taken 

place, significant research is required in a number of specific areas in the field7.  

The basic approach to tissue engineering involves the use of cells (isolated cells or cell 

substitute), three dimensional scaffolds and the delivery of signal factors such as growth and 

differential factors to targeted locations8. These approaches can be used alone or in 

combination to facilitate the repair, replacement or regeneration of damaged or degenerated 

tissues cause by disease, injuries or trauma. The use of isolated cells or tissue-inducing 

substances is considered when the defects are small and well contained. To engineer tissues of 

practical size scale and predetermined shapes, these two approaches are seriously limited. 

Hence, growing cells in three-dimensional scaffolds play a pivotal role. Scaffolds, therefore, 

plays a key role in guiding cells to grow, synthesize extracellular matrix and other biological 

molecules, and facilitate the formation of functional tissues and organs9.  

Generally, in designing Tissue engineering scaffolds, few basic requirements have been widely 

accepted10. First, a scaffold has to have interconnected pore structures, high porosity and proper 

pore size to allow for cellular penetration and diffusion of nutrients and waste products11. 

Second, a high surface area12-14 is needed to enhance high ligand density and promote cell 

adhesion, cell viability, migration, differentiation and extracellular matrix production. Third, 

biodegradability15 is highly desirable, and a proper degradation rate is needed to match the rate 

of neotissue formation. Fourth, the scaffold should be biocompatible16-19 to the cells and adhere 

and integrate with the surrounding native bone or cartilage. Fifth, the scaffold should be able 



to provide mechanical integrity16-18 depending on the defect location. The mechanical 

properties of the substrate to which the cells are attached are critical to the regulation of cellular 

mechanotransduction and subsequent cellular behavior. This has important implications for 

development, differentiation, disease, and regeneration. Albeit enormous success recorded in 

scaffold production, lack of vascularity in tissue engineered constructs has been a major 

challenge, and improving vascularisation strategies is considered one of the areas requiring the 

most extensive research in the field of tissue engineering20. Consequently, increasing research 

is being directed towards utilizing the mechanosensitive capacity of cells to develop tissue 

engineering scaffolds with specific mechanical properties that can be used to direct the 

behavior of the cells with which they interact21. The outcome of these researches is the 

development of a range of fabrication techniques aimed at producing scaffolds with adequate 

properties for tissue engineering. The techniques developed include; solvent casting22-25, phase 

inversion26,27, fiber bonding28-30, melt based technologies31-35, high pressure based methods36,37, 

freeze drying38,39, electrospinning40 and rapid prototyping technologies41-48.  

There are a series of problems associated with the use of scaffolds fabricated from a single 

phase biomaterial using the techniques enumerated above. For example, ceramic scaffolds, 

such as hydroxyapatite (HA), Bioglass and tri-calcium phosphate (TCP), are widely used for 

bone regeneration applications. Ceramic scaffolds (though, not generally used for soft tissue 

engineering) are typically characterized by high Young’s modulus, very low elasticity, and a 

hard brittle surface. From a bone perspective, they exhibit excellent biocompatibility due to 

their chemical and structural similarity to the mineral phase of native bone. Ceramics have been 

used extensively due to their osteoconductivity and osetoinductivity49,50. However, these 

materials have some major drawbacks owing to their brittleness which presents low mechanical 

stability and difficulty of shaping for implantation, thus, discouraging their use in the 

regeneration of large bone defects. Furthermore, due to factors that happen in vivo, such as 

osteoclastic activity, their degradation/dissolution rates are difficult to predict51.  

Different types of synthetic polymers have been used in the attempt to produce scaffolds 

including polystyrene, poly-l-lactic acid (PLLA), polyglycolic acid (PGA) and poly-dl-lactic-

co-glycolic acid (PLGA). Whilst these materials have proved to be successful as they can be 

fabricated with a tailored architecture, and their degradation characteristics can be controlled 

by varying the polymer matrix or the composition of the individual polymer52-54, they still have 

some drawbacks including the risk of rejection due to reduced bioactivity. In addition, there 

are concerns over the degradation process of PLLA and PGA as they degrade by hydrolysis, 



producing lactic acid/glycolic acid, thereby lowering the local pH which can lead to cell and 

tissue necrosis55.  

The third commonly used approach is the use of biological materials in Tissue Engineering 

scaffold fabrication. Biological materials including collagen, various proteoglycans, alginate-

based substrates and chitosan have all been used in the production of scaffolds for tissue 

engineering. Unlike synthetic polymer-based scaffolds, natural polymers are biologically 

active and typically promote excellent cell adhesion and growth. Furthermore, they are also 

biodegradable and so allow host cells, over time, to produce their own extracellular matrix and 

replace the degraded scaffold. However, fabricating scaffolds from biological materials with 

homogeneity and reproducible structures presents a challenge. In addition, the scaffolds 

generally have poor mechanical properties, which limit their use in, for example, load bearing 

orthopaedic applications. 

The problems described above, from the use of single phase substrates, have resulted in 

considerable research being devoted to the development of composite scaffolds comprising 

more than one phase. For example, a number of groups have attempted to introduce ceramics 

into polymer-based scaffolds56-59 while others have combined synthetic polymers with natural 

polymers60 in order to enhance their biological activity. Whilst, the resultant composite 

scaffolds have shown some promises, each consists of at least one phase which is not found 

naturally in the body and they all have associated problems with biocompatibility, 

biodegradability or both. A more typical approach is the use of natural polymer-based 

composite scaffolds to enhance biological and/or mechanical properties.  

Among the available bio-based fillers, bio-based bacterial cellulose are considered a very 

attractive material because of their good mechanical properties (high aspect ratio, high tensile 

strength, Young’s Modulus), high purity, crystallinity, high degree of polymerization, 

abundant from renewable resources, high liquid loading capacity, biodegradability, 

biocompatibility (induce negligible foreign body and inflammatory responses), non-toxicity, 

and sustainability61-66. The biocompatibility of BC-based products have made them suitable for 

several biomedical applications, including membranes for wound dressings67, scaffolds for 

tissue engineering68-72, substrates for cell seeding73, structures for biomineralization of 

hydroxyapatite74. It has been proven that BC nanofibres can mimic collagen nanofibres for Ca-

P minerals deposition through biomineralization. The resultant Ca-P minerals are platelet-like 

calcium-deficient hydroxyapatite (Hap), similar to the hydroxyapatite found in natural bone75.  

The objectives of this work therefore, were to investigate the use of a natural polymer-based 

(microfibrillated cellulose, MFC and P(3HB) 3D composite scaffold for articular cartilage 



repair. To our knowledge, this is the first report of the use a bio-based polymeric composite 

scaffold for potential use in articular cartilage repair. 

Cartilage is a flexible connective tissue found in many areas of the human body, including the 

joints, ribs, nose, ear, trachea and intervertebral discs. In these regions cartilage can act as 

structural support, maintain shape or absorb shock during physical exercise. Cartilage defects 

resulting from aging, joint injury, and developmental disorders can cause unbearable joint 

pains, and in some cases result in loss of mobility. Furthermore, considering the current high 

aging population and the growing problem of obesity, there has been increasing number of 

osteoarthritis patients’ cases. Besides, with a more active adult population, cartilage damage 

resulting from sports injuries can often result in premature cartilage degeneration, thus, 

necessitating the need for proactive research in the treatment and engineering of injured and 

damaged cartilage tissues. Unlike most other connective tissues, cartilage is predominantly 

avascular leading to hypoxic environments that limit the rate of cellular growth and tissue 

regeneration76, 77. This in turn limits the capacity of cartilage to repair itself in the event of 

damage. Due to its limited ability to self repair, cartilage therefore is an ideal candidate for 

tissue engineering. 

 

2. Experimental Procedures 

2.1. Bacterial strain, cells and culture medium 

Poly(3-hydroxybutyrate) was produced following previously developed biotechnological 

methods.78 The bacterial cellulose was produced by A. xylinus (JCM10150), obtained from the 

Culture Collection of University of Westminster, London, UK and grown in YGC medium 

containing in (gL-1): Yeast extract, 5.0; calcium carbonate, 12.0; glucose, 50.0) and maintained 

at 30 ◦C, pH 5.0 for 5 days. 

The proliferation assays were performed using Murine ATDC5 cell line. ATDC5 is an 

excellent in vitro model cell line for skeletal development. The cell line was grown in 

chondrogenic media containing; low glucose Dulbecco's Modified Eagle Medium (DMEM), 

supplemented with 10% fetal  calf  serum, 1% (w/v) penicillin and 1% (w/v) 

streptomycin solution, 5 ng mL-1 transformed growth factor Beta-3 (TGF β-3), 50 µg mL-1 

ascorbate-2-phosphate, 1µM dexamethasone, 0.1 mM (100x) nonessential amino acids,  and 5 µg 

mL-1 Insulin. The media for the cell lines were changed every two days and maintained at 37 °C, 

5% CO2 and passaged on confluence by adding 2 mL of trypsin and incubate for 5 mins. 

2.2. Production of micro-fibrillated bacterial cellulose 



Batch cultures of Acetobacter xylinum (JCM10150) were grown in flasks at 27°C under static 

condition and were harvested after five days of incubation. The cellulose pellicles formed were 

harvested, boiled in a 2% (w/v) NaOH solution and washed several times with de-ionised water 

to remove the sodium hydroxide. The gel-like pellicles produced were first blended with a 

blender (Osterizer blender, Pulse matic, UK) to break down the pellicles to smaller pieces and 

later homogenised using a homogenizer (Bucks Laboratory Mixer Emulsifier, UK) to produce 

microfibrillated bacterial cellulose (MFC). 

The MFC produced were later chemically modified to produce relatively hydrophobic MFC by 

treating water excluded MFC with a solution containing a mixture of acetic acid, toluene and 

perchloric acid in a ratio of (200:250:1) mL, respectively in a stoppered flat bottom flask. The 

suspension of MFC in the mixture above was homogenised for 2 min before the addition of 

desired amount of acetic anhydride and stirred at room temperature for 72 h. At the end of the 

reaction, the suspension was centrifuged at 4600 rpm (12,000g) for 30 min and subsequently 

washed three times with a toluene/ethanol/acetone mixture (4:1:1 by volume) to remove 

unreacted compounds and by-products formed during the acetylation reaction.  

 

2.3. Composite scaffold production 
P(3HB) and P(3HB)/MFC composite Scaffolds were prepared using the novel compression 

moulding/particulate leaching technique developed and by employing sucrose grains as the 

porogen for porosity. The porogen was prepared by placing small quantity of sucrose grains 

atop a mesh with 100 µm openings. The mesh was shaken to allow sucrose grains with sizes 

smaller than 100 µm to pass through the mesh. The process was repeated with 80 µm opening 

mesh, however, with the sucrose that passed through the 100 µm openings. The sucrose grains 

retained by the 80 µm opening mesh (80-100µm in size) were later collected and used for the 

study. The mould for the scaffold fabrication was prepared by cutting open the other end of a 

5 mL disposable syringe to form a cylinder. 

For P(3HB) scaffold preparation, 1.0 g of P(3HB) was dissolved in 10 mL of chloroform 

and 20 g of sucrose grains, prepared above, was added. The resulting mixture was stirred 

to obtain a homogenous paste. The semi-solid paste formed was placed into a prepared 

cylinder above. With the help of a plunge, the semi-solid paste was moulded into shape 

by applying pressure up to 10 bars in the cylinder. The moulded cylindrical solids were 

air dried at 30oC. 



For P(3HB)/MFC scaffold preparation 1.0 g of P(3HB) was dissolved in 10 mL of 

chloroform and appropriate amounts of modified MFC were separately dissolved in 

chloroform and homogenised. Each of the appropriate amounts of homogenised MFC 

was later mixed with P(3HB) solution and sonicated for 1 min (Ultrasonic Homogenizers 

US200, Philip Harris Scientific, UK) to improve the dispersion of the modified MFC in 

the P(3HB) solution. 20 g of sucrose grains (prepared above) was later added to the 

P(3HB) solution and stirred to form a semi-solid paste. The semi-solid paste formed was later 

moulded into shape as described above. The moulded cylindrical solids were air dried at 30°C 

for 6 h and later immersed in 500 mL of deionised water (which was occasionally changed) for 

12 h to allow complete dissolution of sugar grains from the solid cylindrical body. After about 

12 h the porous scaffolds were removed from the water and air dried at 30 °C. The porous 

scaffolds were sectioned using sharp blades to cut scaffolds in the size of 0.5 x 0.5 x 0.5 cm3 for 

further experiments including characterisation and bioactivity. 

 

2.4. Scaffold characterisation 

Scanning electron microscopy (SEM): Scanning electron microscopy (SEM) was used to examine 

the microstructure of the 3D scaffolds samples. Samples were sectioned using a sharp blade and 

placed on a freshly cleaved 8 mm diameter aluminium stubs and gold plated for 2 min. Images were 

taken at various magnifications and acceleration voltages (max. of 20 kV) to avoid beam damage to 

the polymer. For each image at least 20 pore throats were measured, taking the longer diameter in the 

cases where the throat appeared elliptical because of perspective.  

 

Mechanical test: The compressive strength of P(3HB) and P(3HB)/MFC composite scaffolds 

was measured using a Perkin-Elmer Dynamic Mechanical Analyser (DMA 7e, Perkin-Elmer 

Instruments, USA) at room temperature as described elsewhere.79 Cylindrical samples of 2 mm 

diameter and around 2 mm height were cut with surgical scalpels, and then compressed. The 

initial load was set at 1 mN and it was increased to 6000 mN at a rate of 200 mN min-1. Four 

repeat specimens were tested for each sample during this analysis and the results presented in 

this work are average of four measurements. Elastic modulus of the scaffold was determined 

using a stress strain representation. Methodology for curve interpretation and modulus 

calculation was taken from ASTM D1621-04a standard ‘Compressive properties of rigid 

cellular plastics’.  

 



Porosity measurements on the scaffolds: The gravimetric method was employed in measuring 

the porosity of the fabricated scaffolds. The samples were weighed dry, and then filled with 

distilled water under vacuum, and subsequently weighed again. Porosity was calculated as the 

quotient of the volume of pores (see below) and the total volume of the scaffold. 

The volume of pores, Vpore, was deduced from the weight difference between dry (mdry) and 

wet (mwet) sample, according to equation below assuming that the amount of water absorbed 

by the scaffold composite phase is negligible due to its high hydrophobicity.80 Thus, the volume 

of pores equals the volume occupied by the absorbed water. 

 

   , where, dwater is the density of water. 

 

The volume of P(3HB) and P(3HB)/MFC was calculated from the dry weight of the scaffold 

assuming a density of P(3HB) about 1.25 gcm-3, which corresponds to the average crystallinity 

measured by DSC. Density was calculated on the basis of amorphous phase and crystalline 

phase densities of 1.18 and 1.26 gcm-3, respectively.81 For each sample type, at least five 

measurements were carried out and the obtained values were averaged. 

 

2.5. Protein Adsorption 

The protein adsorbed by the neat P(3HB) and P(3HB)/MFC composite samples was quantified 

by a Micro-BCA assay using the supplier instructions (Perce, USA). The protein adsorbed on 

each of the samples was extracted by an immersion in 500 µl of 10% SDS and incubated for 

24 h at room temperature. 

After 24 h, the protein adsorption capacity of the neat P(3HB) and composite scaffold samples 

were evaluated. Materials were incubated with complete culture medium for 30 min. After the 

immersion, proteins were desorbed with a 10% SDS solution and loaded on 10% SDS-page 

electrophoresis gels. Gels were scanned with a denitometric ‘OneDscan apparatus’ (Scan 

Metrix, France). Protein concentration was obtained by comparison with BSA standards. 

 

2.6 Change in pH of the immersed SBF of the neat P(3HB) and P(3HB)/MFC 3D composite 

For in vitro change in pH assessment, a total of nine samples from each group were immersed 

in SBF for 1, 2, 3 and 4 weeks and 20 mL PBS was used for each sample. The pH-values of 



SBF were monitored every week by an electrolyte-type pH meter (PHS-2C, Jingke Leici Co., 

Shanghai, China). Three samples from each group were removed from the SBF at the 

predetermined time point (1, 2, 3 and 4 weeks) and the pH of the SBF was measured with the 

pH probe. The average values for the pH readings were recorded.  

 

2.7 In vitro proliferation assays 

A cell seeding density of 100 000 cells cm-2 was used for the scaffolds. The samples were 

placed in a polystyrene 24 well flat bottomed tissue culture plate (TPP, Switzerland), with the 

scaffold samples placed in the centre of the well and 30 µL of the cell suspended media was added 

for attachment of the ATDC5 cells. The plates were incubated in a humidified environment 

(37°C, 5% CO2) for 3 h to enable the cells to attach to the test material. After 3 h, 1 mL of 

chondrogenic media was added to each of the wells containing cell seeded scaffolds and the plates 

were replaced in the humidified incubator and maintained at 37oC, 5% CO2. Neat P(3HB) scaffold 

was used as the control. The media in the wells were changed every 2 days. The cellular growth at 

24, 96 and 168 h (1, 4 and 7 days) of incubation was evaluated by Alamar Blue assay (AbD 

Serotec, UK). Alamar Blue was added to the samples (10% v/v of the medium) and incubated at 

37oC in an incubator (with 5% CO2) for 4 h. Aliquots of 200 µL from each sample well were 

transferred to a black 96-well plate and the fluorescence of Alamar blue was measured using a 

fluorescence plate reader (Fuoroskan, Lab Systems) at an excitation wavelength of 530 nm (A530) 

and an emission wavelength of 590 nm (A590). The experiment was performed in triplicates while 

readings were taken in duplicates.  

 

2.8 Total protein production analysis 

For the measurement of total protein produced by the mouse chondrogenic ATDC5 cell lines, 

osteogenic media was prepared by addition of dexamethasone solution to a final concentration of 

0.1 µM and Ascorbic acid 2-phosphate solution to a final concentration of 0.2 mM to a low glucose 

Dulbecco's Modified Eagle Medium (DMEM), supplemented with 10% fetal  calf  

serum, 1% (w/v) penicillin and 1% (w/v) streptomycin solution. The ATDC5 cells were seeded 

to the scaffolds and grown using freshly prepared osteogenic medium. Aliquots of supernatants were 

taken at day 1, 7, 14 and 21 days for the quantification of total protein produced by the cells using 

Qubit™ Protein Assay Kits and by following the protocols in the manufacturers’ manual.  

The Qubit® 2.0 Fluorometer gives values for the Qubit™ protein assay in µg/mL. This value 

corresponds to the concentration after sample was diluted into the assay tube. To calculate the 

concentration of sample, the following equation was used: 



 

 
 

Where, QF value = the value given by the Qubit® 2.0 Fluorometer, X = the number of 

microliters of sample added to the assay tube. 

 

 

3.0 Results 

P(3HB), produced from Bacillus cereus SPV and chemically modified MFC were combined to 

form P(3HB)/MFC composite 3D scaffolds, using a novel compression moulding/particulate 

leaching technique developed in this work. Sucrose grains of sizes 80-100 µm were used as 

porogen materials. The 3D composite scaffold were characterised thoroughly. Detailed results 

of the production and characterisation of the materials are given below. 

 

3.1. Preparation of P(3HB)/MFC composite scaffold 

P(3HB)/MFC composite scaffolds were prepared using a novel compression 

moulding/particulate leaching technique. This novel technique was developed in this study 

using an inexpensive technique which can be carried out at room temperature. The dimension 

of the scaffolds produced using this technique is alterable as shown in Fig. 1(A) and (B). Also, 

the porosity of the scaffolds can be controlled by adjusting the size and amount of the porogen 

material (sucrose grain). The mechanical strength of the scaffold can be altered and controlled 

by adjusting the amount of P(3HB) and filler employed in the composite production. Also, the 

shape of the pores in the scaffold can be varied and this is dependent on the shape of the porogen 

material employed during scaffold fabrication.  

 

 



Figure 1: Digital images of different dimensions and type of scaffolds that were 

produced using the compression moulding/particulate leaching technique.  

  

3.2. Microstructural characterisation of P(3HB)/MFC Composite 3D Scaffolds 

A selection of SEM micrographs of the fractured surface of composite materials with 40% of 

MFC produced using the novel compression moulding/particulate leaching technique is shown 

in Fig. 2. Two different magnifications were used in order to display both the MFC dispersion 

within the P(3HB) matrix and the interfacial adhesion between the two composite components. 

The SEM image of the surface of the scaffold highlights the interconnected pore network in 

the scaffold microstructure, Fig. 2(a) and (b). This is necessary for the infiltration of cells 

during cartilage regeneration. Fig. 2(c) displayed the SEM image of the morphology of pores 

in the scaffold highlighting the microtopography of the surface of the pore throat (inside pore).  

  
Figure 2 (a) Digital imge of the P(3HB)/MFC scaffold after particulate leaching; (b) 

SEM image of P(3HB)/MFC composite scaffold at lower magnification showing the 

microstructural pores in P(3HB)/MFC scaffold; (c) SEM image of P(3HB)/MFC 

composite scaffold at higher magnification displaying the irregular pore structure with 

high interconnectivity. 

 

3.3. Compression tesing:  

The effect of MFC content on the large strain behavior of MFC/P(3HB) composites was 

investigated up to their failure. Figure 3 shows a typical stress-strain curve of neat 

P(3HB) and P(3HB)/MFC composite of various MFC content (10, 20, 30, 40, and 50 

wt%) tested in air. The curves demonstrated the typical behaviour of a scaffold 



undergoing deformation and comprise three distinct regions: a linear-elastic region 

followed by a plateau of roughly constant stress leading into a final region of steeply 

rising stress. The linear-elastic region represents the period of loading of the 3D scaffold 

with strain. At this stage, the 3D scaffold can still withstand the strain applied to it 

without much deformation. As the strain increases, the 3D scaffolds reached the offset 

yield strength and maintain a steady stress represented by the plateau in Figure 3. 

Further increase in the strain led to the crushing of the 3D scaffold which resulted in a 

densification process in the 3D scaffold. This phenomenon caused the stress level to 

rise quickly resulting in a steeply rising stress profile. 
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Figure 3. Typical stress-strain curves of neat P(3HB) and P(3HB)/MFC scaffolds of 

various MFC content under compression loading. (A) Normal curve (B) Enlarged curve 

for lower strain values. The experiment was performed in triplicates. For the purpose of 

clarity, only the profiles for single analysis have been shown. 

 

Fig. 4 shows the compressive modulus and compressive yield strength of the neat P(3HB) and 

P(3HB)/MFC composite scaffold with varying wt% of MFC content. It can be deduced from 

Figure 4 that the incorporation of MFC  into the polymer matrix significantly influenced the 

compressive modulus of the composites. Whilst, the compressive modulus of the neat P(3HB) 

was found to be 0.08 ± 0.01 MPa, the compressive modulus on addition of  10, 20, 30, and 40 

wt% MFC were found to have increased by 35, 37, 64 and 124% respectively. From the 

statistical analysis performed on the result, statistical difference (p<0.05) was found between 

the compression modulus of the neat P(3HB) and the P(3HB)/MFC composites, and among the 

composites. However, compressive modulus of the P(3HB)/MFC composite was found to 

decrease to 0.16 ± 0.02 MPa on increasing the MFC content further to 50 wt%. On the other 

hand, the compressive yield strength of the composite was found to increase progressively with 

the incorporation of MFC to the polymer matrix. Whilst, the compressive yield strength 

measured on the neat P(3HB) scaffold was 0.58 ± 0.06 KPa, this was found to have improved 

to 95, 97, 98, 102 and 109 % with respect to the neat P(3HB) scaffold, on addition of 10, 20, 

30, 40 and 50 wt% MFC respectively. Besides, a statistical difference (p<0.05) was calculated 

between the compressive yield strength of the neat P(3HB) scaffold and the P(3HB)/MFC 

composite scaffolds. However, no significant difference (p>0.05) was found in the yield 

strength among the composites containing different amounts of MFC. 
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Figure 4. Compressive modulus and yield strength for P(3HB)/MFC scaffolds with 
various MFC (wt%) content measured in air (n=4, error = ±SD). 

 

3.4 Protein adsorption assay on P(3HB)/MFC composite 3D scaffold 

Protein adsoprtion  was measured on both the neat P(3HB) and P(3HB)/MFC 3D scaffold to 

understand the effect of addition of MFC to the P(3HB) matrix on this parameter. This was 

necessary in order to gain more understanding of the role of the added MFC in protein 

adsorption by the composite scaffolds. The potential of a biomaterial to function as a scaffold 

in tissue regeneration is partly based on their role in enhancing cell attachment, differentiation 

and subsequent tissue formation, which in turn is governed by their capacity for protein 

adsoprtion . The result of the protein adsorption test shown in Figure 5 showed that the addition 

of MFC to the polymer matrix improved protein adsoprtion by the composite material by 8, 

15, 20, 22, 27% by the addition of 10, 20, 30, 40 and 50 wt% MFC repectively when compared 

to 490 µg/cm2 protein absorped by the neat P(3HB) scaffold. Hence, the protein adsorbed by 

the composite material increased progressively as the amount of MFC added to the polymer 

matrix increased. 

 



 
Figure 5: Total protein adsorption study on P(3HB)/MFC composite scaffold using 

foetal bovine serum (n = 3; error bars = ± SD). 

 

3.5 Change in pH of the immersed SBF of the neat P(3HB) and P(3HB)/MFC 3D composite 

scaffolds: It has been suggested that acidic degradation products of polymers such as PLA 

(polylactic acid) and P(3HB) result in a decrease in pH around the surrounding environment of 

degrading polymeric materials.55 However, the degradation product of P(3HB) is much less 

acidic than that of PLA. Whilst, very low pH is not desirable during degradation of medical 

polymeric materials, very high pH is equally not desirable as this could affect the physiological 

functions of the surrounding cells and tissues. Hence, the change in the pH of the immersed 

SBF for the neat and composite P(3HB) materials was monitored over a period of time. The 

details of the variation in the pH of the SBF medium are shown in Fig. 6. No rapid change in 

pH of the SBF in the presence of neat P(3HB) and the P(3HB)/MFC composite was observed 

throughout the incubation period. However, it was found that the pH of the SBF for the 

composite samples increased slightly from the initial 7.35 to 7.47 after 7 days of immersion in 

SBF. The pH was found to remain constant until after 14 days and later gradually decreased to 

6.4 after 30 days of incubation. For the neat P(3HB), the pH was found to increase slightly 

from the initial 7.35 to 7.45 at 12 days and gradually decrease to a pH of 5.8. Comparison of 

decrease in pH revealed that the pH decrease in the SBP with neat P(3HB) decreased a lot more 

than that observed in the composite. Hence, the composite maintained a near neutral pH which 

is an advantage for its use as a tissue engineering material.  

  



 
Figure 6. Change in pH of the SBF solution in which the neat P(3HB) (●) and P(3HB)/MFC 

(▲) 3D scaffold were incubated. 

 

3.6. Cell Proliferation analysis on P(3HB)/MFC composite material 

The Murine ATDC5 cell line has been well characterised and validated. It is widely used as an 

in vitro model of chondrogenesis. 82 Based on this fact, the cell line was chosen to gain more 

understanding on the biocompatibility of the P(3HB)/MFC composite in the context of this 

cartilaginous cell line. Cell proliferation study of ATDC5 cell lines was measured using the 

Alamar blue assay. Fig. 7 shows the trend of growth pattern of the ATDC5 cell lines on the 

neat P(3HB) composite scaffold.  No significant differences (p>0.05) were found between cell 

proliferations on the samples analysed at day 1. However, on day 4 and 7, slight differences in 

cell proliferation were noticed on the tested samples. P(3HB)/MFC 3D composite scaffold with 

40 wt% MFC content showed a slightly lower cell proliferation at day 4 (97%) when compared 

to the neat P(3HB) scaffold samples (108%) but on day 7, it was found that the cell proliferation 

on the 40 wt% MFC content composite was higher (117%) than that observed on the neat 

P(3HB) scaffold (105%)  
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Figure 7: Cell proliferation relative to the control (neat P(3HB)) set at 100% for 1, 4 

and 7 days growth, using Alamar Blue assay on P(3HB)/MFC composite 3D Scaffold 

with different amount of MFC content. Data (n=3, error bars =±SD, p<0.01, *) were 

compared using ANNOVA. 

 

3.7. Cell Morphology  

A detailed morphological study on cell adhesion and proliferation on the P(3HB)/MFC 

3D composite scaffold was further performed on the composite scaffold containing 40 

wt% MFC. Figure 8.0 shows the morphology of the ATDC5 cells on TCP and 2D 

P(3HB)/MFC constructs on Day 1 and 7, as a control for comparison with the 

morphology observed on the 3D scaffolds described in this work.  

 

 

 



 

Figure 8.0: SEM images of ATDC cells growing at day 1 on (A1) Tissue culture plastic,  

(B1) neat 2D P(3HB) film and (C1) neat P(3HB)/MFC composite films; on day 7 on (A2) 

Tissue culture plastic, (B2) Neat P(3HB) and (C2) P(3HB)/MFC composite films shown at 

(x 500) magnifications. 

 

The morphology of the ATDC5 cells grown on the P(3HB)/MFC composite scaffold 

on Day 1, 4 and 7 were examined by SEM and typical images are shown in Figs. 8.1, 

8.2 and 8.3. No difference was seen in morphology of cells examined with SEM in both 

the neat P(3HB) and composite containing 40wt% MFC. However, slightly fewer cells 

were found in the pores of the neat P(3HB) 3D scaffold on day 7 (data not shown). 

However, cells grown on 40wt% MFC composite showed long filopodia unlike those 

grown on the neat P(3HB) scaffold. The morphology of the composite scaffold surface 

proved to provide favourable conditions for the attachment of cells. This is evident from 

the cell adhesion, cell division, formation of long filopodia and proliferation observed 

on Day 1 as seen in Fig. 8.1b, c & e. On Day 4, the cells were found to have a more 

flattened and stretched morphology, overlaying on each other and occupying and taking 

up the shape of the pore throat (inside the wall of pore opening) (Fig. 8.2b, e & f).  By 

day 7, the cells were found to have grown, bridging the pores in the scaffold and further 

overlaying on each other (Fig. 8.3). In general, the chondrocytes grew well and 

exhibited good attachment and morphological features such as long filopodia on the 

composite scaffolds on Days 1, 4 and 7. 

 



 
Figure 8.1 SEM micrographs of ATDC5 cells grown on P(3HB)/MFC composite scaffolds on 
Day 1; (a) ATDC5 cells growing on the pores in the scaffold; (b) ATDC5 cells still in round 
shape adhering to the microtopography of the walls of the pores in the scaffold;  (c) Cells 
growing filopodia after division and moving away for flattening; (d) Group of cells growing in 
the pore of the scaffold material (e) and (f) show a  higher magnification of (d) (indicated by 
the blue line for a clearer view). 

 



 
Figure 8.2: SEM micrographs of ATDC5 cells growing within the pores in the P(3HB)/MFC 
3D composite scaffold at Day 4. (a) well spread ATDC5 cells extending their filopodia (b) A 
higher magnification of (a) Flattening and layering of ATDC5 cells on the polymeric 
composite 3D substrate; (c) highlights the densely growing ATDC5 cells inside the pore (d) 
A higher magnification of (c) (indicated by the blue line) The cells began rounding up for 
division and proliferation. 
 

 

 

 

 

 



 
Figure 8.3: SEM micrographs of ATDC5 cells growing in the P(3HB)/MFC 3D composite 

scaffold at Day 7. The yellow arrows in (a) indicate the folding and withdrawal of filopodia, 

possibly for division and the red arrow highlights cells growing and bridging the pores. (b) 

Well flattened cells on the polymeric 3D composite substrate, while the blue arrows in Figure 

(c) highlight rounded ATDC5 cells ready for division.  

 

Whole Protein Production by Murine ATDC5 cell line grown on 3D P(3HB)/MFC composite: 

To further understand the capability of the composite material to support the growth of Murine 

ATDC5 cell line, in order to assess future cartilage formation, whole protein production was 

investigated. The hypothesis behind this investigation was that since cell activities including 

cartilage formation, can be correlated with the extracellular whole protein production, increase 

or decrease in the whole protein released into the surrounding medium is an indication of the 

ability of the test material to hinder or promote cartilage formation. Statistical analysis 

performed shows no significant difference (p>0.01) among the test materials (neat P(3HB) and 

P(3HB)/MFC) at various time points investigated. 

 

 

4. Discussion  

The use of biomaterial implantation to surpass the limitations of conventional treatments is one 

of the main objectives of tissue engineering. Tissue engineering has the potential to produce a 

supply of immunologically tolerant tissue substitutes that can grow with a patient and lead to 

a permanent solution to a damaged organ or tissue without the need for supplementary 

therapies. Hence, to repair damaged organ or tissue, relevant cell(s) are required to be grown 

in vitro into a structure mimicking the three-dimensional structure of the damaged organ or 

tissue. But, cells lack the ability to grow in favoured 3D orientations and thus define the 

anatomical shape of the tissue. Instead, they randomly migrate to form a two-dimensional layer 



of cells. Thus, porous 3D scaffolds are required for cell(s) seeding and subsequent cell 

attachment and colonisation.83Architectural design of tissue engineering scaffolds into porous 

structures, thus, plays a very important role in permitting cell adhesion, proliferation and 

characterisation and finally, defines the ultimate shape of the new tissue.  

Both the neat P(3HB) and composite porous scaffolds produced using the novel compression 

moulding/particulate leaching were in general very homogenous, since the formation of 

agglomerates was not observed. The absence of agglomeration confirmed that the acetylation 

of the easily accessible surface hydroxyl groups (OH) made the MFC more compatible with 

the non polar solvent used and the P(3HB) matrices. This ensured the formation of a well 

dispersed homogenous mixture of P(3HB) and MFC for composite production. The more 

important aspect of the novel technique used in the production of the scaffolds is that the 

technique is very simple, inexpensive and less time consuming unlike solvent 

casting/particulate leaching or electrospinning. Furthermore, the porous microstructure 

produced using this technique is comparable and in many cases better in the physico-

mechanical properties (compressive modulus of 0.19 MPa and yield strength of approximately 

1.20 KPa with the addition of 40 wt% of MFC) than the ones achieved for other PHA scaffolds 

reported so far in literature like P(3HB-co-3HV)/BG scaffold prepared using compression 

moulding, thermal processing, and salt particulate leaching technique.84 

The SEM micrographs provide evidence of the strong interfacial adhesion between the 

cellulose fibres and the P(3HB) matrix, as shown by excellent cellulose fibre dispersion within 

the P(3HB) matrix, without noticeable aggregates. It was indeed observed that the 

characteristic nano- and micro-fibril network of MFC was maintained and totally impregnated 

within P(3HB) matrix. These results clearly corroborated the superior mechanical properties of 

the MFC-based composites compared with those of the neat P(3HB) counterparts, as suggested 

by the mechanical tests discussed below. Surface topography is very important for the adhesion 

of mammalian cells on biomaterials and this was observed on the throats of the pores in the 

scaffold. The surface microtopography can be attributed mainly to the homogenous dispersion 

of the MFC filler. The surface structures of the sucrose grains which formed the pores would 

have also contributed to the microtopography. The interconnected pore network in the scaffold 

was as a result of the amount of sucrose grains added and the homogenous mixture of the 

composite and the sucrose grains during scaffold fabrication. 

Generally, incorporation of additives into a polymer matrix is an effective way of improving 

the physico-mechanical properties of biomaterial for specific tissue engineering applications. 



Large increments in the mechanical performance of several composite materials have 

previously been reported by the incorporation of modest proportions of bacterial cellulose 

nano-fibres in other kinds of matrices.85 Li et al., observed the improvement of the compressive 

yield of P(3HB-co-3HV) by 156% of the initial strength of the polymer on addition of 20 wt% 

of Bioglass®.86 Hence, the superior mechanical properties of MFC/P(3HB) composites 

compared with the neat P(3HB) scaffold, confirmed the good interfacial adhesion and the 

strong interactions between the MFC and the P(3HB) matrix. These results can be explained 

by the inherent morphology of bacterial cellulose with its nano- and micro-fibrillar network. 

The reinforcing effect might result from the effect of formation of a stiff hydrogen bonded 

cellulose network.87 This behaviour was attributed to an improved dispersion and / or 

compatibility between the bulk P(3HB) and the modified MFC. Thus, increasing the amount 

of MFC in the P(3HB) matrix increased the compressive modulus and compressive yield 

strength of the composites. The increased compressive modulus is an excellent property that 

will allow the use of this composite in load bearing applications where the neat polymer will 

fail due to poor mechanical properties. Surprisingly, the composite with 50 wt% MFC did not 

show the highest compressive modulus, indicating that there is a limit to the amount of MFC 

that can be added to the polymer matrix to improve the compressive yield strength.  

Investigations on the total protein production showed none of the tested material hindered total 

protein production. However, Hardingham et al. have observed that chondrocytes grown on 

bacteria cellulose monolayer became fibroblastic and lose their characteristic pattern of matrix 

protein production.88 In this work, the P(3HB)/MFC composite material was able to support 

growth of chondrocytes and did not induce the cells to differentiate into fibroblasts. This is due 

to the nano- and micro-structural surfaces provided by a combination of both MFC fibres and 

P(3HB) matrix which fundamentally enhanced protein–surface interactions, thus, making the 

composite material, a good material for cartilage tissue engineering. 

Gopferich has observed that pH is an important factor that influences the rate of hydrolysis 

during degradation in polymers.89 The pH of SBF in which both types of samples were 

immersed increased a little above the initial pH of the buffer (7.35). Since the degradation 

product of P(3HB) is a 3-hydroxy butyric acid and the pKa of 3-hydroxybutyric acid is 4.70, 

so at pH 7.35, the 3-hydroxybutyric acid will be in the anionic form, i.e. the basic form, leading 

to a rise in pH of the SBF. However, once the concentration of 3-hydroxybutyric acid reaches 

beyond a critical concentration due to the degradation of the polymer, the SBF is no longer 



able to maintain the pH at 7.35 and the pH falls slightly due to the acidic nature of  

3-hydroxybutyric acid. 

The cellular morphology and proliferation on biomaterials may be affected by the presence of 

non-structural patterns and surface-protein interactions. Several studies previously analysed 

the proliferation of different cell lines on both P(3HB) and bacterial cellulose membranes, 

confirming their non-toxicity and applicability as scaffolds for cell proliferation. However, 

depending on the cell lines used, the effect of the biomaterial on the proliferation rate and the 

cell morphology may be quite different.90 Several studies showed that the cytotoxicity of a 

biomaterial is many times cell-specific.91 The results of the cell proliferation assay performed 

on the 3D composite materials corresponded with the observations on SEM images of the 

Murine ATDC5 cells grown on both scaffold materials. The cell proliferation results achieved 

with the neat P(3HB) and P(3HB)/MFC composite containing 40 wt% MFC, did not differ 

much on Day 1. This can be attributed to the microstructure, the 3D topography, surface-protein 

interactions and the presence of 3D pores where cells infiltrated, thereby resulting in good cell 

growth. Chondrocytes obtain a more extended morphology when grown on a two-dimensional 

surface, while a three-dimensional structure supports chondrocyte proliferation and 

differentiation.92 Thus; the 3D structure and surface-protein interactions were the dominant 

factors in enhancing cell adhesion and proliferation. When a solid surface is placed in a solution 

containing a given protein, the protein will generally tend to rapidly adsorb until it saturates 

the surface. If the surface is hydrophobic, like in the case of the neat P(3HB) scaffold, the 

protein will tend to adsorb by the various hydrophobic patches of residues present on the 

protein’s amphiphilic surface, with the protein then tending to unfold and spread its 

hydrophobic core over the surface owing to the thermodynamic driving force to reduce the net 

hydrophobic surface area of the system exposed to the solvent. Hydrophilic surface, on the 

other hand, tend to interact with the charged and polar functional groups of the protein’s 

surface, thus influencing adsorbed protein orientation, but with a lower tendency to cause the 

protein to unfold and spread over the surface. Because proteins generally do not tend to adsorb 

non-specifically to themselves, protein adsorption tends to stop once complete monolayer 

coverage is achieved. The final organisation of the adsorbed protein layer (i,e, the organisation, 

conformation, and packing arrangement of the adsorbed proteins) depends on the chemical and 

physical structure of the protein, the surface, and the aqueous solution, and the thermodynamics 

of the interactions between these system components. It is also strongly influenced by the 

kinetics of mass transport of the protein to the surface from solution relative to the kinetics of 



the protein’s movement on the surface, the kinetics of protein spreading on the surface and the 

physical constraints imposed by protein-protein interactions on the surface93. Hence, the 

composite scaffolds can be said to have amphiphilic properties and were expected to have more 

organised, conformed, and packing arrangement of the adsorbed proteins than the neat P(3HB) 

scaffold and this will encourage increased proliferation as observed in this work. Hence, the 

amount and type of serum protein that adhered to the substrates vary on different chemical 

surfaces; this can also affect cell behaviour on the substrates94. 

 

5. Conclusion 

Scaffolds provide a 3D environment that is desirable for the production of cartilaginous tissue. 

Current work on alternatives to single phase 3D scaffolds is expanding, and the potential of 

MFC and P(3HB) composites have been explored in this work. The much improved load 

bearing properties of the composite scaffolds in combination with the biocompatibility 

achieved provided evidence of the future potential of these natural polymer-based 3D 

P(3HB)/MFC composite scaffolds in load bearing joint cartilages. The results obtained 

highlighted the positive effects of the MFC on the effective microtopography within the 

composite. In addition, the three-dimensional composite produced in this work were 

characterised by high porosity, with a regular distribution of pore diameter, high-surface area 

to volume ratio, and morphological similarities to extracellular matrix. These physical 

characteristics promote favourable biological responses of seeded cells in vitro, including 

enhanced cell attachment, proliferation and maintenance of the chondrocytic phenotype.95 

Further studies using these promising materials will involve detailed in vivo work which will 

allow the generation of preclinical data for these promising materials. Hence, in conclusion, 

the results obtained in this work confirm for the first time the huge potential of the 

P(3HB)/MFC composites in the development of load bearing polymer-based cartilage repair 

implants to meet the currently unmet needs in this area.  
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