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Abstract—Interference alignment (IA) is known to achieve the
degree-of-freedom (DoF) capacity of the interference channel, if
full channel state information (CSI) is available at the transmitters
perfectly. Challenges, however, arise when CSI is not perfect, and
the achievable capacity of IA is not well understood. In this paper,
we study the achievable performance of the interference channel
using perfect IA techniques based on imperfect CSI. In particular,
we obtain the statistical distribution of the maximum achievable
rate per stream of the channel. Utilizing our analytical results, we
derive new nonasymptotic performance metrics that are then used
to 1) optimize the number of streams per user for maximizing the
network sum-rate and 2) assess the performance of IA in the time-
varying block fading channel. Numerical results are provided to
reveal the accuracy of our analytical results.

Index Terms—Beamforming, capacity, channel errors, distribu-
tion, interference alignment, sum-rate.

I. INTRODUCTION

I NTERFERENCE mitigation techniques are of great impor-
tance in the design of wireless communications networks.

Clearly, as radio resources are precious, the more we are able
to share or reuse them the better. As of today, the conventional
techniques used for sharing the frequency spectrum however
have relied on orthogonalization over either time (TDMA) or
frequency (FDMA). The limitation in this approach is that the
resource available for each user decreases with the number of
users. This puts a strong limit on the number of users one can
accommodate. Reusing the same spectrum to support multiple
users certainly would be much more desirable if interference
can be properly controlled. This is now possible by the con-
cept of interference alignment (IA) which was first introduced
in [1] and subsequently developed in [2], [3]. Remarkably, it has
been shown that IA can achieve the degree-of-freedom (DoF)
capacity of the interference channel [4], [5].

Conceptually, IA is a linear precoding technique that shapes
the signal at each transmitter in a way that at each receiver the
interference will only occupy part of the received signal space,
while leaving the remaining part free from interference for the
desired signal. In this manner, getting rid of the interference
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becomes as easy as projecting the interference onto the null
space of the signal. It is now well known that IA allows each
user to access half of the bandwidth available interference-free
regardless of the number of users in the network. As a result,
rather than 1

K every user now gets 1
2 of the total bandwidth

[3]. This amazing result, nevertheless, comes under some strong
assumptions. The first one is the assumption of having infinite
diversity while the second one means the availability of perfect
global channel state information (CSI) to every user.

A great deal of efforts have been spent on operating IA in
a more realistic setting, e.g., [6]. One such direction to make
IA more practical is to drop the assumption of infinite time or
frequency diversity and use only finite spatial diversity. Under
this consideration, [7] showed that the DoF would be scaling
as 2

K which is still double what we get with orthogonalization
techniques. Relaxing the other assumption regarding the global
and perfect CSI also has led to a large body of literature, e.g.,
[8], [9], which considered the use of local CSI and exploited
channel reciprocity to apply IA. Most recently in [10], IA was
even considered without CSI but using only the knowledge of
the network topology. Blind IA was also investigated in [11]
without any knowledge of the channel coefficients. Apart from
these, in order to reduce the overhead for sharing CSI globally,
opportunistic IA was also studied in [12], [13]. Another issue
that has been studied a lot is the feasibility of IA for different
number of streams and antennas per user, e.g., [14]–[16].

Understandably, IA performs most promisingly with global
CSI. In practice, nevertheless, the CSI of the crosstalk channels
is likely to be far from perfect, although the CSI of the direct
links may be estimated rather accurately. For this reason, there
is strong desire to understand the achievable performance limit
for IA under such practical scenarios. In this paper, our interest
is to analyze the performance of the IA methods designed for
global perfect CSI in the presence of CSI uncertainties [15],
[16]. Our emphasis is on the “achievable” performance, rather
than the average performance.1 We note that there exist robust
IA techniques exploiting imperfect CSI, e.g., [17]–[20] but in
that case, analyzing the achievable performance is usually not
possible. In [21], assuming that the CSI errors are bounded, an
achievable capacity lower bound for IA was derived.

Further to [21] which provides the capacity lower bound for
IA with CSI errors, this paper’s aim is to provide a complete
statistical characterization for the achievable rate. Specifically,

1Achievable performance is the performance that has an operational meaning
but average performance is only an average indicator for the performance. For
example, an average rate is not achievable because the actual channel rate for a
given error instantiation may not meet the average rate.
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our main contribution is the statistical distribution for the rate
per stream achievable by perfect IA based on imperfect CSI.
We will also derive metrics such as outage probability and the
saturating signal-to-noise ratio (SNR) that can be useful in the
design of a practical system using perfect IA with imperfect
CSI. Two applications are then presented to demonstrate that
our result can be applied to (i) optimize the number of streams
per user in the interference network for maximizing the sum-
rate, and (i i) analyze the outage performance of IA in block-
fading channels with degrading CSI over time.

The remaining of this paper is structured as follows.
Section II presents the system model and introduces the IA
method. In Section III, we then derive the probability distri-
bution of the achievable rate per stream of IA. Section IV
introduces two performance metrics, namely, the saturating
SNR and the outage probability to help analyze the interference
channel performance using IA, while Section V provides two
applications of our results in the optimization of IA. Section VI
shows our simulation results and finally, concluding remarks
are given in Section VII.

Notations—Throughout, upper-case bold letters denote
matrices, while lower-case bold letters denote vectors. In
addition, (·)∗ denotes the conjugate transpose operation, E{·}
returns the average of an input random entity, P(·) gives the
probability of an event, (·)k (respectively [·]k) returns the
kth row (respectively column) of an input matrix, ‖ · ‖ repre-
sents the maximum square-norm of its rows, ‖ · ‖2 computes
the square-norm and

⊗
represents the convolution operation.

Moreover, �(a) = ∫ +∞
0 xa−1e−x dx is the Gamma function, In

is the identity matrix of size n × n, CN(μ, σ 2) represents a
circularly symmetric complex Gaussian random variable with
mean μ and variance σ 2 and a realization of a random variable
X is denoted by a corresponding lower case letter x .

II. IA WITH IMPERFECT CROSSTALK CSI

In this paper, we study the K -user multiple-input multiple-
output (MIMO) interference channel where each user k consists
of a transmitter equipped with nk antennas communicating with
a receiver equipped with mk antennas. Without loss of general-
ity, we focus on the kth receiver which receives its intended
signal sent from the kth transmitter but that signal will be
corrupted by signals sent by other transmitters.

Hence, at a given time instant, the signal received at the kth
user is given by

yk = Hk,kxk +
K∑

� = 1
� �= k

Hk,�x� + ηk, (1)

where η� denotes the additive white Gaussian noise (AWGN)
vector with elements distributed as CN(0, σ 2

η ), Hk,� denotes the
deterministic MIMO channel between the �th transmitter and
the kth receiver and x� is the message sent by the �th trans-
mitter with the power constraint E{‖x�‖2

2} = P0 ∀�. The sum
appearing in (1) above represents the interference created by all
the users except transmitter k to receiver k.

Typically, in order to remove the effects of interference, one
could use multiple-access techniques such as TDMA, FDMA,
etc [22] to orthogonalize users across time and/or frequency but
this will lead to suboptimal use of the available bandwidth. On
the other hand, IA has been devised to cope with the effect of
this interference term and is well known to achieve the DoF
capacity of the interference channel [4]. The working principle
of IA is to align all the interference received at a given receiver
in a restricted vector space which is made orthogonal to the
space for the desired signal. By doing so, the desired signal can
be easily extracted from the signal at each receiver.

The design of these vector spaces is achieved by designing
the precoders Vk at each transmitter (say k) and the interference
cancelling matrices Wk at each receiver such that{

rank(W∗
kHk,kVk) = dk, for k = 1, 2, . . . , K ,

W∗
�H�,kVk = 0, for all � �= k,

(2)

where dk represents the number of information streams allo-
cated to the kth user. As such, after applying the interference
cancelling matrix at the kth receiver, we have

W∗
kyk = W∗

kHk,kVkxk + W∗
kηk . (3)

As we can see, the interference term has been neutralized, but
this comes at the price of a reduced dimensional space for
the desired signal which is now dk for the kth user instead of
min(nk, mk) in the case of a point-to-point MIMO system.

In this paper, our focus is on evaluating the performance of
IA in the presence of CSI errors. Hence, we will assume that
IA is always feasible with the given parameters. For feasibility
conditions for IA, readers are referred to [14]–[16].

In practice, IA will operate under imperfect knowledge of
the channel state, since CSI is estimated and will change over
time [19]. Although the main channel CSI can be accurately
estimated, the estimation of crosstalk CSI involves other user
receivers, and will be less accurate and updated less frequently.
Also, the bound in [21] demonstrates that the uncertainty in the
main channel CSI tends to have less effects on the capacity per-
formance than that in the crosstalk CSI. For this reason, in this
paper, we consider the scenario where the main channel CSI is
perfect but the crosstalk CSI is in errors.

We model the error on the channel knowledge as an additive
term to the channel measurement, i.e.,

Hk,� = Ĥk,� + �Hk,�, (4)

where Ĥk,� represents the measurement or the estimate of the
channel matrix and �Hk,� is the difference between the real
channel and the channel estimate and will be referred to as the
measurement error. We will assume that each entry of �Hk,� is
complex Gaussian distributed as CN(0, σ 2

e ).
If we take into account the uncertainty on the CSI, then (1)

can be rewritten as

yk = Hk,kxk +
K∑

� = 1
� �= k

Ĥk,�x� +
K∑

� = 1
� �= k

�Hk,�x� + ηk, (5)
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where we have separated the interference due to the channel
estimates and those due to the measurement errors.

Using the channel estimates to design the IA precoders, the
conditions on the precoders can then be reexpressed as{

rank(W∗
kHk,kVk) = dk, for k = 1, 2, . . . , K ,

W∗
�Ĥ�,kVk = 0, for all � �= k.

(6)

Note that the second condition is now on the channel estimates
instead of the real channels because of the measurement errors.
The first condition remains the same as the main channel CSI
is assumed to be perfect. We consider that V∗

kVk = Idk ∀k, and
that Vk is given by an IA solution that does not consider the
direct links Hk,k [3], [23], [24].

With these new IA conditions reflecting the practical scenar-
ios, (3) becomes

W∗
kyk = W∗

kHk,kVkxk +
K∑

� = 1
� �= k

W∗
k�Hk,�V�x� + W∗

kηk . (7)

From the above, we identify the term
∑K

� = 1
� �= k

W∗
k�Hk,�V�x� as

being the interference from the other users to user k due to the
imperfect knowledge of the channel.

In the next section, we focus on the effects of this term on the
maximum rate achievable per stream of each user.

III. PROBABILITY DISTRIBUTION OF THE RATES

In this section, we provide the statistical description of the
achievable rate per stream in relation to the distribution of the
CSI error. Thus, we focus on the interference created by the CSI
error on the received signal. We will investigate this interfer-
ence term prior to applying the interference cancelling matrix
and we denote this term at the kth receiver by

ik =
K∑

� = 1
� �= k

�Hk,�V�x�. (8)

Let us consider only the j th component of ik given by

(ik) j =
K∑

� = 1
� �= k

(�Hk,�) j V�x�, (9)

where (·) j returns the j th row of the input matrix.
We now adopt (9) to compute the instantaneous interference

power contained in the j th component of ik as

|(ik) j |2 =

⎛
⎜⎜⎜⎝

K∑
� = 1
� �= k

(�Hk,�) j V�x�

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

K∑
l = 1
l �= k

x∗
l V∗

l (�Hk,l)
∗
j

⎞
⎟⎟⎟⎠
(10)

=
K∑

� = 1
� �= k

K∑
l = 1
l �= k

(�Hk,�) j V�x�x∗
l V∗

l (�Hk,l)
∗
j . (11)

We now take the ensemble average of |(ik) j |2 over all possi-
ble transmit messages (x1, x2, . . . , xK ) under the assumption
that they can be treated as uncorrelated sources of multivariate
Gaussian random variables with mean 0 and covariance matrix
P0Idk , where dk denotes the number of streams of the kth user.
In other words, the transmit messages are independent and all
the users have the same power constraint. We call that average
value Ik, j , which can be evaluated as

Ik, j = Ex1,...,xk

[
|(ik) j |2

]

= Ex1...,xk

⎡
⎢⎢⎢⎣

K∑
� = 1
� �= k

K∑
l = 1
l �= k

(�Hk,�) j V�x�x∗
l V∗

l (�Hk,l)
∗
j

⎤
⎥⎥⎥⎦ ,

(12)

where the expectation is conditioned on �Hk,� ∀(k, �).
The expression above can be further found as

Ik, j = P0

K∑
� = 1
� �= k

(�Hk,�) j V�V∗
�(�Hk,�)

∗
j . (13)

Our interest is to investigate the distribution of Ik, j but since
the summation in the expression (13) contains lots of similar
terms, we will focus on only one element, and for simplicity
of notation we drop all the subscripts and we replace any term
such as (�Hk,�) j by h. Furthermore, we define

δ � hVV∗h∗. (14)

For this, we denote the number of streams as d, the number of
transmit antennas n and the number of receive antennas m.

The matrix VV∗ is hermitian by definition. Therefore, we can
use the spectral theorem and decompose it into

VV∗ = UDU∗, (15)

where U is a unitary matrix and D is a diagonal matrix with real
entries. Using the spectral decomposition of VV∗, we can then
rewrite (14) as

δ = hUDU∗h∗. (16)

Now, if we define

h̃ � U∗h∗, (17)

then h̃ has a multivariate complex Gaussian distribution with
covariance matrix σ 2

e In , where σ 2
e is the variance of each entry

of h. Recalling from (16), we now have

δ = h̃∗Dh̃. (18)

Obviously, δ is random because of the random CSI uncertain-
ties and if we consider this as a random variable �, then the
structure in (18) illustrates that � is drawn from a general-
ized Chi-square distribution [25]. In the following, our aim is
to determine precisely the parameters of that distribution.
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A. DoF of the χ2 Distribution

Let us focus on the matrix D as this matrix determines the
parameters of the distribution we are looking for.

Theorem 1: The matrix D is diagonal with exactly d ones
and n − d zeros on its diagonal, where d is the number of
transmit streams and n is the number of transmit antennas.

Proof: VV∗ and V∗V have the same non-zero eigenval-
ues and since V∗V = Id we deduce that VV∗ has d non-zero
eigenvalues all equal to 1, which shows the desired result and
completes the proof. �

Corollary 1: The random variable 2
σ 2

e
� is Chi-square dis-

tributed with 2d DoFs, i.e., 2
σ 2

e
� ∼ χ2

2d .

Proof: From (18), we can rewrite δ as

δ = σ 2
e

(
h̃∗

σe

)
D
(

h̃
σe

)
, (19)

so that h̃∗
σe

has unit variance. Now, using (19) and Theorem 1

gives the desired result. Note that the factor 2 in 2
σ 2

e
� comes

from the fact that we are using complex valued numbers. �
Corollary 2: The probability density function (pdf) of � is

given by

f�(δ, d) =
⎧⎨
⎩ 1

σ 2
e �(d)

(
δ

σ 2
e

)d−1
e
− δ

σ2
e for δ ≥ 0,

0 for δ < 0.
(20)

Proof: We recall that the pdf of a random variable X
following a χ2

k distribution is given by

fX (x, k) =
⎧⎨
⎩

1

2
k
2 �
(

k
2

) x
k
2 −1e− x

2 for x ≥ 0,

0 for x < 0.

(21)

Since � = σ 2
e
2 X , we can give the pdf of � as

f�(δ, d) = 2

σ 2
e

fX

(
2

σ 2
e

δ, 2d

)
. (22)

Therefore, we obtain (20) and complete the proof. �

B. Probability Distribution of the Achievable Rate per Stream

In this subsection, we will link the probability distribution of
the interference to that of the maximum achievable rate for any
stream of a given user in the MIMO interference channel using
IA. Putting the subscripts back in the notations, δ becomes

δ
j
k,� = (�Hk,�) j V�V∗

�(�Hk,�)
∗
j (23)

and the random variable associated is �
j
k,�.

With this notation, we can rewrite (13) as

Ik, j = P0

K∑
� = 1
� �= k

δ
j
k,�. (24)

Now, we define the following random variable

�
j
k �

K∑
� = 1
� �= k

�
j
k,�. (25)

Therefore, if we consider Ik, j as a random variable, then

Ik, j = P0�
j
k . (26)

At this stage, it should be reminded that we have not specified
a basis at the receiver side. Thus, every result we have is true in
any given basis. It is especially true in a basis in which d of the
basis vectors are independent unitary vectors from the desired
signal space and the remaining basis vectors are any unitary
vectors that can complete the set to form a basis.

We define the basis in this manner so that the interference
cancelling matrices Wk can be found to simply zero-force the
inter-user and inter-stream interference and that the interfer-
ence power received along any stream is given by Ik, j . We

also see that statistically �
j
k and therefore Ik, j are the same

∀ j . Henceforth, we denote them, respectively, �k and Ik .
The achievable rate for the lth stream of the kth user is

given by

Rk,l(P0, Ik) = log2

⎛
⎝1 +

(
P0
dk

)
|(W∗

k)lHk,k[Vk]l |2
Ik + σ 2

n

⎞
⎠ . (27)

From now on, we define zk,l = |(W∗
k)lHk,k[Vk]l |2 and write the

achievable rate of the lth stream of the kth user as

Rk,l(P0, Ik) = log2

⎛
⎝1 +

(
P0
dk

)
zk,l

Ik + σ 2
n

⎞
⎠ . (28)

This rate expression will be used in the following form:

Rk,l(ρ,�k) = log2

⎛
⎝1 + zk,l

dk

(
�k + 1

ρ

)
⎞
⎠ , (29)

where ρ = P0
σ 2

n
and we have used (26).

In order to obtain the pdf of Rk,l , we first express �k as a
function of Rk,l with ρ fixed so that

�k(ρ, Rk,l) = zk,l

dk(2Rk,l − 1)
− 1

ρ
. (30)

From this, we get

∂�k(ρ, Rk,l)

∂ Rk,l
= − zk,l(loge 2)2Rk,l

dk(2Rk,l − 1)2
. (31)

We can therefore write the pdf, fRk,l , of the rate as

fRk,l (ρ, rk,l) = zk,l(loge 2)2rk,l

dk(2rk,l − 1)2
× f�k

(
zk,l

dk(2rk,l − 1)
− 1

ρ

)
.

(32)
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Based on this, we can characterize the pdf of Rk,l given that of
�k . To do so, we know that �k =∑K

� = 1
� �= k

�k,� (we omit the

superscripts since the expression is the same for all streams of
the same user) and therefore, since 2

σ 2
e
�k,� ∀(k, �) are inde-

pendent and χ2(2d�) distributed, we have that 2
σ 2

e
�k is χ2

distributed with 2(D − dk) DoFs where D =∑K
�=1 d� denotes

the total number of streams in the network.
Therefore, we have

f�k (δ) =
⎧⎨
⎩ 1

σ 2
e �(D−dk)

(
δ

σ 2
e

)D−dk−1
e
− δ

σ2
e for δ ≥ 0,

0 for δ < 0.
(33)

If every user has the same number of streams d, then this
expression can be written as

f�k (δ) =
⎧⎨
⎩ 1

σ 2
e �(d(K−1))

(
δ

σ 2
e

)d(K−1)−1
e
− δ

σ2
e for δ ≥ 0,

0 for δ < 0.

(34)

IV. SATURATING SNR AND OUTAGE PROBABILITY

In this section, we study two performance metrics, namely,
saturating SNR and outage probability. Saturating SNR was
first introduced in [21] for worst-case scenarios (with bounded
CSI errors). Here, we emphasize on its statistics. On the other
hand, outage probability is a metric that can be used to assess
the performance of each user despite the randomness.

A. Pdf of Saturating SNR

The saturating SNR can be seen as a non-asymptotic perfor-
mance metric that accounts for estimation errors. It represents
the SNR at which increasing the transmit power will not bring
any gain in terms of achievable rate [21]. More precisely, it is
defined as the SNR where the rate in the perfect CSI case is
equal to that of the imperfect CSI case at infinite SNR. Here the
saturating SNR is defined for each stream of any given user.

We will first give the pdf of the saturating SNR. Then we will
show that up to the saturating SNR, the achievable rate of the
IA with corrupted CSI is within 1bps/Hz of the achievable rate
of the IA in the perfect CSI case.

From equation (29) we obtain that the rate at ρ = ∞ is
given by

Rk,l(∞,�k) = log2

(
1 + zk,l

dk�k

)
. (35)

By definition, at the saturating SNR, ρ
k,l
s , we have

log2

(
1 + ρ

k,l
s zk,l

dk

)
= Rk,l

(
∞, δ

(l)
k

)
(36)

= log2

(
1 + zk,l

dkδ
(l)
k

)
, (37)

which gives

ρk,l
s = 1

δ
(l)
k

. (38)

The superscript (l) in δ
(l)
k is there to remind that δ

(l)
k is one

realization of �k for the lth stream of the kth user.
As a result, the saturating SNR is a random variable ℘k

s =
1

�k
(note that we drop the superscript l because it is the same

distribution for all the streams of the kth user) and the pdf of
the saturating SNR can be derived as

f℘k
s

(
ρk

s

)
= 1(

ρk
s

)2 f�k

(
1

ρk
s

)
. (39)

Theorem 2: Given the saturating SNR ρ
k,l
s , we can approxi-

mate the achievable rate within 1bps/Hz by

R̃k,l(ρ) =

⎧⎪⎨
⎪⎩

log2

(
1 + ρzk,l

dk

)
for 0 ≤ ρ ≤ ρ

k,l
s ,

log2

(
1 + ρ

k,l
s zk,l
dk

)
for ρ

k,l
s ≤ ρ,

(40)

where log2(1 + ρzk,l
dk

) is the rate in the perfect CSI case.

Proof: Define the function G(ρ) � R̃k,l(ρ) −
Rk,l(ρ, δ

(l)
k ) that represents the gap between Rk,l and R̃k,l . For

0 ≤ ρ ≤ ρ
k,l
s , we have

G(ρ) = log2

⎛
⎝ 1 + ρ

dk
zk,l

1 + ρ

dk (δ
(l)
k ρ+1)

zk,l

⎞
⎠ . (41)

One can notice that G(0) = 0 and G is an increasing function
of ρ. We can now evaluate G at the saturating SNR, i.e., ρ

k,l
s =

1
δ
(l)
k

. Then we have

G(ρs) = G

(
1

δ
(l)
k

)
(42)

= log2

⎛
⎜⎜⎝1 +

1

δ
(l)
k
dk

zk,l

1 +
1

δ
(l)
k

2dk
zk,l

⎞
⎟⎟⎠ (43)

= log2

⎛
⎝ δ

(l)
k + zk,l

dk

δ
(l)
k + zk,l

2dk

⎞
⎠ . (44)

The expression
δ
(l)
k + zk,l

dk

δ
(l)
k + zk,l

2dk

is a decreasing function of δ
(l)
k that

goes from 2 to 1 therefore G(ρ
k,l
s ) ∈ [0, 1] and finally ∀ρ ∈

[0, ρ
k,l
s ] G(ρ) ∈ [0, 1].

On the other hand, for ρ > ρ
k,l
s , by definition of the saturat-

ing SNR, Rk,l(ρ, δ
(l)
k ) → R̃k,l(ρ). This concludes that R̃k,l(ρ)

is an approximation of Rk,l(ρ, δ
(l)
k ) within 1bps/Hz ∀ρ. �

B. Outage Probability

In the case of fading channels, one often uses outage capac-
ity as a metric to assess the performance of the communication
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system. Outage capacity is linked to a parameter called “outage
probability”, Pout, which represents the probability that error-
free communications cannot be achieved at a given rate. This
can be translated to a minimum SNR ρmin below which the
information rate is not supported, or Pout = P(ρ < ρmin).

Define the outage probability of the �th stream of a user k as
the probability that that stream cannot support any rate equal or
above Ck,l

out at infinite SNR, i.e., Pk,l
out = P(R∞

k,l < Ck,l
out), with

R∞
k,l(�k) � Rk,l(�k,∞), and Ck,l

out being the outage capacity
for the �th stream of the kth user. Then

P(R∞
k,l < Ck,l

out) = zk,l(loge 2)

dk

×
∫ Ck,l

out

0

2r

(2r − 1)2
f�k

(
zk,l

dk(2r − 1)
, dk

)
dr, (45)

which can be further expressed as

P(R∞
k,l < Ck,l

out) =
∫ zk,l

dk (2Ck,l
out−1)

0
f�k (x, dk)dx . (46)

If we define the outage SNR ρ
k,l
out so that Ck,l

out = log2(1 +
ρ

k,l
outzk,l

dk
), then

P
k,l
out =

∫ 1

ρ
k,l
out

0
f�k (x, dk)dx = P

(
ρk,l

s < ρ
k,l
out

)
. (47)

This indicates that the outage probability equals the probability
that the saturating SNR is lower than the outage SNR.

We can use (33) and (47) to give the outage probability as

P
k,l
out = 1

� (D − dk)
γ

(
D − dk,

1

ρ
k,l
outσ

2
e

)
(48)

= �̃

(
D − dk,

1

ρ
k,l
outσ

2
e

)
, (49)

where

�̃(a, x) = γ (a, x)

�(a)
(50)

is the regularized lower incomplete Gamma function.
Note that the relation between P

k,l
out and ρ

k,l
out does not involve

zk,l but does involve dk . Hence, that relation is the same for all
the streams of the same user in accordance with the fact that all
those streams transmit the same power. We can therefore define
the outage probability (respectively outage SNR) of the user
(say k) as Pk

out = P
k,l
out (respectively ρk

out = ρ
k,l
out).

In (49), the effect of the other users on the performance of
user k manifests itself through the total number of streams D in
the network. The outage probability will decrease if the contri-
bution of user k in the total number of streams is high, because
D − dk in this case is smaller and also because there is no
interference between the streams of the same user.

V. APPLICATIONS

In this section, we give two application examples for utilizing
our analytical results in the MIMO interference channel.

A. Degrading CSI in Block Fading Channels

For block fading channels, the channels are often considered
as constant for a period of time, say TD , but vary from one
block to another. Moreover, the transmit power is normalized
such that 1

TD
E{‖x�‖2

2} = P0 ∀�. A typical scenario is that the
channels are estimated at the first block only and all the IA
matrices are obtained from the estimated channels. The direct
link channels vary from one block to the next but are tracked
perfectly while the crosstalk channels are not tracked (due to
high overheads), so the crosstalk CSI degrades over time.

Let us denote H(t0) as the actual state of a channel matrix
at time t0. The estimated channel is denoted by Ĥ(t0), which is
modelled as

H(t0) = Ĥ(t0) + �H(t0), (51)

where �H(t0) is the deviation of the estimate from the actual
channel at time t0. For the block fading channels, we have

H(t0 + k × TD) �= H(t0), for k = 1, 2, . . . , (52)

with probability one. We define a new matrix E that represents
the variation of the channel between two different times as

E(k) � H(t0 + k × TD) − H(t0) (53)

= H(t0 + k × TD) − Ĥ(t0) − �H(t0). (54)

Hence,

E(k) + �H(t0)︸ ︷︷ ︸
��H(k)

= H(t0 + k × TD) − Ĥ(t0) (55)

represents the deviation from the channel estimate to the actual
channel at the (k + 1)th block for the crosstalk.

We assume the model that �H(k) ∼ CN(0, σ 2
e (k)) with

σ 2
e (0) = σ 2

e being the power of the measurement. Based on
this model, if we consider one stream of a user transmitting d0
streams then we can express the evolution of the outage proba-
bility in each block provided that we transmit at the same outage
SNR as

Pout(k) = �̃

(
D − d0,

1

ρoutσ 2
e (k)

)
. (56)

Instead of transmitting at a fixed SNR we may want to insure
a preset outage probability over each block in which case the
SNR at which we should transmit over that stream is given by

ρout(k) = 1

σ 2
e (k)�̃−1 (D − d0,Pout)

(57)

= σ 2
e

σ 2
e (k)

ρout, (58)

where

ρout �
1

σ 2
e �̃−1 (D − d0,Pout)

, (59)

and �̃−1 is the inverse of function �̃.
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Employing the result of Theorem 2, the maximum achievable
rate per stream for the MIMO interference channel using IA
under the block fading channel at outage probability of Pout
can be given within 1 bps/Hz by

R̃(k) = log2

(
1 + ρout(k)

d0
z(k)

)
(60)

= log2

(
1 + σ 2

e

σ 2
e (k)

ρout

d0
z(k)

)
, (61)

where z(k) is the effect that the channel has on that stream
over the kth block. The achievable rate for that stream over B
consecutive blocks can therefore be found as

RB =
B−1∑
k=0

log2

(
1 + σ 2

e

σ 2
e (k)

ρout

d0
z(k)

)
. (62)

Under the conditions σ 2
e

σ 2
e (k)

ρout
d0

z(k) � 1 ∀k, e.g., if the power

of the channel variations over the measurement noise power is
very small or if the outage SNR is sufficiently big or also if
there is no overly deep fading over any block, then we have

RB ≈
B−1∑
k=0

log2
σ 2

e

σ 2
e (k)

ρout

d0
z(k) (63)

= B log2
ρout

d0︸ ︷︷ ︸
(a)

+ log2

B−1∏
k=0

z(k)

︸ ︷︷ ︸
(b)

− log2

B−1∏
k=0

σ 2
e (k)

σ 2
e︸ ︷︷ ︸

(c)

. (64)

In the equation above,
(a) represents the rate achievable per stream with perfect IA

and no fading at SNR = ρout over B blocks.
(b) represents the effect that the channel variations of the

direct link has on the rate; it could be positive or negative
depending on the fading coefficients.

(c) represents the effect of the crosstalk CSI uncertainty on
the rate; this effect is negative because there is at least the
uncertainty from the measurement.

Let us have a look at the following example.
Recall from the definition of E(k) in (53), if we say E(k) ∼

CN(0, σ 2) ∀k, then we can get

σ 2
e (k) =

{
σ 2

e + σ 2 for k > 0,

σ 2
e for k = 0,

(65)

and

RB = B log2
ρout

d0
+ log2

B−1∏
k=0

z(k) − log2

(
1 + σ 2

σ 2
e

)B−1

,

for B ≥ 1
(66)

In the above, we see that if the power of the channel variation

is smaller than the measurement noise power (i.e., σ 2

σ 2
e

� 1), the

channel variations have little effect on the IA performance.

B. Optimizing the Number of Streams

In an IA system with K users and imperfect crosstalk CSI,
unsurprisingly, every user would want to increase the number
of signal streams for enhancing its achievable rate but doing so
may harm the sum-rate because of the additional interference
due to imperfect IA resulting from imperfect CSI. If all users
are assumed to have the same number of streams d, it would be
important to determine the optimal number of streams per user
of the interference network for maximizing the sum-rate, for a
given measurement noise power σ 2

e .
To do so, we first set an outage probability of Pout that must

remain the same for every user. Then we have the required
outage SNR for all users as

ρout = 1

σ 2
e �̃−1(d(K − 1),Pout)

. (67)

We define the outage SNR per stream as ρ̄out = ρout
d .

For most applications, the outage probability is chosen to be
a very small value, and thus the probability of the saturating
SNR being lower than the outage SNR is equally small (see
(47)). In that case, we can use Theorem 2 and the function R̃
defined in Section IV-A to approximate the rate per stream at
SNR = ρout with a confidence given by the choice of Pout as

R̃k,l(ρ̄out) = log2
(
1 + ρ̄outzk,l

)
, (68)

where zk,l has the same meaning as in the previous section.
Hence, the sum-rate for the network is found as

R̄(ρ̄out) =
K∑

k=1

d∑
l=1

R̃k,l(ρ̄out). (69)

The optimal number of streams per user can be found by

max
d

R̄(ρ̄out). (70)

We may also want to optimize the number of streams per user
in average over all possible realizations of zk,l , which means
that we consider multiple realizations of IA with different chan-
nel gains and average over all possible achievable sum-rates. To
do so, we assume that the direct channels Hk,k are independent
across users and have their entries independent and identically
distributed (i.i.d.) from CN(0, 1). Also, the crosstalk channels
do not matter since their effects are cancelled out by IA. Under
that condition we can apply Lemma 1 in [19] and derive the
average sum-rate as

R(ρ̄out) =
K∑

k=1

d∑
l=1

E
[
R̃k,l(ρ̄out)

]
(71)

= K d log2(e)e
1

ρ̄out E1

(
1

ρ̄out

)
, (72)

where E1(x) = ∫∞
1 t−1e−xt dt is an exponential integral.

Since we are using the approximate of the rate given by
Theorem 2, the expectation does not involve the measurement
error matrices. The price to pay for that is however that the
result is given within 1bps/Hz precision.
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Fig. 1. The sum-rate R against the number of streams per user, with its
maximum achieved when d = 5 for 10 users and d = 4 for 15 users.

Now the optimal number of streams is found by solving

max
d

R(ρ̄out). (73)

This second expression depends only on the number of users,
the measurement noise power and the outage probability.

In Figure 1, we provide the numerical results for the sum-
rate R against the number of signal streams, when K = 10
and K = 15, σ 2

e = 10−3 and Pout = 10−3. The results demon-
strate the concavity of the sum-rate so the optimal number of
streams can be easily identified to be d = 5 with K = 10 and
d = 4 with K = 15. The results also imply that it is counter-
productive to increase the number of streams further due to
excessive interference. In addition, we note that there is a sig-
nificant gain in the total rate to go from one signal stream
to the optimal number of streams (up 35 bps/Hz for K =
10). This figure also demonstrates that the number of streams
allowed per user decreases with the number of user due to CSI
uncertainty.

VI. SIMULATIONS VERSUS THEORY

In this section, we present the predictions of the model and
compare these predictions to the results obtained from the sim-
ulations. In the simulations, we focus on the 3-user case as one
can compute the perfect precoders for IA. The parameters for
the simulations are set to K = 3 and d = 1.

We first adapt (34) to the parameters above which yields

f�k (δk, 1) =

⎧⎪⎨
⎪⎩

1
σ 4

e
δke

− δk
σ2

e for δk ≥ 0,

0 for δk < 0.

(74)

Figure 2 shows the pdf of the achievable rate per stream
for the case σ 2

e = 10−3 based on the theory. It is a three-
dimensional plot with the x-axis showing the SNR in dB,
the y-axis the rate in bps/Hz and the z-axis the pdf value.
We have decided to illustrate the results from SNR = 15dB
because for lower SNR, the pdf is highly localized. There also

Fig. 2. The pdf of the achievable rate per stream with K = 3, d = 1, and
σ 2

e = 10−3. The white line represents the limiting case where there is no CSI
uncertainty.

appears to have a saturation in rate due to CSI imperfection.
As discussed in Section IV-A, the saturating SNR is a random
variable.

To compare the theoretical predictions to the simulations,
we ran the simulations, in which channel matrices were drawn
randomly from CN(0, 1) which represent the perfect CSI, and
the erroneous channel matrices were set to be the sum of the
channel matrices and the error matrices drawn randomly from
CN(0, σ 2

e ). Moreover, all the users were assumed to have n = 3
transmit antennas and m = 2 receive antennas, and these matri-
ces were used to perform IA at various SNR. We also set the
fading coefficients on the direct links (zk,l) to 1 so that we only
see the effects of the measurement error.

In Figure 3, we provide the results for the rates achievable
by IA for a given MIMO channel for 500 independent error
realisations. As can be seen, the rates appear to saturate at high
SNR as predicted by the theory. In these particular results, the
saturating SNR appears to be 15dB. To compare theory and
simulations further, we also provide the results for the case at
SNR = 80dB, as shown in Figure 4, where the theoretical pdf
and the simulations fit almost perfectly.
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Fig. 3. The achievable rates for IA or a given MIMO interference channel with
500 independent measurement errors.

Fig. 4. The pdfs of the achievable rates when K = 3, d = 1 and σ 2
e = 10−3

from the simulations and the theory.

VII. CONCLUSION

This paper presented a full statistical characterization for the
maximum achievable rate per user using IA in the interference
channel when CSI are imperfect. We proposed two metrics to
evaluate the performance of the interference network despite
the randomness of CSI errors. We also applied our analytical
results in two application examples. The first one investigated
the performance of IA in block fading channels with degrad-
ing CSI while the second one used our results in order to
optimize the number of streams per user for maximizing the
sum-rate using IA in the presence of CSI errors. Simulation
results have been provided to confirm the accuracy of the
analysis.
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