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Abstract

In this dissertation, I use household-level microdata from rural areas of developing

countries, combined with simple theory and experimental and micro-econometric tech-

niques, to study informal insurance arrangements within extended family networks, and

the consequences of incorrect knowledge of the health production function on health

and non-health choices.

The �rst chapter reviews methods for identifying the e�ects of social networks on

outcomes (or social e�ects) using data with information on exact connections between

agents, paying special attention to methods dealing with endogeneity of network for-

mation, and measurement error in the network.

The second chapter studies the role of socially close and distant connections in

informal risk sharing under imperfect enforcement. Socially close connections can better

enforce informal arrangements, but may provide fewer risk sharing opportunities. A

simple theoretical framework studies this trade-o� and yields qualitative predictions

for empirical testing with data from a large number of village-based extended family

networks in rural Mexico.

In the third chapter, I study the relationship between risk sharing and group size in

a setting with limited commitment and coalitional deviations. Building on Genicot and

Ray (2003), the chapter shows that the relationship between risk sharing and group size

is theoretically ambiguous. I then study the question empirically using data from rural

Malawi and exploiting historical norms, which indicate that a woman's brothers play an

important role in ensuring her household's wellbeing, to de�ne the risk sharing group.

I �nd that households where the wife has many brothers achieve worse risk sharing.

The �nal chapter studies the e�ects of a randomized intervention in rural Malawi

which, over a six-month period, provided mothers of young infants with information

on child nutrition only. Findings show that the intervention improved infant nutri-

tion, household food consumption and child health. Male labour supply also increased,

partially funding the increased consumption.
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Chapter 1

Introduction

In this dissertation, I use household-level microdata from rural areas of developing

countries, combined with simple theory and experimental and micro-econometric tech-

niques, to study informal insurance arrangements within extended family networks,

and the consequences of incorrect knowledge of the child health production function

on health and non-health choices. Social networks, particularly the extended family,

play a key role in helping households in developing countries cope with the risks they

face. Identifying the features that make them e�ective is important for the design of

good policies. However, identifying the e�ects of social networks on agents' outcomes is

complicated by endogeneity of network formation � agents linking decisions are a�ected

by variables that are unobserved to the econometrician � and measurement error in the

network. A number of methods have been developed to deal with these issues. At the

same time, child health is very poor in low income settings. Incorrect knowledge of the

child health production function could drive this by distorting health and non-health

choices.

In chapter 2, I review the literature studying econometric methods for the analysis

of linear models of social e�ects � the e�ects of social networks, such as declared friend-

ships in classrooms, or extended family connections, on economic agents' outcomes. The

class of linear social e�ect models includes the `linear-in-means' local average model,

the local aggregate model, and models where features of the network architecture (net-

work statistics) a�ect outcomes. The chapter begins by providing a common empirical

framework that nests these models, before summarising the underlying theoretical mod-

els that yield each empirical model. It then discuss conditions for identi�cation of the

social e�ects using observational and experimental/quasi-experimental data, before dis-

cussing methods to overcome endogeneity of network formation. These include models

of network formation. The chapter provides a detailed overview of these, drawing on

12



1. Introduction

methods developed within economics, as well as disciplines such as statistics and soci-

ology. The �nal part of the review considers issues around collecting networks data and

measurement error in the network. Constructing a network from a sample generates

severe non-classical measurement error in the network structure, which in turn severely

biases parameters estimated from sampled networks. Drawing on work in economics,

computer science, statistical physics, statistics and sociology, I review the literature on

the consequences of partial measurement of a network on measures of network structure

as well as parameter estimates; before outlining methods developed in these literatures

to deal with this issue.

The next part of the dissertation investigates how extended family networks, an im-

portant institution in developing countries, help households to cope with risk. Theory

suggests that the structure of these networks are likely to in�uence their e�ectiveness

in providing insurance (Bloch et al. 2008, Jackson et al. 2012, Ambrus et al. 2014).

Variation in network structure will thus generate heterogeneity in informal insurance

outcomes across households and networks. My research considers empirically this het-

erogeneity for two dimensions of network architecture � social distance and network size

� in two di�erent settings, and draws on theory linking these dimensions to channels

for e�ective insurance provision to interpret the �ndings.

In chapter 3, I study the role of socially close (direct) and distant (indirect) connec-

tions in providing informal risk sharing in social networks. Socially close connections

should be more e�ective in enforcing informal risk sharing arrangements, but may be

more economically similar and less numerous than socially distant connections, and

thereby provide fewer risk sharing opportunities. I begin by specifying a simple the-

oretical framework incorporating these features, and use it to conduct comparative

statics on how the relationship between risk sharing and the number of socially close

and distant connections changes as opportunities for risk sharing change. The analy-

sis shows that the trade-o� between enforcement and risk sharing opportunities yields

a U-shaped (inverse U-shaped) relationship between risk sharing and the number of

socially close (distant) connections. I then test the model predictions empirically us-

ing detailed data on a large number of village-based extended family networks in rural

Mexico. I �rst document that socially distant connections provide more opportunities

for risk sharing: they are more numerous, are less likely to be engaged in the same

occupation and thus have less positively correlated incomes. Thereafter, I consider how

risk sharing varies with the average number of socially close and distant connections in

a household's extended family network. To measure risk sharing, I use a commonly used

measure from the literature (Townsend 1994), which can also be motivated from the

theoretical framework: the response of household consumption to income �uctuations,

13



1. Introduction

net of aggregate network-level resources. My estimation accounts for time invariant

household-level factors correlated with the network measures and risk sharing; as well

as for common network-level variables. The �ndings indicate that risk sharing improves

with more socially distant connections, while socially close connections have no e�ect.

This suggests that opportunities for risk sharing are particularly important for the

e�ective functioning of extended family based risk sharing in this context.

Chapter 4 seeks to understand and test empirically the relationship between group

size and informal risk sharing. Models of risk sharing with limited commitment and

grim-trigger punishments imply that larger groups provide better insurance. However,

when subgroups of households can credibly deviate, so that arrangements ought to be

coalition-proof, the relationship between group size and the amount of insurance is

unclear. Building on Genicot & Ray (2003), the chapter shows that this relationship

is theoretically ambiguous. I then investigate it empirically using data on the size of

sibships of the household head and spouse in rural Malawi. To identify the potential

risk sharing group, the chapter exploits a social norm among the main ethnic group in

our sample � the Chewa � which indicates that the wife's brothers should play a key

role in ensuring her household's wellbeing. I �nd that households where the wife has

many brothers are poorly insured against crop loss events. I fail to uncover a similar

relationship for the wife's sisters, ruling out that these �ndings are driven by wives with

many siblings having poorer extended family networks. Finally, I calibrate the model

to �t the empirical setting. The calibration indicates that the threat of coalitional

deviations can explain the empirical �ndings.

The �nal part of the dissertation studies another policy relevant outcome in devel-

oping countries � child health and considers the implications of incorrect knowledge of

the child health production function, on household health and non-health choices and

child health outcomes in rural Malawi. Incorrect knowledge of the health production

function may lead to ine�cient household choices, and thereby to the production of

suboptimal levels of health. Chapter 5 studies the e�ects of a randomized intervention

in rural Malawi which, over a six-month period, provided mothers of young infants with

information on child nutrition without supplying any monetary or in-kind resources. A

simple model �rst investigates theoretically how nutrition and other household choices

including labor supply may change in response to the improved nutrition knowledge

observed in the intervention areas. The chapter then shows empirically that the inter-

vention improved child nutrition, household food consumption and consequently health.

It �nds evidence that labor supply increased, which might have contributed to partially

fund the increase in food consumption. Moreover, the chapter also pays careful atten-

tion to the important issue of inference in randomised experiments with few clusters,

14
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using two leading methods proposed for this case � wild cluster bootstrap-t and ran-

domisation inference � and evaluating their performance in the data.

The present thesis contributes to the literature on several fronts. First, chapter

2 provides a review of the fast-growing literature on methods for identifying social

e�ects using detailed networks data, drawing on literatures both within economics and

in other disciplines. Second, it provides a common framework for linear social e�ects,

which nests many commonly used empirical speci�cations. Finally, this is one of the

only reviews available that considers the issue of measurement error in the network in

a detailed and comprehensive manner.

The third chapter adds to our understanding of how risk sharing in extended family

networks varies with the number of connections at di�erent social distances. In particu-

lar, it documents that socially close and distant connections o�er varying opportunities

for risk sharing, and these opportunities for risk sharing are very important for the ef-

fective functioning of extended family based insurance. This novel �nding complements

the much more widely accepted �nding that spatially distant connections in agricultural

settings are less likely to experience the same shock and thereby be able to provide in-

surance (Rosenzweig & Stark 1989). Most previous work on informal insurance in social

networks doesn't consider this channel, (Bloch et al. 2008, Jackson et al. 2012, Ambrus

et al. 2014). This chapter �lls this gap. It also contributes to our understanding of how

social distance a�ects household outcomes in developing country contexts.

Chapter 4 contributes to the literature on risk sharing with coalitional deviations

Genicot & Ray (2003) by showing that the relationship between risk sharing and group

size is theoretically ambiguous. It is also one of the �rst papers to estimate this rela-

tionship empirically when allowing for imperfect enforcement and coalitional deviations,

using household micro-data rather than a laboratory experiment setting as in Chaudhuri

et al. (2010).

The �nal chapter is one of the �rst to consider the empirical consequences of imper-

fect knowledge of the child health production function on non-health choices, speci�cally

labour supply. Other studies had considered the e�ects of providing health informa-

tion on speci�c health related behaviours, or health outcomes; �nding mixed evidence

(Madajewicz et al. 2007, Kremer & Miguel 2007, Jalan & Somanathan 2008, Dupas

2011a). This study considers a more multifaceted intervention, as well as assessing ef-

fects on non-health choices. The chapter also contributes to the literature investigating

the causal e�ects of education on health by providing cleanly identi�ed evidence of the

importance of one of the key channels through which these e�ects are thought to oper-

ate - knowledge. Finally, in paying careful attention to the important issue of inference

in randomised experiments with few clusters, it provides a detailed evaluation of the
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performance of the leading inference methods in this case: the wild cluster bootstrap-t

and randomisation inference.

In what follows I start by reviewing the literature on methods to identify social

e�ects using networks data (chapter 2). Then I study how socially close and dis-

tant connections in�uence risk sharing in extended family networks (chapter 3) before

analysing the relationship between group size and risk sharing in a setting with im-

perfect enforcement and coalitional deviations (chapter 4). Thereafter, I analyse how

incorrect knowledge of the child health production function distorts health and non-

health choices (Chapter 5). The �nal chapter 6 provides some concluding remarks and

directions for future work.
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Chapter 2

Empirical Methods for Networks

Data: Social E�ects, Network

Formation and Measurement Error

2.1 Introduction

Whilst anonymous markets have long been central to economic analysis, the role of

networks as an alternative mode of interaction is increasingly being recognised. Net-

works might act as a substitute for markets, for example providing access to credit in

the absence of a formal �nancial sector, or as a complement, for example transmitting

information about the value of a product. Analysis that neglects the potential for such

social e�ects when they are present is likely to mismeasure any e�ects of interest.

In this paper we provide an overview of econometric methods for working with net-

work data � data on agents (`nodes') and the links between them � taking into account

the peculiarities of the dependence structures present in this context. We draw on both

the growing economic literature studying networks, and on research in other �elds, in-

cluding maths, computer science, and sociology. The discussion proceeds in three parts:

(i) estimating social e�ects given a (conditionally) exogenous observed network; (ii) es-

timating the underlying network formation process, given only a single cross-section of

data; and (iii) data issues, with a particular focus on accounting for measurement error,

since in a network-context this can have particularly serious consequences.

0This chapter is co-authored with Arun Advani. We are grateful to Imran Rasul for his support
and guidance. We also thank Richard Blundell, Andreas Dzemski, Toru Kitagawa, Aureo de Paula,
and Yves Zenou for their useful comments and suggestions. Financial support from the ESRC-NCRM
Node `Programme Evaluation for Policy Analysis', Grant reference RES-576-25-0042 is gratefully ac-
knowledged.
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The identi�cation and estimation of social e�ects � direct spillovers from the char-

acteristics or outcome of one agent to the outcome of others � are of central interest in

empirical research on networks in economics. Whilst researchers have tended to focus

on the e�ects from the average characteristics and outcomes of network `neighbours',

di�erent theoretical models will imply di�erent speci�cations for social e�ects. In Sec-

tion 2.3 we begin by setting out a common framework for social e�ects, which has as

a special case the common `linear-in-means' speci�cation, as well as a number of other

commonly used speci�cations. Since the general model is not identi�ed, we then go

through some important special cases, �rst outlining the theoretical model which gen-

erates the speci�cation, before discussing issues related to identi�cation of parameters.1

For most of our discussion we focus on identi�cation of the parameters using only obser-

vational data, since this is typically what researchers have available to them. We then

go on to consider the conditions under which experimental variation can help weaken

the assumptions needed to identify the parameters of interest.

The key challenge for credible estimation of social e�ects comes from the likely

endogeneity of the network. Thus far most of the empirical literature has simply noted

this issue without tackling it head on, but more recently researchers have tried to

tackle it directly. The main approach to doing this has been to search for instruments

which change the probability of a link existing without directly a�ecting the outcome.

Alternatively, where panel data are available, shocks to network structure � such as node

death � have been used to provide exogenous variation. These approaches naturally

have all the usual limitations: a convincing story must be provided to motivate the

exclusion restriction, and where there is heterogeneity they identify only a local e�ect.

Additionally, they rely on the underlying network formation model having a unique

equilibrium. Without uniqueness we do not have a complete model, as we have not

speci�ed how an equilibrium is chosen. Hence a particular realisation of the instrument

for some group of nodes is consistent with multiple resulting network structures, and a

standard IV approach cannot be used.

This provides one natural motivation for the study of network formation models:

being able to characterise and estimate a model of network formation would, in the

presence of exclusion restrictions (or functional form assumptions motivated by theory)

allow us to identify social e�ects using the predicted network. Formation models can

also be useful for tackling measurement error, by imputing unobserved links. Finally,

in some circumstances we might be interested in these models per se, for example to

1A di�erent presentation of some of the material in this part of Section 2.3 can be found in Topa &
Zenou (2015). Of the models we discuss, their focus is on two of the more common speci�cations used.
Topa & Zenou (2015) compare these models to each other, and also to neighbourhood e�ect models,
and discuss the relationship between neighbourhood and network models.
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understand how we can in�uence network structure and hence indirectly the distribution

of outcomes.

In Section 2.4 we consider a range of network formation models, drawing from

literatures outside economics as well as recent work by economists, and show how these

methods relate to each other. We �rst consider purely descriptive models that make

use of only data on the observed links, and can be used to make in-sample predictions

about unobserved links given the observed network structure. Next we turn to reduced

form economic models, which make use of node characteristics in predicting links, but

which do not allow for dependencies in linking decisions. Lastly we discuss the growing

body of work estimating games of strategic network formation, which allow for such

dependencies and so at least, in principle, can have multiple equilibria.2

The methods discussed until now have all assumed access to data on a population

of nodes and all the relevant interconnections between them. However, de�ning and

measuring the appropriate network is often not straightforward. In Section 2.5 we

begin by discussing issues in network de�nition and measurement. We then discuss

di�erent sampling approaches: these are important because networks are comprised

of interrelated nodes and links, meaning that a sampling strategy over one of these

objects will de�ne a non-random sampling process over the other. For example if we

sample edges randomly, and compute the mean number of neighbours for the nodes

to whom those edges belong, this estimated average will be higher than if the average

were computed across all nodes, since nodes with many edges are more likely to have

been included in the sample by construction. Next we discuss di�erent sources of

measurement error, and their implications for the estimation of network statistics and

regression parameters. We end with an explanation of the various methods available to

correct for these problems, and the conditions under which they can be applied.

Given the breadth of research in these areas alone, we naturally have to make

some restrictions to narrow the scope of what we cover. In the context of social e�ects

estimation, we omit entirely any discussion of peer e�ects where all that is known about

agents' links are the groups to which they belong. A recent survey by Blume et al.

(2010) more than amply covers this ground, and we direct the interested reader to their

work. We also restrict our focus to linear models, which are appropriate for continuous

outcomes but may be less suited to discrete choice settings such as those considered

by Brock & Durlauf (2001) and Brock & Durlauf (2007). Similarly in our discussion

of network formation, we do not consider in any detail the literature on the estimation

of games. Although strategic models of network formation can be considered in this

framework, the high dimension of these models typically makes it di�cult to employ

2Another review of the material on strategic network formation is provided by Graham (2015).
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the same methods as are used in the game context. For readers who wish to know more

about these methods, the survey paper by de Paula (2013) is a natural starting point.

Finally, for a survey of applied work on networks in developing countries, see the review

by Chuang & Schechter (2014).

We round o� the paper with some concluding remarks, drawing together the various

areas discussed, noting the limits of what we currently know about the econometrics of

networks, and considering the potential directions for future research. Appendix 2.7.1

then provides detailed de�nitions of the various network measures and topologies that

are mentioned in the text below.

2.2 Notation

Before we proceed, we �rst outline the notation we use throughout the paper. We

de�ne a network or graph g = (Ng, E g)
3 as a set of nodes, Ng, and edges or links, Eg.4

The nodes represent individual agents, and the edges represent the links between pairs

of nodes. In economic applications, nodes are usually individuals, households, �rms

or countries. Edges could be social ties such as friendship, kinship, or co-working, or

economic ties such as purchases, loans, or employment relationships. The number of

nodes present in g is Ng = |Ng|, and the number of edges is Eg = |Eg|. We de�ne

GN = {g : |Ng| = N} as the set of all possible networks on N nodes.

In the simplest case � the binary network � any (ordered) pair of nodes i, j ∈ Ng is

either linked, ij ∈ Eg, or not linked, ij /∈ Eg. If ij ∈ Eg then j is often described as being

a neighbour of i. We denote by neii,g = {j : ij ∈ Eg} the neighbourhood of node i, which

contains all nodes with whom i is linked. Nodes that are neighbours of neighbours will

often be referred to as `second degree neighbour'. Typically it is convenient to assume

that ii /∈ Eg ∀i ∈ Ng. Edges may be directed, so that a link from node i to node j

is not the same as a link from node j to node i; in this case the network is a directed

graph (or digraph). In Section 2.4 we will at times �nd it useful to explicitly enumerate

the edges; we denote by Λ this set of enumerated edges, with typical element l. Unlike

Eg, Λ is an ordered set, with order 12, 13, ...N(N − 1), so that we may use (l − 1) to

denote the element in the set one position before l.

A more general case than the binary graph is that of a weighted graph, in which

the edge set contains all possible combinations of nodes, other than to the node itself.

That is, Eg = {ij : ∀i, j ∈ Ng, i 6= j}. Moreover, edges have edge weights wei(i, j)

3In a slight abuse of notation, we will also use g to index individual networks when data from
multiple networks is available.

4In Appendix 4.8 we provide further useful de�nitions.
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which measure some metric of distance or link strength. Care is needed in interpreting

the value of weights, as these di�er by context. `Distance' weighted graphs, which

arise for example when weights represent transaction costs between two nodes, would

typically have weid(i, j) ∈ [0,∞), with weid(i, j) =∞ being equivalent to i and j being

unconnected in the binary graph case. Conversely, `strength' weighted graphs, where

weights capture for example the frequency of interaction between agents, typically have

weis(i, j) ∈ [0, w̄], with weis(i, j) = 0 being equivalent to i and j being unconnected in

the binary graph case and w̄ < ∞.5 Which de�nition is used depends on the context

and application, but similar methods can be used for analysis in either case.6

Network graphs, whether directed or not, can also be represented by an adjacency

matrix, Gg, with typical element Gij,g. This is an Ng × Ng matrix with the leading

diagonal normalised to 0. When the network is binary, Gij,g= 1 if ij ∈ Eg, and 0

otherwise, while for weighted graphs, Gij,g = wei(i, j). We will use the notation Gi,g

to denote the ith row of the adjacency matrix Gg, and G
′
i,g to denote its ith column.7

Many models de�ned for binary networks make use of the row-stochastic8 adjacency

matrix or in�uence matrix, G̃g. Elements of this matrix are generally de�ned as G̃ij,g =

Gij,g/
∑
j Gij,g if two agents are linked and 0 otherwise.

When we describe empirical methods for identifying and estimating social e�ects, we

will frequently work with data from a number of network graphs. Graphs for di�erent

networks will be indexed, in a slight abuse of notation, by g = 1, ...,M , where M is

the total number of networks in the data. Node-level variables will be indexed with

i = 1, ..., Ng, where Ng is the number of nodes in graph g. Node-level outcomes will be

denoted by yi,g, while exogenous covariates will be denoted by the 1 × K vector xi,g

and common network-level variables will be collected in the 1×Q vector, zg.

The node-level outcomes, covariates and network-level variables can be stacked for

each node in a network. In this case, we will denote the stacked Ng × 1 outcome vector

as yg and the Ng×K matrix stacking node-level vectors of covariates for graph g asXg.

Common network-level variables for graph g will be gathered in the matrix Zg = ιgzg

where ιg denotes an Ng × 1 vector of ones. The adjacency and in�uence matrices for

network g will be denoted by Gg and G̃g. At times we will also make use of the Ng×Ng

identity matrix, Ig, consisting of ones on the leading diagonal, and zeros elsewhere.

5In both of these examples, wei(i, j) = wei(j, i). More generally this need not be true. For example,
in some settings one might use `�ow weights' where weif (i, j) represents the net �ow of, say, resources
from i to j. Then by de�nition weif (i, j) = −weif (j, i), and the weighted adjacency matrix, de�ned
shortly, is skew-symmetric.

6With distance weighted graphs, one must be careful in dealing with edges where weid(i, j) = ∞.
A good approximation can usually be made by replacing in�nity with an arbitrarily high �nite value.

7G′i,g is the i
th row of G′g, which is the ith column of Gg.

8A row stochastic (also called `right stochastic' matrix) is one whose rows are normalised so they
each sum to one.
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Finally, we introduce notation for vectors and matrices stacking together the network-

level outcome vectors, covariate matrices and adjacency matrices for all networks in the

data. Y = (y
′
1, ...,y

′
M )
′
is an

∑M
g=1Ng × 1 vector that stacks together the outcome

vectors; G = diag{Gg}g=Mg=1 denotes the
∑M

g=1Ng ×
∑M

g=1Ng block-diagonal matrix

with network-level adjacency matrices along the leading diagonal and zeros o� the di-

agonal, and analogously G̃ = diag{G̃g}g=Mg=1 (with similar dimensions as G) for the

in�uence matrices; and X = (X
′
1, ...,X

′
M )
′
and Z = (Z

′
1, ...,Z

′
M )
′
are respectively,∑M

g=1Ng × K and
∑M

g=1Ng × Q matrices, that stack together the covariate matrices

across networks. Finally, we de�ne the vector ι as a
∑M

g=1Ng × 1 vector of ones and

the matrix L = diag{ιg}g=Mg=1 , as an
∑M

g=1Ng ×M matrix with each column being an

indicator for being in a particular network.

2.3 Social E�ects

Researchers are typically interested in understanding how the behaviour, choices and

outcomes of agents are in�uenced by the agents that they interact with, i.e. by their

neighbours. This section reviews methods that have been used to identify and estimate

these social e�ects.9 We consider a number of restrictions that would allow parameters

of interest to be recovered, and place them into a broader framework. We focus on

linear estimation models, which cover the bulk of methods used in practice.

We begin by providing a common organisational framework for the di�erent empir-

ical speci�cations that have been applied in the literature. Thereafter, we discuss in

turn a series of commonly used speci�cations, the underlying theoretical models that

generate them, and outline conditions for the causal identi�cation of parameters with

observational cross-sectional data. We then brie�y discuss how experimental and quasi-

experimental variation could be used to uncover social e�ects. Finally, we discuss some

methods that can be applied to overcome confounding due to endogenous formation of

edges, and discuss their limitations. A comprehensive overview of models of network

formation is provided in Section 2.4.

We will use a speci�c example throughout this section to better illustrate the restric-

tions imposed by each of the di�erent models and empirical speci�cations. Speci�cally,

we will consider how we can use these methods to answer the following question: How

is a teenager's schooling performance in�uenced by his friends? This is a widely stud-

ied question in the education and labour economics literatures, and is of great policy

9We leave aside the important issues of inference, in order to keep the scope of this survey manage-
able.
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interest.10

We take as given throughout this section that the researcher knows the network(s)

for which he is trying to estimate social e�ects and that he observes the entirety of this

network without error. In Section 2.5 we will discuss how these data might be collected,

and the consequences of having only a partial sample of the network and/or imperfectly

measured networks.

2.3.1 Organising Framework

Almost all (linear) economic models of social e�ects can be written as a special case of

the following equation (written in matrix terms using the notation speci�ed in Section

2.2):

Y = αι+wy(G, Y )β +Xγ +wx(G, X)δ + Zη +Lν + ε (2.1)

Y is a vector stacking individual outcomes of nodes across all networks.11 X is a

matrix of observable background characteristics that in�uence a node's own outcome

and potentially that of others in the network. G is a block-diagonal matrix with the

adjacency matrices of each network along its leading diagonal, and zeros on the o�-

diagonal. wy(G, Y ) and wx(G, X) are functions of the adjacency matrix, and the

outcome and observed characteristics respectively. These functions indicate how net-

work features, interacted with outcomes and exogenous characteristics of (possibly all)

nodes in the network, in�uence the outcome, Y . The block-diagonal nature of G means

that only the characteristics and outcomes of nodes in the same network are allowed

to in�uence a node's outcome. Z is a matrix of observed network-speci�c variables;

ν = {νg}g=Mg=1 is the associated vector of network-speci�c mean e�ects, unobserved by

the econometrician but known to agents; and ε is a vector stacking the (unobservable)

error terms for all nodes across all networks.

We make the following assumptions on the ε term:

E[εi,g|Xg,Zg,Gg] = 0 ∀ i ∈ g; g ∈ {1, ...,M} (2.2)

Cov[εi,gεk,h|Xg,Xh,Zg,Zh,Gg,Gh] = 0 ∀i ∈ g; k ∈ h; g, h ∈ {1, ...,M}; g 6= h (2.3)

10See Sacerdote (2011) for an overview of this literature.
11We allow Y to be univariate, so individuals have only a single outcome. A recent paper by Cohen-

Cole et al. (forthcoming) discusses how to relax this assumption, and provides some initial evidence
that restricting outcomes to only a single dimension might be important in empirical settings.
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Equation 2.2 says that the error term for individual nodes in a network is mean

independent of observed node-level characteristics of all network members, of network-

level characteristics and of the network structure, as embodied in the adjacency matrix

Gg. The network, is in this sense assumed to be exogenous, conditional on individual-

level observable characteristics and network-level observable characteristics. Later in

Subsection 2.3.7 below, we will review some approaches taken to relax this assumption.

In addition, Equation 2.3 implies that the error terms of all nodes, i and k in di�erent

networks, g and h, are uncorrelated conditional on observable characteristics of the

nodes, the observable characteristics of the networks, and the structure of the network.

Finally, note that no assumptions are imposed on the covariance of node-level error

terms within the same network.

In some cases, the following assumption is made on ν:

E[νg|Xg,Zg,Gg] = 0 ∀ g ∈ {1, ...,M} (2.4)

That is, the network-level unobservable is mean independent of observable node-

and network-level characteristics, and of the network. Many of the models that we

consider below relax this assumption and allow for correlation between ν and the other

right hand side variables in Equation 2.1.

The social e�ect parameter that is most often of interest to researchers is β - the

e�ect of a function of a node's neighbours' outcomes (e.g. an individual's friends'

schooling performance) and the network. This is also known as the endogenous e�ect,

to use the term coined by Manski (1993). This parameter is often of policy interest,

since in many linear models, the presence of endogenous e�ects implies the presence

of a social multiplier: the aggregate e�ects of changes in X, wx(G, X), and Z are

ampli�ed beyond their direct e�ects, captured by γ, δ, and η. The parameters δ and

η are known as the exogenous or contextual e�ect while ν captures a correlated e�ect.

This representation nests a range of models estimated in the economics literature:

1. Local average models: This model corresponds withwy(G, Y ) = G̃Y andwx(G, X) =

G̃X, which arises when node outcomes are in�uenced by the average behaviour

and characteristics of his direct neighbours. In our schooling example, this model

implies that an individual's schooling performance is a function of the average

schooling performance of his friends, his own characteristics, the average char-

acteristics of his friends and some background network characteristics. This can

apply, for example, when social e�ects operate through a desire for a node to

conform to the behaviour of its neighbours. The identi�ability of the parameters

β, γ, and δ from the data available to a researcher depends on the structure of
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the network and the level of detail available about the network:12

(a) With data containing information only on the broad peer group that a node

belongs to and where a node can belong to a single group only (e.g. a class-

room), it is common to assume that the node is directly linked with all other

nodes in the same group and that there are no links between nodes in dif-

ferent groups. In this case, the peer group corresponds to the network. All

elements of the in�uence matrix of a network g, G̃g, (including the diagonal)

are set to 1
Ng

where Ng is the number of agents within the network.13 This

generates the linear-in-means peer group model studied by Manski (1993)

among others. Manski (1993) shows that identi�cation of the parameter β is

hampered by a simultaneity problem that he labels the re�ection problem: it

is not possible to di�erentiate whether the choices of a node i in the network

in�uence the choices of node j, or vice versa. An alternative de�nition for

G̃ sets all diagonal terms of the network-level in�uence matrices, G̃g, to 0

and o�-diagonal terms to 1
Ng−1 , which implies using the leave-self-out mean

outcome as the regressor generating social e�ects. With this de�nition, iden-

ti�cation of the parameters β, γ, and δ is possible in some circumstances

as shown by Lee (2007).14 Identi�cation issues related to this model with

single peer groups have been surveyed in detail elsewhere, and thus will not

be considered here. The interested reader should consult the comprehensive

review by Blume et al. (2010).

(b) If instead detailed network data (i.e. information on nodes and the edges

between them) are available, or if nodes belong to multiple partially overlap-

ping peer groups, it may be possible to separately identify the parameters

β, γ, and δ from a single cross-section of data. In this case, elements of the

network-level in�uence matrices, G̃g are de�ned as G̃ij,g = 1
di,g

when a link

between i and j exists, where di,g is the total number of i's links (or degree);

and 0 otherwise. Identi�cation results for observational network data have

been obtained by Bramoullé et al. (2009). These are explored in more detail

in Subsection 2.3.2 below.

12The parameter η can also be identi�ed under the assumption that E[ν|X,Z,G] = 0.
13Note that in this case, since all nodes are linked to all others (including themselves), the total

number of i's edges (or degree), di,g =
∑
j Gij,g = Ng ∀ i ∈ g. Hence by de�nition, all elements of G̃g

are set to 1
Ng

.
14Other solutions to the re�ection problem have also been proposed, such as those by Glaeser et al.

(1996), Mo�tt (2001), and Graham (2008). Kwok (2013) provides a general study of the conditions
under which identi�cation of parameters can be achieved. He �nds that network diameter � the length
of the longest geodesic � is the key parameter in determining identi�cation.
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2. Local aggregate models: When there are strategic complementarities or substi-

tutabilities between a node's outcomes and the outcomes of its neighbours one

can obtain the local aggregate model. In our schooling example, it may be more

productive for an individual to put in more e�ort in studying if his friends also

put in more e�ort, consequently leading to better schooling outcomes. In this

case a node's outcome depends on the aggregate outcome of its neighbours. In

the context of Equation 2.1, this implies that wy(G, Y ) = GY and wx(G, X)

is typically de�ned to be G̃X, implying that the outcome of interest is in�uenced

by the average exogenous characteristics of a node's neighbours.15 Identi�cation

and estimation of this model in observational networks data has been studied by

Calvó-Armengol et al. (2009), Lee & Liu (2010) and Liu, Patacchini, Zenou & Lee

(2014). More details are provided in Subsection 2.3.3 below.

3. Hybrid local models: This class of models nests both the local average and local

aggregate models. This allows the social e�ect to operate through both a desire

for conformism and through strategic complementarities/substitutabilities. In the

schooling example, the model implies that individuals may want to `�t-in' and thus

put in similar amounts of e�ort in studying as their friends, but their studying

e�orts may also be more productive if their friends also put in e�ort. Both of

these channels then in�uence their schooling performance. In the notation of

Equation 2.1, it implies that wy(G,Y ) = GY +G̃Y . As in the local average and

aggregate models above, wx(G, X) is typically de�ned to be G̃X. Identi�cation

and estimation of this model with observational data is studied by Liu, Patacchini

& Zenou (2014). See Subsection 2.3.4 for more details.

4. Networks may in�uence node outcomes (and consequently aggregate network out-

comes) through more general features or functionals of the network. For instance,

the DeGroot (1974) model of social learning implies that an individual's eigen-

vector centrality, which measures a node's importance in the network by how

important its neighbours are, determines how in�uential it is in a�ecting the be-

haviour of other nodes.16 In the schooling context, if an individual's friends are

also friends of each other (a phenomenon captured by clustering), he may have

to spend less time maintaining these friendships due to scale economies, allowing

him more time for school work thereby leading to better schooling performance.

15This choice of de�nition for wx(G, X) is, to our understanding, not based on any explicit theoret-
ical justi�cation. It does, however, ease identi�cation as wx(.) and wy(.) are now di�erent functions
of G.

16Eigenvector centrality is a more general function of the network than those considered above, since
it relies on the whole structure of the network.
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Denoting a speci�c network statistic (such as eigenvector centrality in the so-

cial learning model above) by ωr, where r indexes the statistic, we can specialise

the term wy(G, Y )β in Equation 2.1 for node i in network g in a model with

node-level outcomes as:

•
R∑
r=1

ωri,gβr: R di�erent network statistics; or

•
R∑
r=1

∑
j 6=i

Gij,gyj,gω
r
j,gβr: the sum of neighbours' outcomes weighted by R dif-

ferent network statistics; or

•
R∑
r=1

∑
j 6=i

G̃ij,gyj,gω
r
j,gβr: the average of neighbours' outcomes weighted by R

di�erent network statistics.

Analogous de�nitions are used for wx(G, X)δ. Models of this type have been

estimated by Jackson et al. (2012) and Alatas et al. (2014).

When researchers are interested in aggregate network outcomes, rather than node

level outcomes, the following speci�cation is typically estimated:

ȳ = φ0 + w̄ȳ(G)φ1 + X̄φ2 + w̄X̄(G, X̄)φ3 + u (2.5)

where ȳ is an (M × 1) vector stacking the aggregate outcome of the M networks,

w̄ȳ(G) is a matrix of R̄ network statistics (e.g. average degree) that directly

in�uence the outcome, X̄ is an (M ×K) matrix of network-level characteristics

(which could include network-averages of node characteristics) and w̄X̄(G, X̄)

is a term interacting the network-level characteristics with the network statistics.

φ1 captures how the network-level aggregate outcome varies with speci�c network

features while φ2 and φ3 capture, respectively, the e�ects of the network-level

characteristics and these characteristics interacted with the network statistic on

the outcome. Models of this type have been estimated by among others, Banerjee

et al. (2013), and are discussed further in Subsection 2.3.5.

In Subsections 2.3.2 to 2.3.5 below, we review methods relating to identi�cation of the

parameters β, γ, δ, φ1 and φ2 and φ3 in these models,
17 under the assumption that the

network is exogenous conditional on observable individual and network-level variables.

For each case discussed, we start by outlining a theoretical model that generates under-

17η can also be identi�ed in some cases, particularly when the assumption E[ν| X,Z,G] = 0 is
imposed.
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lying the resulting empirical speci�cation, and outline identi�cation conditions using

observational data.

Thereafter, in Subsection 2.3.6, we outline how experimental and quasi-experimental

variation has been used to uncover social e�ects, and highlight some of the challenges

faced in using such variation to uncover parameters of the structural models outlined

in Subsections 2.3.2 to 2.3.4 below.

Subsection 2.3.7 outlines methods used by researchers to relax the assumption made

in equation 2.2: that the individual error term is mean independent of the network

and observed individual and network-level characteristics. Dealing with endogenous

formation of social links is quite challenging, and so most of the methods outlined

in this section fail to satisfactorily deal with the identi�cation challenges posed by

endogenous network formation. Moreover, none of these methods deal with the issue of

measurement error in the network. These issues are considered in Sections 2.4 and 2.5

respectively.

2.3.2 Local Average Models

In local average models, a node's outcome (or choice) is in�uenced by the average out-

come of its neighbours. Thus, an individual's schooling performance is in�uenced by

the average schooling performance of his friends. The outcome for node i in network

g, yi,g, is typically modelled as being in�uenced by its own observed characteristics,

xi,g, scalar unobserved heterogeneity εi,g, observed network characteristics zg, unob-

served network characteristic νg, and also the average outcomes and characteristics of

neighbours. Below, we consider identi�cation conditions when data are available from

multiple networks, though some results apply to data from a single network.18

Stacking together data from multiple networks yields the following empirical speci-

�cation, expressed in matrix terms:

Y = αι+βG̃Y +Xγ + G̃Xδ +Zη +Lν + ε (2.6)

where Y , ι, X, Z, L and ν are as de�ned previously; and G̃ is a block diagonal

matrix stacking network-level in�uence matrices along its leading diagonal, with all

o�-diagonal terms set to 0. The social e�ect, β, is a scalar in this model.

Given the simple empirical form of this model, it has been widely applied in the

economics literature. Examples include:

18When data on only a single network are available, the empirical speci�cation is as follows: yg =
a+ βG̃gyg +Xgγ+G̃gXgδ+εg, where a = αιg +Zgη + ιgνg in our earlier notation, capturing all of
the network-level characteristics.
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• Understanding how the average schooling performance of an individual's peers

in�uences the individual's own performance in a setting where students share a

number of di�erent classes (e.g. De Giorgi et al. 2010), or where students have

some (but not all) common friends (e.g. Bramoullé et al. 2009).

• Understanding how non-market links between �rms arising from company direc-

tors being members of multiple company boards in�uence �rm choices on invest-

ment and executive pay (e.g. Patnam 2013).

Although this speci�cation is widely used in the empirical literature, few studies consider

or acknowledge the form of its underlying economic model, even though parameter

estimates are subsequently used to evaluate alternative policies and to make policy

recommendations. Indeed, parameters are typically interpreted as in the econometric

model of Manski (1993), whose parameters do not map back to `deep' structural (i.e.

policy invariant) parameters without an economic model.

An economic model that leads to this speci�cation is one where nodes have a desire

to conform to the average behaviour and characteristics of their neighbours (Patacchini

& Zenou 2012). In our schooling example, conformism implies that individuals would

want to exert as much e�ort in their school work as their friends so as to `�t in'. Thus,

if one's friends may want to exert no e�ort in their school work, the individual would

also not want to exert any e�ort in his school work.

Below we show how this model leads to Equation 2.6. However, this is not the

only economic model that leads to an empirical speci�cation of this form: a similar

speci�cation arises from, for example, models of perfect risk sharing, where a well-

known result is that under homogeneous preferences, when risk is perfectly shared, the

consumption of risk-averse households will move with average household consumption

in the risk sharing group or network (Townsend 1994).

Conformism is commonly modelled by node payo�s that are decreasing in the dis-

tance between own outcome and network neighbours' average outcomes. Payo�s are

also allowed to vary with an individual heterogeneity parameter, πi,g, which captures

the individual's ability or productivity associated with the outcome:19

Ui(yi,g;y−i,g,Xg, G̃i,g) =

πi,g − 1

2

yi,g − 2β

Ng∑
j=1

G̃ij,gyj,g

 yi,g (2.7)

β in Equation 2.7 can be thought of as a taste for conformism. Although we write

this model as though nodes are perfectly able to observe each others' actions, this as-

19Notice that in Equation 2.7,
∑Ng

j=1 G̃ij,gyj,g is identical to the ith row of G̃gyg, which appears in
Equation 2.6.
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sumption can be relaxed. In particular, an econometric speci�cation similar to Equation

2.6 can be obtained from a static model with imperfect information (see Blume et al.

2013).

The best response function derived from the �rst order condition with respect to

yi,g is thus:

yi,g = πi,g + β

Ng∑
j=1

G̃ij,gyj,g (2.8)

Patacchini & Zenou (2012) derive the conditions under which a Nash equilibrium

exists, and characterise properties of this equilibrium.

The individual heterogeneity parameter, πi,g , can be decomposed into a linear

function of individual and network characteristics (both observed and unobserved):

πi,g = xi,gγ +

Ng∑
j=1

G̃ij,gxj,gδ + zgη + νg + εi,g (2.9)

Substituting for this in Equation 2.8, we obtain the following best response function for

individual outcomes:

yi,g = β

Ng∑
j=1

G̃ij,gyj,g + xi,gγ +

Ng∑
j=1

G̃ij,gxj,gδ + zgη + νg + εi,g (2.10)

Then, stacking observations for all nodes in multiple networks, we obtain Equation

2.6, which can be taken to the data.

Bramoullé et al. (2009) study the identi�cation and estimation of Equation 2.6 in

observational data with detailed network information or data from partially overlap-

ping peer groups.20 To proceed further, one needs to make some assumptions on the

relationship between the unobserved variables � ν and ε � and the other right hand

side variables in Equation 2.6.

One speci�c assumption is that E[ε|X,Z, G̃] = 0, i.e. the individual level error

term, ε, is assumed to be mean independent of the observed individual and network-

level characteristics and of the network. The network level unobservable is also initially

assumed to be mean independent of the right hand side variables, i.e. E[ν|X,Z, G̃] = 0;

though this assumption will be relaxed further on.

Under these assumptions, the parameters {α, β,γ, δ,η} are identi�ed if {I, G̃, G̃2}
are linearly independent. Identi�cation thus relies on the network structure. In partic-

20Similar identi�cation results have been independently described by De Giorgi et al. (2010), who
have data with overlapping peer groups of students who share a number of classes.
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ular, the condition would not hold in networks composed only of cliques � subnetworks

comprising of completely connected components � of the same size, and where the diag-

onal terms in the in�uence matrix, G̃ are not set to 0. In this case, G̃2 can be expressed

as a linear function of I and G̃. Moreover, the model is then similar to the single peer

group case of Manski (1993), and the methods outlined in Blume et al. (2010) apply.

In an undirected network (such as the in the left panel in Figure 2.1 below), this

identi�cation condition holds when there exists a triple of nodes (i, j, k) such that i

is connected to j but not k, and j is connected to k. The exogenous characteristics

of k, xk,g, directly a�ect j's outcome, but not (directly) that of i, hence forming valid

instruments for the outcome of i's neighbours (i.e. j's outcome) in the equation for

node i. Intuitively this method uses the characteristics of second-degree neighbours

who are not direct neighbours as instruments for outcomes of direct neighbours.

 
 

(a) Intransitive triad in undirected network (b) Intransitive triad in directed network 
 

Figure 2.1: Intransitive triad in a undirected network (left panel) and a directed network
(right panel)

It is thus immediately apparent why identi�cation fails in networks composed only

of cliques: in such networks, there is no triple of nodes (i, j, k) such that i is connected

to j, and j is connected to k, but i is not connected to k.

In the directed network case, the condition is somewhat weaker, requiring only the

presence of an intransitive triad: that is, a triple such that ij ∈ E , jk ∈ E and ik /∈ E

(as in the right panel of Figure 1 above).21 This is weaker than in undirected networks,

which would also require that ki /∈ E .

As an example, consider using this method to identify the in�uence of the average

schooling performance of an individual's friends on the individual, controlling for the

individual's age and gender, the average age and gender of his friends, and some observed

school characteristics (such as expenditure per pupil). Assume �rst that the underlying

friendship network in this school is undirected as in the left panel of Figure 2.1, so that

if i considers j to be his friend, j also considers i to be his friend. j also has a friend

k who is not friends with i. We could then use the age and gender of k as instruments

21Equivalently, a triple such ji ∈ E , kj ∈ E and ki /∈ E forms an intransitive triad.
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for the schooling performance of j in the equation for i. If instead, the network were

directed as in the right panel of Figure 2.1, where the arrows indicate who is a�ected

by whom (i.e. i is a�ected by j in the Figure, and so on), we can still use the age and

gender of k as instruments for the school performance of j in the equation for i even

though k is connected with i. This is possible since the direction of the relationship is

such that k's school performance is a�ected by i's performance, but the converse is not

true.

The identi�cation result above requires that the network-level unobservable term be

mean independent of the observed covariates, X and Z, and of the network, G̃. How-

ever, in many circumstances one might be concerned that unobservable characteristics

of the network might be correlated with X, so that E[ν|X,Z, G̃] 6= 0. For example,

in our schooling context, when we take the network of interest to be constrained to

be within the school, it is plausible that children with higher parental income will be

in schools with teachers who have better unobserved teaching abilities, since wealthier

parents may choose to live in areas with schools with good teachers. In this case, a

natural solution when data on more than one network is available, is to include network

�xed e�ects, Lν̃ in place of the network-level observables, Z, and the network-level

unobservable, Lν; where ν̃ is an M × 1 vector that captures the network �xed e�ects.

Since the �xed e�ects themselves are generally not of interest, to ease estimation they

are removed using a within transformation. This is done by pre-multiplying Equation 2.6

by Jglob, a block diagonal matrix that stacks the network-level transformation matrices

Jglobg = Ig − 1
Ng

(ιgι
′
g) along the leading diagonal, and o�-diagonal terms are set to

0.22 The resulting model, suppressing the superscript on Jglob for legibility, is of the

following form:

JY = βJG̃Y + JXγ + JG̃Xδ + Jε (2.11)

In this case, the identi�cation condition imposes a stronger requirement on network

structure. In particular, the matrices {I, G̃, G̃2, G̃3} should be linearly independent.

This requires that there exists a pair of agents (i, j) such that the shortest path between

them is of length 3, that is, i would need to go through at least two other nodes to

get to j (as in Figure 2.2 below). The presence of at least two intermediate agents

allows researchers to use the characteristics of third-degree neighbours (neighbours-of-

22This is a global within transformation, which subtracts the average across the entire network from
the individual's value. Alternatively, a local within transformation, J locg = Ig−G̃g, can be used, which
would subtract only the average of the individual's peers rather than the average for the whole network.
The latter transformation has slightly stricter identi�cation conditions than the former, since it does
not make use of the fact that the network �xed e�ect is common across all network members, and not
just among directly linked nodes.
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neighbours-of-neighbours who are not direct neighbours or neighbours-of-neighbours)

as an additional instrument to account for the network �xed e�ect.

Figure 2.2: Identi�cation with network �xed e�ects.

The picture on the left panel shows an undirected network with an agent l who is at least 3 steps away

from i, while the picture on the right panel shows the same for a directed network.

A concern that arises when applying this method is that of instrument strength.

Bramoullé et al. (2009) �nd that this varies with graph density, i.e., the proportion

of node pairs that are linked; and the level of clustering, i.e. the proportion of node

triples such that precisely two of the possible three edges are connected.23 Instrument

strength is declining in density, since the number of intransitive triads tends to zero.

The results for clustering are non-monotone, and depend on density.

The discussion thus far has assumed that the network through which the endogenous

social e�ect operates is the same as the network through which the contextual e�ect

operates. It is possible to allow for these two networks to be distinct. This could be

useful in a school setting, for instance, where contextual e�ects could be driven by the

average characteristics of all students in the school, while endogenous e�ects by the

outcomes of a subset of students who are friends. This might occur if the contextual

e�ect operates through the level of resources the school has, which depends on the

parental income of all students, whilst the peer learning might come only from friends.

Let GX,g and Gy,g denote the network-level adjacency matrices through which,

respectively, the contextual and endogenous e�ects operate. As before we de�ne the

block diagonal matrices GX = diag{GX,g}g=Mg=1 and Gy = diag{Gy,g}g=Mg=1 . Blume

et al. (2013) study identi�cation of this model assuming that the two networks are

(conditionally) exogenous and show that when the matrices Gy and GX are observed

by the econometrician, and at least one of δ and γ is non-zero, then the necessary and

su�cient conditions for the parameters of Equation 2.6 to be identi�ed are that the

matrices I, Gy, GX and GyGX are linearly independent.

Although all parameters of interest can be identi�ed by this method, the assumption

that the network structure is conditionally exogenous is highly problematic. Though

endogeneity caused by selection into a network can be overcome by allowing for group

�xed e�ects which can be di�erenced out, endogenous formation of links within the

network remains problematic and is substantially more di�cult to overcome. Formally,

23This de�nition is also referred to as the clustering coe�cient.
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the problem arises from the fact that agents' choices of with whom to link are corre-

lated with unobservable (at least to the researcher) characteristics of both agents, so

Pr(Gij,g = 1|εi,g) 6= Pr(Gij,g).

This means that the absence of a link between two nodes i and k may be correlated

with εi,g and εk,g, meaning that E[εi,g|Xg,Zg,Gg] 6= 0.24 Consequently the condition

in Equation 2.2 no longer holds. This is problematic for the method of Bramoullé et al.

(2009), where the absence of a link is used to identify the social e�ect, and this absence

could be for reasons related to the outcome of interest, thereby invalidating the exclu-

sion restriction. For instance, more motivated pupils in a school may choose to link

with other motivated pupils; or individuals may choose to become friends with other

individuals who share a common interest (such as an interest in reading, or mathemat-

ics) that is unobserved in the data available to the researcher. In such examples, the

absence of a link is due to the unobserved terms of the two agents being correlated in

a speci�c way rather than the absence of correlation between these terms. Solutions to

this problem are considered in Subsection 2.3.7.

2.3.3 Local Aggregate Model

The local aggregate class of models considers settings where agents' utilities are a func-

tion of the aggregate outcomes (or choices) of their neighbours. Such a model applies

to situations where there are strategic complementarities or strategic substitutabilities.

For example:

• An individual's costs of engaging in crime may be lower when his neighbours also

engage in crime (e.g. Bramoullé et al. 2014)25.

• An agent is more likely to learn about a new product and how it works if more of

his neighbours know about it and have used it.

The local aggregate model corresponds empirically to Equation 2.1 withwy(G, Y )=GY

and wx(G, X)=G̃X, and a scalar social e�ect parameter, β. This speci�cation can be

motivated by the best responses of a game in which nodes have linear-quadratic utility

and there are strategic complementarities or substitutabilities between the actions of a

node and those of its neighbours. A model of this type has studied by Ballester et al.

(2006).26 In particular, the utility function for node i in network g takes the following

24Similarly, E[εk,g|Gg] 6= 0.
25The games considered in both Bramoullé & Kranton (2007) and Bramoullé et al. (2014) are not

strictly linear models, since there are corner solutions at zero.
26Ballester et al. (2006) focus on the case where there are strategic complementarities. Bramoullé

et al. (2014) study the case where there are strategic substitutabilities and characterise all equilibria
of this game.
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form:

Ui(yi,g;y−i,g,Xg,Gg) =

πi,g − 1

2
yi,g + β

Ng∑
j=1

Gij,gyj,g

 yi,g (2.12)

where yi,g is i's action or choice, and πi,g is, as before, an individual heterogeneity

parameter.27 πi,g is parameterised as

πi,g = xi,gδ +
n∑
j=1

G̃ij,gxj,gγ + zgη + νg + εi,g

so that individual heterogeneity is a function of a node's own characteristics, the aver-

age characteristics of its neighbours, network-level observed characteristics, and some

unobserved network- and individual-level terms.

The quadratic cost of own actions means that in the absence of any network, there

would be a unique optimal amount of e�ort the node would exert. β > 0 implies

that neighbours' actions are complementary to a node's own actions, so that the node

increases his actions in response to those of his neighbours. If β < 0, then nodes' actions

are substitutes, and the reverse is true. Nodes choose yi,g so as to maximise their utility.

The best response function is:

y∗i,g(Gg) = β
n∑
j=1

Gij,gyj,g + xi,gδ +
n∑
j=1

G̃ij,gxj,gγ + zgη + νg + εi,g (2.13)

Ballester et al. (2006) solve for the Nash equilibrium of this game when β > 0 and

show that when |βωmax(Gg)| < 1, where ωmax(Gg) is the largest eigenvalue of the

matrix Gg, the equilibrium is unique and the equilibrium outcome relates to a node's

Katz-Bonacich centrality, which is de�ned as b(Gg, β) = (Ig − βGg)
−1(ιg).

28

Bramoullé et al. (2014) study the game with strategic substitutabilities between

the action of a node and those of its neighbours. They characterise the set of Nash

equilibria of the game and show that, in general, multiple equilibria will arise. A

unique equilibrium exists only when β|ωmin(Gg)| < 1, where ωmin(Gg) is the lowest

eigenvalue of the matrix Gg. When there are multiple equilibria possible, they must

be accounted for in any empirical analysis. Methods developed in the literature on the

econometrics of games may be applied here (Bisin et al. 2011). See de Paula (2013) for

27Notice that
∑Ng

j=1Gij,gyj,g = Gi,gyg.
28A more general de�nition for Katz-Bonacich centrality is b(Gg, β, a) = (Ig − βGg)

−1(aGgιg),
where a > 0 is a constant (Jackson 2008).
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an overview.

When a unique equilibrium exists, this theoretical set-up implies the following em-

pirical model (stacking data from multiple networks):

Y = αι+ βGY +Xγ + G̃Xδ +Zη +Lν + ε (2.14)

which corresponds to Equation 2.1 with wy(G, Y )=GY and wx(G, X)=G̃X, and

where all other variables and parameters are as de�ned above in Subsection 2.3.1.

Identi�cation of Equation 2.14 using observational data has been studied by Calvó-

Armengol et al. (2009), Lee & Liu (2010) and Liu, Patacchini, Zenou & Lee (2014). They

proceed under the assumption that E[ε|X,Z,G, G̃] = 0 and E[ν|X,Z,G, G̃] 6= 0.

That is, the node-varying error component is conditionally independent of node- and

network-level observables and of the network, while the network-level unobservable

could be correlated with node- and network-level characteristics and/or the network

itself.

These assumptions imply a two-stage network formation process. First agents select

into a network based on a set of observed individual- and network-level characteristics

and some common network-level unobservables. Then in a second stage they form links

with other nodes. There are no network-level unobservable factors that determine link

formation once the network has been selected by the node. Moreover, there are no

node-level unobservable factors that determine the choice of network or link formation

within the chosen network.

To proceed, we assume that data is available for multiple networks. Then, as in

Subsection 2.3.2, we replace the network-level observables, Z, and the network-level

unobservable, Lν in Equation 2.14 with network �xed e�ects, Lν̃, where ν̃ is a M × 1

vector that captures the network �xed e�ects.

To account for the �xed e�ect, a global within-transformation is applied, as in

Subsection 2.3.2. This transformation is represented by the block diagonal matrix Jglob

that stacks the following network-level transformation matrices � Jglobg = Ig− 1
Ng

(ιgι
′
g)

� along the leading diagonal, with o�-diagonal terms set to 0. Again we suppress the

superscript on Jglob in the rest of this subsection. The resulting model, analogous to

Equation 2.11, is:

JY = βJGY + JXγ + JG̃Xδ + Jε (2.15)

The model above su�ers from the re�ection problem, since Y appears on both
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sides of the equation. However, the parameters of Equation 2.15 can be identi�ed using

linear IV if the deterministic part of the right hand side, [E(JGY ),JX,JG̃X], has full

column rank. To see the conditions under which this is satis�ed, we examine the term

with the endogenous variable, E(JGY ). Under the assumption that |βωmax(Gg)| < 1,

we obtain the following from the reduced form equation of Equation 2.14:

E(JGY ) = J(GX + βG2X + ...)γ + J(GG̃X + βG2G̃X + ...)δ

+J(GL+ βG2L+ ...)ν̃ (2.16)

We can thus see that if there is variation in node degree within at least one net-

work g (which means that Gg and G̃g are linearly independent), and the matrices

{I,G, G̃,GG̃} are linearly independent with γ, δ, and ν̃ each having non-zero terms,

the parameters of Equation 2.14 are identi�ed.29 This is a special case of the Blume

et al. (2013) result discussed earlier. Node degree (GL), along with the total and av-

erage exogenous characteristics of the node's direct neighbours (i.e. GX and G̃X)

and sum of the average exogenous characteristics of its second-degree neighbours (i.e.

GG̃X) can be used as instruments for the total outcome of the node's neighbours (i.e.

GY ). The availability of node degree as an instrument can allow one to identify pa-

rameters without using the exogenous characteristics, X, of second- or higher-degree

network neighbours, which could be advantageous in some situations as we will see in

Section 2.5 below.

In terms of practical application, consider using this method to identify whether

there are complementarities between the schooling performance of an individual and

that of his friends, conditional on how own characteristics (age and gender), the com-

position of his friends (average age and gender), and some school characteristics. Then,

if there are individuals in the same network with di�erent numbers of friends, and the

matrices {I,G, G̃,GG̃} are linearly independent, the individual's degree, along with

the total and average characteristics of his friends (i.e. total and average age and gen-

der) and the sum of the average age and gender of the individual's friends of friends can

be used as instruments for the sum of the individual's friends' schooling performance.

Parameters can still be identi�ed if there no variation in node degree within a net-

work for all networks in the data, but there is variation in degree across networks. In

this case, Gg = d̄gG̃g and [E(JGY ),JX,JG̃X] has full column rank if the matri-

ces {I,G, G̃,GG̃, G̃2,GG̃2} are linearly independent and γ and δ each have non-zero

29See Liu, Patacchini, Zenou & Lee (2014) for a di�erent identi�cation condition that allows for some
linear dependence among these matrices under additional restrictions.
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terms.30 Finally, when there is no variation in node degree within and across all net-

works in the data, parameters can be identi�ed using a similar condition as encountered

in Subsection 2.3.3 above: the matrices {I, G̃, G̃2, G̃3} should be linearly independent.
It is possible to identify model parameters in the local aggregate model in networks

where the local average model parameters cannot be identi�ed. For example, in a

star network (see Figure 2.3) there is no pair of agents that has a geodesic distance

(i.e. shortest path) of 3 or more, so this fails the identi�cation condition for the local

average model (see Subsection 2.3.2 above). However, there is variation in node degree

within the network and the matrices Ig,Gg, G̃g,GgG̃g can be shown to be linearly

independent, thus satisfying the identi�cation conditions for the local aggregate model.

Figure 2.3: Star Network

2.3.4 Hybrid Local Models

The local average and local aggregate models embody distinct mechanisms through

which social e�ects arise. One may be interested in jointly testing these mechanisms,

and empirically identifying the most relevant one for a particular context. Liu, Patac-

chini & Zenou (2014) present a framework nesting both the local aggregate and local

average models, allowing for this.

The utility function for node i in network g that nests both the (linear) local aggre-

gate and local average models has the following form:

30See Liu, Patacchini, Zenou & Lee (2014) for a di�erent identi�cation condition that allows for some
linear dependence among these matrices under additional restrictions.
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Ui(yi,g;y−i,g,Xg, G̃i,g,Gi,g) =

πi,g + β1

Ng∑
j=1

Gij,gyj,g −
1

2

yi,g − 2β2

Ng∑
j=1

G̃ij,gyj,g

 yi,g

(2.17)

where πi,g is node-speci�c observed heterogeneity, which a�ects the node's marginal

return from the chosen outcome level yi,g. A node's utility is thus a�ected by the choices

of its neighbours through changing the marginal returns of its own choice (e.g. in a

schooling context, an individual's studying e�ort is more productive if his friends also

study), as in the local aggregate model, and by a cost of deviating from the average

choice of its neighbours (i.e. individuals face a utility cost if they study when their

friends don't study), as in the local average model.

The best reply function for a node i nests both the local average and local aggregate

terms. Liu, Patacchini & Zenou (2014) prove that under the condition that β1 ≥ 0,

β2 ≥ 0 and dmaxg β1 + β2 < 1, where dmaxg is the largest degree in network g, the

simultaneous move game has a unique interior Nash equilibrium in pure strategies.

The econometric model, assuming that the node-speci�c observed heterogeneity

parameter takes the form πi,g = xi,gγ+
∑Ng

j=1 G̃ij,gxj,gδ+zgηg + νg + εi,g, is as follows:

Y = αι+ β1GY + β2G̃Y +Xγ + G̃Xδ +Zη +Lν + ε (2.18)

using the same notation as before (see e.g. Subsection 2.3.1).

With data from only a single network it is not possible to separately identify β1 and

β2 and hence test between the local aggregate and local average models (or indeed

�nd that the truth is a hybrid of the two e�ects). Identi�cation of parameters is

considered when data from multiple networks are available under the assumption that

E[εi,g|Xg,Zg,Gg, G̃g] = 0 and E[νg|Xg,Zg,Gg, G̃g] 6= 0. Thus, as in Subsections 2.3.2

and 2.3.3 above, the individual error term, εi,g is assumed to be mean independent of

node- and network-level observable characteristics and the network. The network-level

unobservable, νg, by contrast is allowed to be correlated with node- and network-level

characteristics and/or the network.

To proceed, as in the local average and local aggregate model, Zη and Lν are

replaced by a network-level �xed e�ect, Lν̃, which is then removed using the global

within-transformation, Jglob. Again, we suppress the superscript on Jglob. The resulting

transformed network model is:

JY = β1JGY + β2JG̃Y + JXγ + JG̃Xδ + Jε (2.19)
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When there is variation in the degree within a network g, then the reduced form

equation of Equation 2.19 implies that JG(I − β1G − β2G̃)−1L can be used as an

instrument for the local aggregate term JGY and JG̃(I−β1G−β2G̃)−1L can be used

as an instrument for the local average term JG̃Y . The model parameters may thus

be identi�ed even if there are no node-level exogenous characteristics, X, in the model.

Caution must be taken though when the model contains no exogenous characteristics,

X, since, in this case, the model may be only tautologically identi�ed if β1 = 0 (Angrist

2013). The availability of such characteristics o�ers more possible IVs: in particular,

the total and average exogenous characteristics of direct and indirect neighbours can

be used as instruments. These are necessary for identi�cation when all nodes within

a network have the same degree, though average degree may vary across networks. In

this case, parameters can be identi�ed if the matrices {I,G, G̃,GG̃, G̃2,GG̃2, G̃3} are
linearly independent. If, however, all nodes in all networks have the same degree, it is

not possible to identify separately the parameters β1 and β2.

This speci�cation nests both the local average and local aggregate models, so a J-

test for non-nested regression models can be applied to uncover the relevance of each

mechanism. The intuition underlying the J-test is as follows: if a model is correctly

speci�ed (in terms of the set of regressors), then the �tted value of an alternative model

should have no additional explanatory power in the original model, i.e. its coe�cient

should not be signi�cantly di�erent from zero. Thus, to identify which of the local

average or local aggregate mechanisms is more relevant for a speci�c outcome, one could

�rst estimate one of the models (e.g. the local average model), and obtain the predicted

outcome value under this mechanism. In a second step, estimate the other model (in

our example, the local aggregate model), and include as a regressor the predicted value

from the other (i.e. local average) model. If the mechanism underlying the local average

model is also relevant for the outcome, the coe�cient on the predicted value will be

statistically di�erent from 0. The converse can also be done to test the relevance of

the second model (the local aggregate model in our case). See Liu, Patacchini & Zenou

(2014) for more details.

2.3.5 Models with Network Characteristics

The models considered thus far allow for a node's outcomes to be in�uenced only by

outcomes of its neighbours. However, the broader network structure may a�ect node-

and aggregate network- outcomes through more general functionals or features of the

network. Depending on the theoretical model used, there are di�erent predictions on

which network features relate to di�erent outcomes of interest. For example, the DeG-

root (1974) model of social learning implies that a node's eigenvector centrality, which
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measures its `importance' in the network by how important its neighbours are, deter-

mines how in�uential it is in a�ecting the beliefs of other nodes.

Empirical testing and veri�cation of the predictions of these theoretical models has

greatly lagged the theoretical literature due to a lack of datasets with both information

on network structure and socio-economic outcomes of interest. The recent availability

of detailed network data from many contexts has begun to relax this constraint.

The following types of speci�cation are typically estimated when assessing how

outcomes vary with network structure, for node-level outcomes:

Y = fy(wy(G, Y ),X,wx(G, X),Z) + ε (2.20)

and network-level outcomes:

ȳ = fȳ(w̄ȳ(G), X̄, w̄x̄(G, X̄)) + u (2.21)

fy(.) and fȳ(.) are functions that specify the shape of the relationship between the

network statistics and the node- and network-level outcomes. When fy(.) is simply a

linear index in its argument, Equation 2.22 remains nested in Equation 2.1. Though, in

principle, the shape of fy(.) should be guided by theory (where possible), through the

rest of this Subsection, we take fy(.) to be a linear index in its argument. wy(G, Y )

includes R network statistics that vary at the node- or network-level and that may be

interacted with Y 31 while w̄ȳ(G) contains the R̄ network statistics in the network-level

regression. X is a matrix of observable characteristics of nodes, wx(G, X) interacts

network statistics with exogenous characteristics of nodes, and Z and X̄ are network-

level observable characteristics. w̄X̄(G, X̄) interacts network statistics with network-

level observable characteristics.

The complexity of networks poses an important challenge in understanding how

outcomes vary with network structure. In particular, there are no su�cient statistics

that fully describe the structure of a network. For example, networks with the same

average degree may vary greatly on dimensions such as density, clustering and average

path length among others. Moreover, the adjacency matrix, G, which describes fully

the structure of a network, is too high-dimensional an object to include directly in tests

of the in�uence of broader features of network structure. Theory can provide guidance

on which statistics are likely to be relevant, and also on the shape of the relationship

between the network statistic and the outcome of interest. A limitation though is that

31The term wy(G, Y ) will be endogenous when network statistics are interacted with Y .
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theoretical results may not be available (given currently known techniques) for outcomes

one is interested in studying. This is a challenge faced by, for instance Alatas et al.

(2014) who study how network structure a�ects information aggregation.

Below we outline methods that have been applied to analyse the e�ects of features

of network structure on socio-economic outcomes. We do so separately for node-level

speci�cations and network-level speci�cations. This literature is very much in its infancy

and few methods have been developed to allow for identi�cation of causal parameters.

Node-Level Speci�cations

Many theoretical models predict how node-level outcomes vary with the `position' of

a node in the network, captured by node varying network statistics such as centrality;

or with features of the node's local neighbourhood such as node clustering; or with the

`connectivity' of the network, represented by statistics that vary at the network-level

such as network density.

A common type of empirical speci�cation used in the literature correlates network

statistics with some relevant socio-economic outcome of interest. This approach is taken

by, for example, Jackson et al. (2012) who test whether informal favours take place

across edges that are supported (i.e. that nodes exchanging a favour have a common

neighbour), which is the prediction of their theoretical model.

This corresponds withwy(G,Y ) in Equation 2.20 above being de�ned aswy(G,Y ) =

ω, where ω is an (
∑M

g=1Ng ×R) matrix stacking ωi,g, the (1×R) node-level vector of

network statistics of interest for all nodes in all networks, and wx(.) being de�ned as

ι. Here, wy(G,Y ) is de�ned to be a function of the network only.

When fy(.) is linear, the speci�cation is as follows:

Y = αι+ωβ +Xγ + Zη + ε (2.22)

where the variables and parameters are as de�ned above and the parameter of inter-

est is β. De�ningW = (ω,X,Z), the key identi�cation assumption is that E[ε′W ] = 0,

that is that the right hand side terms are uncorrelated with the error term. This may

not be satis�ed if there are unobserved factors that a�ect both the network statistic

(through a�ecting network formation decisions) and the outcome, Y or if the network

statistic is mismeasured. Both of these are important concerns that we cover in detail

in Sections 2.4 and 2.5 below.

In some cases, one may also be interested in estimating a model where an agent's

outcome is a�ected by the outcomes of his neighbours, weighted by a measure of their

network position. For example, in the context of learning about a new product or
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technology, the DeGroot (1974) model of social learning implies that nodes' eigenvector

centrality determines how in�uential they are in in�uencing others' behaviour. Thus,

conditional on the node's eigenvector centrality, its choices may be in�uenced more by

the choices of his neighbours with high eigenvector centrality. Thus, one may want to

weight the in�uence of neighbours' outcomes on own outcomes by their eigenvector cen-

trality, conditional on own eigenvector centrality. This implies a model of the following

form:

Y = αι+wy(G, Y )β + X̃γ̃ +wx(G, X̃)δ̃

+Zη +Lν + ε (2.23)

wy(G, Y ) is an
∑

gNg×R matrix, with the (i, r)th element being the weighted sum

of i's neighbours' outcomes,
∑
j 6=i

Gij,gyj,gω
r
j,g or

∑
j 6=i

G̃ij,gyj,gω
r
j,g, with weights ωrj,g being

the neighbour's rth network statistic. X̃ = (X̃ ′1, X̃
′
2, ..., X̃

′
M )′, where X̃g = (Xg,ωg)

is a matrix stacking together the network-level matrices of exogenous explanatory vari-

ables and network statistics of interest. wx(G, X̃) could be de�ned as GX̃ or G̃X̃.

Identi�cation of parameters in this case is complicated by the fact that wy(G, Y ) is a

(possibly non-linear) function of Y , and thus endogenous. It may be possible to achieve

identi�cation using network-based instrumental variables, as done in Subsections 2.3.2,

2.3.3 and 2.3.4 above, though it is not immediately obvious how such an IV could be

constructed. Future research is needed to shed light on these issues.

Network-level Speci�cations

Aggregate network-level outcomes, such as the degree of risk sharing or the aggregate

penetration of a new product, may also be a�ected by how `connected' the network is,

or the `position' of nodes that experience a shock or who �rst hear about a new product.

Empirical tests of the relationship between aggregate network-level outcomes and

network statistics involves estimating speci�cations such as Equation 2.21, where the

shape of the function fȳ(.) and the choice of statistics in w̄ȳ(G) = ω̄, where ω̄ is an

(M × R̄) matrix of network statistics, are, ideally, motivated by theory. With linear

fȳ(.), this implies the following equation:

ȳ = φ0 + ω̄φ1 + X̄φ2 + w̄X̄(G, X̄)φ3 + u (2.24)

where the variables are as de�ned after Equation 2.21. The parameter of interest is

typically φ1. De�ning W̄ = (ω, X̄, w̄X̄(G, X̄)), the key identi�cation assumption is
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that E[uW̄ ] = 0, which will not hold if there are unobserved variables in u that a�ect

both the formation of the network and the outcome ȳ; or if the network statistics are

mismeasured. Recent empirical work, such as that by Banerjee et al. (2013), has used

quasi-experimental variation to try and alleviate some of the challenges posed by the

former issue in identifying the parameter φ1.

Since this speci�cation uses data at the network-level, estimation will require a large

sample of networks in order to recover precise estimates of the parameters, even in the

absence of endogeneity from network formation and mismeasurement of the network.

This is a problem in practice, since as we will see below in Section 2.5.3, the di�culties

and costs involved in collecting network data often mean that in practice researchers

have data for a small number of networks only.

2.3.6 Experimental Variation

Subsections 2.3.2 to 2.3.5 above considered the identi�cation of the social e�ect pa-

rameters using observational data. In this section, we consider identi�cation of these

parameters using experimental data. We focus on the case where a policy is assigned

randomly to a sub-set of nodes in a network. Throughout we assume that the network

is pre-determined and unchanged by the exogenously assigned policy.32

We focus the discussion on identifying parameters of the local average model spec-

i�ed in Subsection 2.3.2 above. The issues related to using experimental variation to

uncover the parameters of the local aggregate model are similar. As outlined above,

this model implies that a node's outcome is a�ected by the average outcome of its

network neighbours, its own and network-level exogenous characteristics (which may

be subsumed into a network �xed e�ect), and the average characteristics of its net-

work neighbours. We are typically interested in parameters β, γ and δ in the following

equation:

Y = αι+βG̃Y +Xγ + G̃Xδ +Lν̃ + ε (2.25)

where the variables are as de�ned above.

Throughout this section, we assume that the policy shifts outcomes for the nodes

that directly receive the policy.33 To proceed further, we �rst assume that a node that

does not receive the policy (i.e. is untreated, to use the terminology from the policy

32This assumption is not innocuous. Comola & Prina (2014) provide an example where the policy
intervention does change the network.

33Below, we will consider identi�cation conditions in the case where a node may be a�ected by
the treatment status of his network neighbours even if their outcomes do not shift in response to the
treatment.
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evaluation literature), is only a�ected by the policy through its e�ects on the outcomes

of the node's network neighbours. This implies the following model for the outcome Y :

Y = αι+βG̃Y +Xγ + G̃Xδ + ρt+Lν̃ + ε (2.26)

where t is the treatment vector, and ρ is the direct e�ect of treatment. We assume

that E[ε|X,Z, G̃, t] = 0. Moreover, random allocation of the treatment implies that

t ⊥⊥X,Z, G̃, ε.

Applying the same within-transformation as in Subsection 2.3.2 above to account

for the network-level �xed e�ect leads to the following speci�cation:

JY = αJι+βJG̃Y + JXγ + JG̃Xδ + ρJt+ Jε (2.27)

We can use instrumental variables to identify β as long as the deterministic part of

the right hand side of Equation 2.27, [E(JG̃Y ),JX,JG̃X] has full column rank. JX

and JG̃X can be used as instruments for themselves. We thus need an instrument for

E[JG̃Y ]. We use the following expression for JG̃Y , derived from the reduced form of

Equation 2.26 under the assumption that |β| < 1, to construct instruments:

E[JG̃Y ] = JG̃

∞∑
s=0

βsG̃sαι+ J(G̃Xγ + βG̃2Xγ + ...) + J(G̃2Xδ + βG̃3Xδ + ...)

+J(ρG̃t+ βρG̃2t+ ...) (2.28)

From this equation, we can see that G̃t, the average treatment status of a node's

network neighbours, does not appear in Equation 2.26. It can thus be used as an

instrument for G̃Y , either in addition to, or as an alternative to G̃2X and G̃3X, the

average characteristics of the node's second- and third-degree neighbours. Thus, the

policy could be used to identify the model parameters, albeit under a strong assumption

on who it a�ects.34

In many cases, however, the assumption that the policy a�ects a node's outcome

only if it is directly treated may be too strong. The treatment status of a node's

neighbours could a�ect its outcome even when the neighbours' outcomes do not shift in

response to receiving the policy. An example of such a case, studied by Banerjee et al.

(2013), is when the treatment involves providing individuals with information on a new

product, and the outcome of interest is the take-up of the product. Then neighbours'

treatment status could a�ect the individual's own adoption decision by (1) shifting his

34Similar results can be shown for the local aggregate model when |βωmax(G)| < 1. However, as
shown above, node degree can also be used as an additional instrument in this model.
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neighbours' decision (endorsement e�ects), and also (2) through neighbours passing on

information about the product and letting the individual know of its existence (di�usion

e�ect).35 In this case, a more appropriate model would be as follows:

Y = αι+ βG̃Y +Xγ + G̃Xδ + ρt+ G̃tµ+ ε (2.29)

where ρ captures the direct treatment e�ect, i.e. the e�ect of a node itself being

treated, and µ is the direct e�ect of the average treatment status of social contacts.

This highlights the limits to using exogenous variation from randomised experiments

to identify social e�ect parameters. We might want to use the exogenous variation

in the average treatment allocation of a node's neighbours, G̃t, as an instrument for

neighbours' outcomes, G̃Y . However, this will identify β only under the assumption

that µ = 0, i.e. there is no direct e�ect of neighbours' treatment status. This rules out

economic e�ects such as the di�usion e�ect.

We can still make use of the treatment e�ect for identi�cation, by using the aver-

age treatment status of a node's second-degree (and higher-degree) neighbours, G̃2t, as

instruments for the average outcome of his neighbours (G̃Y ). This is the same iden-

ti�cation result as discussed earlier, from Bramoullé et al. (2009), and simply treats

G̃2t in the same way the other covariates of second-degree neighbours, G̃2X. Such

instruments rely not only on variation in treatment status, but also on the network

structure, with identi�cation not possible for certain network structures as we saw in

Subsection 2.3.2.36

Thus far, we have discussed how exogenous variation arising from the random as-

signment of a policy can be used to identify the social e�ect associated with a speci�c

model � the local average model � which, as we saw, arises from an economic model

where agents conform to their peers. In empirical work, though, it is common for re-

searchers to directly include the average treatment status of network neighbours, rather

than their average outcome, as a regressor in the model. In other words, the following

type of speci�cation is usually estimated:

Y = b1ι+ b2G̃t+Xb3 + G̃Xb4 + b5t+ u (2.30)

A non-zero value for b2 is taken to indicate the presence of some social e�ect. How-

ever, without further modelling, it is not possible to shed light on the exact mechanism

35The study of how to use these e�ects to maximise the number of people who adopt relates closely
to study of the `key player' in work by Ballester et al. (2006) and Liu, Patacchini, Zenou & Lee (2014).

36Note that instruments based on random treatment allocation and network structure (e.g. G̃t and
G̃2t) may be more plausible than those based on the exogenous characteristics, X, and the network
structure (e.g. G̃2X), since t has been randomly allocated, whereas X need not be.
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underlying this social e�ect, or the value of some `deep' structural parameter.

2.3.7 Identi�cation of Social E�ects with Endogenous Links

In the previous subsections we focused on the identi�cation of social e�ects under the

assumption that the edges along which the e�ects are transmitted are exogenous. By

exogenous we mean that the probability that agent i forms an edge with agent j is mean

independent of any unobservables that might in�uence the outcome of interest for any

individual in our social e�ects model. Formally, we assumed E[ε|X,Z, G̃] = 0.37

However, in many contexts this may not be hold. Suppose we have observational

data on farming practices amongst farmers in a village, and want to understand what

features in�uence take-up of a new practice. We might see that more connected farmers

are more likely to take up the practice. However, without further analysis we cannot

necessarily interpret this as being caused by the network.

One possibility is that there is some underlying correlation in the unobservables of

the outcome and connection equations. More risk-loving people, who might be more

likely to take up new farming practices, may also be more sociable, and thus have more

connections. The endogeneity problem here comes from not being able to hold constant

risk-preferences. Hence the coe�cient on the network measures is not independent of

this unobserved variable. This problem could be solved if we could �nd an instrument:

something correlated with network connections that is unrelated to risk-preferences.

Another possibility is that connections were formed explicitly because of their rela-

tionship with the outcome. If agents care about their outcome yi,g, and if the network

has some impact on yi,g, then they have incentives to be strategic in choosing the links

in which they are involved. Suppose agents' utility (or pro�t) varies with yi,g, but that

some agents have a higher marginal utility from increases in yi,g. Agents have incentives

to manipulate the parts of the network they are involved in i.e. the elements of the ith

row and ith columns of Gg � {Gi,g,G
′
i,g} � to try to maximise yi,g. Moreover, if links

are costly, but there is heterogeneity in the agents' valuations of yi,g, then agents who

value yi,g most should form more costly links, and have higher yi,g, but the network is

a consequence and not a cause of the individual value for yi,g.

Returning to the farming example, some agents may have a greater preference for

taking up new technologies. If talking to others is costly, but can help in understanding

the new techniques, these farmers will form more connections. Now the unobservable

factors which in�uence the outcome � preference for take up � will be be correlated

with the number of connections. Unlike the previous case, this time we cannot �nd an

`instrumental' solution: it is the same unobservable driving both yi and Gi.

37Goldsmith-Pinkham & Imbens (2013) suggest a test for endogeneity.

47



2.3. Social E�ects

2. Empirical Methods for Networks Data: Social E�ects, Network Formation and

Measurement Error

To overcome this issue experimentally one would need to be able to assign links in

the network. However, with the exception of rare examples (including one below), this

is di�cult to achieve in practice. Additionally there can be external validity issues, as

knowing the e�ect that randomly assigned networks have may not be informative about

what e�ect non-randomly assigned networks have. Alternatively, one can randomly

assign treatment status, as discussed in Section 2.3.6. 38

Carrell et al. (2013) provide a cautionary example of the importance of consid-

ering network formation when using estimated social e�ects to inform policy reform.

Carrell et al. (2009) use data from the US Air Force Academy, where students are

randomly assigned to classrooms. They estimate a non-linear model of peer e�ects,

implicitly assuming that conditional on classroom assignment friendship formation is

exogenous. They �nd large and signi�cant peer e�ects in maths and English test scores,

and some non-linearity in these e�ects. Carrell et al. (2013) use these estimated e�ects

to `optimally assign' a random sample of students to classrooms, with the intention of

maximising the achievement of lower ability students. However, test performance in

the `optimally assigned' classrooms is worse than in the randomly assigned classrooms.

They suggest that this �nding comes from not taking into account the structure of the

linkages between individuals within classrooms.39

Instrumental Variables

In the �rst example above, the outcome y was determined by an equation of the form

of Equation 2.1, where the network G was determined potentially by some of the ob-

servables already in Equation 2.1 and also the unobservables u, and E[ε|X,Z, G̃] 6= 0.

The failure of the mean independence assumption prevents us from identifying the pa-

rameters of Equation 2.1 in the ways suggested previously.

If our interest is in identifying only those parameters, one (potential) solution to

the problem is to randomly assign the network structure. However, this is typically

prohibitively di�cult to enforce in real world settings. It is also unlikely to be repre-

38However, when the network is allowed to be endogenous, one needs to make (implicit) assumptions
on the network formation process in order to obtain causal estimates. For example, if we assume that
the network formation process is such that nodes with similar observed and unobserved characteristics
hold similar positions in the resulting network, we can obtain causal estimates if we compare outcomes
of nodes with similar network characteristics and di�erent levels of indirect treatment exposure � i.e.
exposure to the treatment through their neighbours. See Manski (2013) for more discussion on these
issues.

39Booij et al. (2015) have a di�erent interpretation of this result. They suggest that the problem
with the assignment based on the results of Carrell et al. (2009) is that the peer groups constructed
fall far outside the support of the data used. Hence predictions about student performance come from
extrapolation based on the functional form assumptions used, which should have been viewed with
caution.
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sentative of the edges people actually choose (see for example Carrell et al. 2013).40

Alternatively we can attempt to overcome the endogeneity of the network by taking

an instrumental variables (IV) approach and �nding an exclusion restriction. Here one

needs to have a covariate that a�ects the structure of the network in a way relevant to

the outcome equation � something which changes wy(G, Y ) � but is excluded from the

outcome equation itself. For example, if the outcome equation has only in-degree as a

network covariate, then one needs to �nd a covariate that is correlated with in-degree

but not the outcome. If instead the outcome equation included some other network

covariate, for example Bonacich centrality, a di�erent variable might be appropriate as

an instrument.

Mihaly (2009) takes this approach. In trying to uncover the e�ect of popularity �

measured in various ways41 � on the educational outcomes of adolescents in the US,

she uses an interaction between individual and school characteristics as an instrument

for popularity. This is a valid instrument if the composition of the school has no direct

e�ect on educational attainment (something which the education literature suggests is

unlikely), but does a�ect all of the measures of popularity.

As ever with instrumental variables, the e�ectiveness of this approach relies on hav-

ing a good instrument: something which has strong predictive power for the network

covariate but does not enter the outcome equation directly. As noted earlier, if indi-

viduals care about the outcome of interest, they will have incentives to manipulate the

network covariate. Hence such a variable will generally be easiest to �nd when there are

some exogenous constraints that make particular edges much less likely to form than

others, despite their strong potential bene�ts. For example Munshi & Myaux (2006)

consider the role of strong social norms that prevent the formation of cross-religion edges

even where these might otherwise be very pro�table, when studying fertility in rural

Bangladesh. The restrictions on cross-religion connections means that having di�erent

religions is a strong predictor that two women are not linked. Alternatively, secondary

motivations for forming edges that are unrelated to the primary outcome could be used

to provide an independent source of variation in edge formation probabilities.42

It is important to note that this type of solution can only be employed when the

underlying network formation model has a unique equilibrium. Uniqueness requires

40In the models discussed this means we might observe outcomes that wouldn't be seen without
manipulation, because we have changed the support of G. In interpreting these results in the context
of unmanipulated data we need to be cautious, since we are relying heavily on the functional form
assumptions as extrapolate outside the support of what we observe.

41She uses four de�nitions of popularity: in-degree, network density (which only varies between
networks), eigenvector centrality, and Bonacich centrality.

42An application of this idea is provided by Cohen-Cole et al. (forthcoming), who consider multiple
outcomes of interest, but where agents can form only a single network which in�uences all of these.
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that there is only one network structure consistent with the (observed and unobserved)

characteristics of the agents and environment. However, when multiple equilibria are

possible, which will generally be the case if the incentives for a pair of agents to link

depend on the state of the other potential links, IV solutions cannot be used. We discuss

further in Section 2.4 issues of uniqueness in network formation models, and how one

might estimate the formation equation in these circumstances.

One should also be aware, when interpreting the results, that if there is heterogeneity

in β then this approach delivers a local average treatment e�ect (LATE). This is a

particular weighted average of the individual-speci�c β's, putting more weight on those

for whom the instrument (in our example, school composition) creates most variation

in the network characteristic. Hence if the people whose friendship decisions are most

a�ected by school characteristics are also those who, perhaps, are most a�ected by their

friends' outcomes, then the estimated social e�ect will be higher than the average social

e�ect across all individuals.

Jointly model formation and social e�ects

In our second example at the beginning of Subsection 2.3.7 we considered the case

where the outcome y was determined by an equation of the form of Equation 2.1, and

the network G was strategically chosen to maximise the (unobserved) individual return

from this outcome, subject to unobserved costs of forming links. Here the endogeneity

comes from G being a function of u. If there is heterogeneity in the costs of forming

links, these costs might be useful as instruments, if observed.43 Without this we must

take an alternative approach.

Rather than treating the endogeneity of the network as a problem, jointly modelling

G and y uses the observed choices over links to provide additional information about

the unobservables which enter the outcome equation. Rather than looking for a variable

that can help explain the endogenous covariate but is excluded from the outcome, we

now model an explicit economic relationship, and rely on the imposed model to provide

identi�cation. Such an approach is taken, for example, by Badev (2013), Blume et al.

(2013), Hsieh & Lee (2014), and Goldsmith-Pinkham & Imbens (2013).

Typically the process is modelled as a two-stage game,44 where agents �rst form a

network and then make outcome decisions. Agents are foresighted enough to see the

e�ect of their network decisions on their later outcome decisions. Consequently they

solve the decision process by backward induction, �rst determining actions for each

43However, even this will depend on the timing of decisions. See Blume et al. (2013) for details on
when such an argument might not hold.

44Of the papers mentioned above, Badev (2013) models the choice of friendships and actions simul-
taneously, whilst the others assume a two-stage process.
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possible network, and then choosing network links with knowledge of what this implies

for outcomes. For this approach to work one needs to be able to characterise the payo�

of each possible network, so as to account for agents' network formation incentives in a

tractable way.

There are two main limitations for this approach. First, by avoiding the use of ex-

clusion restrictions, the role of functional form assumptions in providing identi�cation

becomes critical. Since theory rarely speci�es precise functional forms, it is not unrea-

sonable to worry about the robustness of results based on assumptions that are often

due more to convenience than conviction.

Second, we typically need to impose limits on the form of the network formation

model that mean the model is unable to generate many of the features of observed

networks, such as the relatively high degree of clustering and low diameter. Particularly

restrictive, and discussed further in Section 2.4, is the restriction that links are formed

conditionally independently.

Changes in network structure

An alternative approach to those suggested above relies on changes in network structure

to provide exogenous variation. In some circumstances one might believe that particular

nodes or edges are removed from the network for exogenous reasons (this is sometimes

described as `node/edge failure'). For example, Patnam (2013) considers a network

of interlocking company board memberships in India. A pair of �rms is considered

to be linked if the �rms have a common board member. Occasionally edges between

companies are severed due to the death of a board member, and to the extent that this

is unpredictable, it provides plausibly exogenous variation in the network structure.

One can then see how outcomes change as the network changes, and this gives a local

estimate of the e�ect of the network on the outcome of interest. A similar idea is

used by Waldinger (2010, 2012) using the Nazi expulsion of Jewish scientists to provide

exogenous changes in academic department membership.

The di�culty with this approach in general is �nding something that exogenously

changes the network, but to which agents do not choose to respond.45 Non-response

includes both not adjusting edges in response to the changes that occur, and not ex

ante choosing edges strategically to insure against the probabilistic exogenous edge

destruction process. In the examples above these relate to not taking into account

a board member's probability of death when hiring (e.g. not considering age when

recruiting), and not hiring new scientists to replace the expelled ones.

45It is important to note that one also needs access to a panel of data for the network, which is not
often available.
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2.4 Network Formation

Network formation is commonly de�ned as the process of edge formation between a

�xed set of nodes. Although, in principle, one could also consider varying the nodes, in

most applications the set of nodes will be well-de�ned and �xed. The empirical study

and analysis of this process is important for three reasons.

First, the analysis in most of the previous section described how one might esti-

mate social e�ects under the critical assumption that the networks of connections were

themselves exogenous, or exogenous conditional on observed variables. In many cir-

cumstances, such as those described in Subsection 2.3.7, one might think that economic

agents are able to make some choice over the connections they form, and that if their

connections in�uence their outcomes they might be somewhat strategic in which edges

they choose to form. In this case the social e�ects estimated earlier will be contaminated

by correlations between an individual's observed covariates and the unobserved covari-

ates of his friends. This is in addition to the problems of correlations in group-level

unobservables that is well-known in the peer e�ects literature. For example, someone

with a pre-disposition towards smoking is likely to choose to form friendships with oth-

ers who might also enjoy smoking. An observed correlation in smoking decision, even

once environmental characteristics are controlled for, might then come from the choice

of friends, rather than any social in�uence. One solution to this problem, is to use a

two-step procedure, in which a predicted network is estimated as a �rst stage. This pre-

dicted network is then used in place of the observed network in the second stage. This

approach is taken by König et al. (2014).46 Again the �rst stage will require estimation

of a network formation process.

Second, an important issue when working with network data is that of measure-

ment error. We return to this more fully in the next section, but where networks are

incompletely observed, direct construction of network statistics using the sampled data

typically introduces non-classical measurement error in these network statistics. If these

statistics are used as covariates in models such as those in Section 2.3, we will obtain

biased parameter estimates. One potential solution to this problem � proposed in dif-

ferent contexts by Goldberg & Roth (2003), Popescul & Ungar (2003), Ho� (2009),

and Chandrasekhar & Lewis (2011) � is to use the available data and any knowledge

of the sampling scheme to predict the missing data. This can be used to recover the

(predicted) structure of the entire network, which can then be used for calculating any

network covariates. Such procedures require estimation of network formation models

on the available data.

46The same idea is used by Kelejian & Piras (2014) in the context of spatial regression.
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Finally, we saw in Section 2.3 that social contacts can be important for a variety of

outcomes, including education outcomes (Du�o et al. 2011; De Giorgi et al. 2010), risk-

sharing (Ambrus et al. 2014; Angelucci et al. 2015; Jackson et al. 2012), and agricultural

practices (Conley & Udry 2010). Hence one might want to understand where social

connections come from per se and how they can be in�uenced, in order to create more

desirable outcomes. For example, there is substantial evidence of homophily (Currarini

et al. 2010). Homophily might in some circumstances limit the bene�ts of connections,

since there may be bigger potential gains from interaction by agents who are more

di�erent, e.g. ceteris paribus the bene�ts of mutual insurance are decreasing in the

correlation of income. We might then want to consider what the barriers are to the

creation of such links, and what interventions might support such potentially pro�table

edges.

The key challenge to dealing with network formation models is the size of the joint

distribution for edges. For a directed binary network, this is a N(N − 1)-dimensional

simplex, which has 2N(N−1) points of support (potential networks).47 To give a sense

of scale, for a network of more than 7 agents the support of this space is larger than the

number of neurons in the human brain,48 with 13 agents it is larger than the number

of board con�gurations in chess,49 and with 17 agents it is larger than the number of

atoms in the observed universe.50 Yet networks with so few agents are clearly much

smaller than one would like to work with in practice. Hence simpli�cations will typically

need to be made to limit the complexity of the probability distribution de�ned on this

space, in order to make work with these distributions computationally tractable.

We begin in Subsection 2.4.1 by considering methods which allow us to use data

on a subset of observed nodes to predict the status of unsampled nodes. Here the

focus is purely on in-sample prediction of link probabilities, not causal estimates of

model parameters, so econometric concerns about endogeneity can be neglected. Such

methods allow us to impute the missing network edges, providing one method for dealing

with measurement error.

In Subsection 2.4.2, we then discuss conditions for estimating a network formation

model, when the ultimate objective is controlling for network endogeneity in the esti-

mation of a social e�ects model, as discussed in Subsection 2.3.7. Now we may have

data on some or all of the edges of the network, and methods used for estimation will

in many cases be similar to those for in-sample prediction. The key di�erence is that

47Through Section 2.4 we will be concerned with the identi�cation and estimation of network for-
mation models using data on a single network only. Throughout this section we therefore suppress the
subscript g.

48Estimated to be around 8.5× 1010 (Azevedo et al. 2009).
49Around 1046.25 (Chinchalkar 1996).
50Around 1080 (Schutz 2003).
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only exogenous predictors/covariates may be used. Additionally, in order to be useful

as a �rst-stage for a social e�ects model, there must be at least one covariate which is a

valid instrument i.e. it must have explanatory power for edge status, and not directly

a�ect the outcome in the social e�ects model.

Next in Subsection 2.4.3, we consider economic models of network formation. Here

we think about individual nodes as being economic agents, who make choices to max-

imise some objective e.g. students maximising their utility by choosing who to form

friendships with. We �rst consider non-strategic models of formation, where the forma-

tion of one edge does not generate externalities, so that Pr(Gij = 1|Gkl) = Pr(Gij =

1)∀ij 6= kl. Estimation of these models is relatively straightforward, and again relates

closely to the discussion in the �rst two subsections.

Finally, we end with a discussion of more recent work on network formation, which

has begun allowing for strategic interactions. Here the value to i of forming edges

with j might depend on the status of other edges in the network. For example, when

trying to gather information about jobs, individuals might �nd it more pro�table to

form edges with highly linked individuals who are more likely to obtain information,

rather than those with few contacts. This dependence of edges on the status of other

edges introduces important challenges, particularly when only a single cross-section of

data are observed, as will typically be the case in applications. Since this work is at the

frontier of research in network formation, we will focus on describing the assumptions

and methods that have so far been used to estimate these models, without being able

to provide any general guidance on how practitioners should use these methods.

2.4.1 In-sample prediction

Network formation models have long been studied in maths, computer science, statisti-

cal physics, and sociology. These models are characterised by a focus on the probability

distribution Pr(G) as the direct object of interest.51 For economists the main use for

such models is likely to be for imputation/in-sample prediction when all nodes, and

only a subset of edges in a network are observed.

The data available are typically a single realisation for a particular network, although

occasionally multiple networks are observed and/or the network(s) is (are) observed

over time. We focus on the case of one observation for a single network, since even

when multiple networks are observed their total number is still small.52 If multiple

51Economists, in contrast, are often interested in microfoundations, so the focus is typically instead
on understanding the preferences, constraints, and/or beliefs of the agents involved in forming G. We
consider models of this form in Subsection 2.4.3.

52As noted in footnote 47, we therefore suppress the subscript g throughout this section to avoid
unnecessarily cluttered notation.
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networks are available one could clearly at a minimum use the procedures described

below, treating each separately, although one could also impose some restrictions on

how parameters vary across networks if there is a good justi�cation for doing so in

a particular context. For example, suppose one observed edges between children in

multiple classrooms in a school, with no cross-edges existing between children in di�erent

classes. If one believed that the parameters a�ecting edge formation were common

across classrooms then one could improve the e�ciency of estimation by combining the

data. It could also provide additional identifying power, as network-level variables could

also be incorporated into the model.

Identifying any non-trivial features of the probability distribution over the set of

possible (directed) networks, Pr(G), is not possible from a single observation without

making further restrictive assumptions. It is useful to note that Pr(G) is by de�nition

equal to the joint distribution over all of the individual edges, Pr
(
G12, ..., GN(N−1)

)
.

Hence a single network containing N agents can be seen instead as N(N−1), potentially

dependent, observations of directed edge statuses.53 This joint distribution can be

decomposed into the product of a series of conditionals. For notational ease, let l ∈ Λ

index edges, so Λ = {12, 13, ..., 1N, 21, 23, ..., N(N −1)}. Then we can write Pr(G) =∏
l∈Λ Pr(Gl|Gl−1, ..., G1), so that each conditional distribution in the product is the

distribution for a particular edge conditional on all previous edges. This conditioning

encodes any dependencies which may exist between particular edges.

We begin with the simplest model of network formation, which assumes away both

heterogeneity and dependence in edge propensities, and then reintroduce these features,

describing the costs and bene�ts associated with doing so.

Independent edge formation

The Bernoulli random graph model is the simplest model of network formation. It im-

poses a common edge probability for each edge, and that probabilities are independent

across edges. Independence ensures that the joint distribution Pr
(
G12, ..., GN(N−1)

)
is

just the product of the marginals,
∏
l∈Λ Pr(Gl). A common probability for each edge

means that Pr(Gl) = p ∀ l ∈ Λ, so all information about the distribution Pr(G) is

condensed into a single parameter, p, the probability an edge exists.54 This can be

straightforwardly estimated by maximum likelihood, with the resulting estimate of the

edge probability p̂ = |E|
N(N−1) ,

55 equal to the proportion of potential edges that are

present.

53If the network is undirected there are only half that many edges.
54Theoretical work on this type of model was done by Gilbert (1959), and it relates closely to the

model of Erd®s & Rényi (1959).
55Or twice that probability if edges are undirected, so that there are only 1

2
N(N−1) potential edges.
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A natural extension of this model allows the probability Pr(Gij = 1) to depend on

characteristics of the nodes involved, (xi, xj), but conditional on these characteristics

independence across edges is maintained. This type of model can be motivated either

by pairs of individuals with particular characteristics (xi, xj) being more likely to meet

each other and hence form edges, or by the bene�ts of forming an edge depending on

these characteristics, or some combination of these. In general one cannot separate

meeting probabilities from the utility of an edge without either parametric restrictions

or an exclusion restriction, so additional assumptions will be needed if one wants to

interpret the parameters structurally. We discuss this further in Subsection 2.4.3.

The key restriction here is the assumption of independence across edge decisions.

In many cases this is unlikely to be reasonable. For example, in a model of directed

network formation, there might well be correlation in edges Gij and Gil driven by

some unobservable node-speci�c �xed e�ect for node i e.g. i might be very friendly,

so be relatively likely to form edges. Use of the estimated model to generate predicted

networks will be problematic, as it will fail to generate some of the key features typically

observed, such as the high degree of clustering.

Allowing for �xed e�ects

The simplest form of dependencies that one might want to allow for are individual-

speci�c propensities to form edges with others, and to be linked to by others. Such

models were developed by Holland & Leinhardt (1977, 1981) and are known as p1-

models. They parameterise the log probability an edge exists, log(pij), as a linear

index in a (network-speci�c) constant θ0, a �xed e�ect for the edge `sender' θ1,i, and

a �xed e�ect for the edge `receiver' θ2,j , so log(pij) = θ0 + θ1,i + θ2,j . The �xed

e�ects are interpreted as individual heterogeneity in propensity to make or receive

edges. Additional restrictions
∑

i θ1,i =
∑

j θ2,j = 0 provide a normalisation that deals

with the perfect collinearity that would otherwise be present.

The use of such �xed e�ects creates inferential problems, since increasing the size

of the network also increases the number of parameters,56 sometimes described as an

incidental parameters problem. One natural solution to the latter problem is to impose

homogeneity of the θ1 and θ2 parameters within certain groups, such as gender and

race.57 If there are C groups, then the number of parameters is now 2C + 1 and this

remains �xed as N goes to in�nity. This removes the inference problem and also allows

agents' characteristics to be used in predicting edge formation.58

56Every new node adds two new parameters to be estimated.
57This is sometimes described as block modelling, since we allow the parameters, and hence edge

probability, to vary across `blocks'/groups.
58A related approach to solving this problem is suggested by Dzemski (2014).
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Alternatively, if node-speci�c e�ects are uncorrelated with node characteristics, then

variations in edge formation propensity `only' create a problem for inference. This

comes from the unobserved node-speci�c e�ects inducing a correlation in the residuals,

analogous to random e�ects. Fafchamps & Gubert (2007) show how clustering can be

used to adjust standard errors appropriately.

However, in both cases the maintenance of the conditional independence assumption

across edges continues to present a problem for the credibility of this method. In

particular it rules out cases where the status of other edges, rather than just their

probability of existence, a�ects the probability of a given edge being present. This

would be inappropriate if for example i's decision on whether to form an edge with j

depends on how many friends j actually has, not just on how friendly j is.

Allowing for more general dependencies

As discussed earlier in this section, identi�cation of features of Pr(G) whilst allowing

for completely general dependencies in edge probabilities is not possible. However, it is

possible to allow the probability of an edge to depend on a subset of the network, where

this subset is speci�ed ex ante by the researcher. Such models are called p∗-models

(Wasserman & Pattison 1996) or exponential random graph models (ERGMs). These

have already been used in economics by, for example, Mele (2013), who shows how such

models can arise as the result of utility maximising decisions by individual agents, and

Jackson et al. (2012) studying favour exchange among villagers in rural India.

Frank & Strauss (1986) showed how estimation could be performed in the absence

of edge independence under the assumption that the structure of any dependence is

known. For example, one might want to assume that edge ij depends not on all other

edges, but only on the other edges that involve either i or j. This dependency structure,

Prθ(Gij |G−ij) = Prθ(Gij |Grs ∀ r ∈ {i, j}or s ∈ {i, j} but rs 6= ij) where θ is a vector

of parameters and G−ij = G\Gij , is called the pairwise Markovian structure.

Drawing from the spatial statistics literature, where this is a more natural assump-

tion, Frank & Strauss show how an application of the Hammersley-Cli�ord theorem59

can be used to account for any arbitrary form of dependency. The key result is that

if the probability of the observed network is modelled as an exponential function of a

linear index of network statistics, appropriately de�ned, any dependency can be allowed

for.

To construct the appropriate network statistics, they �rst construct a dependency

graph, gdep. This graph contains N(N − 1) nodes, with each node here representing

59Originally due to Hammersley & Cli�ord (1971) in an unpublished manuscript, and later proved
independently by Grimmett (1973); Preston (1973); Sherman (1973); and Besag (1974).
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one of the N(N − 1) edges in the original graph.60 Then an edge between a pair

of nodes ij and rs in the dependency graph denotes that the conditional probability

that edge ij exists is not independent of the status of edge rs i.e. Prθ(Gij = 1|Grs) 6=
Prθ(Gij = 1). Further, conditional on the set of neighbours of node ij in the dependency

graph, neidepij , Pr(Gij = 1) is independent of all other edges in the original graph. So

Prθ(Gij = 1|G−ij) = Prθ(Gij = 1|Grs ∈ neidepij ). For example, the p1 graph, with

independent edges, has a dependency graph containing no edges. By contrast, a 5-node

graph with a pairwise Markovian dependency structure would have, for example, edge

12 dependent on edges (13, 14, 15, 23, 24, 25, 31, 32, 41, 42, 51, 52), i.e. all edges which

have one end at either 1 or 2.

We let A be the set of cliques61 of the dependency graph, where isolates are con-

sidered to be cliques of size one. For example, if Gij is independent of all other edges

conditional on Gji then A = {(ij), (ij, ji)}i 6=j .62 Then we de�ne A as representing the

di�erent architectures or motifs in A. In the previous example these would be `edges',

(ij), and `reciprocated edges' (ij, ji). This imposes a homogeneity assumption: that

the probability a particular graph g is selected from GN depends only on the number of

edges and reciprocated edges, rather than to whom those edges belong, so all networks

with the same overall architecture (called `isomorphic networks'63) are equally likely.

If instead we allow dependence between any edges that share a common node, then A
is the set of all edges (ij), reciprocated edges (ij, ji), triads (ij, ir, rj),64 and k-stars

(ij1, ij2, ..., ijk). Now A represents `edges', `reciprocated edges', `triads', and `k-stars'.

Invoking the Hammersley-Cli�ord theorem, Frank & Strauss (1986) note that the

probability distribution over the set of graphs GN allows for the imposed dependencies

if it takes the form

Pr θ(G) =
1

κ(θ)
exp

{∑
A

θASA(G)

}
(2.31)

where SA(G) is a summary statistic for motif A calculated from G, θA is the parameter

associated with that statistic, and κ(θ) is a normalising constant, sometimes described

60Nodes in this graph will be referred to by the name of the edge they represent in the original graph.
61A clique is any group of nodes such that every node in the group is connected to every other node

in the group.
62(i, j) is always a member of A, since we de�ned isolates as cliques of size one. Dependence of ij

on ji means that we can also de�ne (ij, ji) as a clique, since in the dependency graph these nodes are
connected to each other.

63Formally, two networks are isomorphic i� we can move from one to the other only by permuting
the node labels. For example, all six directed networks composed of three nodes and one edge are
isomorphic. Isomorphism implies that all network statistics are also identical, since these statistics are
measured at a network level so are not a�ected by node labels.

64This represents all triads in an undirected network, but in a directed network there are six possible
edges between three nodes, since ij 6= ji, so we may de�ne a number of di�erent triads.
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as the partition function, such that
∑
G∈GN Prθ(G) = 1.65 In particular, SA(G) must

be a positive function of the number of occurrences of motif A in G. Since we are

working with binary edges, without loss of generality we can de�ne SA(G) as simply

a count of the number of occurrences of motif A in the graph represented by G. For

example, de�ning S(G) as the vector containing the SA(G), if A = {(ij), (ij, ji)}i 6=j
then S(G) is a 2 × 1 vector containing a count of the number of edges and a count of

the number of reciprocated edges.

Estimation of the ERGM model is made di�cult by the presence of the parti-

tion function, κ(θ). Since this function normalises the probability of each graph so

that the probabilities across all potential graphs sum to unity, it is calculated as∑
G∈GN exp {

∑
A θASA(G)}. The outer summation is a sum over the 2N(N−1) possible

graphs. As noted earlier, even for moderate N this is a large number, so computing the

sum analytically is rarely possible.

Three approaches to estimation have been taken to overcome this di�culty: (1) the

coding method ; (2) the pseudolikelihood approach; and (3) the Markov Chain Monte

Carlo approach. The �rst two are based on the maximising the conditional likelihoods

of edges, rather than the joint likelihood, thus obviating the need for calculating the

normalising constant, whilst the third instead calculates an approximation to this con-

stant.

Coding Method The coding method (Besag 1974) writes the joint distribution of

the edge probabilities as the product of conditional distributions

Prθ(G) =
∏
l∈Λ Prθ(Gl|Gl−1, ..., G1), where as before Λ is the set of all N(N − 1)

potential edges. Under the assumption that edge Gl depends only on a subset of other

edges Gl′ ∈ neidepl one could `colour' each edge, such that each edge depends only on

edges of a di�erent colour.66, 67 All edges of the original graph that have the same colour

are therefore independent of each other by construction. Let Λc be the set of all edges

of a particular colour. One could then estimate the parameter vector of interest, θ, by

maximum likelihood, using only Prθ(Gl|Gl′ ∈ neidepl )∀l ∈ Λc, which treats only edges

of the same colour as containing any independent information.

We de�ne the `change statistic' DA(G; l) := SA(Gl = 1,G−l) − SA(Gl = 0,G−l)

as the change in statistic SA from edge Gl being present, compared with it not being

present, given all the other edges G−l. Then, given the log-linear functional form

65In a slight abuse of notation we write
∑
G∈GN

Prθ(G) to mean
∑
g∈GN

Prθ(Gg).
66This is equivalent to saying that no two adjacent (i.e. linked) nodes of the dependency graph

should have the same colour.
67Note that this colouring will not be unique. For example, one could trivially always colour every

edge a di�erent colour. However, for estimation it is optimal to try to minimise the number of colours
used, as this makes the most of any information available about independence.
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assumption that we have made (see Equation 2.31), the conditional probability of an

edge l can be estimated from the logit regression log
{

Pr(Gl=1|G−l)
Pr(Gl=0|G−l)

}
=
∑

A θADA(G; l).

This can be implemented in most standard statistical packages. Hence we can estimate

θ using maximum likelihood under the assumption that the edge probability takes a

logit form and treating the edges l ∈ Λc as independent, conditional on the edges not

in Λc. Since all the conditioning edges which go into SA are of di�erent colours, they

are not included in the maximisation, so θ̂c will be consistent.

By performing this maximisation separately for each colour, a number of di�erent

estimates can be recovered. Researchers may choose to then report the range of esti-

mates produced, or to create a single estimate from these many results, for example

taking a mean or median.

The main disadvantage of this approach is that the resulting estimates will each be

ine�cient, since they treat the edges l /∈ Λc as if they contain no information about the

parameters. In practice the proportion of edges in even the largest colour set Λc is likely

to be small. For example, if any edges that share a node are allowed to be dependent,

then the number of independent observations will only be 1
2N

68. Hence e�ciency is far

from a purely theoretical concern in the environment.

Pseudolikelihood approach The pseudolikelihood approach69 attempts to over-

come the ine�ciency problem, by �nding θ which jointly maximises all the conditional

distributions, not just those of the same colour. We write the log likelihood based on

edges of colour c as Lc =
∑

l∈Λc
log Prθ(Gl = 1|Gl′ ∈ neidepl ), with θ̂c as the max-

imiser of this. Besag (1975) notes that the log (pseudo)likelihood PL =
∑

c Lc =∑
c

∑
l∈Λc

log Prθ(Gl = 1|Gl′ ∈ neidepl ), constructed by simply combining all the data

as if there were no dependencies, is equivalent to a particular weighting of the individual,

`coloured' log likelihoods. This likelihood is misspeci�ed,70 since the correct log likeli-

hood using all the data should be L =
∑

l log Prθ(Gl = 1|Gl−1, ..., G1), whilst here we

have instead L =
∑

l log Prθ(Gl = 1|G−l) =
∑

l log Prθ(Gl = 1|GL, ...Gl+1, Gl−1, ..., G1).

Nevertheless, under a particular form of asymptotics it may still yield consistent esti-

mates.

We have already noted that for any given colour, the standard maximum likelihood

68Or 1
2
(N − 1) if N is odd.

69Introduced to the social networks literature by Strauss & Ikeda (1990).
70A likelihood based on Prθ(Gl|G−l) without any correction su�ers from simultaneity, since the

probability of each edge is being estimated conditional on all others remaining unchanged. In a two
node directed network, as a simple example, we e�ectively have two simultaneous equations, one for
Prθ(G12|G21) and Prθ(G21|G12). It is well-known that such systems will not generally yield consis-
tent parameter estimates if the dependence between the equations is not considered, and that strong
restrictions will typically be needed even to achieve identi�cation.
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consistency result applies, as the observations included are independent. If the number

of colours are held �xed as the number of potential edges is increased,71 then under some

basic regularity conditions (Besag 1975), maximising the log pseudolikelihood function

PL(θ) as though there were no dependencies will also give a consistent estimate of θ.

Unfortunately, in practice this approach su�ers from a number of problems. First,

although it makes use of more information in the data, so is potentially more e�cient,

the standard errors that are produced by standard statistical packages such as Stata will

clearly be incorrect as they will not take into account the dependence in the data. Little

is known about how to provide correct standard errors, but in some cases inference can

proceed using an alternative, non-parametric procedure: multiple regression quadratic

assignment procedure (MRQAP). This method can provide a test as to whether par-

ticular edge characteristics or features of the local network, such as a common friend,

are important for predicting the probability that a pair of individuals is linked. It is

based on the quadratic assignment procedure (QAP): a type of permutation test for

correlation between variables. For more details see Appendix 2.7.2.

A second issue is that in network applications we need to impose some structure

on the way in which new nodes are added to the network when we do asymptotics

(Boucher & Mouri�é 2013; Goldsmith-Pinkham & Imbens 2013). If, as we increase the

sample size, new nodes added could be linked to all the existing nodes, then there is no

reduction in dependence between links. In the spatial context for which the theory was

developed, the key idea is that increasing sample size creates new geographic locations

that are added at the `edge' of the data. If correlations reduce with distance, then as

new, further away, locations are added, they will be essentially independent from most

existing locations. Such asymptotics are called domain-increasing asymptotics. The

analogy in a networks context, proposed by Boucher & Mouri�é (2013) and Goldsmith-

Pinkham & Imbens (2013), is that new nodes are further away in the support of the

covariates. If there is homophily, so that nodes which are far apart in covariates never

link, then the decisions of these nodes are almost independent. Asymptotics results

from the spatial case can then be used.

Third, Kolaczyk (2009) suggests that in practice this method only works well when

the extent of dependence in the data is small. In general there is no reason to assume

dependence will be small in network data; indeed it is precisely because we did not wish

to assume this that we considered ERGMs at all.

Markov Chain Monte Carlo Maximum Likelihood An alternative approach,

not based on the ad-hoc weighting provided by the pseudolikelihood approach, is to

71In the language of spatial statistics, this is described as `domain increasing asymptotics'.
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use Markov Chain Monte Carlo (MCMC) maximum likelihood (Geyer & Thompson

1992, Snijders 2002, Handcock 2003). As noted earlier, the key di�culty with direct

maximum likelihood estimation of Equation 2.31 is the presence of the partition function

κ(θ) =
∑
G∈G exp {

∑
A θASA(G)}. This normalising constant is an intractable function

of the parameter vector θ. In this estimation approach, MCMC techniques can be used

to create an estimate of κ(θ) based on a sample of graphs drawn from GN .
The original log likelihood can be written as L(θ) =

∑
A θASA(G)−κ(θ). Maximis-

ing this is equivalent to maximising the likelihood ratio LR = L(θ)− L(θ(0)) since the

latter is just a constant for some arbitrary initial θ(0). Writing this out in full we get

LR =
∑

A

[
θA − θ(0)

A

]
SA(G)−

[
κ(θ)− κ(θ(0))

]
. The second component can be approx-

imated by drawing a sequence of W graphs, (G1, ...,GW ), from the ERGM under θ(0),

and computing log
∑

w∈W exp
{∑

A(θA − θ(0)
A )SA(G(w))

}
(see Kolaczyk (2009) pp185-

187 for details). Under this procedure the maximiser of the approximated log likelihood

will converge to its true value θ as the number of sampled graphs W goes to in�nity.

This approach has two major disadvantages. The �rst is that implementation of

this method is very computationally intensive. Second, although this approach avoids

the approximation of the likelihood by directly evaluating the normalising constant, its

e�ectiveness depends signi�cantly on the quality of the estimate of
[
κ(θ)− κ(θ(0))

]
. If

this cannot be approximated well then it is not clear that this approach, although more

principled, should be preferred in practical applications.

Recent work by Bhamidi et al. (2008) and Chatterjee et al. (2010) suggests that in

practice the mixing time � time taken for the Markov chain to reach its steady state

distribution � of such MCMC processes is very slow (exponential time). This means

that as the space of possible networks grows, the number of replications in the MCMC

process that must be performed in order to achieve a reasonable approximation to[
κ(θ)− κ(θ(0))

]
rises rapidly, making this approach di�cult to justify in practice.

Statistical ERGMs Chandrasekhar & Jackson (2014) also note that practitioners

often report obtaining wildly di�erent estimates from repeated uses of ERGM techniques

on the same set of data with the same model, with variation far exceeding that expected

given the claimed standard errors. They propose a technique which they call Statistical

ERGM (SERGM), which is easier to estimate, as an alternative to the usual ERGM.

With this they are not able to recover the probability that we observe a particular

network, but instead focus on the probability of observing a given realisation, s, of the

network statistics, S.72

72S is a |A| × 1 dimensional vector stacking the network statistics SA, and θ a 1× |A| dimensional
vector of parameters.
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In an ERGM the sample space consists of the set of possible distinct networks on

the N nodes. This set has 2N(N−1) elements (in the case of a directed network), and

we treat each isomorphic element as being equally likely. Our reference distribution is

a uniform distribution across these 2N(N−1) elements i.e. this is the null distribution

against which we are comparing the observed network.

If our interest is only in the realisations of the network statistics, we can reduce the

size of the sample space we are working with. Chandrasekhar & Jackson (2014) de�ne

SERGMs as ERGMs on the space of possible network statistics, S. This sample space
will typically contain vastly fewer elements than the space of possible networks.

We can then rewrite Equation 2.31 using the space of network statistics as sam-

ple space. In this case the probability of observing statistics S(G) taking value s is

Prθ(S(G) = s) = #S(s) exp(θs)∑
s′ #S(s′) exp(θs′) , where #S(s) = |{G ∈ G : S(G) = s}| is the

number of potential networks which have S = s.

So far we have only rewritten our originally ERGM by de�ning it over a new space.

We de�ned our reference distribution in the ERGM to put equal weight on each possible

network. To maintain this distribution when the sample space is the space of statistics,

we must weight the usual (unnormalised) probability of observing network G, exp(θs),

by the number of networks which exhibit this con�guration of statistics, #S(s′).

Much of the di�culty in estimating ERGM models comes from use of these weights,

since we are required to know in how many networks a particular combination of statis-

tics exists. Since this is typically not possible to calculate analytically, we discussed

how MCMC approaches might be used to sample from the distribution of networks.

Chandrasekhar & Jackson (2014) complete their de�nition of SERGMs as a gen-

eralisation of ERGMs by allowing any reference distribution, KS(s) to be used in the

place of #S(s′). However, to ease estimation relative to ERGMs, they then de�ne the

`count SERGM', which imposes KS(s) = 1
|S| .

73 The key here is not that these weights

are constant, but that they no longer depend on the space of networks. Since KS(s)

is now known, unlike #S(s′) which needed to be calculated, if |S| is su�ciently small,

exact evaluation of the partition function κ̃(θ) =
∑
s′ KS(s′) exp {θs′} is now possible.

Since count SERGMs � and any other SERGMs with known KS(s′) � can be esti-

mated directly and without approximation, they are easier to implement than standard

ERGMs. Chandrasekhar & Jackson (2014) also provide assumptions under which the

parameters of the SERGM, θSERGM , can be estimated consistently.

The key drawback to this method is in interpretation. The estimated parameters,

θSERGM , are not the same as the parameters θ in Equation 2.31, and the predicted

73Count SERGMs also restrict the set A to include only network motifs such as triangles and nodes
of particular degree, which can be counted. This rules out, for example, statistics such as density.
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probabilities are now the probability of a particular con�guration of statistics, rather

than of a particular network. Nevertheless, for a researcher interested in which network

motifs are more likely to be observed than one would expect under independent edge

formation, SERGMs o�er an appropriate alternative.

2.4.2 Reduced form models of network formation

The methods discussed in the previous subsection focused on in-sample prediction of

network edges. However, since they (mostly) predict these probabilities based on the

structure of the networks, without use of other characteristics, they both fail to make

use of all the information typically available to researchers, and also do not contain

the necessary independent variation needed for use as the �rst stage of a social e�ects

model with an endogenous network (of the sort discussed in Subsection 2.3.7). When

our ultimate aim is to estimate a social e�ects model but we are concerned about the

network being endogenous, one solution discussed in Subsection 2.3.7 is to estimate the

edge probability using individual characteristics, including at least one covariate that

is not included in the outcome equation (an exclusion restriction), as in a standard

two-stage least squares setting. In this subsection we describe estimation of models

that include individual (node) characteristics. As long as at least one of these is a valid

instrument, then this approach to overcoming the endogeneity of network formation is

possible.

A well-recognised feature of many kinds of interaction networks is the prevalence

of homophily: a propensity to be linked to relatively similar individuals.74 This obser-

vation may arise from a preference for interacting with agents who are similar to you

(preference homophily), a lower cost of interacting with such agents (cost homophily),

or a higher probability of meeting such agents (meeting homophily). However, they

all have the reduced form implication that more similar agents are more likely to be

linked.75

Fafchamps & Gubert (2007) provide a discussion of the conditions that must be

ful�lled by a model used for dyadic regression, i.e. a regression model of edge formation

when edges are being treated as observations and node characteristics are included in

the regressors. They note the regressors must enter the model symmetrically, so that the

e�ect of individual characteristics (xi, xj) on edge Gij is the same as that of (xj , xi)

on Gji. Additionally the model may contain some edge-speci�c covariates, such as the

distance between agents, which must by de�nition be symmetric wij = wji. If edges

74Homophily may be casually described as the tendency of `birds of a feather to �ock together'.
75In Subsection 2.4.3 below, we consider homophily in more detail, and structural models that try

to separate these causes of observed homophily.
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are modelled as directed, then the model takes the general form

Gij = f (λ0 + (x1i − x1j)λ1 + x2iλ2 + x3jλ3 +wijλ4 + uij) (2.32)

This speci�cation allows a term that varies with the di�erence between i and j in

some characteristics, (x1i−x1j); terms varying in the characteristics of both the sender

and the receiver of the edge, x2i and x3j respectively; some edge-speci�c characteristics,

wij ; and an edge-speci�c unobservable, uij . There may be partial or even complete

overlap between any of x1, x2, and x3. Since Gij is typically binary, the function f(.)

and the distribution of u are usually chosen to make the equation amenable to probit

or logit estimation. However, in some cases other functional forms are chosen. For

example, Marmaros & Sacerdote (2006) model f(.) as exp(.) since they are working

with email data, measuring edges by the number of emails between the individuals,

which takes only non-negative values and varies (almost) continuously.

If edges are undirected, then (x1i−x1j) must be replaced with |x1i−x1j |;76 x2 = x3

and λ2 = λ3; and uij = uji, so that Gij necessarily equals Gji. The identi�cation of

parameters λ2 and λ3 requires variation in degree. As Fafchamps & Gubert (2007)

note, if all individuals in the data have the same number of edges, such as a dataset of

only married couples, then it is possible to ask whether people are more likely to form

edges with people of the same race, captured by λ1, but not possible to ask whether

some races are more likely to have edges.

Careful attention needs to be paid to inference in this model, since there is depen-

dence across multiple dyads for any individual, similar to the Markov random graph

assumption discussed in the previous subsection. Fafchamps & Gubert (2007) show

that standard errors can be constructed analytically using a `four-way error compo-

nents model'. This is a type of clustering, allowing for correlation between uij and urs

if either of i or j is equal to either of r and s. The analytic correction they propose

provides an alternative to using MRQAP, described in Subsection 2.4.1, which may also

be used in this circumstance.

2.4.3 Structural models of network formation

Economic models of network formation consider nodes as motivated agents, endowed

with preferences, constraints, and beliefs, choosing which edges to form. The focus

for applied researchers is to estimate parameters of the agents' objective functions. For

example, to understand what factors are important for students in deciding which other

students to form friendships with.

76Or (x1i − x1j)
2 may also be used.
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These models allow us to think about counterfactual policy scenarios. For example,

if friendships a�ect academic outcomes, then there might be a role for policy in consider-

ing how best to organise students into classrooms, given knowledge of their endogenous

friendship formation response. If students tend to form homophilous friendships i.e.

with others who have similar predetermined characteristics, but not to form friendships

across classrooms, there may be a case for not streaming students into classes of sim-

ilar academic abilities. This would create more heterogeneity in the characteristics of

friends than if streaming were used, which might improve the amount of peer learning

that takes place.77 We begin by discussing non-strategic models, in which these deci-

sions depend only on the characteristics of the agents involved in the edge. We then

discuss strategic network formation, which occurs when network features directly enter

into the costs or bene�ts of forming particular edges.78

Structural Homophily

As noted above, a key empirical regularity which holds across a range of network types

is the presence of homophily. This is related to the more familiar (in economics) con-

cept of positive assortative matching, i.e. that people with similar characteristics form

edges with one another. As we have already seen, many reduced form models include

homophilic terms � captured by λ1 in Equation 2.32 � to allow the probability a tie

exists to vary with similarity on various node characteristics.79 In this subsection, we

consider the economic models of network formation that are based on homophily.

We de�ne homophily formally as follows. Let the individuals in a particular en-

vironment be members of one of H groups, with typical group h. Groups might be

de�ned according to sex, race, height, or any other characteristics. Continuous char-

acteristics will typically need to be discretised. We denote individual i's membership

of group h as i ∈ h. Relationships for individuals in group h exhibit homophily if

Pr(Gij = 1|i ∈ h, j ∈ h) > Pr(Gij = 1|i ∈ h, j /∈ h). In words, a group h exhibits

homophily if its members are more likely to form edges with other members of the same

group than one would expect if edges were formed uniformly at random among the

population of nodes. In general there will be multiple characteristics {H1, ...,HK} ac-
cording to which individuals can be classi�ed, and relationships may exhibit homophily

on any number of these characteristics.

77Clearly this is just an example, and there are many other factors to consider, such as the e�ec-
tiveness of teachers when faced with more heterogeneous classrooms, the ability to tailor lessons to
challenge high ability students, and other outcomes that might be in�uenced by changing friendships.

78See also a recent survey by Graham (2015), which became available after work on this manuscript.
79In principle this probability could be falling in similarity, known as heterophily. This may be

relevant, for example in models of risk sharing with heterogeneous risk preferences and complete com-
mitment.
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As noted earlier there are (at least) three possible sources of homophily: preference

homophily, cost homophily, and meeting homophily.

Preference homophily implies that, conditional on meeting, people in a group are

more likely to form edges with other members of the same group as they value these

edges more. For example, within a classroom boys and girls might have equal opportu-

nities to interact, but boys may choose to form more friendships with other boys (and

mutatis mutandis for girls) if they have more similar interests.

Cost homophily occurs when the cost of maintaining an edge to a dissimilar agent is

greater than the cost of maintaining an edge to a more similar agent. For example, one

might have an equal preference for all potential friends, but �nd it `cheaper' to maintain

a friendship with individuals who live relatively nearer. Unlike preferences, which are

in some sense fundamental to the individual, costs might be manipulable by policy. To

the extent that they are environmental these can also change the value of an edge over

time, e.g. a friend moving further away may lead to the friendship being broken.

Meeting homophily occurs when people of a particular group are more likely to

meet other members of the same group. For example, if we thought of all students

in a school year as being part of a single network, then there is likely to be meeting

homophily within class groups, since students in the same class have more opportunities

to interact. Again this is amenable to manipulation by policy, for example changing

seating arrangements across desks in a classroom. However, unlike cost homophily,

once individuals have met, changes in the environment should not change the value of

a friendship.

These three sources of homophily all have the reduced form implication that the

coe�cient on the absolute di�erence in characteristics, λ1 in Equation 2.32, should be

negative for any characteristics on which individuals exhibit homophily. However, since

they may have di�erent policy implications, there is a case for trying to distinguish

which of these channels are operating to cause the observed homophily.

Currarini et al. (2009) suggest how one can distinguish between preference and

meeting homophily under the assumption that cost homophily does not exist. They

note that if group size varies across groups, then preference homophily should lead

to more friendships among the larger group, whereas meeting homophily should not.

Intuitively this is because under preference homophily, a larger own-group means there

are more people with whom one might potentially form a pro�table friendship. One

could then use regression analysis to test for the presence of preference homophily by

interacting group size with absolute di�erence in characteristics, and testing whether

the estimated parameter is signi�cantly di�erent from zero.

Alternatively one might want to estimate the magnitude of the e�ect of changing
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particular features of the environment, such as the classrooms to which individuals are

assigned. In this case one could parameterise an economic model of behaviour, and then

directly estimate the parameters of the model. Currarini et al. (2009) do this using a

model of network formation that incorporates a biased meeting process, so individuals

can meet their own-type more frequently than other types, and di�erences in the value

of a friendship depending on whether agents are the same type.80 They simulate the

model with a number of di�erent parameters for meeting probabilities and relative

values of friendships, and use a minimum distance procedure to choose the parameters

that best explain the data.

As ever with structural models, whilst this approach allows one to perform counter-

factual policy experiments, the main cost is that the reasonableness and interpretation

of results depend on the accuracy with which the imposed model �ts reality. Also,

without time series variation in friendships, one cannot also allow for cost heterogene-

ity, which might show up either in preferences by changing the value of forming an

edge, or in meeting probabilities since those with lower meeting probabilities will typ-

ically have a greater cost to maintaining a friendship. Finally, it is important to note

that estimation of such models requires the unobserved component of preferences to be

independent of the factors in�uencing meeting. If the unobserved preference for par-

tying is correlated with choosing to live in a particular dormitory, and hence meeting

other people living here, then this will bias the parameter estimate of the probability

of meeting in this environment.

Mayer & Puller (2008) develop an enriched version of this model which allows again

for meeting and preference homophily, but they allow the bias in the meeting process

to depend not only on exogenous characteristics, but also on sharing a mutual friend.

Formally, Pr(meetij = 1|Gir = Gjr = 1) > Pr(meetij = 1), where Pr(meetij) denotes

the probability that nodes i and j meet (and hence have the opportunity to form an

edge). This allows for the stylised fact that individuals who are friends often also share

mutual friends, which helps the model match the observed clustering in the data.

However, although the model �t is improved, their model cannot distinguish whether

this clustering is in fact generated by a greater probability of meeting such individuals,

a greater bene�t to being friends with someone you share a friend with already, or a

lower cost of maintaining that friendship. They show how one can estimate their model

using a simulated method of moments procedure. However, this method su�ers from

the same constraints as those in the model suggested by Currarini et al. (2009): the

utility of the model for counterfactuals depends on how closely it matches reality; cost

homophily is neglected; and it is important the unobserved component of preferences

80Again they do not allow for cost homophily.
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is independent of the meeting process.

In the next subsection we consider extensions to these models that allow network

statistics, such as sharing a common friend, to enter into individuals' utility functions.

These create strategic interactions which can complicate estimation.

Strategic network formation

Much of the theoretical literature on networks has emphasised the strategic nature of

interactions, setting up games of network formation as well as games to be played on

existing networks (as seen in Section 2.3 above). The empirical literature has recently

begun to take a similar approach, trying to estimate games of network formation. The

key extension of such models, beyond those already considered, is to include network

covariates into the objective function of agents. This creates two complications: �rst

such models may have zero, one, or many equilibria, and this must be accounted for

in estimation; and second, as with ERGM models, the presence of network covariates

necessitates the calculation of intractable functions of the unknown parameters.

Before considering estimation in more detail, we discuss the modelling choices that

one needs to make. First, as with all structural modelling one must explicitly determine

the nature of the objective function that agents are trying to maximise. For example

one might have individuals with utility functions that depend on some feature of the

network,81,82 who are trying to maximise this utility. Second, the `rules of the game':

are decisions made simultaneously or sequentially? Unilaterally or bilaterally? What

do agents know, and how do they form beliefs? Given that we typically only observe

a single cross-section of data, additional assumptions about the nature of any meeting

process are necessary. Similarly, data may be reported as directed or undirected, but

whether we treat unreciprocated directed edges as measurement error or evidence of

unilateral linking is an important consideration, particularly given the consequences of

such measurement error (see Section 2.5.3). Finally, one needs to take a stand on the

appropriate concept of equilibrium and the strategies being played. At the weakest,

one could impose only that strategies must be rationalisable, and hence many strategy

pro�les are likely to be equilibria. On the other hand, depending on the information

available to agents one could impose Nash equilibrium, or Bayes-Nash equilibrium where

individuals have incomplete information and need to form beliefs. Alternatively one

could use a partly cooperative notion of equilibrium such as pairwise stability (Jackson &

81For example their centrality, or the number of edges they have subject to some cost of forming
edges.

82It is important to note that although it is the realised network feature that typically enters an
agent's objective function, their strategy will depend on their beliefs about how others will act.
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Wolinsky 1996), which models link formation as requiring agreement from both parties

involved, although dissolution remains one-sided.83

Since these models are at the frontier of research on network formation, few general

results are currently available. We therefore instead brie�y discuss the approaches that

have been taken so far to write estimable models, and estimate the parameters of these

models. Our aim is to highlight some of the choices that need to be made, and their

relative advantages and costs.

Christakis et al. (2010) and Mele (2013) both model network formation as a se-

quential game: there is some initial network, and then a sequential process by which

edge statuses may be adjusted. Crucial, also, to their models, is that at each meeting

agents only weigh the static bene�ts of updating the edge status (i.e. play a myopic

best response), rather than taking into account the e�ect this decision will have on both

their own and others' future decisions. Allowing for such forward-looking behaviour has

so far proved insolvable from an economic theory perspective, and hence they rule this

out.

Christakis et al. (2010) assume the initial network is empty, and allow each pair to

meet precisely once, uniformly at random, in some unknown order. Mele (2013) also

allows uniform at random meeting, but pairs may meet many times until no individual

wants to change any edge. In both cases these assumptions about the meeting process

� the number of meetings, order in which pairs meet, and probability with which each

pair meets � will in�uence the set of possible networks that may result. However, in

the latter case, the resulting network will be an equilibrium network, something which

is not true in Christakis et al. (2010).

A di�erent approach, taken by Sheng (2012), avoids making assumptions about the

meeting order. Instead she uses only an assumption about the relevant equilibrium

concept (pairwise stability). For the network to be pairwise stable, the utility an agent

gets from each link that is present must be greater than the utility he would get if the

link were not present, and conversely for a link which is not present at least one of the

agents it would involve must not prefer it. Sheng uses the moment inequalities this

implies for estimation, but is only able to �nd bounds on the probability of observing

particular networks.84 Hence assumptions about meeting order seem important for the

point identi�cation of the parameter of interest (we discuss this further below).

de Paula et al. (2014) also avoid assumptions on the meeting order. Rather than

83As in the literature on coalition formation, the issue of whether utility is transferable or not is also
critical. Typically this issue is not discussed in networks papers (Sheng (2012) is an exception to this),
and it is implicitly assumed that utility is not transferable.

84Sheng (2012) is actually only able to estimate an `outer region' in which these probabilities lie,
rather than a sharp set. More information is, in principle, available in the data, but making use of it
would increase the computational burden.
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using individual-level data, they identify utility parameters by aggregating individuals

into `types', and looking at the share of each type that is observed in equilibrium.

This can be seen as an extension of the work of Currarini et al. (2009). Individuals'

characteristics are discretised, so that each individual can be de�ned as a single type.

Agent characteristics might, for example, be sex and age. Typically age is measured

to the nearest month or year, so is already discretised. However, if the number of

elements in the support is large, broader discretisation might be desirable (e.g. in the

age example, measure age in ten-year bands). Then we might de�ne one type as (male,

25-35years) and another as (female, 15-25). de Paula et al. (2014) assume that agents

have preferences only over the types they connect to both directly and indirectly, not

who the individuals are, and that preference shocks are also de�ned in terms of type

rather than individuals. They further assume that there is some maximum distance

such that there is no value to a having connections beyond this distance, and there is a

maximum number of direct connections that would be desired. Under these restrictions

they can set identify the set of parameters for which the observed outcome � distribution

of network types � is an equilibrium, without making any assumptions on equilibrium

selection. They are even able to allow for non-existence of equilibrium, in which case

the identi�ed set is empty. Estimation can be performed using a quadratic program.

Recent work by Leung (2014) takes a fourth approach, and is able to achieve point

identi�cation without assumptions on the meeting order. Instead the game is modelled

as being simultaneous (so there is no meeting order to consider), but there is also in-

complete information. Speci�cally, the unobserved (by the econometrician) link-speci�c

component of utility is assumed to also be unobserved by other agents. Hence agents

make their decisions with only partial knowledge about what network will form. Esti-

mation proceeds using a so-called `two-step' estimator, analogous to that used by Bisin

et al. (2011) in a di�erent context. First agents' beliefs about the expected state of the

network are estimated non-parametrically. The observed conditional probability of a

link in the network is used as an estimate for agents' belief about the probability such

a link should form. This estimated network is used to replace the endogenous observed

network variables that enter the utility function. Then the parameters of the utility

function can be estimated directly in a second step. One advantage of this approach

is that only a single network is needed to be able to estimate the utility parameters,

although the network must be large.

Whether edges should be modelled as directed has consequences for identi�cation

and estimation, as well as the interpretation of the results, and will depend on features

of the data used. Both Christakis et al. (2010) and Mele (2013) use data on school

students from the National Longitudinal Study of Adolescent Health (Add Health), but
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Christakis et al. (2010) assume friendship formation is a bilateral decision whilst Mele

(2013) assumes it is unilateral. The data show some edges that are not reciprocated, and

it is an issue for researchers how this should be interpreted.85 Theoretically, networks

based on unilateral linking are typically modelled as being Nash equilibria of the network

formation game, whilst those based on bilateral edges use pairwise stability (Jackson &

Wolinsky 1996) as their equilibrium concept.86

Both Christakis et al. (2010) and Mele (2013) assume utility functions such that the

marginal utility of an edge depends on characteristics of the individuals involved, the

di�erence in their characteristics (homophily), and some network statistics. This has

two crucial implications.

First, since they assume network formation occurs sequentially, they need to assume

a meeting process to `complete' their models. This process acts as an equilibrium

selection mechanism. Although they do not discuss equilibrium, Christakis et al. (2010)

use the meeting process to determine what network should be realised for a given set

of covariates and parameters. Mele (2013) makes assumptions on the structure of the

utility function to ensure that at least one Nash equilibrium exists, but potentially

there are multiple equilibria. The meeting process is then used to provide an ergodic

distribution over these equilibria. In both cases functional form assumptions and use

of a meeting order are critical to identi�cation.87

Second, both papers assume that the relevant network statistics are based on purely

`local' network features. By this we mean that the marginal utility to i of forming an

edge with j depends only on edges that involve either i or j. This is equivalent to

the pairwise Markovian assumption discussed in Subsection 2.4.1. Estimation of these

models can therefore be performed using the MCMC techniques described there. It

also su�ers from the same di�culties, viz. that estimation is time-consuming, and often

the parameter estimates are highly unstable between runs of the estimation procedure

because of the di�culty in approximating the partition function.

Hence, although in principle, it has recently become possible to estimate economic

models of strategic network formation, there is still signi�cant scope for further work

to generalise these results and relax some of the assumptions that are used.

85It is sometimes argued when data contain edges that are not reciprocated that the underlying
relationships are reciprocal, but that some agents failed to state all their edges. The union of the edges
is then used to form an undirected graph, so gundirij = max(gij , gji).

86Loosely, an undirected network is pairwise stable if (i) Gij = 1 implies that neither i nor j would
prefer to break the edge, and (ii) Gij = 0 implies that if i would like to edge with j then j must strictly
not want to edge with i.

87Without a meeting order, both Sheng (2012) and de Paula et al. (2014) only achieve partial
identi�cation. Leung (2014) achieves point identi�cation by assuming agents move simultaneously and
have incomplete information.
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2.5 Empirical Issues

The discussion thus far has taken as given some, possibly multiple, networks g =

{1, ..,M} of nodes and edges. In this section we consider where this network comes

from. We begin by outlining the issues involved in de�ning the network of interest. We

then discuss the di�erent methods that may be used to collect data on the network,

focusing on practical considerations for direct data collection and sampling methods.

Our discussion thereafter examines in detail the issue of measurement error in networks

data. We divide issues into those where measurement error depends on the sampling

procedure, and those from other sources. Since networks are composed of interrelated

nodes and edges, random (i.e. i.i.d.) sampling of either nodes or edges imposes some

(conditionally) non-random process on the other, which depends on the structure of the

underlying network, thereby generating non-classical measurement error. We discuss

the implications of measurement error arising from both these sources � sampling and

other � on network statistics, and on parameter estimates of models that draw on these

data. Researchers working in a number of disciplines including economics, statistics,

sociology and statistical physics have suggested methods for dealing with measurement

error in networks data, which are described in detail thereafter.

2.5.1 De�ning the network

A �rst step in network data collection is to de�ne, based on the research question of

interest, the interaction that one would like to measure. For example, suppose one were

studying the role of social learning in the adoption of a new technology, such as a new

variety of seeds. In this situation, information sharing with other farmers cultivating

the new variety could be considered to be the most relevant interaction. The researcher

would then aim to capture interactions of this type in a network of nodes and edges.

It should be noted that di�erent behaviours and choices will be in�uenced by di�erent

interactions. For example, amongst households in a village, fertiliser use might be

a�ected by the actions of other farmers, whilst fertility decisions may be in�uenced by

social norms of what the whole village chooses. Similarly, (extended) family members

are more likely to lend one money, while friends and acquaintances are often better

sources of information on new opportunities.88

Moreover, even when the interaction of interest is well-de�ned, e.g. risk-sharing be-

tween households, there is an additional question of whether potential network neigh-

bours � that is households who are willing to make a transfer or lend to one's own

88The classic example of this issue comes from Granovetter (1973), who shows the importance of
`weak ties' in providing job vacancy information.
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household � or realised network neighbours � the households that one's household ac-

tually received transfers or loans from � are of interest. Hence the research question of

interest and the context matter, and having detailed network data is not a panacea: one

must still justify why the measured network is the most relevant one for the research

question being considered.

In addition, researchers are typically also forced to de�ne a boundary for the net-

work, within which all interactions are assumed to take place. Geographic boundary

conditions are very common in social networks � for instance, edges may only be con-

sidered if both nodes are in the same village, neighbourhood or town � supported by

the implicit assumption that a majority of interactions takes place among geograph-

ically close individuals, households and �rms. Such an assumption is questionable,89

but greatly eases the logistics and costs of collecting primary network data, and is often

considered to be the most reasonable when no further information is available on the

likely reach of the network being studied.

Network data collection involves collecting information on two interrelated objects

� nodes and edges between nodes � within the pre-de�ned boundary. Data used in

most economic applications are typically collected as a set of observations on nodes

(individuals, households, or �rms), with information on the network (or group(s)) they

belong to, and perhaps with information on other nodes within the network (or group)

that they are linked to. As an example, in a development context, we may have a

dataset with socio-economic information on households (nodes), the village or ethnic

group they belong to (group), and potentially which other households within the village

its members talk to about speci�c issues (edges). Our focus, as elsewhere in this paper,

continues to be cases where detailed information on network neighbours (i.e. edges)

is available, although where multiple group memberships are known these may also be

used to implicitly de�ne a set of neighbours, as in De Giorgi et al. (2010).

2.5.2 Methods for Data Collection

In practical terms, a range of methods can be and have been used to collect the in-

formation needed to construct network graphs. In order to construct undirected net-

work graphs, researchers need information on the nodes in the network, and on the

edges between nodes.90 Depending on the interaction or relationship being studied, it

89For example, a household's risk sharing might depend more on its edges to other households
outside the village, since the geographic separation is likely to reduce the correlation between the
original household's shocks and the shocks of these out-of-village neighbours.

90Some features of network graphs can be obtained without detailed information on all nodes and
the edges between nodes. Degree, for instance, can be captured by asking nodes directly about the
number of edges they have, without enquiring further about who these neighbours are.
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may furthermore be possible to obtain information on the directionality of edges be-

tween nodes, and on the strength of edges, allowing for the construction of directed and

weighted graphs. The methods include:

1. Direct Elicitation from nodes:

(a) Asking nodes to report all the other nodes they interact with in a speci�c

dimension within the speci�ed network boundary, e.g. all individuals within

the same village that one lends money to. In this case, nodes are free to list

whomever they want. Information on the strength of edges can similarly be

collected.91

(b) Asking nodes to report for every other node in the network whether they

interacted with that node (and potentially the strength of these interactions).

In contrast to (a), nodes are provided with a list of all other nodes in the

network. Though this method has the advantage of reducing recall errors, it

may generate errors from respondent fatigue in networks with a large number

of nodes.

(c) Asking nodes to report their own network neighbours and their perception of

edges between other nodes in the network. This method would presumably

work reasonably well in settings where, and in interactions for which, private

information issues are not very important (e.g. kinship relations in small

villages in developing countries). Alatas et al. (2014) use this method to

collect information on networks in Indonesian hamlets.

(d) Asking nodes to report their participation in various groups or activities, and

then imposing assumptions on interactions within the groups and activities,

e.g. two nodes are linked if they are members of the same group. The

presence of multiple groups can generate a partially-overlapping peer group

structure.

2. Collection from Existing Data Sources: Edges between nodes can be constructed

from information in available databases e.g. citation databases (Ductor et al.

2014), corporate board memberships (Patnam 2013), online social networks (e.g.

LinkedIn, Twitter, Facebook).

The resulting networks often have a partially-overlapping peer group structure,

with agents that share a common environment (such as a university) belonging to

91In practice, edge strength is usually proxied by the frequency of interaction, or the amount of time
spent together, or in the case of family relationships, by the amount of shared genetic material between
individuals.
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multiple subgroups (e.g. classes within the university). Network structure is then

imposed by assuming that an edge exists between nodes that share a subgroup.

Examples include students in a school sharing di�erent classes (e.g. De Giorgi

et al. 2010) or company directors belonging to the same board of directors (e.g.

Patnam 2013) or households which, through marriage ties of members, belong to

multiple families (e.g. Angelucci et al. 2010).

Moreover, the directionality of the edge can sometimes, though not always, be

inferred from available data, e.g. data from Twitter includes information on the

direction of the edge, while the existence of an edge in LinkedIn requires both

nodes to con�rm the edge. However, it is not possible to infer directionality

among, for instance, students in a school belonging to multiple classes, since we

don't even know if they actually have any relationship.

In order to generate the full network graph, researchers would need to collect data on

all nodes and edges, i.e. they need to collect a census. This is typically very expensive,

particularly since a number of methods described above in Section 2.3 exploit cross-

network variation to identify parameters, meaning that many networks would need to

be fully sampled.

In general, it is very rare to have data available from a census of all nodes and edges.

Even when a census of nodes is available, it is very common to observe only a subset of

edges because of censoring in the number of edges that can be reported.92 In practice,

given the high costs of direct elicitation of networks, and the potentially large size of

networks from existing data sources,93 researchers usually collect data on a sample of

the network only, rather than on all nodes and edges. Various sampling methods have

been used, of which the most common are:

1. Random Sampling: Random samples can be drawn for either nodes or edges.

This is a popular sampling strategy due to its low cost relative to censuses. Data

collected from a random sample of nodes typically contain information on socio-

economic variables of interest and some (or all) edges of the sampled nodes, al-

though data on edges are usually censored.94 At times, information may also

be available on the identities, and in some rare cases, on some socio-economic

92This is a feature of some commonly used datasets, including the popular National Longitudinal
Study of Adolescent Health (AddHealth) dataset.

93For instance, Facebook has over 1 billion monthly users, while Twitter reports having around 200
million regular users.

94The network graph constructed from data where nodes are randomly sampled and where edges
are included only if both nodes are randomly sampled is known as an induced subgraph. The network
constructed from data where nodes are randomly sampled and all their edges are included, regardless
of whether the incident nodes are sampled (i.e. if i is randomly sampled, the edge ij will be included
regardless of whether or not j is sampled), is called a star subgraph.
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variables of all nodes in the network. Data on outcomes and socio-economic char-

acteristics of non-sampled nodes are crucial in order to be able to implement many

of the identi�cation strategies discussed in Section 2.3 above. Moreover, as we will

see below, this information is also useful for correcting for measurement error in

the network. Recent analyses with networks data in the economics literature have

featured datasets with edges collected from random samples of nodes. Examples

include data on social networks and the di�usion of micro�nance used by both

Banerjee et al. (2013) and Jackson et al. (2012); and data on voting and social

networks used in Fafchamps & Vicente (2013).

Datasets constructed through the random sampling of edges include a node only

if any one of its edges is randomly selected. Examples of such datasets include

those constructed from random samples of email communications, telephone calls

or messages. In these cases researchers often have access to the full universe of

all e-mail communication, but are obliged to work with a random sample due to

computational constraints.

2. Snowball Sampling and Link Tracing: Snowball sampling is popularly used

in collecting data on `hard to reach' populations i.e. those for whom there is a rel-

atively small proportion in the population, so that one would get an insu�ciently

large sample through random sampling from the population e.g. sex workers.

Link tracing is usually used to collect data from vast online social networks. Un-

der both these methods, a dataset is constructed through the following process.

Starting with an initial, possibly non-random, sample of nodes from the popula-

tion of interest, information is obtained on either all, or a random sample of their

edges. Snowball sampling collects information on all edges of the initially sam-

pled nodes, while link tracing collects information on a random sample of these

edges. In the subsequent step, data on edges and outcomes are collected from any

node that is reported to be linked to the initial sample of nodes. This process

is then repeated for the new nodes, and in turn for nodes linked to these nodes

(i.e. second-degree neighbours of the initially drawn nodes) and so on, until some

speci�ed node sample size is reached or up to a certain social distance from the

initial `source' nodes. It is hoped that, after k steps of this process, the generated

dataset is representative of the population i.e. the distribution of sampled nodes

no longer depends on the initial `convenience' sample. However, this typically

happens only when k is large. Moreover, the rate at which the dependence on

the original sample declines is closely related to the extent of homophily, both on

observed and unobserved characteristics, in the network. In particular, stronger

homophily is associated with lower rates of decline of this dependence. Nonethe-
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less, this method can collect, at reasonable costs, complete information on local

neighbourhoods, which is needed to apply the methods outlined in Section 2.3

above. Examples in economics of datasets collected by snowball sampling include

that of student migrants used in Méango (2014).

The sampling method used has important implications for how accurately the network

graph and its features are measured. In the next subsection we will discuss some of the

common measurement errors arising from the above methods (as well as measurement

error from non-sampling sources), their implications for model parameters, and methods

for overcoming these often substantial biases.

2.5.3 Sources of Measurement Error

An important challenge that complicates identi�cation of parameters using overlapping

peer groups and detailed network data is the issue of measurement error. Measurement

error can arise from a number of sources including: (1) missing data due to sampling

method, (2) mis-speci�cation of the network boundary, (3) top-coding of the number of

edges, (4) miscoding and misreporting errors, (5) spurious nodes and (6) non-response.

We refer to the �rst three of these as sampling-induced error, and the latter three as

non-sampling error. It is important to account for this, since as we will show in this

Subsection, measurement error can induce important biases in measures of network

statistics and in parameter estimates.

Measurement error issues arising from sampling are very important in the context

of networks data, since these data comprise information on interrelated objects: nodes

and edges. All sampling methods � other than undertaking a full census � generate

a (conditionally) non-random sample of at least one of these objects, since a particu-

lar sampling distribution over one will induce a particular (non-random) structure for

sampling over the other.95 This means that econometric and statistical methods for esti-

mation and inference developed under classical sampling theory are often not applicable

to networks data, since many of the underlying assumptions fail to hold. Consequently

the use of standard techniques, without adjustments for the speci�c features of network

data, leads to errors in measures of the network, and hence biases model parameters.

In practice, however, censuses of networks that economists wish to study are rare,

and feasible to collect only in a minority of cases (e.g. small classrooms or villages).

Frequently, it is too expensive and cumbersome to collect data on the whole network.

Moreover, when data are collected from surveys, it is common to censor the number

of edges that can be reported by nodes. Finally, to ease logistics of data collection

95We consider a random sample to consist of units that are independent and identically distributed.
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exercises, one may erroneously limit the boundary of the network to a speci�ed unit,

e.g. village or classroom, thereby missing nodes and edges lying beyond this boundary.

Subsection 2.5.3 outlines the consequences of missing data due to sampling on estimates

of social e�ects arising from outcomes of network neighbours (such as those considered

in Subsections 2.3.2, 2.3.3 and 2.3.4) and network statistics (as in Subsection 2.3.5).

Until recently most research into these issues was done outside economics, so we draw

on research from a range of �elds, including sociology, statistical physics, and computer

science.

Measurement error arising from the other three sources � misreporting or miscoding

errors, spurious nodes, and non-response � which we label as non-sampling measurement

error, can also generate large biases in network statistics and parameters in network

models. Though there is a large literature on these types of measurement error in

the econometrics and statistics (see, for example, Chen et al. (2011) for a summary of

methods for dealing with misreporting errors in binary variables, also known as misclas-

si�cation errors), these issues has been less studied in a networks context. Subsection

2.5.3 below summarises �ndings from this literature.

Finally, a number of methods have been suggested to help deal with the consequences

of measurement error, whether due to sampling or otherwise. Subsection 2.5.4 outlines

the various methods that have been developed for this purpose.

Measurement Error Due to Sampling

Node-Speci�c Neighbourhoods Collecting only a sample of data, rather than

a complete census, can lead to biased and inconsistent parameter estimates in social

e�ect models. This is because sampling of the network leads to misspeci�cation of

nodes' neighbours. In particular, a pair of nodes in the sampled network may appear to

be further away than they actually are. Recall from Section 2.3 that with observational

data, methods for identifying the social e�ects parameters in the local average, local

aggregate and hybrid local model use the exogenous characteristics of direct, second-

and, in some cases, third-degree neighbours as instrumental variables for the outcomes

of a node's neighbours. Critically, these methods require us to know which edges are

de�nitely not present to give us the desired exclusion restrictions. Misspeci�cation of

nodes' direct and indirect (i.e. second- and third-degree) neighbours may consequently

result in mismeasured and invalid instruments.

Chandrasekhar & Lewis (2011) show that this is indeed the case for the local av-

erage model, where the instruments are the average characteristics of nodes' second-

and third-degree neighbours. The measurement error in the instruments is correlated

with the measurement error in the endogenous regressors, leading to bias in the social
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e�ect estimates. Simulations in their paper suggest that these biases can be very large,

with the magnitude falling as the proportion of the network sampled increases, and

as the number of networks in the sample increases.96 Chandrasekhar & Lewis (2011)

o�er a simple solution to this problem when (i) network information is collected via a

star subgraph � i.e. where a subset of nodes is randomly sampled (`sampled nodes')

and all their edges are included in constructing the network graph; and (ii) data on

the outcome and exogenous characteristics are available for all nodes in the network,

or at least for the direct and second- and potentially third-degree neighbours of the

`sampled' nodes. In this case, all variables in the second stage regression (i.e. Equation

2.6) are correctly measured for the `sampled' nodes, since for any node, the regressors,

G̃i,gYg =
∑

j∈neii,g

G̃ij,gyj,g and G̃i,gXg =
∑

j∈neii,g

G̃ij,gxj,g, are fully observed. Including

only sampled nodes in the second stage thus avoids issues of erroneously assuming that

nodes in the observed network are further away from one another than they actually

are. The in�uence matrix constructed with the sampled network is, however still mis-

measured, leading to measurement error in the instruments (which use powers of this

matrix), and thus in the �rst stage. However, this measurement error is uncorrelated

with the second stage residual, thus satisfying the IV exclusion restriction. Note though

that the measurement error in the instruments reduces their informativeness (strength),

particularly when the sampling rate is low. This is because this strategy requires the

existence of nodes that have a (�nite) geodesic of at least 2 or 3 between them. At low

sampling rates there will be very few such pairs of nodes, since many sampled nodes

will seem completely unconnected as the nodes that connect them will be missing from

the data.

A similar issue applies to local aggregate and hybrid models. Simulations in Liu

(2013) show that parameters of local aggregate models are severely biased and unstable

when estimated with partial samples of the true network. In this model, however, as

shown in Subsection 2.3.3, a node's degree can be used as an instrument for neighbours'

outcomes. When the sampled data take the form of a star subgraph, the complications

arising from random sampling of nodes can be circumvented by using the out-degree,

which is not mismeasured, as an instrument for the total outcome of edges. This allows

for the consistent estimation of model parameters. This is supported by simulation

evidence in Liu (2013), which shows that estimates of the local aggregate model com-

puted using out-degrees as an additional instrument are very close to the parameters

of a pre-speci�ed data generating process. Other possible ways around this problem

96A limitation of these simulations is that the authors only considered simulations with either 1 or
20 networks. It is unclear how large such biases may be when a large number (e.g. 50) of networks is
available.
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include the model-based and likelihood-based corrections outlined in Subsection 2.5.4.

Network Statistics Missing data arising from partial sampling generate non-classical

measurement error in measured network statistics. This is an important issue in esti-

mating the e�ects of network statistics on outcomes using regressions of the form seen

in Subsection 2.3.5, because measurement error leads to substantial bias in model pa-

rameter estimates. A number of studies, primarily in �elds outside economics, have

investigated the consequences and implications of sampled network data on measures

of network statistics and model parameters. The following broad facts emerge from this

literature:

1. Network statistics computed from samples containing moderate (30-50%) and even

relatively high (∼70%) proportions of nodes in a network can be highly biased.

Sampling a higher proportion of nodes in the network generates more accurate

network statistics. We illustrate the severity of this issue using a stylised example.

Consider the network in panel (a) of Figure 2.4, which contains 15 nodes and has

an average degree of 3.067. We sample 60%, 40% and 20% of nodes and elicit

information on all their edges (i.e. we elicit a star subgraph). The resulting

network graphs are plotted in panels (b), (c) and (d), with the unshaded nodes

being those that were not sampled. Average degree is calculated based on all

nodes and edges in the star subgraph, i.e. including all sampled nodes, the edges

they report, and nodes they are linked with.97 When only 20% of nodes are

sampled, the average degree of the sampled graph is 2, which is around 35% lower

than the true average degree.98 However, when a higher proportion of nodes are

sampled, average degree of the sampled graph becomes closer to that of the true

graph. More generally, simulation evidence99 from studies including Galaskiewicz

(1991), Costenbader & Valente (2003), Lee et al. (2006), Kim & Jeong (2007) and

Chandrasekhar & Lewis (2011) have estimated the magnitude of sampling induced

bias in statistics such as degree (in-degree and out-degree in the directed network

case), degree centrality, betweenness centrality, eigenvector centrality, transitivity

(also known as local clustering), and average path length. They �nd biases that

are very large in magnitude, and the direction of the bias varies depending on

97This is equivalent to taking an average of the row-sums of the (undirected) adjacency matrix
constructed from the sampled data, in which two nodes are considered to be connected if one reports an
edge. This is a common way of constructing the adjacency matrix in empirical applications. However,
for data collected through star subgraph sampling, an accurate estimate of average degree can be
obtained by including only the sampled nodes in the calculation.

98We will discuss methods that allow one to correct for this bias in Subsection 2.5.4.
99Simulations are typically conducted by taking the observed network to be the true network, and

constructing `sampled' networks by drawing samples of di�erent sizes using various sampling methods.
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the statistic. For example, the average path length may be over-estimated by

100% when constructed from an induced subgraph with 20% of nodes in the

true network. This concern is particularly relevant for work in the economics

literature: a literature review of studies in economics by Chandrasekhar & Lewis

(2011) reports a median sampling rate of 25% of nodes in a network. Table 2.1

below summarises �ndings from these papers for various commonly used network

statistics.
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Figure 2.4: Sampled networks with di�erent sampling rates

    

# Nodes in sample = 15 

# Edges in sample = 46 

# Nodes in sample = 15 

# Edges in sample = 42 

# Nodes in sample = 13 

# Edges in sample = 34 

# Nodes in sample = 12 

# Edges in sample = 24 

Average degree = 3.067 Average degree = 2.800 Average degree = 2.615 Average degree = 2 

(a) Full Graph (b)  60% of nodes sampled (c) 40% of nodes sampled (d) 20% of nodes sampled 
 

Notes to Figure: This �gure displays the full graph (panel (a)), and the star subgraphs obtained from sampling 60% (panel (b)), 40% (panel (c)) and

20% (panel (d)) of nodes. The unshaded nodes in panels (b), (c) and (d) represent nodes that were not sampled, and the dotted lines represent nodes

and edges on which no data were collected. Though the average degree in the original graph is 3.067, that in the sampled graphs ranges from 2.8 to 2.

The # Nodes, and # Edges indicated in the �gure refer to the numbers included in the calculation of the displayed average degree.
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2. Measurement error due to sampling varies with the underlying network topology

(i.e. structure). This is apparent from work by Frantz et al. (2009), who inves-

tigate the robustness of a variety of centrality measures to missing data when

data are drawn from a range of underlying network topologies: uniform random,

small world, scale-free, core-periphery and cellular networks (see Appendix 2.7.1

for de�nitions). They �nd that the accuracy of centrality measures varies with

the topology: small world networks, which have relatively high clustering and

`bridging' edges that reduce path lengths between nodes that would otherwise be

far away from one another, are especially vulnerable to missing data. This is not

surprising since key nodes that are part of a bridge could be missed in the sam-

ple and hence give a picture of a less connected network. By contrast, scale-free

networks are less vulnerable to missing data. Such e�ects are evident even in the

simple stylised example in Figure 2.5 below, where we sample the same nodes from

networks with di�erent topologies � uniform random, and small world. Though

each network has the same average degree,100 and the same number of nodes is

sampled in both cases, the average degree in the graph sampled from the uniform

random network is closer to the true value than that sampled from the small world

network.

3. The magnitude of error in network statistics due to sampling varies with the sam-

pling method. Di�erent sampling methods result in varying magnitudes of er-

rors in network statistics. Lee et al. (2006) compare data sampled via induced

subgraph sampling, random sampling of nodes, random sampling of edges, and

snowball sampling, from networks with a power-law degree distribution.101 They

show that the sampling method impacts the magnitude and direction of bias in

network statistics. For instance, random sampling of nodes and edges leads to

an over-estimation of the size of the exponent of the power-law degree distribu-

tion.102 Conversely, snowball sampling, which is less likely to �nd nodes with low

degrees, underestimates this exponent. We illustrate this fact further using a

simple example that compares two node sampling methods common in data used

by economists � induced subgraph, where only edges between sampled nodes are

retained; and star subgraph, in which all edges of sampled nodes are retained re-

100As in (1) above, average degree is calculated from the adjacency matrix with all nodes and edges
in the sample (i.e. all the nodes and edges with �rm lines).
101Power law degree distributions are those where the fraction of nodes having k edges, P (k) is
asymptotically proportional to k−γ , where usually 2 < γ < 3. Such a distribution allows for fat tails,
i.e. the proportion of nodes with very high degrees constitutes a non-negligible proportion of all nodes.
102A larger exponent on the power law degree distribution indicates a greater number of nodes with
large degrees.

84



2.5. Empirical Issues

2. Empirical Methods for Networks Data: Social E�ects, Network Formation and

Measurement Error

Figure 2.5: Sampling from uniform random and small world networks

 

 

# Nodes in sample = 13 

# Edges in sample = 34 

# Nodes in sample = 15 

# Edges in sample = 34 

True average degree = 3.067;  

Sampled avg. Degree = 2.615 

True average degree = 3.067 

Sampled avg. Degree = 2.267 

(a) Uniform Random Graph (b) Small world graph 
 

Notes to Figure: This �gure displays the star subgraphs obtained from sampling 40% of nodes in a

network with a uniform random topology (panel (a)) and a small world topology (panel(b)). The

unshaded nodes represent nodes that were not sampled, and the dotted lines represent nodes and edges

on which no data were collected.

gardless of whether or not the nodes involved in the edges were sampled. Consider

again the network graph considered in panel (a) of Figure 2.4 above, and displayed

again in panel (a) of Figure 2.6 below. We sample the same set of nodes � 1, 5,

8, 9, 12, and 14 � from the full network graph. Panels (b) and (c) of Figure 2.6

display the resulting network graphs under star and induced subgraph sampling

respectively. Though the proportion of the network sampled is the same under

both types of sampling, the resulting network structure is very di�erent. This is

re�ected in the estimated network statistics as well: the average degree for the

induced subgraph is just over a half of that for the star subgraph, which is not

too di�erent from the average degree of the full graph.103

4. Parameters in economic models using mismeasured network statistics are subject

to substantial bias. Sampling induces non-classical measurement error in the mea-

103Average degree is calculated as above, including all nodes and edges in the sample, i.e. those with
�rm lines in Figure 2.6.
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Figure 2.6: Sampling with star and induced subgraphs

 

 

 

 

# Nodes in sample = 15 

# Edges in sample = 46 

# Nodes in sample = 13 

# Edges in sample = 34 

# Nodes in sample = 6 

# Edges in sample = 8 

Average degree = 3.067 Average degree = 2.615 Average degree = 1.333 

(a) Full Graph (b) Star Subgraph (c) Induced Subgraph 
 

Notes to Figure: Panel (a) of the �gure displays the true network graph and panels (b) and (c) display

the star and induced subgraph obtained when the darker-shaded nodes are sampled. The unshaded

nodes in panels (b) and (c) represent nodes that were not sampled, and the dotted lines represent nodes

and edges on which no data were collected. In the star subgraph, an edge is present as long as one of

the two nodes involved in the edge is sampled. This is not the case in the induced subgraph, where an

edge is present only if both nodes involved in the edge are sampled.

sured statistic; i.e., the measurement error is not independent of the true network

statistic. Chandrasekhar & Lewis (2011) suggest that sampling-induced measure-

ment error can generate upward bias, downward bias or even sign switching in

parameter estimates. The bias is large in magnitude: for statistics such as degree,

clustering, and centrality measures, they �nd that the mean bias in parameters

in network level regressions ranges from over-estimation bias of 300% for some

statistics to attenuation bias of 100% for others when a quarter of network nodes

are sampled.104 As with network statistics, the bias becomes smaller in magni-

tude as the proportion of the network sampled increases. The magnitude of bias is

somewhat smaller, but nonetheless substantial, for node-level regressions. Table

2.2 summarises the �ndings from the literature on the e�ects of random sampling

of nodes on parameter estimates.

5. Top-coding of edges or incorrectly specifying the boundary of the network biases

network statistics. Network data collected through surveys often place an upper

limit on the number of edges that can be reported. Moreover, limiting the network

104Simulations typically report bias in parameters from models where the outcome variable is a linear
function of the network statistic.
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boundary to an observed unit, e.g., a village or classroom, will miss nodes and

edges beyond the boundary. Kossinets (2006) investigates, via simulations, the

implications of top-coding in reported edges and boundary speci�cation on net-

work statistics such as average degree, clustering and average path length. Both

types of error cause average degree to be under-estimated, while average path

length is over-estimated. No bias arises in the estimated clustering parameter if

the consequence of the error is to simply limit the number of edges of each node.

Tables 2.1 and 2.2 below summarises �ndings on the consequences of missing data

for both estimates of network statistics and parameter estimates when using data on

networks collected through random sampling of nodes. We consider two types of graph

induced by data collected via random node sampling: induced subgraph, and star

subgraph, which are as shown in Figure 2.6 above.
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Table 1: Findings from literature on sampling-induced bias in measures of network statistics

Statistic Measurement error in statistic

Network-Level Statistics Star Subgraph Induced Subgraph

Average Degree Underestimated (�) if non-sampled nodes are included

in the calculation. Otherwise sampled data provide an

accurate measure.a

Underestimated (�).a

Average Path length Not known. Over-estimated (+); network appears less connected;

magnitude of bias very large at low sampling rates,

and falls with sampling rate.b

Spectral gap Direction of bias ambiguous (±); depends on the

relative magnitudes of bias in the �rst and second

eigenvalues, both of which are attenuated.a

Direction of bias ambiguous (±): depends on the

relative magnitudes of bias in the �rst and second

eigenvalues, both of which are attenuated.a

Clustering Coe�cient Attenuation (�) since triangle edges appear to be

missing.a
Little/no bias. Random sampling yields same share of

connected edges between possible triangles.a,b

Average Graph Span Overestimation (+) of the graph span: sampled

network is less connected than the true network. At

low sampling rates, graph span may appear to be

small, depending on how nodes not in the giant

component are treated.a

Overestimation (+) of the graph span: sampled

network is less connected than the true network. At

low sampling rates, graph span may appear to be

small, depending on how nodes not in the giant

component are treated.a

Notes: Non-negligible, or little bias refers to | bias | of 0-20%, large bias to | bias | of 20%-50% and very large bias to | bias | > 50%. a

Source: Chandrasekhar & Lewis (2011); b Source: Lee et al. (2006).
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Table 1 contd.

Statistic Measurement error in statistic

Node - Level Statistics Star Subgraph Induced Subgraph

Degree (In and Out in

directed graphs)

In-degree and out-degree both underestimated (�) if

all nodes in sample included in calculation. If only

sampled nodes included, out-degree is accurately

estimated. In undirected graphs, underestimation

(�) of degree for non-sampled nodes.a

Degree (in undirected graphs) of highly connected nodes

is underestimated (�).b

Degree Centrality

(Degree Distribution)

Not known. Overestimation (+) of exponent in scale-free networks

⇒ degree of highly connected nodes is underestimated.

Rank order of nodes across distribution considerably

mismatched as sampling rate decreases.b

Betweenness Centrality Distance between true betweenness centrality

distribution and that from sampled graph decreases

with the sampling rate. At low sampling rates (e.g.

20%), correlations can be as low as 20%.a

Shape of the distribution relatively well estimated.

Ranking in distribution much worse, i.e. nodes with

high betweenness centrality appear to have low

centrality.d

Eigenvector Centrality Very low correlation between vector of true node

eigenvector centralities and that from sampled

graph.a

Not known.

Notes: Source: aCostenbader & Valente (2003);bSource: Lee et al. (2006); cSource: Kim & Jeong (2007)

89



2
.5
.
E
m
p
irica

l
Issu

es

2
.
E
m
p
irica

l
M
eth

o
d
s
fo
r
N
etw

o
rk
s
D
a
ta
:
S
o
cia

l
E
�
ects,

N
etw

o
rk

F
o
rm

a
tio

n
a
n
d

M
ea
su
rem

en
t
E
rro

r

Table 2: Findings from literature on sampling-induced bias in parameter estimates

Statistic Bias in Parameter Estimates

Network Level Statistics Star Subgraph Induced Subgraph

Average Degree Scaling (+) and attenuation (�), both of which fall

with sampling rate when all nodes in sample included

in calculation; |scaling| > |attenuation|. No bias if only

sampled nodes included.

Scaling (+) and attenuation (�), both of which fall

with sampling rate; |scaling| > |attenuation|.
Magnitude of bias higher than for star subgraphs.

Average Path length Attenuated (�). Magnitude of bias large and falls with

sampling rate.

Attenuated (�) (more than star subgraphs).

Magnitude of bias is very large at low sampling rates,

and falls with sampling rate.

Spectral gap Attenuated (�), with bias falling with sampling rate.

Bias magnitude large even when 50% nodes sampled.

Attenuated (�) (more than star subgraphs). Bias

magnitude very large and falls with sampling rate.

Clustering Coe�cient Scaling (+) and attenuation (�); |scaling| >
|attenuation|. Very large biases, which fall with

sampling rate.

Attenuation (�), falls with sampling rate. Magnitude

of bias non-negligible at node sampling rates of <40%.

Average Graph Span Estimates have same sign as true parameter if node

sampling rate is su�ciently large; Can have wrong sign

if sampling rate is too low, depending on how nodes

not connected to the giant component are treated in

the calculation.

Estimates have same sign as true parameter if node

sampling rate is su�ciently large; Can have wrong

sign if sampling rate is too low, depending on how

nodes not connected to the giant component are

treated in the calculation.

Notes: Non-negligible bias refers to |bias| of 0-20%, large bias to |bias| of 20%-50% and very large bias to |bias| > 50%. Source:

Chandrasekhar & Lewis (2011)
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Table 2 contd.

Statistic Bias in Parameter Estimates

Node - Level Statistics Star Subgraph Induced Subgraph

Degree (In and Out in

directed graphs)

Attenuation (�), with the magnitude of bias falling

with the sampling rate. The magnitude of bias is

large even when 50% of nodes are sampled.

Scaling (+), with the bias falling with the node

sampling rate. Bias is very large in magnitude.

Degree Centrality

(Degree Distribution)

Not known. Not known.

Betweenness Centrality Not known. Not known.

Eigenvector Centrality Attenuation (�), with magnitude of bias falling with

the sampling rate. Magnitude of bias large even

when 50% of nodes are sampled.

Attenuation (�), with magnitude of bias falling with the

sampling rate. Magnitude of bias very large.

Notes: Large bias refers to |bias| of 20%-50% and very large bias to |bias| > 50%. Source: Chandrasekhar & Lewis (2011)
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Other Types of Measurement Error

Beyond sampling-induced measurement error, networks could be mismeasured for a

variety of other reasons including:

1. Miscoding and misreporting errors: Edges could be miscoded, either be-

cause of respondent or interviewer error: respondents may forget nodes or in-

terview fatigue may lead them to misreport edges. In some cases, there may

be strategic reporting of edges, e.g., respondents may report desired rather than

actual edges, as in Comola & Fafchamps (2014).

2. Spurious Nodes: Spelling mistakes in node names or multiple names for the

same nodes can lead to the presence of spurious nodes. This is a concern when

edges are inferred from existing data.

3. Non-response: Edges are missing as a result of non-response from nodes.

Wang et al. (2012) consider, in a simulation study, the consequences of these types

of measurement error on network statistics including degree centrality, the clustering

coe�cient and eigenvector centrality. They �nd that degree centrality and eigenvector

centrality are relatively robust to measurement error arising from spurious nodes and

miscoded edges, while clustering coe�cient is biased by mismeasured data. Though

there is a large literature on these types of measurement error in the econometrics and

statistics (see, for example, Chen et al. (2011) for a summary of methods for dealing

with misreporting errors in binary variables, also known as misclassi�cation errors),

these issues has been less studied in a networks context. An exception is Comola &

Fafchamps (2014), who propose a method for identifying and correcting misreported

edges.

2.5.4 Correcting for Measurement Error

Ex-post (i.e. once data have been collected) methods of dealing with measurement

error can be divided into three broad classes: (1) design-based corrections, (2) model-

based corrections, and (3) likelihood-based corrections. Design-based corrections apply

primarily to correcting sampling-induced measurement error, while model-based and

likelihood-based corrections can apply to both sampling-induced and non-sampling-

induced measurement error. We brie�y summarise the underlying ideas behind each of

these, discussing some advantages and drawbacks of each.
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Design-Based Corrections

Design-based corrections rely on features of the sampling design to correct for sampling-

induced measurement error (Frank 1978, 1980a, 1980b, 1981; Thompson 2006).105 They

are based on Horvitz-Thompson estimators, which use inverse probability-weighting to

compute unbiased estimates of population totals and means from sampled data. This

method can be applied to correct mismeasured network statistics that can be expressed

as totals, such as average degree and clustering. We illustrate how Horvitz-Thompson

estimators work using a simple example.

A researcher has data on an outcome y for a sample of n units drawn from the

population. Under the particular sampling scheme used to draw this sample, each

unit i in the population U = {1, ..., N} has a probability pi of being in the sample.

The researcher wants to use the sample to compute an estimate of the sum of y in

the population, τ =
∑

i∈U yi. The Horvitz-Thompson estimator for this total can be

computed by summing the y's for the sampled units, weighted by their probability

of being in the sample. That is, τ̂p =
∑
i∈U

yi
pi
. Essentially, the estimator computes an

inverse probability-weighted estimate to correct for bias arising from unequal probability

sampling. In the case of network statistics, this thus corrects for the non-random

sampling of either nodes or edges induced by the particular sampling scheme. The key

to this approach is the construction of the sample inclusion weights, pi.

Formulae for node- and edge-inclusion probabilities are available for the random

node and edge sampling schemes (see Kolaczyk (2009) for more details). Recovering

sample inclusion probabilities when using snowball sampling is typically not straight-

forward after the �rst step of sampling. This is because every possible sample path

that can be taken in subsequent sampling steps must be considered when calculating

the sample-inclusion probability, making this exercise very computationally intensive.

Estimators based on Markov chain resampling methods, however, make it feasible to

estimate the sample inclusion probabilities. See Thompson (2006) for more details.

Frank (1978, 1980a, 1980b, 1981) derives unbiased estimators for graph parameters

such as dyad and triad counts, degree distribution, average degree, and clustering un-

der random sampling of nodes. Chandrasekhar & Lewis (2011) show that parameter

estimates in network regressions using design-based corrected network statistics as re-

gressors are consistent for three statistics: average degree, clustering coe�cient, and

average graph span. Their results show that the Horvitz-Thompson estimators can cor-

rect for sampling-induced measurement error. Numerical simulations suggest that this

method reduces greatly, and indeed eliminates at su�ciently high sampling rates, the

105Chapter 5 of Kolaczyk (2009) provides useful background on these methods.
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sampling induced bias in parameter estimates.

There are two drawbacks of this procedure. First, it is not possible to compute

Horvitz-Thompson estimators for network statistics that cannot be expressed as totals

or averages. This includes node level statistics, such as eigenvector centrality, many of

which are statistics of interest for economists. Second, they can't be used to correct

for measurement error arising from reasons other than sampling (unless the probability

of correct reporting is known). Model-based and likelihood-based corrections can, by

placing more structure on the measurement error problem, o�er alternative ways of

dealing with measurement error in these cases.

Model-Based Corrections

Model-based corrections provide an alternative approach to correcting for measurement

error. Such corrections involve specifying a model that maps the mismeasured network

to the true network and have primarily been used to correct for measurement error

arising from sampling related reasons. Thus the model is typically a network formation

model of the type seen in Subsection 2.4.1 above. Parameters of the network forma-

tion model are estimated from the partially observed network, and available data on

the identities and characteristics of nodes and edges; with the estimated parameters

subsequently used to predict missing edges (in-sample edge prediction). Note that it

is crucial to have information on the identities and, if possible, the characteristics (e.g.

gender, ethnicity, etc.) of all nodes in the network. This is important from a data re-

quirements perspective. Without this information, it is not possible to use this method

to correct for measurement error.

In most economics applications, researchers would typically want to use the pre-

dicted networks to subsequently identify social e�ect parameters using models similar

to those in Section 2.3 above. Chandrasekhar & Lewis (2011) show that the network

formation model must satisfy certain conditions in order to allow for consistent esti-

mation of the parameters of social e�ects models such as those discussed in Section

2.3.

They study a setting where data on the network is assumed to be missing at random,

and where the identities and some characteristics of all nodes are observed. Data are

assumed to be available for multiple, possibly large networks. This is necessary since in

their results the rate of convergence of the estimated parameter to the true parameter

depends on both the number of nodes within a network, and the number of networks

in the data. Their analysis shows that consistent estimation of social e�ect parameters

is possible with network formation models similar to those outlined in Section 2.4.1

above, as long as the interdependence between the covariates of pairs of nodes decays
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su�ciently fast with network distance between the nodes. This may not be satis�ed for

instance, in a model where a network statistic (such as degree distribution) is a su�cient

statistic for the network formation process. In this case, Chandrasekhar & Lewis (2011)

show that parameters of the network formation process do not converge su�ciently fast

to allow for consistent estimation of the social e�ect parameters in models at the node-

level (e.g. Equation 2.1), though parameters of network-level models, such as Equation

2.5 can be consistently estimated. Their analysis also shows that network formation

processes that allow for speci�c network e�ects in edge formation (i.e. some strategic

models of network formation such as the model of Christakis et al. 2010) also satisfy

conditions under which the social e�ect parameter can be consistently estimated.

Likelihood-Based Corrections

Likelihood-based corrections can be applied to correct for measurement error when only

a sub-sample of nodes in a network are observed. Such methods have, however, been

used to correct speci�c network-based statistics such as out-degree and in-degree, but

may not apply to other statistics. Here, we discuss two likelihood-based methods to

correct for measurement error: the �rst method from Conti et al. (2013), corrects for

sampling related measurement error when data is available only for sampled nodes;

while the second has been proposed and applied by Comola & Fafchamps (2014) to

correct for misreporting.

Conti et al. (2013) correct for non-classical measurement error in in-degree arising

from random sampling of nodes by adjusting the likelihood function to account for the

measurement error. The method involves �rst, specifying the process for outgoing and

incoming edge nominations, and as a result obtaining the outgoing and incoming edge

probabilities. Speci�cally, Conti et al. (2013) assume that outgoing (incoming) edge

nominations from i to j are a function of i's (j's) observable preferences, the similar-

ity between i and j's observable characteristics (to capture homophily) and a scalar

unobservable for i and j. Moreover, the process allows for correlations between i's ob-

servable and j's unobservable characteristics (and vice versa). When edges are binary,

the out-degree and in-degree have binomial distributions with the success probability

given by the calculated outgoing and incoming edge probabilities. Random sampling

of nodes to obtain a star subgraph generates measurement error in the in-degree, but

not in the out-degree. However, since the true in-degree is binomially distributed, and

nodes are randomly sampled, the observed in-degree has a hypergeometric distribu-

tion conditional on the true in-degree. Knowledge of these distributions allows for the

speci�cation of the joint distribution of the true in-degree, the true out-degree and the

mismeasured in-degree. Pseudolikelihood functions can therefore be speci�ed allowing
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for parameters to be consistently estimated via maximum likelihood methods.106

Comola & Fafchamps (2014) propose a maximum likelihood based framework to

correct for measurement error arising from misreporting by nodes of their neighbours

and/or �ows across the edges. To illustrate this method, we take the case of binary

edges. In survey data, where nodes are asked to declare the presence or not of an edge

with other nodes, misreporting could mean that one of two nodes in any edge omits to

report the edge; or both forget to report the edge even if it exists, or both report an

edge when it doesn't exist or, one of the two nodes erroneously reports an edge when it

doesn't exist. Misreporting in this case is a form of misclassi�cation error. Assuming

that the misreporting process is such that either nodes forget to declare neighbours, or

they spuriously report neighbours, it is possible to use a maximum likelihood framework

to correct for this misreporting bias. By assuming a statistical process for edges (e.g.

Comola & Fafchamps (2014) assume that edges follow a logistic process, and are a

function of observed characteristics), and given that the mismeasured variable is binary,

it is possible to write down a likelihood function that incorporates the measurement

error. Maximising this function provides the correct parameter estimates for the edge

formation process, which can then be used to correct for misreporting.

2.6 Conclusion

Networks can play an important role both as a substitute for incomplete or missing

markets and a complement to markets, for example, by transmitting information, or

even preferences. Whether such e�ects exist in practice is an important empirical

question, and recent work across a range of �elds in economics has tried to provide

some evidence about this. However, working with networks data creates important

challenges that are not present in other contexts.

In this paper we outline econometric methods for working with network data that

take account of the peculiarities of the dependence structures present in this context.

It divides the issues into three parts: (i) estimating social e�ects given a conditionally

exogenous observed network; (ii) estimating the underlying network formation process,

given only a single cross-section of data; and (iii) accounting for measurement error,

which in a network context can have particularly serious consequences.

When data are available on only agents and the reference groups to which they be-

long, researchers have for some time worried about how social e�ects might be identi�ed.

However, when detailed data on nodes and their individual links are present, identi�-

106Conti et al. (2013) also account for censoring by using a truncated distribution in the likelihood
function.
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cation of social e�ects (taking the network as conditionally exogenous) is generic, and

estimation is relatively straightforward. Two broader conceptual issues exist in this

case: First, theory is often silent on the precise form that peer e�ects should take

when they exist. Since Manski (1993), many people have focused on the `local average'

framework, often without discussion of the implications for economic behaviour, but

social e�ects might instead take a local aggregate, or indeed local maximum/minimum

form where the best child in a classroom provides a good example to all others, or the

worst disrupts the lesson. Until a non-parametric way of allowing for social e�ects is

developed, researchers need to use theory to guide the empirical speci�cation they use.

Second, researchers typically treat the observed network as the network which mediates

the social e�ect, and where many networks are observed the union of these is taken.

Given what we know about measurement error in networks, this behaviour will gener-

ally create important biases in results, if the relevant network is a network de�ned by a

di�erent kind of relationship, or is actually some subset of the union taken. Here again

it is important that some justi�cation is given for why the network used should be the

appropriate one.

In addition to these conceptual issue, the key econometric challenge in identifying

social e�ects is allowing for network endogeneity. In recent years there have been

attempts to account directly for network endogeneity. A natural �rst direction for this

work has been to use exclusion restrictions to provide an instrument for the network

structure. As ever, this requires us to be able to credibly argue that there is some

variable that indirectly a�ects the outcome of interest, through its e�ect on the network

structure, but has no direct e�ect. Whether this seems reasonable will depend on the

circumstance, but an important issue here is that the network formation process must

have a unique equilibrium for these methods to be valid.

This leads naturally to a discussion of network formation models that can allow for

dependence between links. Drawing from work in a number of �elds, this paper brings

together the main estimation methods and assumptions, describing them in a common

language. Although other �elds have modelled network formation for some time, and

developed methods to estimate parameters, they are often unsuitable when we treat the

data as observations of decisions made by optimising agents. There is still much scope

in this area to develop more general methods and results which do not rely on strong

assumptions about the structure of utility functions or meeting processes in order to

achieve identi�cation.

Finally, the paper discussed data collection and measurement error. Since networks

comprise of interrelated nodes and edges, a particular sampling scheme over one of

these objects will imply a structure for sampling over the other. Hence one must think

97



2.6. Conclusion

2. Empirical Methods for Networks Data: Social E�ects, Network Formation and

Measurement Error

carefully in this context about how data are collected, and not simply rely on the

usual intuitions that random sampling (which is not even well-de�ned until we specify

whether it is nodes or edges over which we de�ne the sampling) will allow us to treat

the sample as the population. When collecting census data is not feasible, it will in

general be necessary to make corrections for the induced measurement error, in order

to get unbiased parameter estimates. Whilst there are methods for correcting some

network statistics for some forms of sampling, again there are few general results, and

consequently much scope for research.

Much work has been done to develop methods for working with networks data, both

in economics and in other �elds. Applied researchers can therefore take some comfort in

knowing that many of the challenges they face using these data are ones that have been

considered before, and for which there are typically at least partial solutions already

available. Whilst the limitations of currently available techniques mean that empirical

results should be interpreted with some caution, attempting to account for social e�ects

is likely to be less restrictive than simply imposing that they cannot exist.
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2.7 Appendix

2.7.1 De�nitions

Here we provide an index of de�nitions for the di�erent network representations and

summary statistics used.

• Adjacency Matrix: This is an N × N matrix, G, whose ijth element, Gij ,

represents the relationship between node i and node j in the network. In the case

of a binary network, the elements Gij take the value 1 if i and j are linked, and 0

if they are not linked; while in a weighted network, Gij = w(i, j), where w(i, j) is

some measure of the strength of the relationship between i and j. Typically, the

leading diagonal of G is normalised to 0.

• In�uence Matrix: This is a row-stochastic (or `right stochastic') adjacency

matrix, G̃ whose elements are generally de�ned as G̃ij = Gij/
∑
j Gij if two agents

are linked and 0 otherwise.

• Degree: A node's degree, di, is the number of edges of the node in an undirected

graph. The degree of node i in the network with a binary adjacency matrix, G,

can be calculated by summing the elements of the ith row of this matrix.107 In a

directed graph, a node's in-degree is the number of edges from other nodes to

that node, and it's out-degree is the number of edges from that node to other

nodes in the network. For node i, the former can be calculated by summing the

elements of the ith column of the binary adjacency matrix for the network, while

the latter is obtained by summing the ith row of this matrix.

• Average degree: The average degree for a network graph is the average number

of edges that nodes in the network have.

• Density: The relative fraction of edges that are present in a network. It is

calculated as the average degree divided by N − 1, where N is the number of

nodes in the network.

• Shortest path length (geodesic): A path in a network g between nodes i

and j is a sequence of edges, i1i2, i2i3, ..., iR−1iR, such that irir+1 ∈ g, for each
r ∈ {1, ..., R} with i1 = i and iR = j and such that each node in the sequence

i1, ..., iR is distinct. The shortest path length or geodesic between i and j is the

path between i and j that contains the fewest edges. The average geodesic of a

107Similarly, for a weighted graph, summing the elements for row i in the adjacency matrix yields the
weighted degree.
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network is the average geodesic for every pair of nodes in the network. For nodes

for whom no path exists, it is common to either exclude them from the calculation

of the average geodesic (i.e. to calculate the average geodesic from the connected

part of the network) or to de�ne the geodesic for these nodes to be some large

number (usually greater than the largest geodesic in the network).

• Diameter: The diameter of a graph is the largest geodesic in the connected part

of the network, where by connected, we refer to nodes for whom a path exists to

get from one node to the other.

• Component: A connected component, or component, in an undirected network

is a subgraph of a network such that every pair of nodes in the subgraph is

connected via some path, and there exists no edge from the subgraph to the rest

of the network.

• Bridge: The edge ij is considered to be a bridge in the network g if removing

the edge ij results in an increase in the number of components in g.

• Complete Network: A network in which all possible edges are present.

• Degree Centrality: This is the node's degree divided by N − 1, where N is

total number of nodes in the network. It measures how well a node is connected

in terms of direct neighbours. Nodes with a large degree have a high degree

centrality.

• Betweenness centrality: This is a measure of centrality based on how well

situated a node is in terms of the paths it lies on. The importance of node i in

connecting nodes j and k can be calculated as the ratio of the number of geodesics

between j and k that i lies on to the total number of geodesics between j and k.

Averaging this ratio across all pairs of nodes yields the betweenness centrality of

node i.

• Eigenvector centrality: A relative measure of centrality, the centrality of node

i is the sum of the centrality of its neighbours. It can be calculated by solving

the following equation in matrix terms, λCe(G) = GCe(G), where Ce(G) is an

eigenvector of G, and λ is the corresponding eigenvalue.

• Bonacich Centrality: Another measure of centrality that de�nes a node's cen-

trality as a function of their neighbours' centrality. It is de�ned as b(Gg, β) =

(Ig − βGg)
−1.(αGgι).
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• Dyad count: A dyad is a pair of nodes. In an undirected network, the dyad

count is the number of edges in the network.

• Triad count: A triad is a triple of nodes such that a path connecting all 3 nodes

exists. The triad count of an undirected network is the number of such triples in

the network.

• Clustering coe�cient: For an undirected network, this measures the proportion
of fully connected triples of nodes out of all potential triples in which at least two

edges are present.

• Support: An edge ij ∈ Eg is supported if there exists an agent k 6= i, j such that

ik ∈ Eg and jk ∈ Eg.

• Expansiveness: For subsets of connected nodes in the network, the ratio of the

number of edges connecting the subset to the rest of the network to the number

of nodes in the subset.

• Sparseness: A property of the network related with the length of all minimal

cycles connecting triples of nodes in the network. For any integer, q ≥ 0, a network

is q-sparse if all minimal cycles connecting any triples of nodes (i, j, k) such that

ij ∈ Eg and jk ∈ Eg have length ≤ q+ 2. See Bloch et al. (2008) for more details.

• Graph span: The graph span is a measure that mimics the average path length.

It is de�ned as

spang =
log(Ng)− log(dg)

log(d̃g)− log(dg)
+ 1

where Ng is the number of nodes in network g, dg is the average degree of network

g and d̃g is the average number of second-degree neighbours in the network.

Network Topologies

• Bipartite network: A network whose set of nodes can be divided into two sets,

U and V , such that every edge connects a node in U to one in V .

• Uniform random network: A graph where edges between nodes form ran-

domly.

• Scale-free network: A network whose degree distribution follows a power law,

i.e. where the fraction of nodes having k edges, P (k) is asymptotically propor-

tional to k−γ . Such a distribution allows for fat tails, i.e. the proportion of nodes

with very high degrees constitutes a non-negligible proportion of all nodes.
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• Core-periphery network: A network that can be partitioned into a set of nodes

that is completely connected (`core'), and another set of agents (`periphery') who

are linked primarily with nodes in the `core'.

• Cellular network: Networks containing many sets of completely connected

nodes (or `cliques'), with few edges connecting the di�erent cliques.

• Small world network: A network where most nodes are not directly linked to

one another, but where geodesics between nodes are small, i.e. a node can reach

every other node in the network by passing through a small number of nodes.

• k-star: A component with k nodes and k − 1 links such that there is one `hub'

node who has a direct link to each of the (k − 1) other (`periphery') nodes.

• Cliques: A clique is any induced subgraph of a network (i.e. subset of nodes

and all edges between them) such that every node in the subgraph is directly

connected to every other node in the subgraph.
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Figure 2.7: Network Topologies
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• Induced Subgraph: The network graph constructed from data where nodes are

randomly sampled and where edges are included only if both nodes are randomly

sampled are known as induced subgraph.

• Star Subgraph: The network constructed from data where nodes are randomly

sampled and all their edges are included, regardless of whether the incident nodes

are sampled (i.e. if i is randomly sampled, the edge ij will be included regardless

of whether or not j is sampled), is called a star subgraph.

• Network Motif: Any subgraph of the network which has a particular structure.

For example, the reciprocated link motif is de�ned as any pair of nodes, {i, j},
such that both of the possible directed links between them, {ij, ji}, are present
in the subgraph. Another example is the k-star motif, which is de�ned as any k

nodes such that one of the nodes is linked to all (k-1) other nodes, and the other

nodes are not linked to each other.

• Isomorphic Networks: Two networks are isomorphic i� we can move from one

to the other only by permuting the node labels. For example, all six directed

networks composed of three nodes and one edge are isomorphic. Isomorphism

implies that all network statistics are also identical, since these statistics are

measured at a network level so are not a�ected by node labels.
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2.7.2 Quadratic Assignment Procedure

The Quadratic Assignment Procedure (QAP) was developed originally by Mantel (1967)

and Hubert & Schultz (1976).108 It tests for correlation between a pair of network

variables by calculating the correlation in the data, and comparing this to the range

of estimates computed from the same calculation after permutation of the rows and

columns of the adjacency matrix G. For example, suppose we have two vectors y(G) =

{yi(Gg)}i∈Ng
and x(G) = {xi(Gg)}i∈Ng

which are functions of the network. We �rst

calculate ρ̂0,Y X , the correlation between y and x observed in the data. In order to

respect the dependencies between edges that involve the same node, we then jointly

permute the rows and columns of the argument of y. This amounts to e�ectively rela-

belling the nodes, so that we calculate a new estimate ρ̂w,Y X : the correlation between

y(Gw) and x(G), where Gw is the permuted adjacency matrix. It is generally not the

same as permuting the elements of the vectors y. This is repeated W times, to give a

range of estimates {ρ̂w,Y X}w=1,...,W . Under the null hypothesis of no correlation, we

can perform, for example, a two-sided test at the 10% level, by considering whether

ρ̂0,Y X lies between the 5th and 95th percentiles of {ρ̂w,Y X}w=1,...,W . If it does not, we

can reject the null at the 10% level.

Ideally one would like to use all the possible permutations available, but typically

this number is too large. Hence a random sample of permutations is typically used.

This is done by drawing the from the set of nodes of the network, {1, ..., N}, without
replacement. The order in which the indices are drawn is de�ned as the new, permuted

ordering, for calculating y(Gw).

Krackhardt (1988) extended QAP to a multivariate setting. Now we have variables

{y(G), x1(G), ..., xK(G)} and are interested in testing whether there is a statistically

signi�cant correlation between y and the K other variables. To test for a relation-

ship between y and x1, Krackhardt suggests we �rst regress y and x1, separately, on

(x2...xK) to give residuals y∗1 and x∗1. Then one can perform QAP on y∗1 and x∗1, as

in the bivariate setting, where ρ̂0,Y ∗X∗1
is an estimate of the partial correlation between

y and x1 conditioning on the other (x2...xK). This process can be repeated for all K

covariates.

108See Hubert (1987) for a review of developments of this method.
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Chapter 3

Socially Close and Distant

Connections in Risk Sharing

3.1 Introduction

Risk is a salient fact of life in rural areas of developing countries. To cope with the

consequences of this risk, households have to rely on informal arrangements with social

connections (family and friends) in the absence of well-functioning formal credit and

insurance markets and poor government capacity. Indeed, social connections have been

shown to provide a high level of, though not complete, insurance.1 E�ective provision

of insurance requires social connections to be able to e�ectively monitor and enforce

informal arrangements, while also having su�ciently uncorrelated income processes so

as to be able to provide help when needed. However, they vary on dimensions related

to e�ective insurance provision (e.g. economic similarity, connection strength), thereby

leading to heterogeneity in informal insurance outcomes across households and social

networks.

In this chapter, I investigate theoretically and empirically how one feature of social

connections � social distance � a�ects risk sharing when informal arrangements cannot

0I am grateful to Orazio Attanasio and Imran Rasul for their comments and guidance on this
project. I also thank Marcos Vera-Hernandez, Monica Costa-Dias, Kim Scharf, Sarah Smith, Mush�q
Mobarak, Michele Tertilt, Robert Townsend, Antonio Cabrales, Arun Advani, Laura Abramovsky,
Sonya Krutikova, Sonia Bhalotra, Pablo Branas-Garza and participants at the IFS work-in-progress
seminar, Middlesex University, RES Conference, DIAL Conference, ESWC (Montreal) and the EEA
Congress in Mannheim for useful comments and suggestions. Richard Audoly and Simon Robertson
provided excellent research assistance. Funding from the ESRC Grant ES/K00123X/1 is gratefully
acknowledged.

1For example, Rosenzweig & Stark (1989); Townsend (1994); Fafchamps & Lund (2003); Attanasio
& Szekely (2004); Angelucci et al. (2015) among others. Social connections are de�ned to be either
other households in the same village, or members of the same sub-caste or ethnic group; or extended
family members.
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be perfectly enforced. In such a setting, socially close connections � direct connections

� should be better able to enforce informal arrangements, making them more valuable

for risk sharing than socially distant (indirect) connections. However, they may o�er

fewer opportunities for risk sharing � they may be more economically similar and thus

have more positively correlated income processes relative to distant connections, and

also be fewer in number given costs of forming connections � thereby undermining

their e�ectiveness in providing risk sharing. Thus, a trade-o� may emerge between risk

sharing opportunities and enforcement, which in�uences the relationship between risk

sharing and socially close and distant connections.

To study the e�ects of this trade-o� on the relationship between risk sharing and

socially close and distant connections, I specify a simple theoretical model of risk sharing

in networks based on Ambrus, Mobius & Sziedl (2014).2 The model incorporates both

imperfect enforcement of informal arrangements, and varying opportunities for risk

sharing from socially close and distant connections. The latter arise from allowing

incomes of socially close connections to be more positively correlated than those of

distant connections; and from variation in the number of households at di�erent social

distances. I use this set-up to obtain comparative statics of how risk sharing and

welfare vary with the number of socially close and distant connections in a network, as

opportunities for risk sharing change. It is not possible to obtain the comparative statics

analytically, so I numerically simulate the model to obtain qualitative predictions that

are then veri�ed empirically.

The theoretical analysis indicates that when enforcement concerns dominate, risk

sharing (and welfare) increases with the number of socially close connections. Con-

versely, when opportunities for risk sharing are particularly important, risk sharing

and welfare fall (increase) with the number of socially close (distant) connections. For

parameter values where both concerns are relevant, the trade-o� between enforcement

and risk sharing opportunities generates an inverse-U shaped relationship between the

extent of risk sharing (and welfare) and the number of socially close connections in a

network. Networks with few socially close and many socially distant connections have

low enforcement, which leads to low risk sharing; while networks with very high numbers

of socially close connections and few or no distant connections have strong enforcement,

but limited opportunities for risk sharing, which dampens risk sharing thereby leading

to the inverse-U shaped relationship.

The empirical analysis draws on data on within-village extended family networks in

rural Mexico. The extended family network forms a crucial source of informal insurance

2A network is a collection of all households connected either directly or indirectly through social
connections, and the connections between them.
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in this setting (Angelucci et al. 2015), making it a particular relevant network to study.

The data is exceptionally detailed, with information on within-village, cross-household

extended family (speci�cally parent, child and sibling) connections of the household

head and his spouse, and a panel of socio-economic variables, for all households in over

500 poor, marginalised villages. The former allows me to overcome a key empirical

challenge: identifying socially close and distant connections. I de�ne these according

to a network-theoretic notion of social distance: two households are considered to be

socially close if there is a direct family connection (sibling, parent, child) between

them; and socially distant if there is an indirect (e.g. sibling's spouse's sibling; or

uncles, cousins) connection between them. The census of all households in the village

allows me to calculate accurate measures of these within the village. This is particularly

important since network measures constructed from a sample of the network are subject

to substantial non-classical measurement error, which in turn generates large biases in

regression estimates (Chandrasekhar & Lewis 2011).

In a �rst step, I investigate how risk sharing opportunities vary with social distance,

making use of information on the occupation of the household head, as well as of house-

hold income. I document that the heads of socially close households are more likely to

be engaged in the same occupation than those of socially distant households. This simi-

larity in occupation choice also translates into similarities in income processes: incomes

of socially close households are more positively correlated than those of socially distant

households. Moreover, socially distant connections are more numerous on average than

socially close connections. Both these �ndings indicate that socially distant connections

provide more risk sharing opportunities in this context.

The next step of the analysis considers the implications of this variation in risk

sharing opportunities on the relationship between risk sharing and the average num-

ber of socially close and distant connections in a household's network. Risk sharing

is measured as the response of changes in household log consumption to �uctuations

in household log income net of network-level aggregate resources. Consumption is a

particularly apt measure of risk sharing, since it provides a summary measure of all risk

sharing instruments used by households. Moreover, though this measure of risk sharing

has been commonly used in the literature, (Townsend 1994 among others), it can also

be motivated from the theoretical model.

The availability of panel data at the household level, as well as data on a large

number of within-village extended family networks allows me to at least partially ac-

count for unobserved variables that might be correlated with both my measures of the

number of socially close and distant connections and the risk sharing measure. This is

important, since though the extended family network can be considered to be at least
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partially exogenous (households do not choose their siblings or parents), choices related

to marriage, household formation and migration make the within-village extended fam-

ily network endogenous. The longitudinal dimension at the household level allows me to

di�erence out �xed household level unobserved variables that might be correlated with

both the within-village extended family network (e.g. ethnicity) and risk sharing. I also

include network-time �xed e�ects to account for common network-level unobservables

(e.g. unobserved local market conditions), including those that vary over time.

In addition, I conduct additional robustness checks to show that the �ndings are

unlikely to be driven by systematic variation in network structure by wealth; or by

measurement error in the network. Finally, the availability of such a large number of

within-village extended family networks (unusual in the networks literature given the

costs of collecting accurate information on social connections), allows me to conduct

valid inference and obtain e�cient estimates.

The �ndings indicate that households in networks with more socially distant con-

nections achieve better risk sharing than those with few distant connections: increasing

the number of socially distant connections by one standard deviation (23 households)

from the sample average (~ 20 households) reduces the response of household log con-

sumption to �uctuations in log income by 20%. By contrast, the number of socially

close connections has no e�ect on risk sharing. These results are not driven by wealthy

households having few socially close connections and many distant connections within

the village: the data indicate no signi�cant correlation between wealth and the number

of a household's socially close and distant connections within the village. Finally, they

are also robust to measurement error in the network: changing the assumptions on who

is identi�ed to be a family connection doesn't alter the conclusions.

Thus, networks with more socially distant connections, which o�er more opportuni-

ties for risk sharing provide higher informal insurance than the more close-knit networks

with fewer socially distant connections and many socially close ones, highlighting the

importance of su�cient risk sharing opportunities for the successful functioning of so-

cial network based informal insurance. These result indicate `the strength of weak ties',

to borrow the term proposed by Granovetter (1973), for the e�ective functioning of risk

sharing arrangements in extended family networks. Granovetter (1973), who coined

this term when studying information �ows, argued that weak `acquaintance' ties are

valuable since they facilitate the �ow of (new) information between closely knit groups

of individuals. In the context of risk sharing, socially distant connections are valuable

since they provide a large number of less positively correlated income streams, thereby

improving opportunities for risk sharing.

My �ndings are also important for the design of e�ective policies. Decomposing the
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e�ects of socially close and socially distant connections provides suggestive evidence

on the key constraints facing informal insurance, and thus where policy intervention

might be bene�cial. This is important to know since well intentioned programs such

as those that for example aim to improve risk sharing against aggregate shocks, could

crowd out informal risk sharing in settings with imperfect enforcement of contracts,

and reduce overall welfare (Attanasio & Rios-Rull 2000). My results indicate that

insu�cient opportunities for risk sharing limit the extent to which social connections

can help households cope with the consequences of risk. Thus, policies that allow

socially close connections to diversify their income sources might positively impact risk

sharing.

Related Literature This paper contributes to a number of literatures. First, it adds

to a growing literature investigating how variation in the network architecture a�ects

informal risk sharing patterns.3 A number of theoretical studies have shown that vari-

ous measures of network structure, such as the length of cycles, the presence of common

connections (support), how close-knit a network is (viscosity), and the extent to which a

network spreads out (expansiveness), relate to whether a network can sustain informal

risk sharing in the presence of frictions such as imperfect enforcement, and imperfect

information (Bloch et al. 2008; Jackson et al. 2012; Ali & Miller 2013; Ambrus et al.

2014). Empirically, studies by Krishnan & Sciubba (2009), Ligon & Schechter (2012),

Kinnan & Townsend (2012) and Chandrasekhar et al. (2014) have considered the im-

plications of network architecture and household position in the social network on risk

sharing arrangements and patterns in Ethiopia, Thailand and India. This study builds

on this literature by incorporating an important driver for insurance � risk sharing

opportunities � and considering how this relates theoretically and empirically to the re-

lationship between the extent of risk sharing and the number of connections at di�erent

social distances. A closely related paper is Angelucci et al. (2015), which uses the same

data to investigate how extended family connections a�ect consumption and invest-

ment decisions of households in the context of a conditional cash transfer programme.

They document that the presence of extended family networks in�uences households'

consumption and investment decisions, and also uncover heterogeneity in these e�ects

by the architecture of the underlying network, though they do not shed light on the

drivers of this heterogeneity.

Second, it contributes to our understanding of how social distance a�ects economic

outcomes in poor, rural economies. The bulk of this literature has focused on the ef-

3More generally, it contributes to our understanding of informal risk sharing arrangements in de-
veloping countries. Key contributions to this literature include Townsend (1994), Ligon (1998), Ligon
et al. (2003) and Kinnan (2014) among others.
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fects of social distance on alleviating constraints to formal and informal contracts and

arrangements. For example, Fisman et al. (2012) document that Indian bank o�cers

make more loans to clients from the same caste, and these perform well, suggesting

that socially close individuals are able to more e�ectively share information. Breza &

Chandrasekhar (2015) show, using a �eld experiment, that socially close peer moni-

tors encourage households to save more, while Chandrasekhar et al. (2014), show that

socially close ties can cooperate without external enforcement in a lab-in-the-�eld ex-

periment, while distant ties are unable to do so.

Finally, the paper also contributes to our understanding of how extended family

networks, an extremely in�uential institution in developing countries, a�ect household

outcomes. In particular, they have been shown to play critical roles in shaping risk

sharing outcomes (Foster & Rosenzweig 2001; Fitzsimons et al. 2015), facilitating in-

vestments (Angelucci et al. 2010; Baland et al. 2015) and help with job search (Luke &

Munshi 2006; Magruder 2010 and Wang 2013). This paper enhances our understand-

ing of the features of these networks that enhance and limit the e�ective provision of

informal insurance.

The rest of the paper is structured as follows: Section 3.2 outlines the theory that

guides the empirical analysis. Section 3.3 describes the data used, including details on

how extended family connections are identi�ed. Section 3.4 then details the empiri-

cal model while Section 3.5 displays the results and conducts some robustness checks.

Finally, Section 3.6 concludes.

3.2 Conceptual Framework

To guide the empirical analysis, I lay out a simple, stylised model of risk sharing in

networks that builds on Ambrus et al. (2014) and embeds the following features (i)

imperfect enforceability of informal arrangements; and (ii) di�ering opportunities for

risk sharing from socially close and socially distant connections. I use the model to

generate comparative statics on the relationship between risk sharing and welfare and

the number of socially close and distant connections.

3.2.1 Setting

K households are embedded in a pre-existing network, represented as a graph G =

(N,L), which consists of a set of households, N = {1, ...,K} and a set of links or

connections between households, L = {(i, j)}i∈N ;j∈N . If i and j are directly linked,

then (i, j) ∈ L. Links are taken to be undirected so that (i, j) ∈ L implies that

(j, i) ∈ L. Each household has a value associated with each connection, denoted by xij
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for the value to a household i of its connection with a household j, which is determined

outside the model. I interpret xij to be the expected utility value of future transfers

that i expects to receive from j.

Socially close and distant connections are de�ned according to a graph-theoretic

measure of social distance. For any two households i and j in the same network, the

social distance dij is de�ned as the number of links that i has to go through to get to

j in the network. I take socially close households to be those for whom dij = 1; and

socially distant to be those for whom 1 < dij <∞.4

Households face a risky endowment, yi, which for simplicity, I assume can take two

values: h, with probability p, and l with probability (1− p); and with h > l; 0 < p < 1.

They can share this risk through bilateral transfers, denoted by tij which represents

the net transfer from i to j, with their direct (or socially close) connections. There are

no transaction costs in this model, so it is natural to impose that tij = −tji, which
means that the net transfer i makes to j is equivalent to the net transfer j receives

from i. There is no storage in the model. Household consumption is thus calculated as

ci = yi −
∑
ij∈L

tij . Households gain utility from their own consumption, ci and from the

value of their connections, xi =
∑
j:ij∈L

xij . I assume that the utility of consumption and

from connections is additively separable, which yields the following objective function:

u(ci) + v(xi)

where the functions u(.) and v(.) are assumed to be increasing and concave in their

arguments.5

Transfer arrangements cannot be perfectly enforced in this setting, and so need

to be self-sustaining. This is achieved by the following punishment mechanism: if a

household i doesn't make a transfer to j, it loses the associated link value xij . This

implies a connection-speci�c incentive compatibility constraint of this form:

u(ci) + v(xi) ≥ u(ci + tij) + v(xi − xij) ∀(i, j) ∈ L

Since the incentive compatibility constraint is connection-speci�c, households with

more than 1 socially close connection will face multiple incentive compatibility con-

4dij =∞ if i and j are not in the same network.
5The model is static so as to keep it tractable. In a dynamic model, one would need to keep track

of changes to the network structure in all possible continuation values. This is an extremely complex

object, which expands greatly the space of possible continuation values (e.g. there are 2
K(K−1)

2 possible
undirected network structures for a network with K households), making it extremely computationally
challenging to solve the model.
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straints. Moreover, the net transfers from i to all its socially close connections appear

in each of its incentive compatibility constraints. This feature complicates analytic

derivation of optimal transfers, other than in very speci�c cases (e.g. where consump-

tion and connection value are perfect substitutes as in Ambrus et al. (2014)).

Households can observe all the endowments received by all other households, and

all transfers made and received. Thus, there are no issues of imperfect information.

Overall, this environment is consistent with village-based extended family networks,

households are able to closely monitor each other, and share information, but may not

be able to perfectly enforce informal arrangements.

Endowment Processes Across Households and Risk Sharing Opportunities

Opportunities for risk sharing depend on the correlations in endowments of households

embedded in the same network. Denote by R = [rij ]i∈N ;j∈N the matrix of pairwise

endowment correlations for all pairs of households in a network, with the diagonal set to

1. When endowments are identically and independently distributed across households,

a widely made assumption which I will consider to as a benchmark assumption, all

o�-diagonal terms in R are set to 0 and each additional connection, whether socially

close or distant, would o�er the same opportunity for risk sharing.

I introduce variation in the opportunities for risk sharing from socially close and

distant connections by allowing the pairwise correlation in endowments, rij , to depend

on social distance. Speci�cally, I assume that the pairwise correlation in endowments

of socially close households i and j is positive, and more so than that for two socially

distant connections, i and k: rij > rik. Though optimal risk sharing would imply that

households select as risk sharing partners those with uncorrelated or negatively cor-

related income streams, closely connected households in the empirical setting studied

in this paper have, on average, positively correlated income streams (as will be shown

in Section 3.3), making this a suitable assumption. Studies from other settings pro-

vide further support for this assumption: Fafchamps & Gubert (2007) document that

risk sharing connections tend to be geographically close (and hence be likely to have

positively correlated incomes) in rural Philippines, while in India, households sort into

occupations by sub-caste (Munshi & Rosenzweig 2006), a crucial institution for informal

risk sharing (Mobarak & Rosenzweig 2014; Munshi & Rosenzweig 2016).

The underlying network structure in�uences which other households one's endow-

ment is correlated with. Speci�cally, households in close-knit networks will be more

likely to experience similar endowments (when the pairwise correlation in endowments

is positive), than in more loosely connected networks.6 To illustrate this, consider the

6The underlying network architecture could also generate feedback e�ects when pairwise endowment
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two networks displayed in Figure 3.1. The network in the left panel is more close-knit

than that on the right panel, and households on average have more socially close con-

nections in that network. Next, introduce a positive correlation, rij = δ ∀(i, j) ∈ L,
with 0 ≤ δ ≤ 1, in the endowments of socially close connections in the two networks,

allowing the correlation to decline geometrically with social distance. In the network

in the left panel, rij = rjk = rik = δ, while in that in the right panel, rij = rjk = δ

and rik = δ2. Thus, the endowments of i and k will be more positively correlated in

the network on the left panel, than that on the right panel. This di�erence increases

the chances of states where all households experience the same endowment (and so

where no risk sharing is possible) in the network in the left panel, relative to that in

the right panel. Thus, with positive correlations in the endowments of socially close

households, the underlying network structure will also in�uence the extent to which

endowment realisations are correlated with one another, and so a�ect opportunities for

risk sharing.

Figure 3.1: Example Networks

Model Solution Ambrus et al. (2014) show that this problem can be re-cast as that of

a utilitarian social planner choosing bilateral transfers so as to maximise a weighted sum

of households' expected utility (equation 3.1) subject to an aggregate budget constraint

(3.5) and a set of link-speci�c incentive compatibility constraints (equation 3.2).

max
{tij}(i,j)∈L

∑
i∈L

λi{u(ci) + v(xi)} (3.1)

subject to

u(ci) + v(xi) ≥ u(ci + tij) + v(xi − xij) ∀ (i, j) ∈ L (3.2)

tij = −tji (3.3)

correlations are non-zero. If a fraction of a household's socially close connections are also directly
connected with one another, the positive correlations among their endowments generate a feedback
e�ect on the household's own endowment, and so on.
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ci = yi −
∑

j:j∈Ni(g)

tij (3.4)

∑
i∈N

ci ≤
∑
i∈N

yi (3.5)

where λi is a positive planner weight such that
∑
i∈N

λi = 1.

Obtaining an analytical solution to this problem through the usual Karush-Kuhn-

Tucker (KKT) conditions is not possible since they a complicated system of nonlinear

simultaneous equations when any incentive compatibility constraint binds.7 Ambrus

et al. (2014) instead characterise the optimal solution in terms of the marginal social

welfare gain of providing additional transfers to households.8 The optimum solution for

a given state of the world is such that the network partitions into `risk sharing islands',

where within an island, households equate their marginal social gain. On the border

of the islands, there will be households for whom at least one incentive compatibility

constraint binds in either direction. Di�erent states of the world can partition the

same network into di�erent risk sharing islands, depending on the distribution of the

endowment realisation across households in di�erent network positions, and the value

of xij .

That there is no closed form solution to the optimal transfers vector, or optimal

consumption, poses a challenge to obtaining the types of predictions needed to guide

the empirical analysis. To make progress, I solve the model numerically for a wide range

of parameters, and use the simulations to generate qualitative predictions to verify in

the data.

3.2.2 Comparative Statics

I use numerical simulations to shed light on how enforcement constraints, and opportu-

nities for risk sharing a�ect how risk sharing varies with the number of socially close and

distant connections in a household's network. In the model, enforcement constraints

are embedded in the incentive compatibility constraints (3.2). Opportunities for risk

sharing are allowed to vary in two ways: (i) allowing for more positive correlations in

the endowment processes of socially close connections; and (ii) by varying the number

7When no incentive compatibility constraint binds, the KKT conditions are much simpler and yield
an analytical solution.

8The marginal social welfare gain and optimal solution are fully de�ned and described in Appendix
3.7.1.
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of socially close and distant connections.9

The speci�c questions to answer through the simulations are:

1. Benchmark case: For a given network size, what is the relationship between risk

sharing (and welfare) and the number of socially close connections in a household's

network when endowments are identically and independently distributed across

households?

2. How does the extent of risk sharing (and welfare) change when opportunities for

risk sharing for socially close and distant connections are changed by:

(a) allowing for more positively correlated endowment streams for socially close

households?

(b) increasing the number of households in the network?

Measuring the Extent of Risk Sharing and Welfare

To answer these questions, I need a metric by which to measure the extent of risk

sharing. The optimality conditions derived by Ambrus et al. (2014) imply one possible

measure, based on household consumption and endowment realisations. This measure

has the advantage of being easy to compute empirically, as long as panel data on

consumption and income are available. The optimality conditions of Ambrus et al.

(2014) indicate that at the optimum, the network will partition into a set of state-

speci�c endogenous risk sharing islands. Within the islands, households will equate

their marginal social gain, ∆i, which, if the household is unconstrained in all of its

incentive compatibility constraints, is simply a function of its (weighted) marginal utility

of consumption, λiu(ci). If, however, the household is constrained in any of its incentive

compatibility constraints, ∆i will be a weighted sum of the household's own (weighted)

marginal utility of consumption, and that of the connection with whom his incentive

compatibility constraint binds the most. Thus the marginal social gain is related to

households' marginal utility of consumption.

When no incentive compatibility constraint binds in all states � which corresponds

with the benchmark of perfect risk sharing � there will be one risk sharing island

only in the network and all households will equate their (weighted) marginal utility of

consumption across all states (denoted by the subscript s below). This means that the

ratio of a household's marginal utility of consumption across any two states will be a

function of the ratio of aggregate network resources in the two states. That is,

9Note that the endowments of socially distant connections are also likely to be positively correlated,
but the extent of the correlation will be lower than that for socially close connections.
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u
′
(cis)

u′(cis′)
=
u
′
(cjs)

u′(cjs′)
=
µs
µs′

where µs is a multiplier associated with the aggregate resource constraint, and u
′
(.)

represents the marginal utility of consumption.

However, when some incentive compatibility constraint binds so that there is more

than one risk sharing island, this equality will no longer hold. In particular, incentive

compatibility constraints are likely to bind when a household gets a good endowment

draw (h) and its connections (close, or potentially even distant ones) receive a poor

endowment draw (l). Thus, the cross-sectional distribution of the ratio of marginal

utilities will be correlated with the cross-sectional distribution of the ratio of endowment

realisations, even after accounting for aggregate resources. This observation forms the

basis for the measure of risk sharing.

Assuming that u(.) is of the constant relative risk aversion (CRRA) form, u(cis) =

c1−ρ
is − 1

1− ρ
, where ρ 6= 0 is the relative risk aversion parameter, and taking logs of marginal

utilities implies that ∆log(cis) = ∆log(cjs) = ∆log(µs) when there is one risk sharing

island only. Thus ∆log(cis) should move with aggregate network resources only. How-

ever, when there is more than one risk sharing island, ∆log(cis) will be correlated with

∆log(yis) even after accounting for changes in aggregate resources. The extent of this

correlation will relate to the extent to which the incentive compatibility constraints

bind. Thus, this correlation can be used as a measure of risk sharing: the closer the

correlation is to 0, which is the perfect risk sharing benchmark, the higher the extent

of risk sharing.

The conceptual framework also implies a second measure, which also provides and

indication of welfare: the household's and planner's expected utility of consumption,

Eu(ci) and
∑
i∈N

λiEu(ci) respectively. Given that the function u(.) is concave, house-

holds would gain higher utility from having a smoother consumption stream across

states of the world, and so better risk sharing should increase both of these. This

measure is empirically challenging to compute since it requires knowledge of the under-

lying endowment process. The theoretical analysis will include both measures, while

the empirical analysis will draw on the �rst measure only.

Details of the simulations

I numerically solve the model for the optimal consumption vector in all possible states

of the world for given network structures. I focus on simulating the model for all non-
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isomorphic10 connected networks of sizes 3 and 5, for which only a relatively small

number of connected networks need to be considered, and for which there is variation

in the numbers of socially close and distant connections across networks.11
′12

I make the following assumptions for the simulations:

A1. Utility is of a Constant Relative Risk Aversion (CRRA) form: u(ci) =
(ci)

1−ρ − 1

1− ρ
,

where ρ is the coe�cient of relative risk aversion.

A2. Planner weights are equal, i.e. λi = 1
n ∀i.

A3. Link values are constant across the network. That is xij = x̄ ∀(i, j) ∈ L
A4. v(xi) = xi

Assumption A3 implies that each socially close connection has the same value associ-

ated with it. Given these assumptions, I can solve the optimisation problem described

by the Equations (3.1) - (3.5) for a given network to obtain optimal transfers, and

through this optimal consumption.13 Given the optimal consumption vector, I can cal-

culate the measure of risk sharing � the correlation between ∆log(cis) and ∆log(yis) net

of changes in aggregate network resources �, as well as the welfare measures � expected

household consumption utility, Eu(ci), and the social planner's weighted expected con-

sumption utility
∑
i∈N

λiEu(ci). To shed light on the speci�c questions outlined at the

start of this subsection, I compare these measures across networks with varying num-

bers of average socially close and distant connections for di�erent values of correlations

in the pairwise endowment.

Simulation Results

I start by �xing network size, and consider how risk sharing, and planner and house-

hold expected utility of consumption vary with the average number of socially close

connections in a network,14 in the benchmark case where endowments are identically

and independently distributed (i.i.d.) across households.

To illustrate the implications of the model, I focus on networks with 5 households,

10Two networks are isomorphic if relabelling of nodes in one network generates the other network.
11Simulating the model for a representative sample of networks of larger sizes is complicated, since

the number of non-isomorphic connected networks of size n is not known. Methods exist (e.g. McKay
1983) to calculate these for small n, but they indicate an exponentially fast increase in the number of
possible connected network structures as n increases. For example, for n = 5, there are 21 connected
networks possible, but this increases to 11,117 for n=8 and over 11 million for n = 10.

12In an ongoing extension, I simulate the model for network structures similar to those in the data.
13Note that there can be multiple possible transfers vectors that maximise the planner's expected

utility. However, the optimal consumption vector will be unique since the optimisation problem involves
maximising a concave function on a convex constraint set.

14Since network size has been �xed, the e�ects for socially distant connections will be the inverse of
those for socially close connections.
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3.2. Conceptual Framework 3. Socially Close and Distant Connections in Risk Sharing

and �x parameter values for h, l, ρ and x̄ at 4.0, l = 1, ρ = 2, p = 0.4 and x̄ = 0.1.15

Figure 3.2 displays how risk sharing, and planner and household expected utility of

consumption vary with average number of socially close connections when endowments

are i.i.d. across households. The Figure indicates that as the average number of socially

close connections in a network increases, risk sharing improves, as indicated by declin-

ing correlations between ∆log(cis) and ∆log(yis) net of changes in network aggregate

resources. Planner expected utility of consumption increases as well, as does household

expected utility of consumption.

The underlying intuition for these patterns is as follows: in networks with many

socially close connections on average, a household experiencing a low endowment can

expect to receive more transfers before any incentive compatibility constraint towards

it binds. By contrast, in networks with fewer socially close connections on average, for

the same state of the world, a household experiencing a low endowment can expect to

receive direct transfers from fewer close connections. Distant connections could provide

indirect transfers, but these will be more limited: indirect transfers need to be made

through an intermediary household, which will only pass on transfers until its incentive

compatibility constraint with the household in need binds. This transfer amount will

be ≤ the amount that could be transferred to the household had the connection been

socially close rather than distant. As a result, households in networks with more socially

close connections on average experience better risk sharing than those with fewer socially

close connections.

I next consider the consequences of varying opportunities for risk sharing by in-

troducing positive correlations, rij , in the endowments of socially close households. I

allow rij to take values between 0 and 0.3.16 Figure 3.3 displays how risk sharing and

planner expected utility of consumption vary with the average number of socially close

connections in a network; and how household expected utility of consumption varies

with the household's number of socially close connections. It does so for di�erent levels

of pairwise correlation in the incomes of socially close households. Overall, risk sharing

and planner and household expected utility worsen as the pairwise endowment correla-

tion increases. This is because as the pairwise correlation increases, the probability of

states where no or little risk sharing is possible also increases, leading to a reduction in

15These values have been chosen to ensure that some incentive compatibility constraint binds. When
no incentive compatibility constraint binds, all networks achieve perfect risk sharing, and similar levels
of expected consumption utility.

16The algorithm used to simulated correlated binary draws �rst converts the correlation between
binary endowments into a correlation for a joint normal process. The resulting covariance matrix
needs to be positive. However, this is not the case for all values of the binary correlation. In particular,
for values above 0.3 the covariance matrix is not positive de�nite, and hence no correlated draws can
be simulated for correlations > 0.3.
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risk sharing and expected utility of consumption.

Moreover, as the pairwise endowment correlation increases, such that opportuni-

ties for risk sharing from socially close connections fall faster relative to those from

socially distant connections, a trade-o� emerges between enforcement concerns and risk

sharing opportunities, which generates an inverse U-shaped relationship between the

extent of risk sharing and the number of average socially close connections: networks

with a moderate number of socially close connections on average obtain better risk

sharing than networks with few or very many socially close connections.17 A similar,

starker relationship is obtained for the planner's, and household's expected utility of

consumption.

Finally, I consider another margin for changing network-based risk sharing oppor-

tunities: changing the size of a network by adding households as either socially close or

distant connections. Classical models of risk sharing imply that larger groups should

achieve higher risk sharing, since additional households introduce less correlated endow-

ment streams, and thus expand opportunities for risk sharing. However, models of risk

sharing in groups with limited commitment and coalitional deviations (Genicot & Ray

2003) indicate that adding households to a network might lead to worse risk sharing, or

even be unable to sustain risk sharing, since the additional households might destabilise

existing risk sharing groups. It is thus important to consider how additional households

a�ect risk sharing in this model, and whether these e�ects vary by where the additional

household is added, i.e., whether it is socially close to all other households, or socially

distant to some households.

To assess the implications of this, I investigate how the planner's expected utility

changes when the network size is increased from 3 to 5 households. Figure 3.4 displays

the simulation results for the case where endowments are i.i.d. across households.18 It

shows that larger networks achieve higher expected utility, regardless of whether the

new household is added as a socially close household to all other households, or as

a socially distant connection to some households. However, the increase in expected

utility is mildly higher if the new household is socially close rather than socially distant.

Thus, increasing opportunities for risk sharing by increasing the number of households

in the network improves risk sharing.19

17Note that lower values of the risk sharing measure imply better risk sharing.
18Introducing positive pairwise correlations in endowments of socially close connections yields a

similar picture.
19Though not shown here, the correlation between ∆log(cis) and ∆log(yis) net of changes in network

aggregate resources also falls as the size of the network increases.
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Insights from Alternative Parameter Values The analysis thus far has focused on

one set of parameter values. Do the insights gleaned thus far extend to other parameter

values, or are there any that are speci�c to the values in the example? To investigate

this, I vary the values of h and l, the gap between which can be thought of as a

proxy for the amount of uncertainty faced by a household in autarky. As this gap

falls, imperfect enforcement concerns also fall, since the value of transfers needed to

equate households' marginal utilities (and thus achieve perfect risk sharing) also falls.

Instead, opportunities for risk sharing become more important, eventually leading to a

monotonic, negative relationship between the planner's expected utility of consumption

and average number of socially close connections. This is illustrated in Figure 3.5

illustrates when values of l are increased from 1 to 1.8 and then 2.6 with h �xed at 4.

Summary of implications from simulations The simulations thus imply the fol-

lowing qualitative predictions:

1. (Benchmark Case) For a given network size, when endowments are i.i.d. across

households, networks and households with more socially close connections will

achieve higher risk sharing and welfare.

2. When opportunities for risk sharing fall more for socially close connections com-

pared to socially distant ones, the latter become more important for risk sharing.

A trade-o� emerges between risk sharing opportunities and enforcement, yielding

an inverse U-shaped (U-shaped) relationship between the extent of risk sharing

and the number of socially close (distant) connections in a household's network.

3. Improving opportunities for risk sharing by adding new households to a network

improves risk sharing and welfare.

I now investigate whether there is support for these observations empirically in data on

within-village extended family networks in rural Mexico.

3.3 Context and Data

3.3.1 Context

The empirical setting is a set of poor, marginalised villages in rural Mexico, which were

targeted by a conditional cash transfer anti-poverty programme, PROGRESA (later

called Oportunidades, and now called Prospera). These villages are small (47 households

on average), isolated � the closest city with at least 100,000 inhabitants is around 62 km

away on average � and have limited access to formal markets: in the data (described
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further below), only 3% of villages have a post o�ce, 25% a public phone, while fewer

than 20% have a government subsidised Diconsa shop, and only 36% have a grocery

shop. Households in these villages are poor � only 40% have dwellings with good �ooring

materials, and 7% have access to piped water in their dwelling. A large proportion of

them (70%) rely on rain-fed agriculture as their main source of income, and are subject

to signi�cant risk: around 35% (25%) of households in the data experienced a crop loss

in 1998 (1999).

Despite facing signi�cant income risk, the data indicates limited ex-ante smoothing

of income: the vast majority of households (79%) engage in only one occupation. Among

those engaged in agriculture, most grow one crop � corn � only. This is consistent

with the presence of liquidity or insurance constraints, which prevent households from

diversify into higher-return but riskier and unfamiliar crops (e.g. Karlan et al. 2014).

Risk reducing technologies such as irrigation are uncommon: < 10% of households have

irrigated plots. Moreover, another common income diversi�cation strategy � migration

is not very common in this context: data from October 1998 indicates that only around

7.5% of households report having a household member who had migrated for work in

the 5 years preceding the survey, compared to 16% reported by Davis et al. (2002) for

a broader set of rural villages in Mexico.

Extended Family Networks are Important for Risk Sharing Households thus

face risky income streams, with limited recourse to formal �nancial instruments to

help cope with the consequences of this risk. Instead, informal tools, which rely on

pre-existing social connections play a crucial role for risk sharing. Existing evidence

indicates that the extended family, in particular, plays an important role in provid-

ing insurance. Angelucci et al. (2015) show that households in this sample (which is

the same as that used in their paper) rely on their within-village extended family con-

nections to share risk, and cannot reject perfect risk sharing among these networks:

households with within-village family connections have consumption streams which are

uncorrelated with their incomes, net of aggregate network level shocks. By contrast,

consumption and income co-move when the village is taken to be the relevant risk shar-

ing group. Descriptive analysis of interhousehold transfers sent and received by sample

households in the month prior to the survey also support the importance of the ex-

tended family for risk sharing in this context: the bulk of transfers (91% of monetary

transfers; 89% of the volume of monetary and in-kind transfers) received by households

are from relatives, while around 70% of monetary transfers sent to other households

are to relatives. Thus extended family networks play an important role in informal risk

sharing in this context, and will be the network within which I study the varying roles
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of socially close and distant connections for risk sharing.

I focus speci�cally on a household's within-village extended family network. This

will probably constitute only a subset of a household's extended family, since a fraction

is likely to reside in other villages or towns.20 These members might also be able to assist

households with risk sharing. However, note that these villages are relatively isolated

and have poor infrastructure, making it costly to send transfers or other help from

outside the village. Moreover, it is easier for within-village extended family connections

to o�er in-kind help, such as labour-sharing. Given these issues, it is plausible that

the within-village extended family connections are more e�ective in helping households

deal with idiosyncratic risk, while outside village connections might be more valuable

for coping with village level aggregate shocks, as well as very large idiosyncratic shocks.

3.3.2 Data

The empirical analysis draws on rich panel data collected to evaluate the Progresa

cash transfer programme. Data was collected on all households in 506 rural villages

in 7 states across Mexico over the period 1997-2003.21 Baseline data was collected

in Fall 1997, and follow up data was collected on 6-monthly intervals from May 1998

to November 2000, and then again in 2003, thus providing a relatively long panel.22

The panel dimension of the data is crucial for the analysis, since it allows me to con-

struct a measure of risk sharing, and also to account for �xed unobserved variables that

might generate spurious correlations between the measures of risk sharing and social

distance in the analysis. Moreover, the surveys also collected detailed socio-economic

information, including data on income from numerous sources, consumption, household

demographics, occupational and labor supply choices of all household members aged

≥ 8 years and migration.

The surveys did not, however, directly elicit information on inter-household extended

family connections. However, I can identify such connections by exploiting the Mex-

ican naming convention whereby individuals have 2 surnames � one from the father's

parental lineage and the other from the mother's parental lineage � to identify extended

family links across households within villages. I do so by applying an algorithm simi-

20Unfortunately, data limitations force me to restrict attention to within-village networks. To my
knowledge, no dataset contains information on individuals' or households' entire social network. Indeed,
collecting such data without implementing any geographic boundary is likely to be prohibitively costly,
and infeasible, even in developing country settings. Despite this limitation, the data used in this paper
provides a detailed picture of the within-village extended family network, along with a panel of socio-
economic variables including income and consumption, which is particularly suited to the study of risk
sharing.

21320 villages were randomly chosen to receive the intervention, with a further 186 villages remaining
as control villages. I pool together data from all the villages in the analysis.

22A further round of data, not used in this analysis, was collected in 2007.
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lar to that used by Angelucci et al. (2009), which is described in more detail below.23

Three features of this dataset make it particularly useful for studies related to networks.

First, I have available information on the exact paternal and maternal surnames of the

household head and spouse for 2 survey rounds (October 1998, and November 1999).

Second, the surveys interviewed all households in a village. This means that I can

apply the algorithm described in more detail below to identify all family links within a

village, and obtain a complete picture of the structure of within-village extended family

links as identi�ed by the algorithm. Having a census of all households in the village is

particularly important for the latter, since missing data on households or connections

between households can generate severe non-classical measurement error in measures of

the network, as well as in regression estimates (Chandrasekhar & Lewis 2011). Finally,

the detailed socio-economic variables available help in improving the accuracy of the

algorithm.24

Identifying Network Connections

I use a modi�ed version of the algorithm applied by Angelucci et al. (2009) to identify

within village extended family links using data from the October 1998 survey, which is

the �rst round for which the names information is available.25 The algorithm exploits

the Mexican naming convention whereby individuals have 2 surnames � one from the

father's parental lineage and the other from the mother's parental lineage � to identify

extended family links across households within villages. For example, the wealthiest

Mexican, Carlos Slim Helu, is known by his given name, Carlos, his paternal surname,

Slim, and maternal surname, Helu. I will use the surnames of the head and spouse of

a household to identify cross-household links. Since each individual has 2 surnames,

couple-headed households will have 4 surnames that will be used for this purpose.

Figure 3.6 provides an illustration of the matching algorithm. The Figure displays

5 households, with the surnames of the head of household displayed in blue boxes

and those of the spouse displayed in red boxes. H indicates the head of household

and S the spouse of the head. The head of household 1 has paternal surname F1, and

maternal surname M1, while his spouse has paternal surname F2 and maternal surname

M2. Their children would have F1 as their paternal surname and F2 as the maternal

surname, which is the surname combination of the head of household 2 and the spouse

23Algorithms based on surname combinations have also been used by Cruz et al. (2015). Information
on surnames has also been used to study intergenerational mobility (Guell et al. 2015; Clark 2014)

24As will be described below, the algorithm makes use of information on age, and information from
the household roster to reduce the likelihood of identifying spurious connections.

25Empirical results are very similar when I construct networks from the information in the 1999
survey or when I pool together both rounds and apply the algorithm to the pooled data.
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of household 3. Hence, there is a parent/child link between households 1 and 2; and

households 1 and 3. Moreover, siblings would have the same paternal and maternal

surnames, as is the case for the head of household 2 and the spouse of household 1. By

contrast, the head and spouse of household 5 have surname combinations that do not

match with any of the other households, indicating that they do not have any sibling

or parent/child connections with any of the other 4 households.

I combine the information from surname combinations with age restrictions to iden-

tify sibling and parent/child links within a village. Restricting links to be within the

same village helps reduce the likelihood of identifying spurious links.26 Sibling groups

are identi�ed as follows: two individuals are identi�ed to be part of the same sibling

group if they share the same paternal and maternal surnames, and if the age di�erence

between the oldest and youngest `sibling' is ≤ 30 years.27 For parental ties, two house-

holds are identi�ed to be related via parental/�lial ties if the paternal surname of the

(male) head and (female) spouse corresponds with the paternal and maternal surnames

of the head or spouse of the other household. In addition, I impose the condition that

the mother must be at least 15 years older than her eldest child, and at most 45 years

older than her youngest child.28

Descriptive Statistics of the Identi�ed Connections

The results of the algorithm are displayed in Tables 3.1 and 3.2. The algorithm identi�es

at least one household-level family link for almost 80% of couple-headed households

(households where both the head and spouse are present) and for 44% of non-couple

headed households. On average, couple-headed households have just over 3 family

connections within the village, including 2.67 sibling links, 0.31 parental links and 0.33

child links. Non-couple headed households are not only less likely to have a family

connection, but also have fewer connections - 1.21 on average.

26In addition, the use of the combination of two surnames also greatly reduces the likelihood of
spurious links being identi�ed.

27This di�ers from the algorithm used by Angelucci et al. (2015) who impose a weaker condition
that any two individuals identi�ed to have the same paternal and maternal surnames are siblings if
the age di�erence between them is at most 30 years. Their algorithm thus allows for cases where two
individuals identi�ed to be siblings may have siblings who are not identi�ed to be each other's siblings,
thus leading to errors in the identi�ed network structure.

28I experimented with a looser upper age cuto� for mothers, with little e�ect on the estimated
parameters. In Section 3.5.2, I show that tightening the age cut-o�s applied has little e�ect on the
parameter estimates.
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Table 3.1: Any connections of couple-headed and non-couple-headed households

Any Link Any

Parental

Link

Any

Child

Link

Any

Siblings

Couple-Headed Households 0.797 0.246 0.163 0.707

[0.007] [0.006] [0.003] [0.008]

N 19,143 19,143 19,143 19,143

Non-Couple-Headed Households 0.444 0.061 X 0.428

[0.010] [0.004] X [0.010]

N 4,428 4,428 4,428 4,428

Notes to Table: The table includes all households in the October 1998 round of data for whom

surname information was available. Couple-headed households are those with a co-resident spouse,

while non-couple-headed households are those without a co-resident spouse. All links are

inter-household connections within the household identi�ed by the algorithm described in Section

3.3.2. Standard errors clustered at the village level are in square brackets. The algorithm doesn't

identify, by de�nition, any child links for non-couple-headed households.
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Table 3.2: Number of connections of couple-headed and non-couple-headed households

Number

of Links

Number

of

Parental

Links

Number

of Child

Links

Number

of

Siblings

Couple-Headed Households 3.317 0.313 0.330 2.672

[0.155] [0.009] [0.010] [0.145]

N 19,143 19,143 19,143 19,143

Non-Couple-Headed Households 1.210 0.076 X 1.134

[0.065] [0.006] X [0.063]

N 4,428 4,428 4,428 4,428

Notes to Table: The table includes all households in the October 1998 round of data for whom

surname information was available. Couple-headed households are those with a co-resident spouse,

while non-couple-headed households are those without a co-resident spouse. All links are

inter-household connections within the household identi�ed by the algorithm described in Section

3.3.2. Standard errors clustered at the village level are in square brackets. The algorithm doesn't

identify, by de�nition, any child links for non-couple-headed households.

A detailed discussion of the algorithm performance and measurement error associ-

ated with a similar algorithm can be found in Angelucci et al. (2009). They show that

the average number of identi�ed links is within the range of those reported by similar

households in the Mexican Family Life Survey, which directly elicited this information.

Moreover, the proportion of individuals and households for whom implausible numbers

of sibling links, and/or multiple possible parental links are identi�ed is very small, which

is reassuring.29 Finally, analysis in Angelucci et al. (2009) indicates that the identi�ed

networks are correlated with observed characteristics in ways that are reasonable, and

can be explained by economic models. In addition, I conduct some sensitivity analysis

of our parameter estimates by varying the age restrictions in the algorithm, and �nd

that the qualitative results continue to hold for all the alternatives considered. These

results are shown in Section 3.5.2.

For the analysis, I retain households in networks with at most 100 households.30

29In one village, a large proportion of individuals had similar surname combinations, which reduced
greatly the power of the algorithm in identifying family links. I thus drop this village from the subse-
quent analysis.

30I impose an upper limit on network size so as to alleviate potential biases arising from spurious
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This implies a �nal sample of just over 16,000 households in close to 2500 networks in

501 villages.

Identifying Socially Close and Socially Distant Connections

I use a network theory based de�nition of social distance to de�ne socially close and

distant connections. To identify these, I use the connections generated by the algorithm

to construct the map (or network graph) of cross-household extended family links within

the same village. Two households are considered to be part of the same network if there

exists a path through the network for one household to get to the other: essentially, they

are part of the same network if they are connected either directly or indirectly through

sibling, parent and child links. Based on the network graph, I can identify the socially

close and socially distant connections for each household. Socially close connections

are those with whom a household has a direct link: siblings, parents and adult children

of the household head and spouse. Socially distant connections, by contrast, are those

households that are part of the same network, but to whom the household is only

indirectly connected. In this context, they are the siblings and parents of one's siblings'

spouses; or intergenerational connections such as grandparents, uncles and aunts and

cousins.

Table 3.3 displays descriptive statistics of measures of the network structure for

households in the estimation sample. It focuses particularly on variables relating to

social distance: the size of the network, numbers of socially close and socially dis-

tant connections (at the network- and household-levels), and the network average path

length.

The table indicates that the average (median) household is in a network with 24.3

(14) households, of whom 3.6 (3) are socially close connections, and 19.7 (9) are socially

distant. Thus, households are in networks with around 6 times more socially distant

connections than close connections on average. Overall, the networks are closely knit,

with an average shortest path length across networks of 2.52. Finally, the table also

indicates that there is substantial variation in these measures of network structure across

households.

connections identi�ed by the algorithm, which would be more likely in particularly large networks.
This condition leads to dropping around 1000 households in 6 networks.
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Table 3.3: Descriptives of network structure

Measure Mean Std Dev Median Min Max

Size 24.34 24.62 14 2 96

Avg. Socially Close Connections 3.64 2.45 3.36 1 25.09

Avg. Socially Distant Connections 19.70 23.18 9.29 0 84.56

Avg. Path Length 2.52 1.35 2.24 1 6.52

HH Socially Close Connections 3.45 2.76 3 1 16

HH Socially Distant Connections 19.89 23.51 9 0 94

N 16,053
Notes to Table: The Table includes 16053 households in 2487 extended family networks with between 2-100

households constructed from family connections identi�ed using the algorithm described in Subsection 3.3.2.

Size captures the number of socially close and socially distant connections + 1 for each household in the

network. Note that I trim households with outlying values of degree (the top 1% of the degree distribution).

3.3.3 Do socially close and distant connections o�er di�erent oppor-

tunities for risk sharing?

A central argument of this paper is that opportunities for risk sharing are important

for the e�ective functioning of informal insurance arrangements; and this is a margin

along which socially close and distant connections might vary for two reasons: (i) they

may vary in their economic similarity; and (ii) they may vary in number. I now verify

whether this is the case in the data. When risk sharing opportunities are important,

households should choose to form risk sharing connections with those households who

have uncorrelated or even negatively correlated income streams to their own. However,

enforcement frictions suggest sharing risk with connections with whom one interacts

frequently, e.g. family, who might also be similar on other dimensions, as I document

below.

The descriptive statistics of the network architecture displayed in Table 3.3 in the

previous section o�er some initial evidence that supports the hypothesis that socially

distant connections might o�er more opportunities for risk sharing than socially close

connections. They indicate that households have on average almost 6 times as many

socially distant connections as socially close ones.

However, socially distant connections might also provide more opportunities for risk

sharing if they are more economically di�erent than socially close connections. This

might happen for a few reasons: �rst, socially close connections (parents, adult non-

resident children and siblings) might have similar endowments and abilities relative to

socially distant connections, leading to similar occupation choices, and hence similar in-

come processes. These could further be reinforced by assortative mating in the marriage
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market. Moreover, production technologies and inputs that socially close households

have access to might also be more similar in quality than those of socially distant con-

nections. For example, if the main source of land for agriculture is through allocations

from one's parents, two brothers will be more likely to farm neighbouring plots, which

are likely to be of similar quality, than two cousins and therefore face similar localised

shocks (e.g. pests).

Second, a large literature has documented that labour markets in village economies

are far from perfect (see, for example, Bandiera et al. 2015), and trusted contacts �

socially close connections � might be important for �nding jobs. Thus, a household

might have a higher probability of being in a similar occupation as its socially close

connections. Moreover, credit and liquidity constraints, and a lack of occupation-speci�c

skills might prevent individuals from choosing an occupation that is di�erent from that

of their parents and siblings, who are likely to be able to overcome these constraints

for their speci�c occupation: for example, parents would be able to show their adult

children how to grow speci�c crops, and also be able to provide them with land, seeds

and other inputs.31 Put together, these reasons imply that socially close connections

might be more economically similar than distant connections.

To investigate whether this is the case, I study the household head's main occu-

pation choice as reported in the October 1998 survey for socially close and distant

connections.32 Occupation is likely to be highly correlated with a household's income

process � households in the same occupation are likely to be subject to similar risks and

shocks � and is thus an important margin to consider. In particular, I ask whether the

heads of households that are socially close are more likely to be in a similar occupation

than heads of households who are more socially distant.

I do so by computing, for each household, the proportion of the heads of house-

hold of their socially close and socially distant connections that are engaged in the

same occupation as the household head and use pairwise t-tests to evaluate whether

these proportions are statistically di�erent from one another. Table 3.4 displays these

statistics.

The table indicates that around 57% of households' socially close connections' heads

are engaged in the same occupation as the household head, compared to just over 52%

of heads of socially distant connections. Much of this variation comes from households

engaged in agriculture: for these households, a higher proportion of their socially close

31Bianchi & Bobba (2013) document that insurance constraints prevent households in this context
from diversifying occupation within household.

32This is the �rst survey for which I observe occupations for all households for whom I can impute
the network connections.
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Table 3.4: Similarity in Occupation Choices of the Head of a Household and that of its
Socially Close and Distant Connections

Variable Socially

Close

Std
Dev

Socially

Distant

Std
Dev

Di�.

Both in same occupation 0.569 0.014 0.525 0.018 0.045***

Both in agriculture 0.652 0.014 0.623 0.016 0.028***

Both in non-agricultural occupations 0.288 0.018 0.276 0.021 0.012

Notes: *** p<0.01; ** p<0.05; * p<0.1. Standard errors clustered at the village level. Socially close

connections are those who are directly connected to a household, while socially distant connections

are those who are at a social distance of 2 or greater from the household. The table displays the

proportion and std. deviations of a household's socially close and distant connections whose heads are

engaged in the same occupation as the household head, including a breakdown by whether the head is

engaged in an agricultural or non-agricultural occupation.

connections are also engaged in agriculture compared to their socially distant connec-

tions. By contrast, for households engaged in non-agricultural occupations, a marginally

higher proportion of socially close connections are engaged in non-agricultural occupa-

tions relative to socially distant connections, though this di�erence is not statistically

signi�cant.

A natural question is whether these di�erences in occupation choices among socially

close and socially distant households are signi�cant enough to translate into di�erences

in correlations in the income processes of these types of connections. Households could

be engaged in the same occupation, and (theoretically) still face uncorrelated income

processes, because, for example, they make production choices in a manner that makes

incomes orthogonal to one another. The detailed data on income available for multiple

survey rounds allows me to shed light on this question.

Speci�cally, for each pair of households in the same network, I calculate the pair-

wise correlation in their incomes. I then regress this pairwise correlation on the social

distance between the two households using a speci�cation of the following form:

Corr(yin, yjn) = α0 + α11(dijn > 1) + νn + ξijn (3.6)

where Corr(yin, yjn) is the pairwise correlation in income of households i and j,

1(dij > 1) takes the value of 1 if households i and j are socially distant, and 0 if they

are socially close, and νn is a network �xed e�ect which captures all network-level time

invariant unobservables that may be correlated with both the pairwise correlations and

social distance. I adjust standard errors for correlations arising from the fact that the

same households are part of many household pairs (or dyads) by calculating Huber-

136



3.3. Context and Data 3. Socially Close and Distant Connections in Risk Sharing

Table 3.5: Pairwise income correlations and social distance
Corr(yin, yjn)

Socially Distant -0.014**

[0.006]

Constant 0.077***

[0.005]

Observations 354,182

R-squared 0.029
Notes to Table: *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered at the village level in

brackets. Dependent variable is the pairwise correlation in per capita income for households i and j in

the same network. Observations are for pairs of households in the same network (or dyads).

White standard errors clustered at the village level.

The results, displayed in Table 3.5, indicate that on average, the raw pairwise income

correlation for socially close households is positive at just under 0.08. Moreover, there

is a statistically signi�cant negative correlation between the pairwise income correlation

and social distance: relative to socially close connections, a household's income is less

positively correlated with the income of more distant connections.

Thus, socially distant connections are economically more di�erent than socially close

connections. Putting together this evidence with that highlighted earlier � that socially

distant connections are more numerous than close connections � indicates that socially

distant connections will provide more opportunities for risk sharing in this context.

Moreover, this channel is likely to be relevant in risk sharing networks in a range of

contexts. Fafchamps & Gubert (2007), for example, document that geographic prox-

imity, which facilitates enforcement, is strongly correlated with the presence of a risk

sharing tie in the Philippines, and actual gifts; though they �nd no role for income

correlation or social distance.

3.3.4 Social Distance and Household Income Fluctuations

I now consider how household income �uctuations vary with the number of socially

close and distant connections in a household's network. I focus speci�cally on changes

over time in household log income, ∆log(yint), and the time-series variance of log in-

come, V ari(log(yint)). Tables 3.6 and 3.7 display the correlations for ∆log(yint) and

V ari(log(yint)) respectively. The tables indicate very small and statistically insigni�-

cant correlations between household income �uctuations and the number of household

and average network socially close and distant connections, thereby suggesting that
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Table 3.6: Household income �uctuations and network characteristics

(1) (2) (3) (4) (5)

Dependent Variable: ∆ log(cint)

Avg. Soc. Close Connections -0.0012

[0.0020]

Avg. Soc. Distant Connections 0.0002

[0.0002]

Size 0.0002

[0.0002]

HH. Soc. Close Connections -0.0005

[0.0012]

HH. Soc. Distant Connections 0.0002

[0.0002]

Observations 43,308 43,308 43,308 43,308 43,308

R-squared 0.0160 0.0160 0.0160 0.0159 0.0160
Notes to Table: Standard errors clustered at the village level in brackets. All regressions include survey round

dummies. *** p<0.01, ** p<0.05, * p<0.1.

while network characteristics (speci�cally social distance) a�ect the correlations in in-

comes of connected households, they are not associated with higher or lower variability

in a single household's incomes.

3.4 Empirical Framework

I now introduce the empirical framework applied to investigate how risk sharing varies

with the number of socially close and distant connections in a household's network.

To answer this question, I use the �rst measure of risk sharing implemented in the

numerical simulations in Section 3.2: the correlation between ∆log(cis) and ∆log(yis),

net of aggregate network resources. This measure has been widely used in the literature

on consumption smoothing (e.g. Townsend (1994)), and can also be motivated from

the theoretical framework. As outlined above, this measure will be 0 when the network

provides perfect risk sharing, and > 0 when risk sharing is partial. Empirically, I observe

households experiencing di�erent states of the world at di�erent time periods. I thus

assume that each time period o�ers a snapshot of a di�erent state of the world. This
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Table 3.7: Household Income Variance and Network Characteristics
(1) (2) (3) (4) (5)

Dependent Variable: V ari log(yint)

Avg. Soc. Close Connections -0.0057

[0.0080]

Avg. Soc. Distant Connections 0.0005

[0.0008]

Size 0.0004

[0.0007]

HH Soc. Close Connections 0.0071

[0.0056]

HH Soc. Distant Connections 0.0003

[0.0008]

Observations 14,569 14,569 14,569 14,569 14,569

R-squared 0.0001 0.0001 0.0001 0.0002 0.0000
Notes to Table: Standard errors clustered at the village level in brackets. *** p<0.01, ** p<0.05, * p<0.1.

assumption will be reasonable as long as income is not persistent over time in the data.

This is likely to hold in this setting, since the gap between surveys is at least 6 months.

Rather than using a direct measure of risk sharing such as inter-household trans-

fers, my measure relies on household consumption, which is advantageous from a mea-

surement perspective. In particular, it does not rely on knowledge of the exact tools

employed by households to share risk, which can be tricky to capture accurately in stan-

dard household surveys.33 Instead, consumption should capture the net bene�ts of all

the di�erent tools utilised by households, thereby providing a more accurate summary

measure of a household's risk sharing position.

I use this measure to shed light on how risk sharing varies with the average number

of socially close and socially distant connections in a household's network. My main

empirical speci�cation, given in Equation 3.7, regresses changes in per-capita log con-

sumption for a household i in a network n, ∆log(cint), on a vector of network-time

dummies (which capture changes in network-level aggregate resources), µnt, changes in

per-capita log household income ∆log(yint), and the changes in per-capita log house-

hold income interacted with the number of socially close and socially distant connections

33For example, Comola & Fafchamps (2015) show that households may respond to such questions in
a strategic manner; while Mtika & Doctor (2002) uncover qualitative evidence of substantial underre-
porting of transfers (monetary and in-kind) among extended family connections where these transfers
are frequent.
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denoted by wi(Gn).

∆log(cint) = µnt + β1∆log(yint) + f(wi(Gn)) ∗∆log(yint)β2 + γ∆Xint + εint (3.7)

The theory indicated that, depending on underlying parameter values, the rela-

tionship between the number of socially close and distant connections and risk shar-

ing might be non-linear. The function f(.) allows wi(Gn) to a�ect risk sharing in a

non-linear fashion. The model in Section ?? indicates that f(.) may be U-shaped (in-

verse U-shaped). Thus I allow f(.) to be quadratic.The speci�cation also controls for

time-varying household characteristics (particularly household demographics) that are

related to both changes in per-capita log consumption and log income, which are in-

cluded in the vector, Xint. If risk sharing were perfect across all networks, I would

expect the sum of the coe�cients β1 + β2f
′
(wi(Gn)) = 0 for all households, where

f
′
(wi(Gn)) is the �rst derivative of f(wi(Gn)). If risk sharing is partial, the sum of

these coe�cients will be > 0. Moreover, improvements in risk sharing from socially

close or distant connections would imply that the marginal e�ect, β2f
′
(wi(Gn)) < 0.

Note that wi(Gn) does not enter the regression on its own, since the speci�cation

is in terms of �rst di�erences, and the measures of the number of socially close and

socially distant connections are constant over time.34

To assess how the number of socially close and distant connections a�ect risk sharing,

I �rst de�ne wi(Gn) as a scalar in the average number of socially close or the average

number of socially distant connections in the network. To ease comparisons across

coe�cients, I standardise the variables for the number of socially close and distant

connections by subtracting the mean of each variable's distribution and dividing by the

standard deviation of the variable's distribution.

The theoretical framework indicated that better enforcement of informal arrange-

ments � o�ered by networks with more socially close connections here � and more op-

portunities for risk sharing � o�ered by networks with more socially distant connections

in this setting � should both yield better risk sharing. If this is the case empirically,

the marginal e�ect β2f
′
(wi(Gn)) will be < 0.35

The framework also allows me to study the relative importance, empirically, of lim-

ited commitment (or imperfect enforcement) frictions and risk sharing opportunities

for social connections to be e�ective in providing informal risk sharing. I can do this

be de�ning wi(Gn) to be a vector of the average number of socially close and dis-

34This is a reasonable assumption as I study households over a relatively short period of time, over
which there are few changes in the status of the household head and spouse.

35It is not possible to include the size of the network as an additional control variable in regressions
with the number of socially distant connections, since these variables are highly correlated in the data.
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tant connections in the household's network, and studying the relative magnitudes of

the marginal e�ects of the two coe�cients. Denoting the marginal e�ect of socially

close connections to be β2,1f
′
(#(dijn = 1)) and that of socially distant connections as

β2,2f
′
(#(dijn > 1)), I expect

∣∣∣β2,1f
′
(#(dijn = 1))

∣∣∣ > ∣∣∣β2,2f
′
(#(dijn > 1))

∣∣∣ if limited
commitment frictions are more important than risk sharing opportunities. However,

if risk sharing opportunities are more important than limited commitment frictions,∣∣∣β2,1f
′
(#(dijn = 1))

∣∣∣ < ∣∣∣β2,2f
′
(#(dijn > 1))

∣∣∣. Finally, the theory also indicated that

networks with more households should achieve better risk sharing. I study this by de�n-

ing wi(Gn) = Kn, where K is the size of network n. If larger networks provide more

risk sharing, the coe�cient β2f
′
(Kn) < 0.

In terms of inference, I cluster standard errors at the village level, which allows

for correlations in the unobserved errors for households in the same, as well as dif-

ferent, extended family network(s) within the same village. Valid inference using this

method requires a large number of independent clusters, a feature that is satis�ed in

my sample.36

A remark is at hand on identi�cation. A key concern hampering causal interpreta-

tion of the coe�cient (vector) β2 is that the average number of within-village socially

close and socially distant connections of a network might be correlated with unobserved

variables that are also correlated with my measure of risk sharing. Focusing on extended

family connections alleviates, at least partially, endogeneity concerns since households

do not choose their sibling and parent/child connections. However, the number of these

connections residing in the village might be endogenous as a result of fertility, marriage,

migration (for work) and household formation choices made depending on unobserved

variables that are correlated with risk sharing. The availability of household panel data

allows me to further partially (though not completely) alleviate this issue. In particular,

my key estimation equation is in �rst di�erences, which purges out any household-level

unobservables that are �xed over time (for example, unobserved preferences), that may

be correlated with the number of socially close and distant connections and risk shar-

ing choices. Moreover the network-time dummies, not only absorb aggregate network

shocks, but also account for �xed unobserved variables at the network level, such as vil-

lage size and amenities, that might also be correlated with both the number of socially

close and socially distant connections and the dependent variable through channels

other than risk sharing. Finally, in Section 3.5.2, I present some robustness checks

36A concern may be that extended family networks in neighbouring villages might not be completely
uncorrelated. Ignoring these correlations may yield standard errors which are too small. To assess
the importance of this concern, I conduct some robustness analysis where I conduct inference using
standard errors clustered at the municipality (which is a higher administrative level than a village)
level. There are 191 municipalities in my sample. Inference remains unchanged and the main results
still hold.
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which suggest that biases arising from endogeneity of the network are unlikely to be

driving the empirical �ndings.

3.5 Results

In this section, I present the results of the empirical analysis. I �rst show how the

amount of risk shared varies with the average number of socially close and socially

distant connections in a household's network, before outlining analyses undertaken to

probe the robustness of the �ndings.

3.5.1 Risk Sharing and Socially Close and Socially Distant Connec-

tions

I estimate Equation 3.7 with, in turn, the average number of socially close connections

and average number of socially distant connections in a household's network, before

including both variables entering together to shed light on the relative importance of

socially close and distant connections on risk sharing in this setting. The theoreti-

cal analysis in Section 3.2 indicated that the relationship between the extent of risk

sharing, as measured by the correlation of ∆log(cint) and ∆log(yint) net of aggregate

network shocks, is potentially non-linear with respect to the average number of socially

close and distant connections. I incorporate this in the speci�cation by allowing for

f(wi(Gn)) = {wi(Gn), wi(Gn)2} in addition to f(wi(Gn)) = wi(Gn). To ease com-

parison of magnitudes of coe�cients across the di�erent measures, I standardise each

of the network measures to have a mean of 0 and standard deviation of 1. Table 3.8

reports the results for this speci�cation. A negative marginal e�ect on the interaction

term(s), f(wi(Gn))∗∆log(yint), indicates improvements in risk sharing, while a positive

coe�cient indicates the converse.

The �rst column of Table 3.8 indicates that households embedded in networks with

more socially close connections do not achieve more risk sharing than those in networks

with fewer socially close connections. The coe�cient is relatively small in magnitude,

and statistically insigni�cant from 0. Adding the quadratic term does not reveal any

nonlinearity as can be seen from the second column of the table. However, more socially

distant connections are associated with an improvement in risk sharing, as is evident

from Column 3. This provides some initial evidence that opportunities for risk sharing

are important. As with socially close connections, the estimates suggest no nonlinearity

in this relationship: the quadratic term is far from statistically signi�cantly di�erent

from 0. Further evidence on the importance of risk sharing opportunities comes from
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the regression in Column 5 which includes both socially close and distant connections

in the same speci�cation. When both variables are pooled together linearly (Col. 5),

more socially distant connections are still associated with improved risk sharing, while

the coe�cient on average socially close connections becomes even smaller and remains

statistically insigni�cant.37 This indicates that opportunities for risk sharing are more

important than the additional enforcement that socially close connections can provide

for the e�ective functioning of extended family network based risk sharing in this con-

text. Throughout, I �nd no evidence of a nonlinear relationship between risk sharing

and the number of socially close or distant connections in the household's network, thus

indicating that, empirically, there is no trade-o� between risk sharing opportunities and

enforcement concerns in this context.38

In terms of magnitude, the coe�cient in Column 5 indicates that the changes in

log consumption of households in networks with an average number of socially distant

connections that is 1 standard deviation (23 households) greater than the sample mean

for that variable (just under 20 households) �uctuates 20% less in response to changes

in household log income relative to that of households with just under 20 households

(sample mean of the average number of socially distant connections).

Finally, Columns 7 and 8 shed light on how risk sharing varies with the total number

of households in the network, whether they are socially close or distant connections.

At with socially close and distant connections, no non-linearity is apparent from the

coe�cients reported in Column 8. The coe�cient on the interaction term in Column

7 is negative and statistically signi�cant from 0, indicating that larger networks in-

deed provide more risk sharing. The coe�cient is small in magnitude, but meaningful

relative to the baseline level of consumption smoothing: for households in the largest

network in the sample the sum of coe�cients β1 + β2 ∗ wi(Gn) is 0.0164, indicating

that if household income increases by 10%, household consumption will increase by

approximately 0.164%. Thus, household consumption is almost perfectly smoothed in

this network. The magnitude though still raises important questions on the capacity

of social connections in helping households bear risk.39 It should be noted though that

37Table 3.8 displays the results for each of the variables standardised by the sample mean and
standard deviation. These are useful for comparing the total contribution of each type of connection to
risk sharing. However, there are many more socially distant connections on average than socially close
ones (at household- and network-level), and so to accurately assess the marginal contribution of each
type of connection to risk sharing, one would want to compare the coe�cients on the unstandardised
values. These indicate that the coe�cient on average socially distant connections is still larger than
that associated with average socially close connections.

38Estimating the shape of this relationship non-parametrically using locally weighted regression fur-
ther con�rms the linearity of this relationship, as shown in the Appendix.

39There are reasons to believe that the e�ect might be larger in magnitude than that identi�ed
here. Classical measurement error in income is likely to attenuate the coe�cient estimate towards
0. Endogeneity of the network might also bias upward the estimated coe�cient: for example, if
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this test might miss welfare losses that are not re�ected in consumption which the

network might be particularly helpful in alleviating. In particular, households might

choose to smooth consumption in response to shocks they experience, at the expense

of productive investments such as livestock or longer-term human capital investments

such as education. Indeed, Angelucci et al. (2015) �nd evidence that the extended

family facilitates household investments in schooling in response to a conditional cash

transfer programme, which provided substantial transfers to a subset of households in

this setting, while Shim (2015) shows that households in this setting make sub-optimal

schooling choices in the absence of informal risk sharing instruments.

I obtain similar results when I use the household's number of socially close and

socially distant connections (shown in Table 3.9): no non-linear e�ect is detected; and

socially close connections have no e�ect on a household's risk sharing, while more so-

cially distant connections improve risk sharing.

To summarise the �ndings, networks and households with more socially distant

connections achieve better risk sharing, while socially close connections have no e�ect

on risk sharing in this setting. These �ndings suggest that su�cient opportunities for

risk sharing are necessary for social connections to be e�ective in providing risk sharing;

and these are more important than the additional enforcement provided by socially close

connections relative to socially distant connections within extended family networks.40

poorer households are more likely to have larger families, migrate less and marry within the village,
they will have more socially close and socially distant connections within the village. By contrast,
richer households might have smaller networks, but may be better able to self insure and thus have
consumption streams that are less correlated with income. Households with small networks might thus
appear to be receiving more risk sharing from their network than they actually are, thereby biasing the
coe�cient estimate to be smaller in magnitude than it actually is. Unfortunately no suitably strong
instrument for ∆log(yint) or the number of socially close or socially distant connections is available in
my data to resolve these problems.

40Ideally we would also want to disentangle the e�ect of socially distant connections on risk sharing to
assess how much of it is driven by households having, on average, more socially distant connections (`size
e�ect') and socially distant connections having less positively correlated income streams (`correlation
e�ect'). One way of doing this is to investigate the extent to which e�ects of socially distant connections
on risk sharing are concentrated in networks where incomes of socially close (and all) households are
more positively correlated. I implemented this strategy by allowing for a triple interaction term with
the median network-level pairwise income correlation for socially close households, and all households in
Equation 3.7 along with an interaction term for the median network-level pairwise income correlation.
Unfortunately, the pairwise correlations are too noisy to yield any statistically signi�cant results (p-
values on interaction terms with the correlations are > 0.6). However, the estimated coe�cients have
the expected signs: more positive pairwise correlations among socially close households worsens risk
sharing, and more so in networks with higher average socially close connections. More socially distant
connections in such networks improve risk sharing. The `size e�ect' is statistically signi�cant and
dominates the `correlation e�ect'.
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3.5.2 Robustness

Alternative Explanations

Throughout the paper thus far, I take socially close connections to provide better en-

forcement, and socially distant connections as being valuable since they provide more

risk sharing opportunities. However, there could be unobserved variables potentially re-

lated to the endogenous formation of the within-village extended family network, which

are correlated with both the number of within-village socially close and distant connec-

tions as well as the measure of risk sharing, biasing the estimated coe�cients reported

in Tables 3.8 and 3.9. In particular, though individuals and households cannot choose

all their family connections, they might make decisions relating to fertility, migration,

marriage and household formation in a manner that a�ects the number of socially close

and socially distant connections within the village. Moreover, there might be unob-

served variables that correlate both with these decisions and thereby with the number

of connections and the risk sharing measure, yielding an omitted variables bias.

Though I am unable to de�nitively rule out that the �ndings are not biased by the

endogeneity of the within-village extended family network, analysis in this section rules

out one important confounding factor � wealth. Wealthier households might be better

able to self-insure (and thus have consumption that is less responsive to income �uctu-

ations), and could also have fewer socially close, but many socially distant connections.

This would bias upwards the coe�cient related to socially close connections in Table

3.8, and bias downwards that on the number of socially distant connections. If wealth

is indeed biasing the results, we should expect wealthy households to have few socially

close, but many socially distant connections within the village. I verify whether this is

the case in the data, by regressing separately household's number of socially close and

socially distant connections on a household asset index, calculated based on ownership

of various durables, and a vector of household- and village-level controls. Table 3.10

displays the �ndings. It indicates no signi�cant correlation between the asset index and

numbers of socially close and distant connections; suggesting that the �ndings are not

driven by this channel.

Nonetheless, other unobserved variables could be correlated with the number of so-

cially close connections and the risk sharing measure, invalidating its use as an indicator

for better enforcement. To assess the importance of these biases, I use another strat-

egy to study the importance of enforcement constraints in this context. Speci�cally,

we expect the household's within-village extended family network to be a particularly

important source of insurance in villages where fewer alternative options, e.g. no/fewer

isolated households, or other extended family networks within the village, are available.
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Table 3.11: Risk Sharing and Outside Options

(1) (2)

Dependent Variable:∆ log(cint)

∆ log(yint) 0.0387*** 0.0399***

[0.0063] [0.0056]

∆ logyint interacted with:

Number Other Family Networks 0.0012

[0.0009]

Number Isolated HHs 0.0004

[0.0003]

Observations 43,308 43,308

R-squared 0.1337 0.1337

F-stat 1.985 1.953

p-value 0.160 0.163

Notes to Table: *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered at the village level in brackets.

The variables `Number Other Family Networks' and `Number Isolated HHs' are calculated at the village level.

In these villages, we would expect xij in the model to be relatively high, and house-

holds embedded in these networks would achieve better risk sharing. I construct two

measures of households' outside options � the number of isolated households within the

village, and the number of other extended family networks � and use these to study

how a household's risk sharing varies with the quality of its outside options. I do so by

estimating the regressions of the following form:

∆log(cint) = µnt + β1∆log(yint) +Optn ∗∆log(yint)β2 + γ∆Xint + εint (3.8)

where Optn is a proxy for the outside option for a household in network n. Table 3.11

reports the �ndings for this regression. The coe�cients on the interaction terms of both

measures of the outside option are positive but small and not statistically signi�cantly

di�erent from 0, thereby providing further evidence that enforcement concerns are less

important in within-village extended family networks in this context.
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Table 3.12: Scenarios considered for the sensitivity analyses

Age Di� Siblings Max age mother Min. age mother

Benchmark 30 45 15

Scenario 1 25 45 15

Scenario 2 20 45 15

Scenario 3 30 40 15

Scenario 4 25 40 15

Scenario 5 20 40 15

Measurement Error in the Network

Another concern that could invalidate the �ndings is that of measurement error in the

network (Chandrasekhar & Lewis 2011).41 This concern is particularly salient here

since I am inferring the network. The descriptive analysis in Section 3.3.2 and the

study by Angelucci et al. (2009) have shown that the obtained family connections fall

within reasonable ranges, and are correlated in expected ways with other socio-economic

variables. Nonetheless, we might be concerned that the algorithm identi�es spurious

connections, subsequently biasing the estimated coe�cients. To assess the importance

of such a bias, I consider the sensitivity of the estimated parameters to alternative,

more stringent age cut-o�s in the algorithm described in Table 3.12. The results from

this sensitivity analysis for the results displayed in Col. 3 of Table 3.9 are shown in

Table 3.13.

The table indicates that the coe�cients exhibit remarkable robustness to di�erent

assumptions on the age cuto�s. The biggest change in coe�cient values appear when

the age cuto� for siblings is reduced to 25 years (scenarios 1 and 4): the coe�cient

for socially close connections becomes more negative, while that for socially distant

connection falls in magnitude but remains statistically signi�cant at the 5% level of sig-

ni�cance. Nonetheless, the qualitative conclusion that more socially distant connections

yield better risk sharing remains valid under all the di�erent assumptions.

A �nal concern is that the algorithm might miss identifying some connections, mak-

ing small networks appear to be smaller than they actually are. To assess whether this

a�ects the estimates, I drop the very small networks (of size < 5) from the sample and

re-estimate the speci�cations. I �nd that the estimates are qualitatively similar to those

41As explained above, classical measurement error in income could also bias the estimates, particu-
larly those reported in Tables 3.8 and3.9. This could be easily corrected if a suitably strong instrument
was available, which is unfortunately not the case in my data.
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reported in Table 3.9.

3.6 Conclusion

This chapter studies the role of socially close and distant connections in providing in-

formal risk sharing in the context of village-based extended family networks in rural

Mexico. It uses a simple theoretical model with limited enforcement of arrangements

and di�ering opportunities for risk sharing by social distance, to show that the relation-

ship between risk sharing and the number of socially close and distant connections in a

household's network is in�uenced by a potential trade-o� in enforcement and risk shar-

ing opportunities. Socially close connections are better able to enforce arrangements,

while distant connections may provide more opportunities for risk sharing. Numeri-

cal simulations of the theoretical framework indicate that when enforcement concerns

dominate, risk sharing (and welfare) increases with the number of socially close con-

nections. Conversely, when opportunities for risk sharing are particularly important,

risk sharing and welfare fall (increase) with the number of socially close (distant) con-

nections. When both concerns are relevant, the trade-o� between enforcement and risk

sharing opportunities generates an inverse-U shaped relationship between the extent of

risk sharing (and welfare) and the number of socially close connections in a network.

The chapter then empirically veri�es these qualitative predictions using panel data

on over 16,000 households embedded in a large number of village-based extended family

networks in rural Mexico. The data contains information on cross-household connec-

tions through sibling, parent and child relationships of the head and spouse of the head

of the household for every pair of households within a village. This allows me to over-

come the key empirical challenge of identifying socially close and distant connections

of a household by applying a network-theoretic de�nition of socially close and distant

connections. This measure de�nes as socially close connections siblings, parents and

children of the head/spouse; and as socially distant connections, the families of one's

siblings' spouses, or aunts, uncles and cousins. In a �rst step, it documents that so-

cially close connections o�er more risk sharing opportunities: they are more likely to be

engaged in the same occupation and have more positively correlated income processes;

and are fewer in number.

In a second step, it considers how this variation in risk sharing opportunities, along

with imperfect enforcement, shape the relationship between risk sharing varies and

the average number of socially close and distant connections in a household's network.

Measuring risk sharing as the extent of the correlation between changes in household

log consumption in response to �uctuations in log income, net of aggregate network
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resources, it �nds that households with more socially distant connections in their net-

works achieve better risk sharing. More socially close connections have a small and

statistically insigni�cant e�ect on risk sharing. The �ndings highlight the importance

of su�cient risk sharing partners with less correlated income streams, which has surpris-

ingly received less attention in recent literature, for the e�ective functioning of social

network based insurance. In addition, they highlight the `strength of weak ties' in a

risk sharing context.

The �ndings are important for the e�ective design of policies. Understanding how

informal arrangements work, and factors a�ecting how well they function can shed light

on where government intervention would be most bene�cial. My �ndings suggest that

su�cient opportunities for risk sharing are crucial for social connections to be able to

provide risk sharing. Thus, policies that expand such opportunities, by for example,

encouraging income diversi�cation opportunities within a village might indirectly also

improve household risk sharing.

The �ndings from this chapter raise some further questions: �rst, though the chapter

documents variation in risk sharing opportunities, it did not study the drivers of this

variation, which are important to understand for e�ective policy design. Second, the

chapter considered only a sub-set, albeit an important one, of the whole extended

family network. Contributions from the outside village extended family network will

also in�uence risk sharing arrangements (Rosenzweig & Stark 1989), as well as decisions

related to marriage and migration, thereby shaping the structure of the within-village

extended family network. Understanding the interactions of these choices is left to

future work.
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3.7 Appendix

3.7.1 Additional Details on Model

Optimality Conditions

Here I provide more details of the optimality conditions in the theoretical framework as

derived by Ambrus et al. (2014). I provide a short summary of the conditions and their

implications for risk sharing patterns. The interested reader is directed to the paper by

Ambrus et al. (2014) for details on the full derivation.

De�ne ∆i to be the marginal bene�t to the planner of transferring an additional

dollar to i. When a household i is unconstrained, this will be equivalent to the house-

hold's marginal utility, λiu
′(ci). However, when i is constrained in any of his incentive

compatibility constraints, this is not the case, since increasing ci will also relax any

binding incentive compatibility constraints for i, making it optimal for the planner to

transfer part of the additional dollar to connections of i for whom i's incentive com-

patibility constraints were previously binding. Thus when a household i is constrained,

the marginal social welfare gain is de�ned in a recursive manner as follows.

For every j such that the incentive compatibility constraint from i to j binds, denote

δij = λiu
′(ci)

u′(ci + tij)

u′(ci)
+ ∆j

[
1− u′(ci + tij)

u′(ci)

]
(3.9)

δij measures the marginal social gain of an additional dollar to i under the as-

sumption that i optimally transfers a fraction of the dollar to j. If many incentive

compatibility constraints for i bind, the marginal social welfare gain is maximised if

part of the dollar is transferred to the household j where it would be most productive,

either because j has the highest marginal utility of consumption among all of i's con-

nections, or because one of j's (direct or indirect) connections has a very high marginal

utility of consumption (i.e. has a very low consumption). De�ning δii = λiu
′(ci), the

marginal social welfare gain of transferring an additional dollar to an agent i can be

de�ned formally as:

∆i = max{δij | j : the IC constraint from i to j binds} (3.10)

The following proposition (from Ambrus et al. 2014) speci�es the optimal allocation

in terms of the planner's marginal social gain.

Proposition 1 (Proposition 13, Ambrus et al. 2014): Assume that the marginal rate

of substitution between consumption and connection value, MRSi is concave in ci for
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every i. A transfer arrangement t is constrained e�cient i� there exist positive (λi)i∈N

such that for every i, j ∈ N one of the following conditions holds:

1. ∆j = ∆i

2. ∆j > ∆i and the IC constraint binds for tij.

3. ∆j < ∆i and the IC constraint binds for tji.

Proof: See the online appendix to Ambrus et al. (2014).

This proposition implies that for each state of the world, the network partitions

into endogenous `risk-sharing islands'. Within the islands, no incentive compatibility

constraint binds, and condition (1) holds so that households equate their marginal

social gains. On the borders of islands, incentive compatibility constraints bind and the

marginal social gains are not equated.

3.7.2 Identifying Network Links - Algorithm Details

In this section, I outline the detailed algorithms used to identify parental and sibling

relationships across households living in the same village. These relationships are only

identi�ed for the head and spouse of each household.

Identifying Sibling Links

I combine information from surname combinations with age restrictions to identify

sibling groups within a village. Siblings should share the same paternal surname and

maternal surname. In addition, I assume that the age di�erence between the oldest and

youngest identi�ed sibling cannot be more than 30 years. The algorithm proceeds as

follows:

1. Form the super set of all `potential siblings'. This is done by applying the fol-

lowing rule: two individuals are potential siblings if they have the same surname

combination. Note that this super set will include all the siblings of an individual

i and those of i's siblings.42

2. Order, by age, all potential siblings starting from the youngest to the eldest. Do

this as shown in the Table below.

3. Calculate the age di�erence between the oldest sibling and the youngest. If this

is ≤ 30 years, then the group of potential siblings are siblings.

42In a small proportion of households (<0.5%), the head and spouse both had the same surname
combination. In this case, I dropped the spouse from the sample on which the algorithm was run.
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Table 3.14: Example of an individual's potential sibling group

Order Age Age Gap

1 21 .

2 24 3

3 28 4

4 43 15

5 60 17

6 62 2

Note: In this example, the algorithm would partition

this group of potential siblings into two groups:

{1,2,3,4} and {5,6}

4. If the age di�erence is > 30 years, then follow the following steps:

(a) Compute the age gaps between consecutive siblings, by subtracting the age

of the lower birth order sibling from that of the higher birth order sibling.

(b) The partition the potential siblings into sibling groups in the following man-

ner:

i. Find the largest age gap and partition the super set of potential siblings

into 2 at this point.

ii. Calculate the age di�erence between the eldest and youngest siblings in

these 2 groups.

iii. If the age di�erence is ≤ in either of the sub-groups, then that group is

a sibling group.

iv. For sub-groups where the age di�erence > 30 years, repeat steps (i) and

(ii) until (iii) is satis�ed for all sub-groups.

Identifying Parent-Child Links

Using surname combinations, similarly, allows us to identify parent-child relationships.

Since children take the paternal surname of the father and the paternal surname of

the mother, households where the paternal surname of the (male) head and (female)

spouse corresponds with the paternal and maternal surnames of an individual in another

household are potentially related via parental/�lial ties. I use the following set of rules,

that also impose restrictions on the age di�erence between parents and their children

to identify links of this type:
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1. Find the super set of potential parent-child links based on the paternal surname

of an individual i in a household h matching exactly the paternal surname of the

head of a household k, and i's maternal surname matching exactly the paternal

surname of the spouse of household k.43

2. I then impose the following age restrictions:

(a) The age di�erence between a mother and her oldest child cannot be < 15

years.

(b) The age di�erence between a mother and her youngest child cannot be > 45

years.

I also use rich information in the data to remove some spuriously identi�ed parental

links. In particular, I use information from the household roster to purge spurious

parental links when the parents of the head or spouse are reported to be resident within

the household of any one of the identi�ed siblings.

3.7.3 Data Appendix

Consumption and Income Measures

Detailed consumption data was collected in the October 1998, May 1999, November

1999, November 2000 and 2003 surveys. Information was collected on the quantity

consumed and purchased of approximately 36 food items, and expenditure on these in

the week preceding the survey, along with expenditure on non-durable items such as

clothing, shoes, toiletries, transport costs, utilities, fuel, etc in the month or 6 months

preceding the survey. A locality survey further collected prices for foods from local

shops. Total food consumption is computed by summing food expenditures and imputed

values of non-purchased food. To value non-purchased food, I use median unitvalues at

the locality level (computed by dividing expenditure on a certain food by the quantity

purchased).44 Total food consumption and the non-durable expenditure items are all

converted to monthly values and added up to obtain a measure of monthly total non-

durable consumption.

The surveys also collected information on labour earnings of all employed household

members aged > 8 years, rental, pension and interest income, institutional transfers,

business revenues and costs, inter-household transfers and in some rounds, remittances.

43Clearly, there will be some selection here as households that are not couple-headed cannot be
identi�ed by this algorithm as parents of individuals in other households.

44For foods that were not very commonly purchased, median unitvalues computed at higher levels
of aggregation, such as municipality or state, were used.

157



3.7. Appendix 3. Socially Close and Distant Connections in Risk Sharing

To ensure that I have an income measure that is comparable across the di�erent survey

rounds, I use only the income components that were collected in the above 5 survey

rounds. Thus, income is computed as the sum of labour earnings of all household mem-

bers, rental, pension and interest income, business pro�ts and institutional transfers

(excluding the Progresa grant).45

Finally, I convert consumption and income values to October 1998 levels, and cal-

culate per-capita values by dividing by the household size.

3.7.4 Other Empirical Results

Non-parametric Analysis

To shed light on the shape of the relationship between a household's risk sharing and

the number of its socially close and distant connections, I estimate this relationship

non-parametrically using locally weighted regression. In a �rst step, I obtain the resid-

uals from regressions of ∆log(cint) and wi(Gn) ∗ ∆log(yint) on the other right-hand-

side variables of Equation 3.7: ∆log(yint), ∆Xint and µnt. Thereafter, I estimate a

non-parametric locally weighted regression of the residuals for ∆log(cint) on those for

wi(Gn) ∗∆log(yint). Figure 3.7 displays the results of this analysis for (i) average num-

ber of socially close connections; (ii) average number of socially distant connections;

and (iii) the total number of a household's socially close or socially distant connections.

The plots do not uncover any strong non-linearities in the relationship between risk

sharing and the number of socially close and distant connections; suggesting that a

linear relationship is a good approximation.

45Note that all of these components are converted into monthly terms to give a measure of monthly
income.
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Chapter 4

Group Size and the E�ciency of

Informal Risk Sharing

4.1 Introduction

Risk is a salient fact of life in rural areas of developing countries. Moreover, these con-

texts are characterised by market imperfections such as weak enforcement (also known

as limited commitment), costly monitoring, poor infrastructure, and weak government

capacity; which lead to missing or incomplete insurance and credit markets, and an

absence of government social safety nets.1 Instead, households rely on a variety of in-

formal mechanisms, such as (informal) transfers and loans from relatives and friends, to

deal with the consequences of risk (Besley 1995). Such mechanisms are usually based

on social ties and groups, such as family or friendship, which are typically more e�ective

in overcoming the aforementioned market imperfections (Rosenzweig (1988b), Rosen-

zweig & Stark (1989), Fafchamps & Lund 2003, Fafchamps & Gubert 2007, Angelucci

0This chapter is co-authored with Emla Fitzsimons and Marcos Vera-Hernandez. We thank the Mai
Mwana team, especially Tambozi Phiri, Andrew Mganga, Nicholas Mbwana, Christopher Kamphinga,
Sonia Lewycka, and Mikey Rosato for their advice, useful discussions, and assistance with data collec-
tion. We are grateful also to Julia Behrman, Senthuran Bhuvanendra, Lena Lepuschuetz, Carys Roberts
and Simon Robertson for excellent research assistance. We thank Orazio Attanasio, Richard Blundell,
Antonio Cabrales, Ethan Ligon, Imran Rasul and participants at the IFS work-in-progress seminar,
IFS-UCL Phd conference and EDePo Conference for helpful comments and suggestions. We thank
Garance Genicot for kindly sharing code for the model of risk sharing with coalition-proof arrange-
ments. Financial support from the ESRC-NCRM Node `Programme Evaluation for Policy Analysis'
Grant ES/I03685X/1 is gratefully acknowledged. Malde also gratefully acknowledges funding from
ESRC Future Research Leaders Grant ES/K00123X/1.

1A sizeable literature considers the implications of these imperfections on risk sharing: Kocherlakota
(1996), Foster & Rosenzweig (2001), Ligon et al. (2003) and Dubois et al. (2008) consider those for the
imperfect enforceability of contracts, while Ligon (1998) and Attanasio & Pavoni (2011) study issues
related to moral hazard, and Kinnan (2014) highlights the importance of hidden income.
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et al. 2015).2 A sizeable literature �nds that these informal mechanisms are remarkably

e�ective in helping households share risk, though they are unable to perfectly protect

household wellbeing. Recent, mainly theoretical work, however, suggests that certain

features of these groups are likely to in�uence how e�ective they are in providing risk

sharing (Bloch et al. 2008, Jackson et al. 2012).

This chapter aims to study how one important characteristic of informal risk shar-

ing groups � their size (or number of households in the group) � a�ects the amount

of risk sharing they achieve. We establish theoretical predictions and then test these

predictions empirically in a setting characterised by almost no formal enforcement mech-

anisms. Theoretically, in an environment where informal arrangements need to be self-

sustaining, two forces are at play in in�uencing the relationship between group size and

risk sharing: on the one hand, when households are su�ciently patient and interactions

are repeated, larger groups allow for more diversi�cation of shocks, leading to higher

gains from sharing risk. On the other hand, as shown in the seminal paper by Geni-

cot & Ray (2003), when arrangements need to be robust to deviations by sub-groups,

larger groups can be destabilised by smaller subgroups that are large enough to pro-

vide signi�cant levels of risk sharing, meaning that stable groups that can sustain risk

sharing are bounded from the top. This suggests that the relationship between group

size and risk sharing is unclear. We extend the set-up of Genicot & Ray (2003) and

use simulations to show that the relationship between group size and risk sharing is

theoretically ambiguous. Thus, the exact nature of the relationship between group size

and risk sharing is an empirical question.

Conceptually, it is important to distinguish between the actual and potential risk

sharing group. Empirically, the former poses several challenges: �rst, it is di�cult to

measure accurately,3 and second, it will be endogenous since individuals sort into groups

on the basis on unobserved characteristics and shocks that are also correlated with risk

sharing. To partially overcome this, much prior literature has taken the risk sharing

group to be a village (e.g. Townsend 1994;1995). Though readily observable in a large

number of socio-economic datasets, this de�nition is likely to be too broad, especially

since villages can have 500 or more households. We instead focus on the sibship of the

household head and spouse, a group that is predetermined.4 To re�ect the fact that not

2For example, relatives have numerous opportunities to interact with one another, thus reducing
the costs of monitoring each others' actions. Moreover, they could use strategies such as shame or even
ostracism (both of which are typically not feasible for formal insurance and credit providers to use) to
punish renegers in informal arrangements.

3For example, self reports are subject to strategic behaviour as shown by Comola & Fafchamps
(2015).

4A large literature has documented the importance of the extended family for risk sharing in de-
veloping countries. See for example, Rosenzweig (1988b),Rosenzweig (1988a); Stark & Lucas (1988);
Rosenzweig & Stark (1989); Foster & Rosenzweig (2001); Fafchamps & Lund (2003); Fafchamps &
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all members of this group will actually share risk amongst each other, in what follows,

we refer to it as `potential group size'.

In the context we study � Mchinji, Malawi � the crucial role of the family for risk

sharing has been documented in the anthropology and sociology literatures (Phiri 1983;

Munthali 2002; Mtika & Doctor 2002; Peters et al. 2008). This is also re�ected in

the data we use: 80% of transfers received by a household are from family. Thus, the

number of siblings of the head and spouse are a relevant proxy for `potential group

size' in this setting. Moreover, historical well-documented social norms in Mchinji

give an important role to the wife's brothers (relative to her sisters) in ensuring her

household's wellbeing. Though an individual's sibship size is predetermined, it might

still be correlated with unobserved factors that are related with risk sharing. The norms

allow us to not only to obtain a more �ne grained measure of potential group size, but

also provide us with an important dimension of heterogeneity that helps us to allay

concerns of such omitted variable bias. In particular, we can build placebo tests using

the wife's sisters to ascertain that our �ndings are not explained by omitted variables

associated with larger families.

To investigate the empirical relationship between group size and informal risk shar-

ing, we draw on a rich longitudinal dataset which includes information on household

consumption, crop loss incidence (and intensity) and the number of living siblings of

the head and spouse (who we refer to interchangeably as husband and wife) to con-

duct the analysis. We consider how well protected a household's consumption is to

idiosyncratic crop losses � an important source of risk in our predominantly agricul-

tural setting � given the size of its extended family. Given the social norms previously

mentioned, we de�ne groups separately by relationship to the husband or wife (that is,

we consider groups such as brothers of husband, brothers of wife, and so on). The corre-

lation between changes in log household consumption and the incidence (and intensity)

of household crop loss provides a measure for risk sharing (see Townsend 1994; Mace

1991; and Attanasio & Szekely 2004, among others).We �nd that households where the

wife has many brothers achieve worse risk sharing in response to crop losses relative to

households where the wife has few brothers. A similar, though slightly weaker, pattern

is also found for households where the husband has many sisters.

A concern is that these �ndings could be a result of the fact that households where

the wife has many brothers (or husbands have many sisters) are poorer, and therefore

more vulnerable to shocks. However, the fact that we fail to �nd a similar relationship

among households where the wife has many sisters, or households where the husband has

many brothers alleviates this concern. Of course, such a comparison would form a valid

Gubert (2007); Witoelar (2013); Angelucci et al. (2015).
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placebo test only if households where the wife (husband) has many sisters (brothers)

are similar to those where the wife (husband) has many brothers (sisters). We con�rm

this is the case, by testing directly for di�erences in the age, education and ethnicity

of the wife (husband) between households where the wife (husband) has many brothers

(sisters) and few sisters (brothers). Additional robustness checks indicate that the

�ndings are unlikely to be explained by households with larger numbers of siblings being

more vulnerable to crop losses; or by increased competition for production resources

(speci�cally land) among families with many male siblings.

Lastly, we con�rm that our empirical �ndings are compatible with Genicot & Ray

(2003). To do so, we calibrate the theoretical model using values (where available) from

the data. The calibrated model yields similar patterns between risk sharing and group

size as those found in the data, indicating that the threat of coalitional deviations can

explain our �ndings.

The chapter contributes to a number of strands of literature: It relates to a small

literature investigating the relationship between risk sharing and group size. A number

of studies show that the optimal risk sharing groups are likely to be small in the presence

of coalitional deviations (Genicot & Ray 2003, Dubois 2006 and Chaudhuri et al. 2010)

and transaction costs (Murgai et al. 2002). However, when households can choose

the risks they face, and have heterogenous risk preferences, larger groups may become

stable, as shown theoretically by Wang (2015).

It also relates to the literature investigating risk sharing in the presence of coalitional

deviations. Recent contributions have extended theoretically Genicot & Ray (2003) to

characterise the optimal risk sharing contract when current transfers can depend on

past transfers and shocks (Bold 2009); and to allow for savings, and the availability of

formal and informal risk sharing institutions (Bold & Dercon 2014). Bold & Dercon

(2014) also implement an empirical test of the model using data from funeral insurance

groups in Ethiopia. However, they do not consider the relationship between risk sharing

and group size.

Finally, the chapter contributes to the literature investigating the role of extended

families in risk sharing in developing countries. Recent work has documented that mar-

ket imperfections in�uence transactions and informal risk sharing arrangements within

the family. For example, Foster & Rosenzweig (2001) document that limited commit-

ment, tempered by altruism, is at play in rural India, while DeWeerdt et al. (2014) show

that asymmetry of information among spatially dispersed extended family networks af-

fects interhousehold transfer decisions in rural Tanzania. Baland et al. (2015) document

that transfers among siblings in Cameroon follow a system of reciprocal credit, where

older siblings support the education of younger siblings, with the expectation that the
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younger siblings will reciprocate later. 5. Our analysis complements this literature by

considering how the size of extended family networks a�ects informal risk sharing.

The rest of the chapter is structured as follows. Section 4.2 lays out the conceptual

framework, and shows that the relationship between the amount of risk shared and

group size is theoretically ambiguous when coalitions can deviate. Section 4.3 provides

details on the data, and the context, focusing particularly on norms governing extended

family relationships in rural Malawi. Section 4.4 discusses the empirical speci�cation;

while Section 4.5 displays our main results and robustness checks. Section 4.6 outlines

�ndings of the model calibration. Section 4.7 concludes.

4.2 Conceptual Framework

We consider optimal risk sharing in environments subject to imperfect enforceability of

contracts. This assumption matches well our empirical setting � rural Malawi � where

formal enforcement mechanisms are rarely available. We draw on the set-up in Genicot

& Ray (2003), GR hereon, and add to their analysis by considering explicitly (using

numerical simulations) the relationship between the extent of risk sharing and group

size.

Households are part of a potential risk-sharing group (in our case, the family) of size

n. They face a risky endowment, that takes on two values: h or l; h ≥ l. The probability
of drawing an endowment h in any period is π; 0 ≤ π ≤ 1. Households are ex-ante

identical, risk averse and gain utility from consumption. Household utility is increasing,

concave and twice-continuously di�erentiable. There is no storage technology, and

neither formal credit nor insurance is available.

To cope with the consequences of risk, households can make and receive transfers

following a transfer rule that depends on the number of households in the group that

receive the high endowment shock: When a household receives h, and k − 1 other

households also receive h, each household receiving h sends a transfer tk to a common

pool, which is then shared equally among those receiving l. Consumption for households

receiving h is thus h− tk, while that for those receiving l is l +
ktk
n− k

.6

Households observe the endowments, consumption and transfers made and received

by all other households in the group. However, this setting is subject to the imperfect

enforceability of contracts. Thus, the transfer arrangement needs to be self-sustaining.

In particular, it needs to be such that no individual or sub-group wants to deviate

5This literature also �nds that social pressure to make transfers among kin leads to less optimal
investment decisions, especially for women (Jakiela & Ozier forthcoming)

6Note that the transfer rule makes use of the fact that the group-level aggregate budget constraint
for each period must be satis�ed.
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from the arrangement, i.e. it should be coalition-proof. The speci�c de�nition of

coalition-proofness is as in Bernheim et al. (1987), which places a further restriction

that sub-groups that deviate should themselves be robust to further deviations. Thus,

arrangements need to be self-sustaining to deviations that are themselves credible.

Given the transfer rule, and the coalition-proofness condition, and focusing on sta-

tionary arrangements, the optimal risk sharing arrangement (i.e. transfer in each state)

can be recovered from the solution to the following optimisation problem (expressed in

per-period terms):

max
tk

v(t, n) = pnu(h) + (1− p)nu(l) +
n−1∑
k=1

p(k, n)

[
k

n
u(h− tk) +

n− k
n

u(l +
ktk
n− k

)

]
(4.1)

subject to

(1− δ)u(h− tk) + δv(t, n) ≥ (1− δ)u(h) + δv∗(s) ∀ s ≤ k (4.2)

where δ is the discount factor, and v∗(s) is the per-period expected utility a house-

hold could get by deviating to a stable sub-group of size s, and sharing risk in this

sub-group in all subsequent periods. The incentive compatibility constraints in Equa-

tion (4.2) imply that the transfer arrangement should be such that the per-period

discounted utility for households that achieve a good shock in the current period and

make a transfer tk to the common pool, and expect to achieve future expected utility of

v(t, n) is greater than the utility it can achieve from deviating in a sub-group s where

it consumes its endowment h this period and shares risk with the sub-group s in the

future thus attaining an expected future utility of v∗(s).7

When no incentive compatibility constraint binds, the �rst-best allocation, which

equalises consumption for all households within the group for each state of the world,

is achieved. By contrast, in autarky, when no risk sharing occurs, households consume

their own endowment in each period, achieving a per-period expected utility of pu(h) +

(1− p)u(l).

Based on this set-up, GR show that a stable risk sharing arrangement may fail to

exist for many group sizes, even for high values of the discount factor.8 Moreover, they

7Note that this formulation assumes that in the period that an individual deviates, he consumes
his endowment, regardless of the sub-group he deviates with; and shares risk with members of the
subgroup in subsequent periods.

8In models where the risk sharing arrangement is sustained by ostracising individuals who deviate
(i.e. deviating individuals revert to autarky in future periods), a stable arrangement may fail to exist
when the discount factor is low. When arrangements need to be coalition-proof, however, a stable
arrangement may fail to exist even if the discount factor is su�ciently high.
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show that the size of stable risk sharing groups is bounded from above: essentially,

large groups are not stable in the presence of coalitional deviations, since households

receiving a good shock can deviate to form sub-groups within which they can still bene�t

from group-based insurance in the future. Thus, in larger groups, the outside option

may potentially be better than in smaller groups (depending on the sizes of possible

stable sub-coalitions). Thus, the transfer made by those receiving h will be lower than

in arrangements sustained by ostracising a deviator to autarky in the future. This

is because those receiving h need to be induced to remain in the group rather than

deviate to a sub-group, which could provide higher utility than autarky. In some cases,

no postive transfer may exist, leading to the non-existence of a stable risk sharing

arrangement.9

Our contribution, relative to GR, is to show within the same set-up that the rela-

tionship between the amount of risk sharing and group size is ambiguous. The fact that

a stable arrangement may not exist for many group sizes, complicates this exercise.10

In particular, it is not possible to study this analytically. We instead use numerical

simulations to shed light on the relationship.

We need to take a stand on how risk is shared in groups of size n where no stable

risk sharing arrangement exists. One possibility is that households remain in autarky.

However, this is not very satisfactory, especially since within this set-up, households

can deviate from an autarky punishment by cooperating with subgroups of households.

Thus, given that households are ex-ante identical in this setting, a natural assumption

is that in cases where no stable arrangement exists for a group of size n, the group

randomly partitions into stable subgroups in a manner so as to maximise the sum of

expected utility,
n∑
i=1

∑
s∈S

ns ∗ s ∗ vi(t, s) (4.3)

where S is the set of stable coalitions (or groups), and i indexes households in the

group.11 In other words, we assume that there exists a social planner who chooses a

combination of stable sub-groups such that the sum of expected utility (as in Equation

9When arrangements can be non-stationary, a larger group could be stable. This is because only a
sub-set, rather than all, of potential deviators need to be compensated to remain in the risk sharing
arrangement. Nonetheless, GR show that the size of the largest stable group will still be bounded from
the top (though it could be larger than the largest stable group under stationary arrangements).

10Moreover, as indicated by GR, the existence or not of a stable arrangement for groups of size
greater than 2 is sensitive to parameter values.

11This need not be the only way by which the group partitions, particularly when households are
allowed to be heterogenous. For example, partitions could emerge endogenously as in Ambrus et al.
(2014), who allow for di�erent transfers to be made between pairs of households embedded in a network.
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(4.3)) is maximised, and then randomly sorts households into these sub-groups.12,13 We

can then calculate the expected utility of a household in the unstable potential group of

size n as the weighted average of the expected utilities associated with the combination

of stable subgroups (the actual risk sharing group) that maximises the potential group's

expected utility, with weights calculated as the probability of being randomly assigned

to a particular sub-group.

We evaluate the extent of risk sharing using two measures:14

• The household's weighted average expected utility,∑
s∈S:s stable

πsvi(t, s) (4.4)

where πs is the probability of being in the stable group s. This is the social

planner's objective function. The value of this function increases as �uctuations

in a household's consumption fall: a larger stable group will have a higher value

of vi(t, s) since (i) the probability of states where all households receive the same

shock falls with group size, and so there is more scope for risk sharing; and (ii)

households have concave utility.

• The weighted average expected di�erence in marginal utility between the two

endowment realisations,

∑
s∈S:s stable

πs

s−1∑
k=1

p(k, s)
k

s
[u′(clk,s)− u′(chk,s)] (4.5)

This measure captures the di�erence in marginal utility that a household expects

between states where it receives h and those where it receives l. In a state where k

households receive h, higher values of tk (upto the value equating c
l
k,s and c

h
k,s) will

reduce the gap between clk,s and c
h
k,s, and so reduce the di�erence u

′(clk,s)−u′(chk,s).
If transfers are large enough such that clk,s = chk,s for all states, perfect risk sharing

is achieved and this measure will be 0. However, deviations from perfect risk

sharing in any state of the world, in any of the stable sub-groups that the group

12In doing so, we assume that unstable groups are arranging themselves in a manner so as to generate
the highest possible insurance for their members.

13Since households are ex-ante identical, we assume that the social planner places equal weight on
each household when deciding how to allocate households in unstable groups to stable subgroups.
However, this assumption can be relaxed easily to allow for arbitrary planner weights. However, note
that the transfer rule, and thus expected utility, vi(t, s), will be the same for all households.

14The measure used in the empirical analysis is slightly di�erent and is based on ratios of the marginal
utility of consumption.
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can partition into, would lead to this measure being positive. Moreover, the

greater the deviation from perfect risk sharing (i.e. the higher the gap between

clk,s and chk,s), the higher the value of this measure. Thus, lower values of this

measure indicate better risk sharing.

We next use this set-up to assess the relationship between the extent of risk sharing, as

measured by the expressions (4.4) and (4.5), and potential group size.

Simulations To simulate the model, we make some assumptions on the functional

form of the utility function, and on parameter values. In the examples we show here,

we use the same parameter values as in GR (Example 2).15 Utility is assumed to be of

the constant relative risk aversion form, i.e.

u(c) =
c(1−ρ) − 1

(1− ρ)

where ρ is the coe�cient of relative risk aversion. n is assumed to be 8, which

matches the largest group size in our data (see Section 4.3 below). ρ is assumed to be

1.6, δ = 0.83, h = 3 and l = 2 as in GR. Finally, the probability of receiving the high

endowment, p = 0.4. With this set of parameter values, only sub-coalitions of size 1, 2

and 3 are stable, as reported in GR and documented in the Table 4.1.

Given this set of stable sub-groups, we compute the two measures outlined in Equa-

tions (4.4) and (4.5) to evaluate the extent of risk sharing for each of the di�erent

potential group sizes. These are plotted in the left and right panels of Figure 4.1.16

Weighted expected utility increases with group size for potential groups up to size 3

(which is expected as 3 is the largest stable group), before �uctuating in a zig-zag pat-

tern. The fall with group size is a result of a breakdown in informal risk sharing: in

a potential group of size 4, one household would be in autarky, while the other three

households could cooperate together and bene�t from risk sharing opportunities. The

subsequent zig-zag style pattern arises from the combination of stable group sizes that

is viable in larger unstable potential groups. A similar picture emerges for the sec-

ond measure � the weighted average expected di�erence in marginal utility � (right

panel, Figure 4.1), though the pattern is inverted since improvements in risk sharing

are associated with decreases in this measure.

15We use these parameter values so as to illustrate what happens to the extent of risk sharing in
a documented case where only a small number of potential group sizes is stable. In Section 4.6, we
illustrate the patterns of risk sharing and potential group size that emerge when we set the parameter
values to match our data.

16A detailed overview of the calculations that yield the Figure is in Appendix 4.8.1.
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Table 4.1: Stable groups

Group Size Parameter Set A

1

2

3

4 ×
5 ×
6 ×
7 ×
8 ×
9 ×
10 ×

Figure 4.1: Risk Sharing and Group Size - example from Genicot and Ray (2003)
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(a) Weighted Avg Exp. Utility
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(b) Weighted Avg. Exp. Di�. in Marginal Util-

ity

Notes: The Figure in panel (a) shows the relationship between weighted average expected utility and

group size, while thatin panel (b)l shows the relationship between the weighted average expected

di�erence in marginal utility and group size

To be noted, though, and documented by GR, is that the stability of groups is

sensitive to parameter values. In particular, changing the parameters ρ, p, h and l a little

can change which group sizes are stable.17 This is displayed in the Figure 4.2, which

plots the two measures of the degree of risk sharing for di�erent levels of h and l. The

values of these variables have been selected so as to have the same average endowment,

17From the repeated games literature, it is well known that groups of size 2 can be unstable for low
levels of the discount factor, δ. The instability noted here for larger groups arises even when δ is high.
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but di�erent variances. A higher variance implies a greater need for insurance. The

Figure indicates that as the need for insurance increases, larger potential groups become

stable, and these groups achieve better risk sharing than smaller potential groups. This

is best displayed by the line corresponding with the highest need for insurance (l = 0.8;

h = 4.8), and is the lowest line in the left panel of Figure 4.2. This line is increasing

monotonically, indicating that all group sizes are stable. By contrast, when the need

for insurance is low (l = 2.2; h = 2.7), a case depicted by the top-most line in the left

panel of Figure 4.2, no potential group of size > 1 is stable.18

Figure 4.2: Risk Sharing and Group Size - Example 2
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(a) Weighted Avg Exp. Utility
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Notes: The Figure in panel (a) shows the relationship between weighted average expected utility and

group size, while that in panel (b) shows the relationship between the weighted average expected

di�erence in marginal utility and group size

Thus, the simulations indicate even with a small set of parameter values, that there

is a theoretically ambiguous relationship between group size and the extent of risk

sharing in this model.19 The nature of this relationship is thus an empirical question,

which we now turn to.

18Average expected utility is nonetheless higher in this case (even in autarky) since the variance of
the endowment is much lower in this case.

19We note that other models might also imply that the size of the optimal risk sharing group is smaller
than the whole potential group. The presence of coordination costs that are increasing in group size
could also yield a similar pattern, as shown by Murgai et al. (2002). However, to our knowledge, no
work has characterised the relationship between the extent of risk sharing and group size.
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4.3 Context and Data

Our empirical setting is Malawi, one of the poorest countries in Sub-Saharan Africa,

with around three quarters of its population living on less than $1.25 a day. Over 80% of

its population lives in rural areas, with subsistence agriculture providing the main source

of income for a substantial proportion. Infrastructure in rural areas is very weak, with

just one in sixteen households having access to electricity, and one in �ve households

having access to piped water.20 The main crops grown are maize, tobacco and ground

nuts. Agriculture is mainly rain-fed, and agricultural production and income are thus

highly dependent on unpredictable weather. Access to formal insurance and �nancial

products and services is low, with only 3% of adults holding an insurance product and

less than 20% a formal bank account.21 Instead social connections, particularly family,

are important for providing risk sharing, as we show below.

4.3.1 Data Description and Sample Selection

We use data from the Mai Mwana - IFS Economic Survey, a longitudinal survey collected

in collaboration with the authors in Mchinji District to evaluate two randomised health

interventions � a volunteer infant feeding counselling intervention and a women's group

intervention.22 The survey interviewed approximately 3000 women aged 17-43 and their

households living in approximately 600 villages across the district. It collected detailed

information on household consumption, adverse events, individual labour supply, health

indicators, assets and demographics, and importantly for us, information on extended

family networks within and outside the village. Two waves of data were collected, in

2008-09 and 2009-10. The panel dimension allows us to better control for household-

level unobserved variables that are correlated with our measure of potential group size,

crop losses, and risk sharing.

We restrict the analysis to the following sample: (i) Households living in control

areas. (ii) Households where the main respondent was resident in the same village over

both surveys. (iii) Households where the main respondent in our survey was either the

head or the spouse. (iv) Villages with more than 1 household surveyed. Restriction (i)

is imposed since the interventions could have altered risk sharing arrangements within

the village, by for instance, altering social interactions or improving community cooper-

ation (particularly in the case of the women's groups).23 Restriction (ii) is imposed to

20Source: Malawi Population and Housing Census (2008).
21Source: Finscope Malawi (2009).
22See Lewycka et al. (2013) and Fitzsimons et al. (2014) for �ndings of the impact evaluation. The

data is publicly available at http://discover.ukdataservice.ac.uk/catalogue?sn=6996
23Fitzsimons et al. (2013) �nd suggestive evidence of this.
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allow us to correctly account for village-level aggregate shocks.24 We impose restriction

(iii) to ensure that we are studying the networks of individuals with relatively similar

intrahousehold bargaining power in the sample. Finally, (iv) is imposed because we

control for village �xed e�ects.

Table 4.2 displays some descriptive statistics of our analysis sample. It contains

approximately 524 households living in 102 villages. Note that throughout what follows,

we recode the male member of a couple (where available) to be the head, while the

female member is designated to be the spouse. A note on terminology is in order:

throughout the chapter, we will use head and spouse interchangeably with husband

and wife. Both the head (husband) and spouse (wife) have low levels of education on

average, with approximately 16% (7.4%) of husbands (wives) having some secondary

schooling. Further, husbands are older than their wives by on average around 5 years.

Households have on average just over 5 members, and most own their own dwelling and

land. Despite this, households are in general poor, as indicated by their poor quality

housing, and extremely limited access to water and sewerage infrastructure.

24Around 18% of the survey main respondents in the data migrated to another village between 2008-
09 and 2009-10. The primary reason for migration was marriage. In additional analysis, we checked
whether migration was systematically related with the crop loss, and found no evidence of this.
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Table 4.2: Sample Descriptives

Variable N Mean Std. Dev.

Husband has no education (yes=1) 477 0.140 0.348

Husband has some primary (yes=1) 477 0.222 0.416

Husband has completed primary (yes=1) 477 0.478 0.500

Husband has at least some secondary (yes=1) 477 0.159 0.366

Husband's years of education 477 5.157 3.514

Wife has no education (yes=1) 524 0.256 0.437

Wife has some primary (yes=1) 524 0.273 0.446

Wife has completed primary (yes=1) 524 0.397 0.490

Wife has at least some secondary (yes=1) 524 0.074 0.263

Wife's years of education 524 3.435 3.229

Age of Husband 478 37.464 10.110

Age of Wife 524 32.648 8.843

Household size 524 5.708 2.123

# of kids < 6 years 524 1.403 0.958

# of kids aged 6-12 years 524 1.187 1.031

# individuals aged > 12 years 524 3.115 1.347

Household owns dwelling (yes=1) 524 0.937 0.243

Household owns land (yes=1) 524 0.840 0.367

Household has good �oor (yes=1) 524 0.099 0.299

Household has good roof (yes=1) 524 0.210 0.408

# of sleeping rooms 524 2.076 1.017

Household has access to piped water (yes=1) 524 0.078 0.269

Household has improved latrine (yes=1) 524 0.073 0.260

Notes to Table: The table includes households resident in the same village over both rounds of the

IFS-Mai Mwana survey, and where the main respondent was married, and either the head or spouse of

her household. Data for some husbands is missing if they are not living in the household at the time

of the survey, but are still married to the wife.

173



4.3. Context and Data 4. Group Size and the E�ciency of Informal Risk Sharing

4.3.2 De�ning the Risk Sharing Group

Having described the data, we now discuss how we de�ne the potential risk sharing

group. As noted above, formal �nancial markets are almost absent in Mchinji, and

there was no government safety net in place at the time of the surveys.25 Instead,

existing research in anthropology and sociology indicates that social connections, and

in particular, extended family connections play a critical role in helping households deal

with the consequences of risk and adverse events: for example, Trinitapoli et al. (2014)

documents the role of older siblings in protecting educational investments of younger

siblings, while Peters et al. (2008) and Munthali (2002) document the essential role

played by the family in fostering and taking care of children orphaned by HIV/AIDS.

We also �nd support for this in our data. In particular, looking at responses to a

question on who households expect to receive informal monetary transfers, loans or

gifts from, in the event of an income loss due to adverse idiosyncratic events (displayed

in Table 4.3), we see that at the median, households expect to receive support from 2

family members and 1 friend. The average indicates the opposite pattern, though this

is driven by a small number of households who can turn to a large number of friends.26

Table 4.3: Number of potential sources of support following adverse idiosyncratic event

Source of Support Mean Median Std.

Dev

Family 1.69 2 1.68

Friends 1.94 1 2.31

N 1048

Notes to Table: This table shows the number of di�erent individuals with a speci�c social

relationship that a household expects to receive help from if it experiences an income loss as a result

of an idiosyncratic adverse event.

Our data also allow us to look at the actual amounts of transfers, loans or gifts

(monetary or in-kind) given to and received from family and friends (displayed in Table

4.4) in the year prior to the survey. The data indicates, on average, households give

around 375 MK to family, and receive on average 321 MK. Their transactions with

friends are of a much lower magnitude (two and a half times, in fact), with 113 MK

given on average and 87 MK received from friends. These pieces of evidence thus con�rm

25A cash transfer program, the Mchinji Cash Transfer, was being piloted in a small number of villages
in Mchinji at the time of the survey. Less than 3% of households in our sample report receiving the
transfer.

261% of households report being able to turn to 10 or more friends in case of an adverse event.
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that the extended family is a critical source of risk sharing in this setting. Given the

importance of family for risk sharing in this setting, we de�ne `potential group size'

based on family.

Table 4.4: Transfers Given to and Received From Family and Friends

Source of Support Support Given Support Received Support Given + Received

Mean Std. Dev Mean Std. Dev Mean Std. Dev

Family 375.11 1485.83 321.22 1567.91 696.78 2378.13

Friends 113.59 677.72 87.65 599.74 201.24 919.48

N 1048 1048 1048

Notes to Table: This table shows the amounts given to (left panel), received from (middle panel), and

given to and received from (right panel) individuals with a speci�c social relationship by the

household in the year prior to the survey for wave 1 and between surveys for wave 2. All amounts are

in Malawi Kwacha. The exchange rate at the time of the survey was around US$1 = 140 MK.

Further anthropological evidence allows us to de�ne the potential group more �nely,

and also suggests a placebo test to rule out any potential lingering endogeneity con-

cerns related to this de�nition. Within the family, anthropological evidence suggests

that a wife's brothers should play an important role in ensuring the well-being of her

family. The predominant ethnic group in our sample, the Chewa, are a matrilineal and

matrilocal ethnic group (Richards 1950, Phiri 1983, Mtika & Doctor 2002). Tradition-

ally, under matriliny, society gives a special role to an individual's maternal family,

resulting in a close bond between siblings, even after marriage. Moreover, a woman's

brothers play a crucial role in supporting her family: The eldest brother is responsible

for ensuring access for a woman's family to production resources, healthcare, and other

things important for household welfare. As a result, children will consult with their

maternal uncles as they are responsible for arranging marriages, ensuring the children

have access to adequate land and other productive resources, as well as health care

(Phiri 1983, Mtika & Doctor 2002).

The literature indicates that some practices may be less relevant today, while other

aspects of matriliny have proved to be remarkably resilient over time. For instance, the

practice of matrilocality � whereby the husband moves to the wife's home immediately

after marriage � has waned somewhat in Mchinji, with about a half of couples in our

sample living in the husband's village when interviewed, and the other half live in

the wife's village of birth. At the same time, though, children are still considered

to `belong' to their mother's matriline, and the maternal relatives become their key
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caretakers following her death Munthali (2002).

In terms of risk sharing arrangements, data on interhousehold transfers from the

Family Transfers Project (collected within the Malawi Longitudinal Study of Families

and Health) indicates that a wife's brothers remain an important source and recipient

of transfers from a household: 33% (41%) of couples report having received (given)

a material transfer from (to) the wife's brothers in the past growing season (which

corresponds to a period of around 3-5 months). Moreover, they are less likely to receive

material transfers from a wife's sisters (26% report receiving a material transfer), and

received transfers are of lower magnitude (351 MK on average is received from brothers,

compared to 119 MK from sisters).27 The evidence thus suggests that the brothers of

the wife are likely to still play an important role in risk sharing for the household.

We thus de�ne the potential risk sharing group to be the number of brothers (and

separately, sisters) of the husband and wife.

4.3.3 Crop Losses

Measuring Crop Losses

Unexpected crop losses are used as our measure of shocks in the analysis.28 Such crop

losses could occur as a result of pests, variation in weather (whose e�ects could vary

within a village by the type of soil, and other characteristics of the land), and other

such factors. The �rst (second) survey collected information on whether the household

experienced any crop loss in the year preceding the survey (or since the �rst survey);

and if so, how much potential revenue was lost.29 We use this information to construct

two measures of crop loss: the �rst is a dummy variable de�ned to be 1 if the household

experienced a crop loss event, thereby measuring the incidence of a crop loss; while the

second is potential revenue lost normalised by a measure of `permanent' consumption,

thereby capturing the intensity of the crop loss.30

27These �gures come from 220 observations, and are not adjusted for the number of siblings, or other
variables.

28Crop losses have been used as a measure of adverse events by studies including Beegle et al. (2006).
29The exact questions were as follows: �In the last year (since the last survey) did this household

su�er from a bad harvest or crop loss?� and �How much potential revenue was lost as a result of the
loss?�

30We normalise the potential revenue lost by the household's permanent consumption to account for
the fact that households that experience larger losses may be wealthier and better able to build up
bu�er stocks to deal with the consequences of risk. In this case, we would erroneously conclude that
households are well insured. Household permanent consumption is measured as the part of household
consumption predicted by the education of the female main respondent as measured in 2004. We also
experimented with using household asset holdings in 2004 and quality of house in 2004, in addition to
the education of the female main respondent, to predict household consumption. A concern with using
past household assets, however, is that they may be correlated with a household's ability to currently
smooth consumption, particularly if crop loss events are persistent. Results using this measure are
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Crop losses are prevalent in this setting, as can be seen from Table 4.5: Around 24%

of households in our sample experienced a crop loss over the 2-year period, losing on

average, just over 3,700 MK. This amount corresponds to around one third of average

monthly household food consumption. Among those who experienced a loss, the average

loss is around 13,000 MK, which corresponds to 125% of average monthly household

consumption. More crop losses were observed in the year prior to the 2008-09 survey

relative to 2009-10, with the losses experienced in the former year being more severe in

intensity.

Table 4.5: Crop Losses, By Year

N Mean Std Dev

Overall Sample

Crop loss incidence 1048 0.242 0.429

Income lost ('000s MK) 1044 3.756 19.337

2008-09

Crop loss incidence 524 0.303 0.460

Income lost ('000s MK) 524 5.536 26.310

2009-10

Crop loss incidence 524 0.181 0.386

Income lost ('000s MK) 520 1.962 6.891

Notes to Table: Sample includes households resident in the same village across the two surveys, and where the

main respondent was married at the time of the survey and either the head or spouse of the head.

Finally, there is some persistence in crop losses among those who experienced a

loss. From Table 4.6, we see that around 8% of households experience a crop loss in

both survey rounds, which is higher than what we would expect if crop losses were

independently distributed.31

available on request.
31Under the assumption that the crop loss distributions for the two years are independent, the

probability of experiencing a crop loss in both survey rounds is the product of the probability of
experiencing a crop loss in 2008-09 and the probability of experiencing a crop loss in 2009-10, which
equates to around 5.4% of households.
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Table 4.6: Persistence of Crop Losses

Crop Loss in 2009-10

No Yes Total

Crop Loss in 2008-09

No 312 53 365

[59.54] [10.11] [69.66]

Yes 117 42 159

[22.33] [8.02] [30.34]

429 95 524

[81.87] [18.13] [100]
Notes to Table: Sample includes households resident in the same village across the two surveys, and where the

main respondent was married at the time of the survey and is either the head or spouse of the head.

Percentages in each category displayed in the parentheses.

Are crop losses idiosyncratic within the village?

Our objective is to investigate how the amount of idiosyncratic risk shared by a house-

hold varies with the size of its extended family. For our tests to have su�cient power, we

require that there is su�cient variation within villages in the incidence of crop losses.32

Such variation may arise as a result of di�erences in land quality, with some plots more

resilient to poor weather relative to others; or due to variation in the crops grown (some

crops and crop varieties may be more resilient to poor weather); or due to localised pests

or crop diseases. Note that there was no drought or widespread �ooding in Mchinji over

the survey period. Nonetheless, we check here for the amount of idiosyncratic variation

in our data. To do this, Figure 4.3 displays histograms of the within-village variation in

the incidence of a crop loss, for each round of data. We see from the Figure that there

are a number of villages with idiosyncratic variation in the incidence of crop losses.

32As we will show below, ideally we would like to be able to control for within-group shocks. However,
we are unable to do this since we do not observe information on all members of the group. Controlling
for aggregate village shocks allows us to partially account for common shocks experienced by group
members in the village.
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Figure 4.3: Variation in crop loss incidence within villages
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Notes to Figure: The Figure plots a histogram for the proportion of households in each village that

experienced a crop loss in wave 1 of the survey (left panel) and in wave 2 (right panel). For legibility of the

graph, a peak at 0 with magnitude 10 has been omitted.

4.3.4 Measuring extended family networks

To investigate the relationship between the extent of risk sharing and the size of the

extended family, we collected information in the survey on the numbers of siblings of

the main respondent and her spouse. Data were collected on the numbers of siblings in

the village and the number living33, and on the location of residence of the respondent's

mother and mother-in-law. We use the numbers of siblings as our measure of potential

group size. The two surveys � conducted around a year apart � captured similar numbers

of siblings for a large part of our sample. However, there were some discrepancies in

33The exact wording of the questions was as follows: Please tell me how many of the following
categories of relatives are currently alive, regardless of where they live:
1. Sisters 2. Sisters-in-law 3. Brothers 4. Brothers-in-law
Please tell me how many of the following categories of relatives are currently living in this village:
1. Sisters 2. Sisters-in-law 3. Brothers 4. Brothers-in-law
Note that in our survey, sisters-in-law and brothers-in-law were translated in a manner so as to

capture the siblings of one's spouse.
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a sizeable minority (~30%) of observations, which could not be explained by naturally

expected changes (e.g. deaths or divorce), and thus point towards reporting errors. To

mitigate e�ects of such errors, we take the average of the reported information in both

surveys as the preferred measure of potential group size. Moreover, we use information

from the household roster, along with this data to construct variables for the number

of siblings of the husband and wife living outside the household.

Tables 4.7 and 4.8 provide some descriptive statistics of sibling networks in this

context. Virtually all households have a sibling link outside the household, and a lower,

though sizeable proportion (~82%), has siblings within the same village. Households

have on average 9.4 siblings outside the household, of whom close to 3 are within the

same village. The high numbers of siblings (relative to Western contexts) re�ects the

high fertility rates in Malawi: the Total Fertility Rate34 in rural areas was estimated

to be around 7.6 in 1984, falling slightly to 6.7 by 2000. At the individual level, almost

all husbands and wives have a living sibling, though roughly one-third of husbands

and nearly half of wives do not have a sibling in the same village. On average, wives

have more living siblings (~5) than husbands (~4.4), but both have similar numbers of

siblings in the same village.

34This captures the average number of children that would be born to a woman over her lifetime if
she were to experience the exact current age-speci�c fertility rate through her lifetime, and if she were
to survive from birth to the end of her reproductive life.
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Table 4.7: Any Family Links

Any Any Sibling Any Sibling Any Links

Sibling Link of Link of Husband Wife

Link Husband Wife Brothers Sisters Brothers Sisters

Alive 0.996 0.971 0.985 0.908 0.908 0.941 0.933

[0.003] [0.008] [0.005] [0.013] [0.013] [0.011] [0.012]

In Same Village 0.819 0.666 0.531 0.534 0.517 0.418 0.437

[0.021] [0.024] [0.028] [0.025] [0.022] [0.021] [0.030]

Notes to Table: The table includes households resident in the same village over both survey rounds, and where the main respondent is married, and is either the

head or spouse of her household.

181



4
.3
.
C
o
n
tex

t
a
n
d
D
a
ta

4
.
G
ro
u
p
S
ize

a
n
d
th
e
E
�
cien

cy
o
f
In
fo
rm

a
l
R
isk

S
h
a
rin

g

Table 4.8: Numbers of Family Links

# of Sibs # of Sibs # of Sibs Number of

of Husband of of Husband Wife

+ Wife Husband Wife Brothers Sisters Brothers Sisters

Alive 9.418 4.422 5.162 2.281 2.267 2.519 2.740

[0.172] [0.098] [0.113] [0.064] [0.068] [0.069] [0.079]

In Same Village 2.945 1.571 1.498 0.893 0.788 0.811 0.748

[0.127] [0.081] [0.086] [0.057] [0.044] [0.050] [0.052]

Notes to Table: The table includes households resident in the same village over both survey rounds, and where the main respondent was married, and either the

head or spouse of her household.
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These patterns are in line with post-marital living patterns in this context. As

mentioned already, though the Chewa were traditionally matrilocal, this seems to be

waning in Mchinji, with roughly half of the wives in our sample moving to their hus-

bands' village after marriage. Thus, roughly half the wives in our sample have a sibling

in the same village, while two-thirds of husbands have a sibling in the same village. In

terms of the type of sibling link, husbands and wives have similar numbers of brothers

and sisters alive, though they have slightly more brothers than sisters living in the same

village.

4.4 Empirical Model

Our objective is to understand how the amount of risk shared in the face of crop

losses varies with the size of a household's family network. To do so, we require a

measure of risk sharing, which can be computed in the available data. One measure

implied by the model (assuming utility of the constant relative risk aversion form) is the

deviation of changes in log consumption from the �rst-best allocation. Under the �rst-

best allocation, where every group is stable, each household will consume an equal share

of pooled resources. This means that changes in household-level log consumption should

move one-to-one with aggregate group resources, and be uncorrelated with household-

level idiosyncratic shocks. This is a well known result in the risk sharing literature (see,

for example, Townsend 1994), which we use to construct our test for how risk sharing

varies with the size of a household's family network.

Using consumption to construct our measure of risk sharing has the advantage of

providing a useful summary measure of all the di�erent risk sharing strategies employed

by a household. Collecting reliable information on all the di�erent methods used for risk

sharing, and of the exact bilateral transactions between households in a group is very

time-consuming and costly; and more vulnerable to measurement error: For example,

Mtika & Doctor (2002) report that one reason why households in Malawi report few

transfers to their parents is that respondents help out their parents all the time and

do not remember all of the details of speci�c transactions; while Comola & Fafchamps

(2015) show that there is a strategic behaviour in reporting bilateral inter-household

transfers in rural Tanzania.

We next describe our estimation equation. The theoretical model did not suggest

any clear prediction on the shape of this relationship. We thus begin by estimating a

non-parametric relationship between group size and the extent of risk sharing. We do

so using the following equation, which includes interaction terms with dummy variables

for each potential group size value in the data:
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∆log(civt) = α0 + α1∆(cropivt) +

N∑
n=1

βn∆cropivt ∗ 1(Siv = n) + ∆Xivtγ

+

N∑
n=1

λn∆cropivt ∗ 1(Fiv = n) + µvt + ∆εint (4.6)

where ∆log(civt) is the change over time in log consumption for household i in

village v at time t, ∆(cropivt) indicates the change in crop loss incidence or intensity

for household i between t and t − 1, where the crop loss incidence and intensity are

measured as explained in Section 4.3.3. The term 1(Sivt = n) takes the value of 1 if

the household has n brothers or sisters of the head or spouse and 0 otherwise. ∆Xivt

captures changes in household characteristics, such as household demographics, that

could also a�ect changes in log consumption. The term
N∑
n=1

λn∆cropivt ∗ 1(Fiv = n)

controls for direct e�ects of total sibship size of the husband or wife. µvt denote village-

time dummies which capture village-level aggregate shocks. The coe�cients of interest

are βn, while the sum of the coe�cients α1 +
N∑
n=1

βn ∗ 1(Siv = n) indicates how well

protected a household's consumption is against idiosyncratic crop losses. In line with

the prevailing social norms in this context which indicate that a woman's brothers have

an important role in helping out their sisters' households, we conduct the empirical

analysis separately for the brothers and sisters of the head of a household and his

spouse.

Ideally, we would like to control for group-level aggregate shocks, rather than just

village-level aggregate shocks. However, we are unable to do so since we do not observe

the crop losses or consumption of all members of the potential group. As a result,

the group-level aggregate shock is an omitted variable, which will bias the estimates

of interest if it is correlated with potential group size or crop loss incidence. To assess

the consequences of this, we run some simulations where we generate data from a data

generating process similar to that implied by the model in Section 4.2 (parameterised

using values similar to those in the data), and use these to shed light on the direction

and magnitude of the resulting omitted variable bias. The �ndings of this exercise are

given in Subsection 4.5.2.

We include changes in crop loss, rather than crop loss in levels, as a measure of

idiosyncratic shock for the following reason: assume we used the crop loss incidence

between periods t and t + 1 as the shock measure. The concern with this is that, in

the absence of perfect risk sharing, a household may already have low consumption at
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period t if it experienced a crop loss between periods t − 1 and t. Moreover, assume

it experiences another crop loss between t and t+ 1, and its consumption remains low

at time t + 1, resulting in little or no change in ∆log(chvt). The household would

then erroneously appear to be perfectly insured: so if crop losses are persistent (and

there is some evidence of this for some households as seen in Section 4.3.3 ), we would

erroneously conclude that households are perfectly insured since their consumption does

not respond to a crop loss. For this reason, we de�ne the shock measure as the di�erence

in incidence (or intensity) of a crop loss between time periods t− 1 and t and between

t and t+ 1.35

This speci�cation can shed light on the shape of the relationship between our mea-

sure of risk sharing and the size of a household's potential group. However, this ap-

proach, which is fully non-parametric in the number of siblings, might not have su�cient

power to identify statistically signi�cant e�ects. To improve power, we divide potential

group size into three bands, the cuto�s of which are motivated by the �ndings from the

nonparametric regression above, and use the following speci�cation for the empirical

analysis:

∆log(chvt) = α0 + α1∆(crophvt) +

G∑
g=1

βn∆crophvt ∗ 1(NSg,hv = 1) + ∆Xhvtγ

+

N∑
n=1

λn∆crophvt ∗ 1(Fhv = n) + µvt + ∆εhnt (4.7)

where 1(NSg,hv = 1) is a term that takes value 1 if the household's network size is

within the cuto�s associated with band g, and 0 otherwise; and the rest of the variables

are as de�ned above.36

4.5 Results

4.5.1 Main Speci�cation

We �rst estimate Equation 4.6, separately for the brothers and sisters of the husband

and wife. Figures 4.4 and 4.5 plot the coe�cients from these regressions. We have ex-

tremely limited power in these speci�cations, and thus suppress the con�dence intervals

35A further issue with focusing on incidence of rather than changes in crop losses is that we do not
account for other risk faced by the household, which may a�ect both their consumption smoothing
and the shocks they experience. To assess the importance of this issue in our context, we estimated
speci�cations controlling for other idiosyncratic shocks experienced by the household (business shocks,
theft, and marriage break-up) and found it made little di�erence to the key coe�cients of interest.

36The exact cuto�s for the di�erent bands are de�ned in Section 4.5.
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for these coe�cients from the Figures. Despite the limitations in power, these Figures

shed light on the possible shape of the relationship between informal risk sharing and

potential group size in our data.

Figure 4.4: Risk Sharing by Number of Brothers and Sisters of Husband

-.
5

0
.5

C
oe

ffi
ci

en
t o

n 
ds

ho
ck

0 1 2 3 4 5
# brothers of husband

Shock=incidence

-.
5

0
.5

C
oe

ffi
ci

en
t o

n 
ds

ho
ck

0 1 2 3 4 5
# brothers of husband

Shock=intensity

-.
5

0
.5

C
oe

ffi
ci

en
t o

n 
ds

ho
ck

0 1 2 3 4 5
# sisters of husband

Shock=incidence
-.

5
0

.5
C

oe
ffi

ci
en

t o
n 

ds
ho

ck

0 1 2 3 4 5
# sisters of husband

Shock=intensity

Changes in log consumption in response to a crop loss

Notes to Figure: The �gures plot the correlation between changes in log consumption and household

crop loss incidence (left panel) and intensity (right panel) for households with di�erent numbers of

brothers (top panel) and sisters (bottom panel) of the husband. The coe�cient for zero brothers or

sisters is normalised to 0, and lower values of the coe�cient indicate worse risk sharing.
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Figure 4.5: Risk Sharing by the Number of Brothers and Sisters of Wife
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Notes to Figure: The �gures plot the correlation between changes in log consumption and household

crop loss incidence (left panel) and intensity (right panel) for households with di�erent numbers of

brothers (top panel) and sisters (bottom panel) of the wife. The coe�cient for 0 brothers or sisters is

normalised to 0, and lower values of the coe�cient indicate worse risk sharing.

From the Figures, we can see that there are di�erences in the amount of consumption

smoothing in the face of crop losses, by the size and types of family relations. In

particular, Figure 4.4 indicates positive changes in log consumption (implying better

protection of consumption) with larger numbers of brothers for the husband, and worse

consumption smoothing with larger numbers of sisters of the husband. For the siblings

of the wife, the Figures indicate that the consumption of households where the wife has

a small number of brothers is almost perfectly smoothed, but worsens as the number of

brothers increases. By contrast, no such relationship is seen for the number of sisters

of the wife.

The analysis above suggests that there are nonlinearities in the relationship between

the amount of risk shared in response to crop losses and the number of brothers and

sisters of a household's head and spouse. Moreover, in line with the social norms

suggested by the literature, the e�ects vary by type of sibling. In particular, for brothers
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of the wife, and sisters of the husband, there is an initial improvement in consumption

smoothing with network size, before worsening. However, we do not have su�cient

power to obtain statistically signi�cant estimates. To gain power, we thus pool together

the number of siblings of a particular type into 3 groups: those with 0 siblings of a

particular type, those with 1-2 siblings of that type, and those with 3 or more siblings

of that type. These cuto� values are in line with the evidence presented in Figures 4.4

and 4.5 above, while also ensuring that each group has su�cient sample size to improve

power. Table 4.9 presents the results for this speci�cation, with our two measures for

the crop loss shock: incidence and intensity. The top left panel displays the results

pertaining to the brothers of the husband, while the top right panel displays these for

the brothers of the wife. The bottom panel displays the results respectively for the

sisters of the husband (left panel) and wife (right panel).
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Table 4.9: Main results

[1] [2] [3] [4]

∆ logcint ∆ logcint ∆ logcint ∆ logcint

Siblings of husband alive Siblings of wife alive

shock =

crop

shock =

Loss/Pred.

Cons

shock =

crop

shock =

Loss/Pred.

Cons

∆shock 0.2114** 0.1915* 0.0126 0.0216

[0.1003] [0.0972] [0.1294] [0.2552]

No brothers*∆shock -0.2306 -0.184 0.0264 0.0296

[0.1690] [0.1323] [0.1482] [0.0792]

≥ 3 brothers*∆shock 0.0015 0.0614 -0.2578** -0.1786***

[0.1029] [0.0492] [0.1129] [0.0615]

N 524 519 524 519

R-squared 0.3213 0.3348 0.3216 0.3366

∆shock -0.1609 -0.2151 0.1095 0.1061*

[0.1809] [0.1403] [0.1453] [0.0618]

No sisters*∆shock 0.1594 0.2218** -0.0783 0.0571

[0.1231] [0.0997] [0.1246] [0.3093]

≥ 3 sisters*∆shock -0.1522 -0.1274** 0.042 -0.0411

[0.1039] [0.0515] [0.1068] [0.0546]

N 524 519 524 519

R-squared 0.3126 0.3288 0.3253 0.3371

Notes: *** Signi�cant at the 1% level; ** the 5% level; * the 10% level. Standard errors clustered at the

village level in parentheses. Regressions pool together all households where a married head or spouse

was surveyed, and who were resident in the same village for both survey rounds. All speci�cations

control for village-time dummies and changes in household demographics. �Crop� indicates whether or

not a household su�ered a crop loss, while �Loss/Pred. Cons� measures the intensity of the crop loss

as the income lost normalised by predicted household consumption.

The regression coe�cients indicate that households where the wife has more than

3 brothers experience much worse risk sharing following crop losses than those where

she has fewer than 3 (i.e. 0 or 1-2) brothers. We detect no such relationship for the
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brothers of the husband. This �nding is replicated across both our measures of crop

losses - incidence and intensity. The coe�cient estimates indicate that households where

the wife has more than 3 brothers cut their consumption by approximately 26% when

hit by a crop loss, while the intensity measure indicates that a crop loss of a magnitude

equivalent to a month's consumption leads to a reduction in household consumption of

approximately 18%.

The bottom panel of the table indicates worse risk sharing (signi�cant only for the

intensity measure) among households where the husband has any sisters, as can be

evidenced by the positive coe�cient on the interaction term for no sisters, and the

negative coe�cient on the interaction term for more than 3 sisters. No similar pattern

is found for the sisters of the wife or the brothers of the husband. The absence of any

signi�cant di�erences in risk sharing by the number of sisters of the wife is consistent

with the evidence showed in Subsection 4.3.2 which indicated that sisters of the wife

are less important for risk sharing.

4.5.2 Robustness

The analysis in the previous subsection indicates that households where the wife (hus-

band) has many brothers (sisters) achieve worse risk sharing following an idiosyncratic

crop loss. In this Subsection, we outline various exercises undertaken to ascertain the

robustness of this �nding. In particular, we rule out that this �nding is a result of being

unable to account for unobserved common group shocks, or because larger networks are

poorer, or because there is higher competition for resources among networks with many

males, or because larger networks are more vulnerable to crop losses.

Aggregate Extended Family Shocks

As mentioned above, our data doesn't allow us to adequately account for common shocks

at the extended family level. Such common shocks might be correlated with potential

group size, hence biasing our estimates. For example, larger potential groups might be

less vulnerable to a common group shock than smaller potential groups, leading to a

negative bias in our coe�cients of interest if the common group shock is not accounted

for.

We use simulations to assess the magnitude and sign of this bias, under di�erent

assumptions on the magnitude of the common extended family level shock. We generate

data under the assumption that risk is shared according to the model in Section 4.2

(augmented to allow for group-speci�c shocks), and parameters are set to match those

in our data (where possible). In particular, we set the group size distribution to be
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match the empirical distribution of brothers of the wife. Household income, yi, consists

of two components: yh, an idiosyncratic household level component, and yg - a common

extended family component. Households' consumption rules are estimated numerically

from the model in Section 4.2 augmented to allow for an independent group-level shock.

For di�erent levels of the common family shock, and randomly drawn idiosyncratic and

group shocks, we assess how the coe�cients on a speci�cation similar to Equation

4.7 change when we add controls for common extended family shocks, rather than

for common village shocks.37 The �ndings are displayed in Table 4.10. The table

indicates that all the coe�cients are indeed biased, as expected. Moreover, the biases

are sizeable, ranging from 10% of the true value to over 200%. In terms of the sign of the

bias, α1, the coe�cient on the ∆crop variable is biased downwards, while β2 (coe�cient

on ∆cropivt ∗ 1(NSg,iv = 1)) is biased upwards in all but one case. By contrast, the

coe�cient on ∆cropivt ∗ 1(NSg,iv ≥ 3),β3, is biased upward. So, if anything, we are

likely to be underestimating the negative e�ect of larger groups on risk sharing.

37Full details on the simulations and estimation equation are given in Appendix 4.8.2.
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Table 4.10: Simulation Results to Assess the Sign and Magnitude of the Bias from

Omitting Controls for Aggregate Extended Family Shocks

Size of Group-Level Shock (% Avg. Annual HH Income)

0% 5% 10% 15% 20% 25%

Avg. α̂1 (Group dummies) -0.046 -0.183 -0.105 -0.105 -0.105 -0.117

Simulation std. error [0.001] [0.003] [0.001] [0.001] [0.001] [0.001]

Avg. α̃1 (Village dummies) -0.119 -0.213 -0.160 -0.161 -0.161 -0.169

Simulation std. error [0.003] [0.003] [0.003] [0.001] [0.003] [0.004]

Avg. % Absolute Bias 160.7% 16.0% 51.6% 52.3% 52.4% 44.4%

Avg. β̂1 (Group dummies) -0.106 0.090 -0.031 -0.086 -0.085 -0.099

Simulation std. error [0.002] [0.004] [0.001] [0.001] [0.001] [0.002]

Avg. β̃1 (Village dummies) -0.092 0.032 -0.044 -0.072 -0.072 -0.078

Simulation std. error [0.004] [0.004] [0.004] [0.004] [0.004] [0.006]

Avg % Absolute bias 13.4% 64.9% 42.9% 15.8% 15.8% 21.1%

Avg. β̂2 (Group dummies) -0.074 0.037 -0.051 0.009 0.010 0.009

Simulation std. error [0.002] [0.004] [0.002] [0.003] [0.002] [0.003]

Avg. β̃2 (Village dummies) -0.033 0.040 -0.021 0.029 0.029 0.028

Simulation std. error [0.003] [0.003] [0.003] [0.004] [0.004] [0.005]

Avg % Absolute bias 56.2% 9.5% 58.6% 225% 217.5% 220%

Notes to Table: Data simulated with parameters to match those in data. Exact parameter values, and

simulation details are explained in Appendix 4.8.2. The average annual household income is around

56000 MK. hh = 61223MK and lh = 46475.64MK. α1 is the coe�cient associated with ∆crop, β1 is that

associated with No sibling of that type * ∆crop; and β2 is that associated with (≥3 siblings)*∆crop.

Are larger networks poorer?

An important concern is that our �ndings may be driven by unobserved factors that

drive both network size and changes in log consumption. One such set of factors relates

to the fact that households with larger family networks may be poorer. Larger families
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have long been observed to be poorer in a variety of contexts. This could make them

less able to provide support to other family members when they need it, thus leading

to worse risk sharing. We provide evidence that our results are not driven by the fact

that larger families are poorer.

First, we fail to �nd similar results for the sisters of the wife, and for the brothers

of the husband. If the �ndings were being driven by a family size e�ect, rather than

being the e�ect of having many brothers, we would expect to �nd that households with

many sisters are also less well protected from crop loss events. Of course, this argument

is only valid as long as households with many sisters and those with many brothers are

not di�erent in other dimensions. To assess whether this is the case, we test whether

households where the wife has ≥ 3 brothers and < 3 sisters are di�erent to households

with ≥ 3 sisters, but < 3 brothers, focusing on dimensions that are less likely to have

changed as a result of recent shocks experienced by households. The �ndings from this

analysis are displayed in Table 4.11 (4.12) for the husband (wife).

Table 4.11: Comparing characteristics of households where husband has ≥ 3 brothers

with those where he has ≥ 3 sisters

≥3 sis of

husband

sd ≥3 bros of
husband

sd p-val of

di�

Husband's Characteristics

Years of education 4.815 0.380 5.257 0.329 0.391

Age 37.865 0.923 37.269 0.814 0.632

Chewa 0.931 0.027 0.945 0.028 0.527

Wife's Characteristics

Years of education 3.404 0.282 3.609 0.274 0.582

Age 33.685 0.839 33.027 0.663 0.525

Chewa 0.978 0.014 0.973 0.014 0.768

Notes: ** Signi�cant at 5% level; * at the 10% level. Sample includes households where the wife has

3 or more brothers and less than 3 sisters or 3 or more sisters and less than 3 brothers.

As can be seen from the tables, we �nd few di�erences in the small set of observable

characteristics of the husband and wife in these two types of households. In particular,
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there are no signi�cant di�erences in the amount of education of the husband or wife in

households where the husband (wife) has ≥ 3 brothers and those where he (she) has ≥
3 sisters. Though males typically have a higher level of education than females, there

is no di�erence in education levels by the sex composition of the individual's sibship.38

Table 4.12: Characteristics of households where wife has ≥ 3 brothers with those where

she has ≥ 3 sisters

≥3 sis of

wife

sd ≥3 bros of
wife

sd p-value

of di�

Husband's Characteristics

Years of education 5.202 0.322 5.519 0.377 0.517

Age 37.487 0.807 37.404 1.051 0.954

Chewa 0.915 0.035 0.886 0.052 0.392

Wife's Characteristics

Years of education 3.760 0.277 3.872 0.326 0.794

Age 33.241 0.592 32.456 0.925 0.489

Chewa 0.962 0.017 0.972 0.016 0.352

Notes: ** Signi�cant at 5% level; * at the 10% level. Sample includes households where the husband

has 3 or more brothers and less than 3 sisters or 3 or more sisters and less than 3 brothers.

Number of Brothers and Competition for Resources

Another concern is that there might be more competition for production resources

among families with many males: essentially, if land is passed down to males only,

and there are many males in a particular family, each male would receive a smaller

land plot, and thus would be less able to help their sisters' households when they face

idiosyncratic shocks. The land descent system in Mchinji is considered to be a mixed

one: some households practice a patrilineal system and pass on land to males, whereas

others practice a matrilineal system and pass on land to females. We provide some

38The di�erences in education levels by gender are likely to be driven by gender di�erences in the
economic returns to education rather than due to explicit gender discrimination by parents. To our
knowledge, there is no evidence of sex discrimination in investments in children at either the pre-natal
or post-natal stage. Indeed, when we analyse the e�ects of a randomised infant feeding counselling
intervention in this context by gender, we �nd no di�erences in nutritional investments in children by
gender. These results are available on request.
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suggestive evidence to rule out this channel. In particular, though we do not have

information on the landholdings of siblings of the husband or wife, we can look at

whether there are any di�erences in the size of land between households where the

husband has many brothers and few sisters compared to those where the husband has

many sisters but few brothers. If the patrilineal form of land descent is more dominant

in our sample (which we do not believe it to be), we would expect households where

husbands have many brothers to have smaller plots of land than households where the

husband has many sisters. Examining the data, we see that households where the

husband has 3 or more brothers and fewer than 3 sisters have on average 2.9 hectares of

land, whereas those where the husband has 3 or more sisters and fewer than 3 brothers

have on average 2.7 hectares of land. This di�erence is not statistically signi�cant, thus

providing suggestive evidence that the empirical �ndings are unlikely to be driven by

this channel.

Potential Group Size and Incidence of Shocks

A second concern is that larger extended families could be more vulnerable to crop

loss events, particularly if they are poorer. In that case, the de�ciencies in risk sharing

detected above may be a consequence of poverty, rather than a breakdown of risk sharing

due to unstable coalitions.

To see if this is the case, we consider how the incidence and intensity of crop losses

vary with potential group size. To do so, we regress the crop loss and intensity variables

on our network size variables, pooling data from both survey rounds. Table 4.13 displays

these results. The table does not indicate that households where the wife has many

brothers are more vulnerable to crop loss events compared to households where the wife

has fewer brothers. Thus, we can rule out that our �nding of poor risk sharing among

these households is driven by this channel. Interestingly, we �nd a negative coe�cient

for households where the wife has 3 or more sisters: such households are less likely to be

a�ected by a crop loss incident, though there is no di�erence detected in the intensity

of the crop loss.
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Table 4.13: Network size and crop loss incidence

[1] [2] [3] [4]

crop loss in-

cidence

crop loss in-

tensity

crop loss in-

cidence

crop loss in-

tensity

Siblings of husband alive Siblings of wife alive

No brothers -0.0571 -0.0752 -0.0058 0.0012

[0.0452] [0.0721] [0.0471] [0.0902]

≥3 brothers -0.014 -0.0527 0.0033 -0.0599

[0.0262] [0.0424] [0.0275] [0.0428]

N 1131 1131 1131 1131

R-squared 0.0244 0.0200 0.0289 0.0216

No sisters 0.0036 -0.0083 -0.0290 -0.0633

[0.0548] [0.0731] [0.0522] [0.0818]

≥3 sisters -0.0075 -0.0203 -0.0628** -0.0216

[0.0285] [0.0384] [0.0314] [0.0391]

N 1131 1131 1131 1131

R-squared 0.0262 0.0198 0.0306 0.0191

Notes: *** Signi�cant at the 1% level; ** the 5% level; * the 10% level. Standard errors clustered at the

village level in parentheses. Regressions pool together all households where a married head or spouse

was surveyed and who were resident in the same village for both survey rounds. "Crop loss incidence"

is a dummy variable that indicates whether the household experienced a crop loss in the previous year

(or since the last survey), while "Crop loss intensity" is the size of the crop loss normalised by predicted

household consumption.

4.6 Calibration

The empirical results show that households where the wife (husband) has a large num-

ber of brothers (sisters) achieve worse risk sharing outcomes compared to households

where the wife (husband) has fewer brothers (sisters). The theory indicates that the

relationship between risk sharing and potential group size is ambiguous and sensitive

to parameter values: for some combination of parameters, larger potential groups can

o�er better risk sharing, while for others, they o�er worse risk sharing. To investigate

whether the �ndings can be explained by the theory, we conduct a calibration exercise

to see if the model can reproduce the empirical �ndings when parameter values are set
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to be similar to those in our data.

We parameterise the value of the high and low endowment as follows: From the data,

we obtain the average annual household income from agriculture for all households in

the sample, ȳ. This is equivalent to a weighted average of the high and low endowment

states, where the low endowment state is taken to be the high endowment state less the

crop loss (in nominal terms, without normalising for predicted consumption):

ȳ = p ∗ h+ (1− p)(h− crop) (4.8)

We obtain the values for ȳ, p and crop from the data, and use the formula 4.8 to back

out the values for h and l respectively. Table 4.14 displays the resulting parameters.

In addition to these parameters, we also need to specify a value for the coe�cient of

relative risk aversion, ρ and the discount factor, δ. We set ρ = 1.5 and δ = 0.95. The

value for δ, which is lower than that typically estimated for developed countries, is

within the range estimated for India by Ligon et al. (2003).

Table 4.14: Parameter values for calibration

Parameter Value

h 61223.64MK

l 46475.64MK

p 0.63

δ 0.95

ρ 1.5

Note to Table: This table displays the parameter values used to calibrate the theoretical model. The

values for the high and low endowments, h and l are in Malawi Kwacha (MK). The exchange rate at

the time of the survey was roughly US$1 = 140MK.

Figure 4.6 plots the value for average expected utility and group size. What is

striking is that weighted expected utility increases with potential group size initially,

but then falls before increasing again in a zigzag pattern. This pattern can be explained

by the fact that given the parameter values, only groups of size 1 and 2 are stable. Larger

potential groups would then sort randomly into the smaller stable groups, for example,

groups of size 3 would sort into groups of size 1 and 2. Since expected utility under

autarky is lower than in a group of size 2, this results in a drop in average expected
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utility for a potential group of size 3. In fact, such an argument holds for all odd-sized

potential groups, while even-sized potential groups would sort into subgroups of 2 and

attain the same average expected utility as a group of size 2.

Importantly, the drop in expected utility when moving from a potential group of

size 2 to 3 matches the pattern found in the data, suggesting that threats of coalitional

deviations may be a possible explanation for the worse risk sharing for households where

the wife has many brothers.

Figure 4.6: Calibration Findings - Average Expected Utility and Network Size
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Notes: The Figure on the left panel shows the relationship between weighted average expected utility

and group size, while that on the right panel shows the relationship between the weighted average

expected di�erence in marginal utility and group size

4.7 Conclusion

In this chapter, we study the relationship between group size and the extent of risk

sharing in a setting with limited commitment and coalitional deviations. In such envi-

ronments, two forces are at play in determining the relationship between group size and

risk sharing: on the one hand, larger groups allow for more e�ective diversi�cation, and

hence better risk sharing. On the other hand, they are more vulnerable to deviations

by sub-groups (coalitions) of households who can renege on the informal arrangement

and continue sharing risk in the smaller subgroup. Thus, risk sharing groups will be

bounded from the top (GR). We extend the model of GR and use simulations to show

that the relationship between risk sharing and group size is theoretically ambiguous.

The nature of this relationship is thus an empirical question.

We investigate this question empirically using data from rural Malawi, and over-
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come the challenge posed by the fact that the size of the actual risk sharing group is

endogenous, by considering potential group size, and focusing on a group likely to be ex-

ogenous � siblings of the household head and spouse. Evidence from the anthropological

and sociological literatures indicate that the extended family is a crucial risk sharing

institution in the setting we study. Moreover, historical, well-documented norms at

play in this context indicate a much more important role for a wife's brothers in pro-

viding risk sharing, than for her sisters. These norms highlight an important source of

heterogeneity in risk sharing patterns, and also allow us to construct placebo tests to

alleviate concerns that unobserved factors correlated with our measures of group size

and the e�ciency of risk sharing are driving our �ndings.

We consider how well protected a household's consumption is to idiosyncratic crop

losses � an important source of risk in this setting � allowing the e�ects to vary by the size

of the family network of the husband and wife (de�ned separately by gender of sibling).

In line with the literature on informal risk sharing, we measure the degree of risk sharing

by the correlation between changes in household log consumption and idiosyncratic crop

losses (net of aggregate shocks at the village level). A �rst non-parametric speci�cation,

which places no restrictions on the shape of the relationship between the degree of risk

sharing and potential group size, indicates that this relationship is non-linear. However,

these estimates are extremely imprecise.

To increase power, we divide group size into three bands, the boundaries of which

are informed by the non-parametric analysis. Estimates from this speci�cation indicate

that households where the wife (husband) has many brothers (sisters) achieve worse risk

sharing relative to households where they have fewer brothers (sisters). We fail to �nd a

similar relationship for the wife's sisters (brothers), which indicates that the relationship

is unlikely to be driven by the fact that households where the husband/wife have many

siblings are poorer. Moreover, we show that these households are not more susceptible

to crop losses, suggesting that the �ndings are not driven by this margin either. We also

provide suggestive evidence to rule out other channels including higher competition for

production resources among extended families with many male siblings. A calibration

exercise, where we parameterise our theoretical framework using information from the

data (where available), indicates that the empirical patterns could be produced by the

theory.

Thus, larger potential risk sharing groups need not yield better risk sharing out-

comes, indicating a role for governments and other actors to implement policies and

mechanisms to better protect household wellbeing.

199



4.8. Appendix 4. Group Size and the E�ciency of Informal Risk Sharing

4.8 Appendix

4.8.1 Details of Model Simulation Calculations

In this section, we provide a step-by-step overview of the calculations that yield Figure

4.1 above. Given the speci�c parameter values associated with this particular example,

groups of size, N = 1, 2 and 3 are found to be stable, while those of sizes, N = 4 − 10

are found to be unstable. The social planner randomly assigns households in a group of

a speci�c size, N to stable subgroups of sizes s1, s2, ...sJ in a manner so as to maximise

total expected utility, while ensuring that all households are assigned to some stable

sub-group. For groups of size, N = 1, 2 and 3, the social planner has no need to reassign

households to stable sub-groups of a smaller size, sj . Thus the average expected utility,

and expected di�erence in marginal utility, for households in groups of these sizes can

be recovered from Equations 4.4 and 4.5 by setting πs = 1 for its group size and 0 for all

other other stable group sizes and evaluating these equations at the optimal transfer.

The calculated values are given in the Table 4.15 here.

Table 4.15: Expected Utility, and Expected Di�erence in Marginal Utility for Stable

Groups, Example 1

Group Size Expected Utility Expected

Di�erence in

Marginal Utility

1 0.66206 0.15745

2 0.66377 0.03378

3 0.66857 0.03344

For groups of other sizes, we need to solve for the combination of stable sub-groups

that maximises total expected utility when the social planner randomly assigns house-

holds to the stable subgroups. In this example, the optimal allocation of sub-groups

for a group of size 4 is 1 sub-group of size 3 and 1 sub-group 1. Since households are

randomly allocated into these sub-groups, each household has a
1

4
chance of being in

the sub-group of size 1 and
3

4
of being in a group of size 3. The associated weighted

average expected utility is thus

3

4
∗ 0.66857 +

1

4
∗ 0.66206 = 0.66694

For a group of size 5, the optimal sub-groups are one of size 3 and one of size 2.
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Each household now has a
3

5
chance of being in the group of size 3 and a

2

5
chance of

being in a group of size 2. The corresponding weighted average expected utility is

3

5
∗ 0.66857 +

2

5
∗ 0.66206 = 0.66665

Note that the weighted average expected utility for a group of size 5 is lower than

that for a group of size 4 because the probability of being in the higher utility sub-group

of size 3 is higher in the latter case than in the former. This probability di�erence o�-

sets the increased expected utility from being in a sub-group of size 2 in the former

case relative to being in one of size 1 in the latter case. Table 4.16 summarises these

calculations for groups of sizes 4 - 10 in this example.

Table 4.16: Details of calculation for unstable groups, Example 1

Group Size
Prob. of being in

stable subgroup of size:
Weighted Avg.

EU

Weighted Avg.
Expected Di� in

MU
1 2 3

4 1
4 0 3

4 0.66694 0.06444

5 0 2
5

3
5 0.66665 0.03357

6 0 0 1 0.66857 0.03344

7 1
7 0 6

7 0.66764 0.05115

8 0 1
4

3
4 0.66737 0.03352

9 0 0 1 0.66857 0.03344

10 1
10 0 9

10 0.66792 0.04584

4.8.2 Details of Simulations to Assess the Sensitivity of Parameter

Estimates to Aggregate Extended Family Shocks

A concern is that our estimates might be biased since we are unable to suitably control

for group-level shocks. We use simulations to assess the sensitivity of our parameter

estimates to biases arising from this issue. Here we provide some details on the set-up

of the simulations.

1. First, we generate a set of households and assign them to groups and villages.

Villages contain multiple groups, and groups can span across multiple villages.

Groups have di�erent sizes, with the distribution of group sizes (total, and in the

village) selected to match those found in the data.

2. We set the income process as follows: household income is composed of two com-
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ponents, a household-level component, yi = {hi, li} and a group-level component,

yg = {hg, lg}. We select the values of hi and li to be similar to those in our data.

For the group-level shock, we set hg = 0 and vary the values of lg to be πȳi, where

ȳi is the household's expected income. The probability of hi is set to p, 0 < p < 1;

and that of hg is set to π; 0 < π < 1. Throughout, we set p = 0.63 and π = 0.06.

The former probability is derived from our data, and the latter corresponds to

the probability of a village-level aggregate shock in the data.

3. We extend the Genicot and Ray (2003) model to allow for common group level

shocks (that are independent of the household-level shock), and given the values

of hi, li, hg and lg, and other parameters, compute the set of stable group sizes

and derive the optimal transfer. We use the same consumption rule as in GR,

and use the optimum transfers to calculate consumption under di�erent states.

4. Given the set of stable group sizes, we allocate households in a potential group of

size S to stable groups so as to maximise the total expected utility of the potential

group. Since we assume the households are all homogenous, this amounts to a

random allocation of households to stable groups.

5. We then randomly draw realisations of yi for each household, and yg for each

group.

6. Given the stable group, and the realisations of yi and yg, we use the consumption

rule computed in (3) above to assign consumption to each household.

7. We repeat (5) and (6) to attain a panel of shock and income realisations.

8. We then run speci�cation 4.9, allowing �rst for the term µnt to be a group-level

dummy, and then for it to be a village-level dummy. We obtain the coe�cients

β1, β2 and β3.

∆log(civt) = α0 + α1∆(cropivt) + β1∆cropivt ∗ 1(NSg,iv = 1) + β2∆cropivt ∗ 1(NSg,iv ≥ 3)

+µn
t + ∆εint (4.9)

9. Repeat steps 4-8 100 times. Table 4.10 displays the results for di�erent levels of

the common group shock.
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Chapter 5

Nutrition, Information and

Household Behavior: Experimental

Evidence from Malawi

5.1 Introduction

Since Becker (1965)'s seminal contribution, economists have long recognized that many

goods are not directly bought in the market, but are produced at home using a com-

bination of market and non-market goods. The home production framework has been

particularly fruitful in studying the production of health, in particular child health

(Grossman 1972, Rosenzweig & Schultz 1983, Gronau 1987 and 1997). An important

implication of such models is that households make choices given their knowledge of

the (child) health production function. Consequently, de�ciencies in knowledge lead to

suboptimal household choices and thereby distorted levels of child health. Establishing

empirically the consequences of de�ciencies in knowledge on household behavior has,

however, been challenging because knowledge is endogenous and is usually either unob-

0This chapter is co-authored with Emla Fitzsimons, Alice Mesnard and Marcos Vera-Hernandez. We
thank the Mai Mwana team, especially Tambozi Phiri, Andrew Mganga, Nicholas Mbwana, Christopher
Kamphinga, Sonia Lewycka, and Mikey Rosato for their advice, useful discussions, and assistance with
data collection. We are grateful also to Julia Behrman, Senthuran Bhuvanendra, Lena Lepuschuetz
and Carys Roberts for excellent research assistance. We also thank the editor and two referees, as
well as Orazio Attanasio, Richard Blundell, Irma Clots, Colin Cameron, Esther Du�o, Markus Gold-
stein, Michael Kremer, Manoj Mohanan, Grant Miller, Amber Peterman, Ian Preston, Gil Shapira,
Alessandro Tarrozi, Patrick Webb, and participants at numerous seminars and conferences for useful
comments and discussions. The authors acknowledge �nancial support from the ESRC/Hewlett Joint
Scheme under Grant reference RES-183-25-008; ESRC-NCRM Node `Programme Evaluation for Policy
Analysis' Grant reference RES-576-25-0042; and from Orazio Attanasio's ERC Advanced Researcher
Grant, Agreement No. 249612 - IHKDC.
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served or proxied by education which also a�ects child health through other channels

including earnings.

In this chapter, we overcome this challenge by exploiting an intervention, imple-

mented through a cluster randomized trial, aiming to improve mothers' knowledge of

the child health production function in rural Malawi. The intervention solely provided

information on child nutrition to mothers, thus yielding a clean source of identi�cation.

Our contribution is twofold. First we assess whether the intervention improved child

nutrition and consequently health. Second, drawing on a simple theoretical model, we

investigate how other household choices change to accommodate the improved knowl-

edge of the production function. In so doing, we assess whether non-health choices,

particularly parental labor supply, might be a�ected by parents' knowledge of the child

health production function.

In the context we study, rural Malawi, mothers have many misconceptions about

child nutrition. To take some examples, it is common practice to give porridge diluted

with unsterilized water to infants as young as one week; the high nutritional value of

groundnuts, widely available in the area, is not well-known; and widespread misplaced

beliefs include that eggs are harmful for infants as old as 9 months, and that the broth

of a soup contains more nutrients than the meat or vegetables therein. This evidence

suggests that important changes can be expected if these misconceptions are corrected.

The intervention we study delivered information in an intense manner: trained

local women visited mothers in their homes once before the birth of their child and four

times afterwards, and provided information on early child nutrition on a one-to-one

basis. Moreover, the fact that the intervention had been running for at least 3 years

when outcome data were collected, allows for a su�cient time-frame for practices to

change. This lapse also allows us to measure medium-term impacts, which is important

since interventions often perform much better in the short- rather than medium-term

(Banerjee et al. 2008 and Hanna et al. 2016).

Consistent with gains in knowledge, we �nd evidence of improvements in infants'

diets and household food consumption, particularly an increase of protein-rich foods and

of fruit and vegetables. We also �nd that household food consumption increases, and

there is suggestive evidence that it might have been partially �nanced through increased

labor supply. Overall, the �ndings are consistent with households learning that some

relatively costly foods are more nutritious than they previously believed, and adjusting

their labor supply so as to facilitate increases in their children's intake of them. Indeed,

we show that households adjust their behavior on several margins including child diet

inputs and labor supply, making their response more complex than simply changing the

composition of consumption while keeping total consumption constant.
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We �nd that the intervention improved children's physical growth, particularly

height, a widely used indicator of long-term nutritional status. This �nding is par-

ticularly important for policy: child malnutrition is a severe and prevalent problem in

developing countries (de Onis et al. 2000), that leads to poor health and excess child

mortality (Bhutta et al. 2008, Pelletier et al. 1994) and is also linked to poor human

capital outcomes later on in life.1

The chapter deals carefully with the increasingly important issue of inference in

cluster randomized trials when the number of clusters is small. It is well known that

in this situation, standard statistical formulae for clustered standard errors based on

asymptotic theory (cluster-correlated Huber-White estimator) provide downward bi-

ased standard error estimates (Donald & Lang 2007, Wooldridge 2004, Bertrand et al.

2004, Cameron et al. 2008). We use two leading methods for inference in this case -

randomization inference (Fisher 1935, Rosenbaum 2002) and wild-cluster bootstrap-t

(Cameron et al. 2008). Furthermore, we assess their performance in our data using

Monte Carlo experiments, and �nd that both methods perform relatively well. Present-

ing the performance of these two methods side-by-side is of interest for many empirical

applications, given the increasing trend in randomized trials with a small number of

clusters.

Lewycka et al. (2013) studies the e�ect of this intervention on exclusive breastfeed-

ing and infant mortality. Our paper addresses a di�erent question, whether improving

knowledge of the health production function a�ected consumption, labor supply, nutri-

tional practices and child nutrition to the age of around 5 years. We also use a di�erent

dataset; they interview mothers until their child is six month old, while we rely on a

representative sample of women of reproductive age, and their households. More details

about the design of the intervention can be found in Lewycka et al. (2010).

Our work contributes to a number of strands of literature. First, it adds to the dis-

cussion on the e�ects of health information on behavior (Dupas 2011b).2 The evidence

is mixed: Madajewicz et al. (2007), Jalan & Somanathan (2008) and Dupas (2011a)

�nd that providing information on, respectively, the arsenic or fecal concentration of

water; and the risks of contracting HIV improves associated practices; while Kamali

et al. (2003), Kremer & Miguel (2007) and Luo et al. (2012) �nd that health behaviors

relating to, respectively, HIV, deworming and anemia do not respond to health edu-

cation. This paper departs from these studies by not only considering a multifaceted

1See, among others, Behrman (1996), Strauss & Thomas (1998), Glewwe et al. (2001), Alderman
et al. (2001), Behrman & Rosenzweig 2004, Schultz (2005), van den Berg et al. (2006), Hoddinott et al.
(2008), Maluccio et al. (2009), Banerjee et al. (2010), Currie et al. (2010), van den Berg et al. (2009),
Maccini & Yang (2008), Currie (2009), van den Berg et al. 2010, Lindeboom et al. (2010), Currie &
Almond (2011), Barham (2012), Bhalotra et al. (2016).

2For the case of education, see for instance Jensen (2010).
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information intervention, but also by studying household responses on a wider range

of margins than those directly targeted by the intervention. In doing so, this is one

of the �rst papers to investigate how behaviors not directly related to the topic of an

information campaign adjust to it.

Second, it contributes to the literature evaluating the e�ects of nutrition informa-

tion interventions on nutrition practices and child health. Morrow et al. (1999) and

Haider et al. (2000) �nd improvements in excluding breastfeeding within small scale

randomized controlled trials in Mexico and Bangladesh respectively; while Alderman

(2007), Linnemayr & Alderman (2011); and Galasso & Umpathi (2009) �nd improve-

ments in child weight-for-age, an indicator for medium-term health status, using non-

experimental methods. Our paper builds on these by studying the e�ects on a range

of measures of child health, health practices, and other margins of household behavior,

all identi�ed through a randomized controlled trial.

Finally, it relates to the literature investigating the causal e�ects of parental edu-

cation on child health. In developed countries, Currie & Moretti (2003) and McCrary

& Royer (2011) �nd respectively, decreased incidence of low birth weight and modest

e�ects on child health of increased maternal schooling in the US, while Lindeboom et al.

(2009) �nd little evidence that parental schooling improves child health in the UK. For

developing countries, Brierova & Du�o (2004) and Chou et al. (2010) �nd that parental

schooling decreases infant mortality in Indonesia and Taiwan respectively. However, it

is di�cult to disentangle whether the e�ect of education is working through changes in

knowledge of the child production function, or through increased income and hence ac-

cess to more and better quality care. Related to this, Thomas et al. (1991) and Glewwe

(1999) �nd that almost all of the impact of maternal education on child's height in

Brazil and Morocco can be explained by indicators of access to information and health

knowledge.

The rest of the paper is structured as follows. Section 5.2 provides background

information on rural Malawi and describes the experimental design and data, section

5.3 describes the theoretical framework, while section 5.4 sets out the empirical model.

Our main results are presented in section 5.5. Section 5.6 rules out alternative potential

explanations behind our �ndings, and section 5.7 concludes.

5.2 Background and Intervention

5.2.1 Background

Malnutrition in the early years (0-5) is one of the major public health and development

challenges facing Malawi, one of the poorest countries in Sub-Saharan Africa. The
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2004 Malawi Demographic and Health Survey (DHS) Report indicates an under-�ve

mortality rate of 133 per 1000, and under-nutrition is an important factor driving this:

Pelletier et al. (1994) estimate that 34% of all deaths before age 5 in Malawi are related

to malnutrition (moderate or severe). Moreover, 48% of Malawian children aged < 5

years su�er from chronic malnutrition, a rate that is the second highest in sub-Saharan

Africa.

Poor feeding practices are at least partly responsible for these extreme malnutrition

indicators. Over half of all infants aged < 6 months are given food and/or unsterilized

water (DHS, 2004), which can lead to gastrointestinal infections and growth faltering

(Haider et al. 2000, Kalanda et al. 2006) and is contrary to World Health Organiza-

tion (WHO) recommendation of exclusive breastfeeding for the �rst six months of an

infant's life. Furthermore, porridge diluted with unsterilized water is often given in

large quantities to infants as young as one week (Bezner-Kerr et al. 2007). In terms of

nutrition for infants aged > 6 months, their diets - rich in staples such as maize �our -

frequently lack the necessary diversity of foods to provide su�cient amounts of energy,

proteins, iron, calcium, zinc, vitamins and folate: in our sample, 25% of children aged

6-60 months did not consume any proteins over the three days prior to the survey, with

a further 30% consuming just one source of protein. Poor nutritional practices are likely

to be related to a lack of knowledge: for instance, only 15% of mothers in our sample

knew how to best cook �sh combined with the local staple so as to maximize nutritional

value.

It is against this background that, in 2002, a research and development project

called MaiMwana (Chichewa for �Mother and Child�) was set up in Mchinji District,

in the Central region of Malawi.3 Its aim was to design, implement and evaluate

e�ective, sustainable and scalable interventions to improve the health of mothers and

infants. Mchinji is a primarily rural district, with subsistence agriculture being the

main economic activity. The most commonly cultivated crops are maize, groundnuts

and tobacco. The dominant ethnic group in the district is the Chewa (over 90% in our

data). According to the 2008 Malawi census, socio-economic conditions are comparable

to or poorer than the average for Malawi (in parentheses in what follows), with literacy

rates of just over 60% (64%), piped water access for 10% (20%) of households and

electricity access for just 2% (7%) of households.

3MaiMwana is a Malawian trust established as a collaboration between the Department of Pediatrics,
Kamuzu Central Hospital, the Mchinji District Hospital and the UCL Centre for International Health
and Development. See http://www.maimwana.malawi.net/MaiMwana/Home.html
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5.2.2 The Intervention

In 2005, MaiMwana established an infant feeding counseling intervention in Mchinji

District (ongoing at time of follow-up), to impart information and advice on infant

feeding to mothers of babies aged < 6 months.4 The intervention thus targets the very

�rst years of life, a critical period for growth and development during which nutritional

interventions are likely to be most bene�cial (Schroeder Jr et al. 1995, Shrimpton et al.

2001, Victora et al. 2010). The information is provided by trained female volunteers

(�peer counselors� hereon) nominated by local leaders. In practice, peer counselors are

literate local women aged 23-50 years with breastfeeding experience.5

Each peer counselor covers an average population of 1,000 individuals, identifying

all pregnant women within this population and visiting them �ve times in their homes:

once before giving birth (3rd trimester of pregnancy) and four times afterwards (baby's

age 1 week, 1 month, 3 months, 5 months). Although all pregnant women are eligible for

the intervention and participation is free, in practice around 60% of them are visited by

the peer counselors. Our data show that women who were visited by the peer counselor

tend to be poorer: in particular, they were 4.8 percentage points (7.5 percentage points)

less likely to have a �oor (roof) built with good materials.

Regarding the content of the visits, exclusive breastfeeding is strongly encouraged

in all visits. Information on weaning is provided from when the baby is 1 month old

(visits 3-5) and includes suggestions of suitable locally available nutritious foods, the

importance of a varied diet (particularly, the inclusion of protein and micronutrient-

rich foods, including eggs) and instructions on how to prepare foods so as to conserve

nutrients and ease digestion (for instance to mash vegetables rather than liquidize them;

to pound �sh before cooking it). Peer counselors were provided with a manual to remind

them of the content relevant for each visit, and simple picture books to aid in explaining

concepts.

Experimental Design

The evaluation is based on a cluster randomized controlled trial designed as follows (see

Lewycka et al. (2010), Lewycka (2011), Lewycka et al. (2013)). Mchinji District was

divided into 48 clusters by combining enumeration areas of the 1998 Malawi Population

4Though the intervention is predominantly focused on nutrition, it also touches on other issues
such as birth preparedness, HIV testing and counseling, vaccinations, and family planning. Section 5.6
discusses how these aspects relate to our results.

5Peer counselors receive an initial 5 day and annual refresher training, and attend monthly meetings.
They are not paid, but receive a bicycle, meeting allowances, registers, calendars and supervision forms.
They are supervised by 24 government health surveillance assistants and 3 MaiMwana o�cers.
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and Housing Census.6 This was done in a systematic way, based on the contiguity

of enumeration areas and respecting boundaries of Village Development Committees

(VDCs), such that each cluster contained approximately 8,000 individuals. Within

each cluster, the 3,000 individuals (equating to 14 villages on average) living closest to

the geographical centre of the cluster were chosen to be included in the study.7 The

study population therefore comprises of individuals living closest to the geographical

centre of the clusters and was selected in this way in order to limit contamination be-

tween neighboring clusters by creating a natural bu�er area. 12 clusters were randomly

selected to receive the infant feeding counseling intervention, with an average of three

peer counselors per cluster. A further 12 serve as controls.8

Evaluation Sample Description

A census of women of reproductive age was conducted by MaiMwana in all clusters

in 2004, before the intervention started (�baseline census� from hereon) in July 2005

(see Figure 5.1).9 Approximately 3.5 years into the intervention, which was still in

place, we drew a random sample from the baseline census in order to conduct the �rst

follow-up survey.10 Speci�cally, in 2008 we drew a random sample of 104 women of

reproductive age (17-43), regardless of their child bearing status11 from each of the 24

clusters, leaving us with a target sample of 2,496 women.

The baseline census contains some socio-economic and demographic characteristics

of these women and their households, as shown in the left hand panel of Table 5.1.

Women are on average 24.5 years old, just over 61% of them are married, over 70% have

some primary schooling but just 6% have some secondary schooling. Households are

6The District Administrative Centre was excluded because it is relatively more urbanized and less
comparable to the rest of the District.

7The geographic centre was chosen to be the most central village in the cluster as shown on a
cartographic map from the National Statistical O�ce, Malawi. See Lewycka (2011), pp. 122 for more
details.

8Another 24 clusters were randomly assigned to receive a participatory women's group intervention,
whereby women of reproductive age were encouraged to form groups to meet regularly to resolve issues
relating to pregnancy, child birth and neo-natal health. Child nutrition was not a primary focus and so
we exclude these clusters from this analysis (see instead Rosato et al. (2006), Rosato et al. (2009) and
Lewycka et al. (2013)). MaiMwana Project also improved health facilities across the District, which
equally bene�tted intervention and control clusters.

9Further details on this baseline census can be found in Lewycka et al. (2010). We take the inter-
vention start date to be July 2005, the date by which the �rst 6-month cycle had been fully completed,
in line with Lewycka et al. (2013).

10Data collection was carried out by MaiMwana in collaboration with the authors. Data were col-
lected in Nov 2008-March 2009 (Oct 2009-Jan 2010) at �rst (second) follow-up using PDAs. To ensure
that results were not driven by seasonality, �eld teams collected data in intervention and control clusters
at the same time. The data are available for download at http://www.esds.ac.uk/(study 6996).

11This was done to avoid any potential bias arising from endogenous fertility decisions in response
to the intervention. This turns out not to be an important concern, as we show in section 5.6.
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Figure 5.1: Surveys and Timing of Data Collection

44 
 

2004: Baseline census of all women 
aged 10‐49

 
 

Definition of Clusters and Random 
Allocation of Clusters to Treatment 
12 allocated to control, 12 to the 
infant feeding counselling 
intervention, 12 to women’s groups 
only and 12 to both interventions. The 
latter 24 clusters are not considered in 
the analysis in this paper 

 
 

July 2005: Infant feeding counselling 
intervention rolled out. 

 

 

1st  follow‐up survey: Nov 2008 ‐Mar 2009
Control Clusters 
1248 women selected for interview (104 
women aged 17‐43 per cluster) 
 
846 women (and their households) 
successfully interviewed. 
 
High attrition due to a combination of the 
long time lag between baseline and the 
first follow‐up, and the possible reporting 
of false household members during the 
baseline stage. 

 
1st follow‐up survey: Nov 2008 ‐ Mar 2009
Treated Clusters 
1248 women selected for interview (104 
women aged 17‐43 per cluster). 
 
814 women (and their households) 
successfully interviewed 
 
High attrition due to a combination of the 
long time lag between baseline and the 
first follow‐up, and the possible reporting 
of false household members during the 
baseline stage. 

 

2nd follow‐up survey: Oct 2009 – Jan 2010
785 households successfully interviewed, 
of which 761 were also interviewed in 1st 
follow‐up, and 25 new households, that 
had split from households interviewed in 
the 1st follow‐up were also surveyed.  

2nd follow‐up survey: Oct 2009 – Jan 2010
774 households successfully interviewed, 
of which 752 were also interviewed in the 
first follow‐up, and 22 households that had 
split from households interviewed in the 
1st follow‐up were also surveyed. 

 

Figure 1: Flowchart 
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predominantly agricultural and poverty is high, as indicated by the housing materials

and assets. The table also shows that the randomization worked well with the sample

well-balanced across intervention and control clusters at baseline given that only 1 out

of 25 variables turns out to be unbalanced.12

12Other welfare programs were operating in the District at the same time as this intervention. The
potentially most important is the Mchinji Social Cash Transfer, providing cash transfers to the poorest
10% of households in the district. At follow-up, the intervention was in the pilot stage and only 2.5% of
households in our sample (distributed evenly between intervention and control clusters) report having
received it.
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Table 5.1: Sample BalanceTable 1: Baseline Sample Balance

Control 

Group

Difference: 

Treatment - 

Control p-value

Control 

Group

Difference: 

Treatment - 

Control p-value

Control 

Group

Difference: 

Treatment - 

Control p-value

Woman's Characteristics

Married (dv = 1) 0.615 -0.021 0.386 0.661 -0.034 0.184 0.654 -0.024 0.340

Some Primary Schooling or Higher 0.707 0.033 0.402 0.682 0.040 0.340 0.68 0.037 0.438

Some Secondary Schooling or Higher 0.066 0.010 0.535 0.060 -0.007 0.545 0.059 -0.006 0.607

Age (years) 24.571 -0.180 0.637 25.492 -0.429 0.376 25.397 -0.217 0.621

Chewa 0.948 -0.044 0.330 0.957 -0.050 0.246 0.959 -0.054 0.268

Christian 0.977 0.006 0.476 0.979 0.008 0.336 0.981 0.005 0.454

Farmer 0.661 -0.075 0.108 0.688 -0.060 0.128 0.678 -0.055 0.220

Student 0.236 0.015 0.438 0.204 0.022 0.274 0.208 0.017 0.410

Small Business/Rural Artisan 0.036 0.030 0.129 0.037 0.024 0.220 0.039 0.025 0.264

Household Characteristics

Agricultural household 0.995 -0.005 0.471 0.995 0.002 0.591 0.995 0.003 0.500

Main Flooring Material: Dirt, sand or dung 0.913 -0.041 0.232 0.916 -0.027 0.474 0.916 -0.028 0.422

Main roofing Material: Natural Material 0.853 -0.018 0.697 0.857 -0.004 0.891 0.86 -0.008 0.861

HH Members Work on Own Agricultural Land 0.942 -0.057 0.124 0.950 -0.056 0.120 0.95 -0.06 0.140

Piped water 0.011 0.040 0.314 0.009 0.032 0.340 0.01 0.034 0.440

Traditional pit toilet (dv = 1) 0.772 0.054 0.218 0.791 0.054 0.182 0.796 0.044 0.324

# of hh members 5.771 0.066 0.817 5.848 0.132 0.863 5.903 0.096 0.833

# of sleeping rooms 2.116 0.199 0.038* 2.152 0.166 0.128 2.174 0.155 0.136

HH has electricity 0.002 0.007 0.166 0.002 0.004 0.338 0.003 0.004 0.394

HH has radio 0.630 0.030 0.408 0.641 0.015 0.709 0.645 0.014 0.655

HH has bicycle 0.509 0.015 0.643 0.512 0.008 0.843 0.512 0.01 0.769

HH has motorcycle 0.008 0.001 0.925 0.007 0.002 0.779 0.008 0.003 0.685

HH has car 0.006 -0.002 0.612 0.007 -0.003 0.298 0.008 -0.004 0.302

HH has paraffin lamp 0.925 0.032 0.262 0.926 0.036 0.178 0.935 0.026 0.360

HH has oxcart 0.058 -0.015 0.204 0.059 -0.022 0.090+ 0.06 -0.022 0.072+

N 1248 1248 846 814 785 774

Full Sample Analysis Sample - Wave 1 Analysis Sample - Wave 2

Notes to Table: p-values are computed using the wild cluster bootstrap-t procedure as in Cameron et al. 2008, explained in section 4.1. 'Full Sample' includes all women (and their

households) originally drawn to be part of the 2008-09 survey. 'Analysis Sample - Wave 1' includes women (and their households) who were interviewed in 2008-09 (wave 1), while

'Analysis Sample - Wave 2' includes women (and their households) who were interviewed in 2009-10 (wave 2).  ** p<0.01, * p<0.05, + p<0.1.
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We assess the impact of the intervention over three and a half years after it began.

While this has the bene�t of allowing us to assess the e�ect of the intervention in the

medium rather than short term, it also increases the risk of attrition. We succeeded in

interviewing around two thirds of the sample drawn for the �rst follow-up survey: 65%

in intervention clusters and 67% in control clusters. Apart from the time lapse between

baseline and the �rst follow-up, two additional factors contributed to the attrition. First,

the district of Mchinji is particularly challenging for the collection of panel data because

respondents are known to report �ghost members� - �ctitious household members - with

the intention of increasing future o�cial aid/transfers which may depend positively on

household size (see Miller & Tsoka (2012) for �ghost members� and Gine et al. (2012)

2012 for problems relating to personal identi�cation in Malawi). Hence, it is possible

that some women listed in the baseline census were in fact �ghost members� and so

could not be found by the �eld team in 2008. Second, an unexpected sharp drop of the

British Pound against the Malawi Kwacha resulted in fewer resources to track women

who had moved.

The middle panel of Table 5.1 shows that the balance on baseline characteristics is

maintained in the sample of women who were found (�interviewed sample�). A small

imbalance is detected on just 1 variable at the 10% level, suggesting that attrition

between baseline and the �rst follow-up was not signi�cantly di�erent between inter-

vention and control clusters. While this is reassuring, it could nonetheless be the case

that there is di�erential attrition in terms of unobserved variables. We dispel these

concerns in Appendix A. We conducted a second follow-up survey of these women one

year later, in 2009-10, successfully interviewing around 92% of the women interviewed

at �rst follow-up: 92.5% and 90% in intervention and control areas respectively. The

baseline balance for this sample, displayed in the right hand panel of Table 5.1, is very

similar to that for the �rst follow-up.

The surveys contain detailed information on household consumption; consumption

of liquids and solids for each child in the household (≤6 years); breastfeeding practices
(≤2 years); health for all individuals in the household, reported by main respondent;

weights and heights of children (≤6 years); labor supply (≥6 years); and the main

respondent's knowledge about child nutrition.

5.3 Conceptual Framework

In order to understand how information of the type provided by the intervention might

a�ect household decisions, we present a simple theoretical model in which households

care about adult consumption and leisure, and about the health of their child, which is a
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function of the child's consumption of a combination of nutrition inputs. For simplicity

we assume that this is a bundle of two inputs, C1 and C2. We also assume that

households have 1 adult and 1 child. The adult chooses simultaneously the amounts to

spend on each child consumption inputs, C1 and C2, adult consumption, A and leisure,

L (or labor supply, T − L, where T is the total time endowment of the adult). The

household optimisation problem is therefore:

max
{C1,C2,A,L}

U(A, L, H) (5.1)

subject to

A+ p1C1 + p2C2 ≤ w(T − L) (5.2)

H = F (C1, C2) (5.3)

where U(., ., .) captures the utility from adult consumption, leisure, and child health,

p1 and p2 are the prices of child nutrition inputs relative to adult consumption, and

w is the wage per unit of time.13 The functionF (., .) represents the health production

function, which is increasing in both C1 and C2, and concave. Following Cunha et al.

(2013) and Del Boca et al. (2014), we assume that both the utility function and the

production function are Cobb-Douglas, that is, U(A,L,H) = AαLβHγ and H = Cδ1C
θ
2 ,

with α, β, γ, δ, θ > 0, and δ + θ < 1. We can therefore rewrite the optimization

problem as:

max
{C1,C2,A,L}

AαLβCγ11 Cγ22

subject to:

A+ p1C1 + p2C2 ≤ w(T − L)

where γ1 = γδ and γ2 = γθ.14

Households make their consumption and labor decisions under their own perception

of the child health production function, Cδ1C
θ

2 , which might di�er from the true one

(see Cunha et al. 2013). This perceived production function depends on δ and θ, two

13We use a static, unitary model to draw out the key behavioral responses to the intervention in
the simplest way. See Chiappori (1997) and Blundell et al. (2005), among others, for work that
incorporates labor supply, household production and/or children within a collective framework. See
Grossman (1972) for dynamic considerations of a health production function.

14We assume that the household cannot borrow, which is consistent with well-known credit con-
straints in developing countries, as discussed for instance in Dupas (2011b).
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parameters that measure the household's perception of the returns to child nutrition

inputs. Changes in these parameters will change γ1 and γ2.

To study the e�ect of the intervention, we di�erentiate the �rst order conditions with

respect to γ1 (see Appendix B), and �nd that: dC1
dγ1

> 0, but that dC2
dγ1

< 0, dA
dγ1

< 0, and
dL
dγ1

< 0. This allows us to establish the following proposition:

Proposition 1: If γ1 increases, then C1 and total household consumption in-

creases, but C2, A, and L decrease. Similarly, if γ2 increases, then C2 and total house-

hold consumption increases, but C1, A, and L decrease.

The intuition is as follows. If the perceived productivity of C1, γ1, increases, then

more will be consumed of this input. Given the concavity of the utility function, this

increase is better accommodated by a small decrease in all other arguments of the utility

function (C2, A, and L) rather than a large decrease in only one of them. Note that the

increase in C1 is not fully o�set by the decrease in C2 and A, because L also decreases,

which implies that labor supply increases. As there is no borrowing or savings, the

increase in labor supply implies an increase in overall household consumption.15

The intervention promotes the consumption of protein-rich foods, fruits and vegeta-

bles relative to others such as staples. If C1 summarizes the goods that the intervention

promotes, and C2 summarizes the consumption of staples, then the e�ect of the in-

tervention can be summarized in terms of increasing γ1 but decreasing γ2. Following

Proposition 1, we expect an important composition e�ect (increase in C1 and a decrease

in C2) but the predictions on labor supply, adult and total consumption are in principle

ambiguous because these will depend on whether the γ1 or the γ2 e�ect dominates.

This is ultimately an empirical issue that we study below.

5.4 Empirical Framework

5.4.1 Estimation and Inference

The randomized experiment provides a clean and credible source of identi�cation to test

the propositions emerging from the theoretical framework above. To do so, we estimate

OLS regressions of the form

Yict = α+ β1Tc +Xictβ2 + Zc0β3 + μt + uict, t = 1, 2 (5.4)

15Our simple model abstracts from di�erential labor supply responses of the mother and the father. In
a two parent model, one could imagine that additional time devoted to the acquisition and preparation
of more nutritious foods might be to the detriment of mother's labor supply and/or leisure.
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where Yict includes outcomes for unit i (household or individual, depending on the

outcome of interest) living in cluster c at time t (= 1, 2 for �rst and second follow-

ups, 2008-09 and 2009-10, respectively).16 In line with the model, the dimensions of

household behavior likely to be a�ected include household and child consumption, labor

supply, and child health; Tc is a dummy variable which equals 1 if the main respondent of

our survey was, at the time of the baseline in 2004, living in a cluster that later received

the intervention; Xict is a vector of household/individual-level variables measured at

time t including a quadratic polynomial in age and gender; Zc0 is a vector of cluster-

level variables measured at baseline such as proportions of women with Chewa ethnicity,

and proportions with primary or secondary schooling. μt is a vector of month-survey

year dummies indicating the month of the interview, and uict is an error term which is

uncorrelated with the error term of others living in other clusters (E[uictujwq] = 0 ∀ i 6=
j, c 6= w), but which may be correlated in an unrestricted way with that of others living

in the same cluster, independently of the time period (E[uictujcq] 6= 0). Note that this

correlation structure allows for the error term for individuals/households in the same

cluster to be correlated over time, and also for the presence of spillovers within but not

across clusters, which is reasonable for our case given the presence of large bu�er areas

in place between study areas in adjacent clusters, as discussed in section 5.2.2.

The treatment indicator, Tc, takes the value 1 if the respondent was living in a

treatment cluster at the time of the 2004 baseline census, and 0 if living in a control

cluster at that time. Therefore, we identify an intention-to-treat parameter. Moreover

de�ning Tc on the basis of baseline rather than current residence circumvents any bias

that might arise from selective migration from control to treatment clusters.

In terms of inference, standard statistical formulae for clustered standard errors

based on asymptotic theory (cluster-correlated Huber-White estimator) provide down-

ward biased standard error estimates if the number of clusters is small, thus over-

rejecting the null of no e�ect (Wooldridge 2004, Bertrand et al. 2004, Donald & Lang

2007 and Cameron et al. 2008). This is a potential issue, as there are just 24 clusters.

We use two approaches proposed to obtain valid inference: wild cluster bootstrap-t

(Cameron et al. 2008) and randomization inference (Fisher 1935, Rosenbaum 2002).

To implement randomization inference, we follow Small et al. (2008) to account

for covariates by regressing the outcome variable on all covariates, except for Tc, and

applying the randomization inference procedure to the residuals from this regression.

The test statistic is as follows:

16For binary outcomes, results using Probit models are very similar and are not reported.
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∑
c:Tc=1

ν̂ict
N1

=
∑
c:Tc=0

ν̂ict
N0

where ν̂ict is the residual of the �rst-stage regression for household i in cluster c at

time t, N1 is the number of observations in treated clusters, while N0 is that in control

clusters. Randomization inference constructs the distribution for the test statistic for

every possible permutation of the randomization across clusters.17 In practice, given

the large number of possible permutations (2, 704, 156 in our case), it is not possible

to compute the test statistic for every possible permutation of the random allocation.

We instead use 100, 000 randomly selected permutations to construct the distribution.

The p-value is then constructed based on the proportion of test statistic values that are

greater than the actual test statistic value.

In each of the estimation tables, we report clustered standard errors computed using

the cluster correlated Huber-White estimator, as well as the p-values of tests of the null

that the coe�cient is zero computed using both wild-bootstrap cluster-t procedure and

randomization inference. Moreover, in Appendix 5.8.3, we perform a Monte Carlo

exercise where we compare the test size for these two approaches with the nominal

test size, within data generating processes that incorporate the main features of our

data (number of clusters, number of observations and intra-cluster correlation). The

simulations indicate that both inference methods perform relatively well.

5.4.2 Outcomes

In line with the theoretical model, our outcomes of interest span six domains: health

knowledge, child and household consumption, labor supply, and child health and mor-

bidity. For child health and morbidity, which were the main focus of the intervention,

we focus on children aged over 6 months, for whom the intervention would have com-

pleted. We pool data from the 2008-09 and 2009-10 follow-up surveys for the analysis.

Details on the various measures within each domain are provided in Appendix 5.8.4.

However, two points are worth highlighting here: �rst, child consumption is measured

from maternal reports of the foods consumed by each child. Second, special care was

taken to measure household consumption, rather than household expenditures. This

is important in this context, since a large proportion of consumption is self-produced,

rather than purchased from a market.

Within each domain, we have several outcome measures, meaning that we end up

17Randomization inference is non-parametric and exploits the randomization, rather than asymptotic
results, for inference. A disadvantage, however, is that inference is conducted on a sharp null hypothesis
of no e�ect for any unit in the data, rather than the more interesting hypothesis of null average e�ect.
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with over 30 outcome variables. To limit the problem caused by multiple inference

(the probability of rejecting a test is increasing in the number of tests carried out),

we aggregate the multiple outcome measures within a domain into a summary index,

following Anderson (2008).18 The index is a weighted mean of the standardized values

of the outcome variables (with outcome variables re-de�ned so that higher values imply

a better/more desirable outcome), with the weights calculated to maximize the amount

of information captured in the index by giving less weight to outcomes that are highly

correlated with each other. Another bene�t of averaging across outcomes is that power

is increased by reducing measurement error. In Table 5.13 of Appendix 5.8.5, we report

the outcomes used to compute the index associated with each domain.

By using a summary index, our results provide a statistical test for whether the

intervention has a �general e�ect� on each of the six main domains being tested which

is robust to concerns about multiple inference (Kling et al. 2007; Liebman et al. 2004).

However, because it is not possible to assess the magnitude of the e�ect from the results

using the index, we also report the results on individual outcome variables.

Descriptive statistics pertaining to the outcomes and the indices for households

and individuals in the control clusters are provided in Table 5.14 in Appendix 5.8.5.

The table indicates that maternal knowledge on infant nutrition is mixed: questions

related to weaning and nutritious value of foods were mostly correctly answered, while

those related to food preparation and feeding when the child/its mother were unwell

were often incorrectly answered. The food intake information indicates poor feeding

practices: almost half of infants aged < 6 months were given water, while each of

the protein-rich foods was consumed by fewer than half of children aged > 6 months.

Low consumption of protein-rich foods is also apparent from the data on household

consumption. Labor supply rates are similar for males and females: over 80% have at

least one paid job, while around 9% had an additional job, and work on average around

25 hours weekly. Finally, child health in this setting is very poor: the average child has

a height-for-age z-score that is below -2 std deviations of the WHO benchmark (and

thus is considered to be stunted); and the incidence of illness is relatively high.

5.5 Results

We �rst show the impacts on all six composite indices: pooled across waves in Table 5.2,

and separated by wave in Table 5.3. The subsequent tables (Tables 5.4-5.9) display the

18While this helps to limit the problem of multiple inference, it does not address it fully because we
still use 8 indices. Indeed, if the data on the 8 indices were independent, the Family Wise Error Rate
would be at 40%. Adjusting for multiple inference within domains but not across domains is the most
commonly used option (see for instance, Finkelstein et al. 2012)
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impacts on the sub-components of each index for those indices which show an overall

statistically signi�cant e�ect.19 Note that for ease of reading, each of Tables 5.4-5.9

reproduces, in its �rst column, the summary index from Table 5.2.

5.5.1 Overall Findings

Table 5.2 displays intervention impacts on all six composite indices, as described in

section 5.4.2. For child level outcomes, we estimate the impacts on children born after

the intervention began in July 2005, as these are the ones whose mothers were eligible

to be visited by the peer counselor. This means that we consider impacts for children

aged up to 4.5 years at the time of the second follow-up survey. Furthermore, since

the intervention was ongoing at follow-up, we estimate impacts separately for children

aged < 6 months (whose mothers were potentially being visited by the counselors at

the time) and those aged > 6 months, and report impacts on health outcomes for the

latter group only. For household and adult outcomes, we consider impacts on our entire

sample, regardless of whether the household was directly exposed to the intervention;

and of the household's fertility choices.

The key rationale underlying the intervention is that households are ine�cient pro-

ducers of child health because they do not have the correct knowledge. In other words,

the child health production function that households optimize over is �distorted�. In

line with this, Column 1 of Table 5.2 reports that the intervention improved mothers'

knowledge of child nutrition.20 The e�ect is only signi�cant at the 10% level, possibly

due to the high intra-cluster correlation in this variable. These improvements in knowl-

edge translated into improved child consumption for both children aged < 6 months

and those aged > 6 months (columns 2 and 3 in Table 5.2).21,22 The positive impacts

on the latter group imply that bene�ts of the intervention were retained even once the

peer counselor stopped visiting the household.

Though the intervention provides no monetary or in-kind resources, household food

consumption could increase (see section 3). In line with this, column 4 of Table 5.2

shows that the intervention increases total household food consumption, measured using

19Tables E3 and E4 of Appendix E displays results for the sub-components of indices that do not
show a statistically signi�cant intervention impact.

20The knowledge index was constructed from questions designed in consultation with programme
sta�, and tailored to the content of the intervention. Though the questions were piloted, no formal
validation exercise was conducted.

21Note child-speci�c consumption for children > 6 months is measured at second follow-up only.
22That the intervention improved both knowledge and child nutrition suggests that improving knowl-

edge of the child health production function improves nutrition choices. One might want to test this
mechanism directly using the intervention as an instrument for knowledge. Unfortunately, the inter-
vention impact on knowledge is not su�ciently strong to allow us to do this without encountering a
weak instrument problem.
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the composite index, at 5% signi�cance. The increase in household consumption might

have been partially funded by improvements in adult labor supply, particularly of males

(column 5); female labor supply is unchanged by the intervention (column 6). Although

our model of section 3 already indicated that labor supply could increase, other factors

may also explain increased consumption, including borrowing and/or drawing down

savings. Increases in labor supply could also be due to a reduction in time devoted to

caring for sick children.

A key policy question is whether the observed adjustments on various margins of

household behavior (increased consumption and labor supply) improved child health.

Column 7 shows that these changes in behavior translate into improved child physical

growth for children aged > 6 months. No signi�cant e�ect is found on child morbidity.23

Note though that given the substantial infant mortality reductions found by Lewycka

et al. 2013, and under the assumption that weaker children are the ones more likely to

survive as a result of the intervention (Deaton 2007, Bozzoli et al. 2009), the reported

e�ects likely underestimate the true e�ect of the intervention on child health.

Table 5.3 shows the results by follow-up survey round (`wave'), which are of interest

in order to see whether the e�ects are sustained over time. In general, the table shows

that the point estimates share the same signs across both waves, and are not signi�cantly

di�erent from each other. Notably, the point estimates of household food consumption,

male labor supply, and child physical growth all show a tendency to be larger in wave

2 than in wave 1, and they are statistically signi�cant in wave 2 only, although they

are not signi�cantly di�erent from the wave 1 estimates.24 The tendency for larger

treatment e�ects on consumption and male labor supply in wave 2 may be due to

some heterogeneity of treatment e�ect according to the time when the surveys were

conducted. Wave 1 data were collected between mid November and the end of March,

while wave 2 data were collected between October and the end of December. The level

of the consumption and male labor supply index are the lowest in the October to mid

November period, which is when the treatment e�ect is the highest.

While the composite indices allow us to assess the general impact of the intervention

on each domain, their magnitudes cannot be interpreted, as the weighting used to build

the index distorts the scale. To shed more light on the magnitude of the e�ects, we next

23We also considered the intervention impacts on child anthropometrics and morbidity for children
aged < 6 months who were undergoing the intervention at the time of the survey, and for whom these
would be intermediary stage data. We �nd a positive, but statistically insigni�cant e�ect on both
outcomes. Interestingly, we �nd that the prevalence of diarrhea decreases for children < 6 months,
consistent with the reduced intake of water and non-maternal milk for this group.

24Note that there are more children aged > 6 months who would have been eligible for the intervention
in wave 2 than wave 1 since the former includes children born between July 2005 and July 2009 while
the latter includes children born between July 2005 and October 2008.
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report and discuss �ndings for individual outcomes for the composite indices for which

there is a statistically signi�cant e�ect of the intervention. We note that the results on

the index components must be considered exploratory and interpreted carefully since

the Family Wise Error Rate is not being controlled for.

5.5.2 Nutritional Knowledge, Consumption and Labor Supply

The intervention resulted in improvements in the main respondent's knowledge of child

nutrition. The index aggregates together the correct responses to 7 questions (repro-

duced in Appendix 5.8.6). Columns 2-8 of Table 5.4 report the impact of the in-

tervention in terms of the proportion of respondents who correctly answered each of

the 7 questions. The results show that the knowledge improvements are concentrated

on breastfeeding practices when infants are ill, and on knowledge of food preparation

practices. We note that the intra-cluster correlation coe�cient is very high for most

components of the index, which makes it particularly di�cult to detect statistically

signi�cant di�erences.25

Improvements in child consumption were detected both for children below and above

6 months. For the former group, we see from Table 5.5 that the improvement comes from

a reduction in non-maternal milk. There is also a reduction (though not statistically

signi�cant) in the consumption of water. Table 5.6 shows that improvements for the

latter group are driven by substantially higher consumption of protein-rich beans in the

three days prior to the interview. The intakes of meat and eggs (also protein rich) are

also positive, although not statistically signi�cant, most likely due to the reduced sample

size (child food intake was collected at second follow-up only). Overall, these results

indicate that the intervention signi�cantly a�ected the composition of child nutritional

intake.

We saw from Table 5.2 that the intervention resulted in improvements in overall

household food consumption. Columns 2 � 5 of Table 5.7 show that the improvement

is due to an increase in the consumption of proteins, and of fruit and vegetables. The

e�ects are relatively large. Focusing on proteins, which are particularly important

for child growth as shown by for example, Puentes et al. (2014), we decompose the

e�ect on the extensive (i.e. moving from consuming no proteins to some proteins) and

intensive margin (calculations available upon request). Around 26% of households in

25Note that the number of observations is lower than for other household level variables. This is
because we combine wave 1 and wave 2 questions into a single index, to maximize its informational
content, and drop households without a female main respondent aged 15 years or above. Note that
the three questions in wave 1 are a subset of the seven questions asked in wave 2. We construct the
index to include responses from wave 1 to the three common questions and the responses to the four
questions unique to wave 2. This is because there was evidence of households having learnt or found
out answers to the three questions carried over from wave 1 to wave 2.
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Table 5.5: Child Food Intake, <6 monthsTable 5: Effects on intake of liquids by children < 6 months.

[1] [2] [3]

Summary Index Water

Milk other than 

maternal

Tc 0.250* -0.107 -0.082*

Standard Error [0.098] [0.069] [0.034]

Wild Cluster Bootstrap p-value {0.016} {0.122} {0.012}

Randomization Inference p-value {0.028} {0.212} {0.115}

Observations 151 151 151

R-squared 0.214 0.362 0.087

IntraCluster Correlation 0.0405 0.000 0.060

Mean, Control -0.109 0.474 0.101

Notes to Table: All regressions include controls for age, age-squared, gender, average cluster-level education and Chewa ethnicity,

both measured in 2004, and dummies for the month of interview. Standard errors computed using the cluster-correlated Huber-White

estimator are reported in square brackets, with clustering at the level of the the cluster (at which treatment was assigned); wild cluster

bootstrap-t and randomization inference p-values in curly brackets. Sample includes children at wave 2 aged less than 6 months.

"Summary Index" aggregates the measures in columns 1-2 using the method described in section 4.3. "Water" is an indicator for

whether the child had any water in the 3 days prior to the survey, "Milk other than maternal" is an indicator (measured in second follow

up only) for whether the child had milk other than breastmilk in the 3 days prior to the survey.  ** p<0.01, * p<0.05, + p<0.1.

control clusters report consuming no protein-rich foods in the 7 days prior to interview;

hence there is clear potential for improvement in the extensive margin. Indeed, the

extensive margin accounts for one third of the consumption increase.26 The increase in

the intensive margin corresponds to 210 grams of meat/poultry extra and 640 grams

beans extra per child per month. To put these quantities in perspective, a toddler will

usually consume 50 grams of beans in one portion, together with some vegetables and

carbohydrates.

A number of factors are likely to explain this substantial increase in food consump-

tion: �rst, the time span of the intervention is su�ciently long (it had already been up

and running for over 3.5 years by the time consumption was �rst measured); second,

the intervention was intensive, involving up to 5 one-to-one home visits; third, as seen

from the labor supply results in Table 5.2, there was scope for labor supply to increase,

and thereby fund at least some of the increased consumption.

Table 5.2 also showed that the male labor supply index increased as a result of

the intervention. Looking at the sub-components of the index - probability of any

26The consumption increase coming from the extensive margin is calculated under the assumption
that the households in the treated clusters induced to consume protein-rich foods as a result of the
intervention all consume proteins equivalent to the average consumed by control cluster households
with non-zero protein consumption. The increase on the intensive margin � corresponding to the rest
of the consumption increase � is further decomposed into food quantities (beans and meat/poultry)
under the assumption that the entire amount is consumed by children aged < 12 years only (who are,
in control clusters, 2.4 per household on average), and households pay prices equivalent to the average
cluster-level median unit values.
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Table 5.7: Household ConsumptionTable 7: Effects on household food consumption

[1] [2] [3] [4] [5]

Summary 

Index Cereals Proteins

Fruit and 

Vegetables

Other 

Foods

Tc 0.218* -9.768 129.15+ 269.987* 60.701

Standard Error [0.082] [52.432] [54.802] [108.591] [33.552]

Wild Cluster Bootstrap p-value {0.018} {0.863} {0.066} {0.044} {0.126}

Randomization Inference p-value {0.030} {0.865} {0.025} {0.033} {0.069}

Observations 3200 3200 3200 3200 3200

R-squared 0.063 0.117 0.02 0.195 0.025

IntraCluster Correlation 0.087 0.074 0.042 0.173 0.053

Mean Control Areas -0.10 605.80 349.10 679.80 149.50

Per Capita Monthly Food Consumption for:

Notes to Table: Standard errors computed using the cluster-correlated Huber-White estimator are reported in square

brackets, with clustering at the level of the cluster (at which treatment was assigned); wild cluster bootstrap-t and

randomization inference p-values in curly brackets. Sample includes all households at waves 1 or 2. All regressions include

controls for age, age-squared, average cluster-level education and Chewa ethnicity, both measured in 2004, and dummies

for the month of interview. Coefficients in columns 2-6 are in terms of Malawi Kwacha. (The average exchange rate to the

US Dollar was approx. 140MK = 1 US$ at the time of the surveys). "Food Index" is an index of the food items in cols. 2-5,

constructed as described in section 4.3. "Cereals" includes consumption of rice, maize flour and bread, "Proteins" includes

consumption of milk, eggs, meat, fish and pulses, "Fruit and Vegetables" includes consumption of green maize, cassava,

green leaves, tomatoes, onions, pumpkins, potatoes, bananas, masuku, mango, ground nuts and other fruits and vegetables,

"Other Foods" includes cooking oil, sugar, salt, alcohol and other foods.  ** p<0.01, * p<0.05, + p<0.1.
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Table 5.8: Male Labor SupplyTable 8: Effects on labor supply

[1] [2] [3] [4]

Summary 

Index Works

Has at 

least 2 

jobs

Weekly 

Hours 

Worked

Tc 0.262+ 0.106 0.080** 4.310

Standard Error [0.131] [0.080] [0.025] [2.918]

Wild Cluster Bootstrap p-value {0.074} {0.272} {0.010} {0.240}

Randomization Inference p-value {0.062} {0.220} {0.011} {0.202}

Observations 3642 3642 3642 3642

R-squared 0.183 0.18 0.06 0.16

IntraCluster Correlation 0.146 0.213 0.033 0.100

Mean, Control -0.135 0.819 0.094 25.740

Males

Notes to Table: All regressions include controls for age, age-squared, average cluster-level

education and Chewa ethnicity, both measured in 2004, and dummies for the month of

interview. Standard errors computed using the cluster-correlated Huber-White estimator are

reported in square brackets, with clustering at the level of the the cluster (at which treatment

was assigned; wild cluster bootstrap-t and randomization inference p-values in curly brackets.

Sample includes all males aged 15-65 years at waves 1 or 2. "Summary Index" contains the

variables in columns 2-4 and is computed using the method described in section 4.3. "Works"

in an indicator of whether individual had an income-generating activity at the time of the

survey, "Has at least 2 jobs" is an indicator for whether individual has 2 income generating

activities, "Weekly Hours worked" give the total hours worked in the week prior to the survey

on both income generating activities.  ** p<0.01, * p<0.05, + p<0.1.

work, probability of having at least two jobs, and the number of hours worked - Table

5.8 reports positive e�ects of the intervention on all three, though only statistically

signi�cant for the probability of having at least two jobs. However, the intra-cluster

correlation for the number of hours worked is much higher than for the probability of

having at least two jobs (0.10 vs. 0.036), which greatly reduces the power to detect a

signi�cant e�ect of the intervention on the former.

The �nding that the intervention increases male labor supply is consistent with

it being a margin with considerable scope for increase. Indeed, previous research in

Malawi has shown that labor supply is upward sloping rather than �xed (Dimova et al.

2010; Goldberg 2016). In our data, only 12% of males in control clusters have a second
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job, most of them in non-agricultural self-employment activities.27 Moreover, there is

considerable entry into and exit from secondary jobs: among those with (without) a

secondary job at �rst follow-up, 33% (7%) have one by the time of the second follow-up,

a year later. While an extensive literature has documented increases in labor supply in

response to increases in uncertainty and income shocks in developing countries (Saha

1994, Kochar 1999, Rose 2001, Lamb 2003, Ito & Takashi 2009), this is the �rst paper

to document labor supply responses to changes in the perceived child health production

function.

Beyond the mechanism for the increase in labor supply indicated in section 5.3,

important cultural features of Malawian society are likely to contribute to the increase

in male, rather than female, labor supply. In particular, the main ethnic group in

Mchinji - the Chewa - is a matrilocal and matrilineal group, where men usually move to

their wives' villages on marriage, and wealth (predominantly land) is held by women and

passed on through the matriline (Phiri 1983, Sear 2008). As a consequence, women have

more power and authority than in patrilineal societies common across most of Africa

and South Asia (Reniers 2003). Indicative of this empowerment, all three measures of

labor supply - work participation, the likelihood of having two jobs and hours worked

- are strikingly similar for males and females (last rows of Table 5.8 and Table 5.15).28

Finally, mothers are generally the main caregivers of children. So the �nding that male

labor supply increases in response to the mother receiving information on child nutrition

is in line with the cultural background, where females are relatively empowered.

5.5.3 Child Health

Table 5.2 documented improvements in child physical growth for children > 6 months.

Looking at the sub-components of the physical growth index in Table 5.9, we see that

the improvement in growth is due to an increase in the average height-for-age z-score

by 0.27 of a standard deviation of the WHO norm.29 This is an important increase,

and corresponds in magnitude to 65% of the average e�ect size obtained with the

direct provision of food in food-insecure populations (Bhutta et al. 2008). Interestingly,

further analysis, documented in Table 5.17 of Appendix 5.8.5, indicates that the e�ects

27Over half of these second jobs involve employment in own/family business, a quarter involve work
on the family farm, and the rest involve work as an employee in public/private sector (~20%) or on
someone else's farm (<5%).

28This has been documented by others for the Malawian context including Goldberg 2016 and 2004
Malawi DHS Report (pages 34-36). In the matrilineal Khasi society (India), women and men also have
similar labor supply pro�les (Gneezy et al. 2009).

29As is common with anthropometric data from developing countries, the SD of the height-for-age
z-score in our sample is larger than in the WHO Reference Population (in our case the SD is 1.5 instead
of 1), and so this increase corresponds to a 18% of a SD increase using the SD for our sample.
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on physical growth are much stronger for children aged 6-24 months.30

Clearly, we cannot disentangle whether the improvement in physical growth is due

to the reduction in intake of liquids other than breast milk when the child was < 6

months, or to the improvement in child food intake after age 6 months, or a combination

of both. Our key message is that households responded to the intervention by increasing

consumption and working more, which is the �rst such �nding in this literature.31

5.6 Alternative Explanations

We have argued, using the model of section 5.3, that consumption and labor supply

will increase because the perceived productivity of child consumption (in terms of child

health) increased as a result of the intervention. Here we consider 4 alternative expla-

nations. First, we consider and rule out that the increases in adult labor supply are

driven by improvements in adult health somehow generated by the intervention (Ta-

ble 5.18 in Appendix 5.8.5). Second, parental investment in child nutrition could have

increased as a result of decreased fertility caused by the intervention, potentially yield-

ing an increase in child quality (Becker & Tomes 1976). The intervention could have

reduced fertility by reducing infant mortality and consequently inducing households to

demand fewer children; or through the family planning component of the intervention.

Analysis of the intervention e�ects on family planning behavior and births to women

in our sample (as reported in the Mai Mwana Health Surveillance System)32 reveals

very small and statistically insigni�cant e�ects, ruling out this channel (Table 5.19 in

Appendix 5.8.5).33

Third, the reduction in infant mortality and improvement in child health could

have a�ected parental labor supply, through changing the demand for childcare. It is

plausible that if infant mortality declines and there are more surviving children, mothers

in treated clusters may increase their time devoted to childcare, therefore working less,

30These patterns are consistent with two non-competing explanations: that the intervention did not
work very well at the beginning and/or children in control clusters experienced catch-up growth at
slightly older ages.

31We have also examined the heterogeneity of the e�ect of the intervention on the anthropometric and
morbidity indices according to whether the mother has had more than one child since the intervention
started. The interaction terms were far from statistically signi�cant (p-value of 0.45 or larger).

32The MaiMwana Health Surveillance System interviews the mothers of all children born in the 24
clusters since 2005 at 1 month and 7 months of age, and thus provides a more complete picture of
births in the study areas than cross-sectional surveys.

33Because the intervention decreased infant mortality, an alternative explanation for our �ndings
is that the children who survive (a) tend to have worse health and (b) parents compensate for the
worse health by providing them with more resources. Based on the results of Lewycka et al. (2013), we
estimate that the marginal surviving children would be approximately 2.3% of the intervention sample,
which is too small to explain the magnitude of the treatment e�ects if these were to be driven entirely
by these marginal children.
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leading to fathers working more to compensate for this. However, as we showed in

section 5.5.1, the intervention does not appear to have reduced female labor supply,

suggesting that this mechanism is not at play in our context. Another potential channel

through which labor supply may change as a result of improvements in children's health

is through reducing the need for fathers to be at home to help take care of children,

thus facilitating an increase in their labor supply

Finally, e�ects could also be driven by information provided by the intervention

on issues other than infant feeding practices, e.g. vaccination of infants, promotion of

HIV testing and hygiene practices. Though these could have improved child health, it

is unlikely that they would improve household consumption and labor supply. Avail-

able evidence suggests that these other components would have had very modest or

no e�ects. Lewycka et al. (2013) �nd mixed intervention e�ects on vaccination rates

(BCG vaccination rates increased, while polio vaccination rates decreased). Moreover,

vaccination rates in control clusters were high, leading to small intervention e�ects.

Furthermore, they �nd that the intervention wasn't e�ective in improving antenatal

HIV counseling and treatment. This is not surprising, since the intervention simply en-

couraged women to get tested for HIV, without any e�orts to alleviate cost constraints

or stigma e�ects related to being tested (Thornton 2008; Ngatia 2012; Derksen et al.

2014). Finally, our �nding that the intervention did not reduce the prevalence of di-

arrhea for children aged between 6 and 53 months and adults (Tables 5.16 and 5.18)

suggests that the component on hygiene information probably had limited success.

5.7 Conclusion

In this paper, we use exogenous variation in mothers' knowledge of the child health

production function induced by a cluster randomized intervention in Malawi, to study

empirically whether improving knowledge of the child health production function in�u-

ences a broad range of household behaviors.

We �rst document that the intervention improved mothers' knowledge of nutrition.

Using a simple theoretical model, we show that households should react to this im-

proved knowledge by changing the composition of child food intake in favor of protein-

rich foods, fruits and vegetables. The intervention could also increase household food

consumption and adult labor supply, although the theoretical predictions are ultimately

ambiguous. Our empirical results show that, indeed, both child's food intake and child

nutritional status improved, and that ultimately both labor supply and food consump-

tion increased.

We hypothesize that two issues might have contributed to the success of the in-
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tervention. First, the provision of information was not merely a one-o� event in the

intervention areas, but a sustained activity, still in place, that serves to spread informa-

tion and to remind households of the importance of child nutrition on an ongoing basis.

This may also explain why households adjusted on non-health margins to adhere to

advice provided by this nutrition intervention and may shed light on why some health

information campaigns have been successful, while others have failed. Second, the main

ethnic group in rural Malawi, the Chewa, is a matrilineal one, in which women are likely

to have more bargaining power and authority within the household than women in pa-

trilineal societies common in much of the rest of Africa and South Asia. This higher

female empowerment might indicate that women are in a good position to implement

the recommendations given by the counselors as well as to encourage fathers to work

more. It is not clear whether such responses may emerge in other settings and we see

this as an area worthy of further investigation.

5.8 Appendix

5.8.1 Attrition

We here address the potential concern that our results may be biased due to attrition

between the baseline census (2004) and the two follow-up surveys (2008-09, 2009-10).

Although attrition is related to observables (Table 5.10), the key is that it is the same

in treatment and control (follow-up rates of 65% and 67% in intervention and control

clusters respectively). Moreover we showed in Table 5.1 that both the sample drawn

and the sample successfully interviewed are well-balanced along observed characteris-

tics. However a concern might remain that attrition induced di�erences in unobserved

variables, potentially biasing our �ndings.

In particular, our estimates on child physical growth (Table 5.9) could be biased

upwards if households with worse health endowments were more likely to attrit from

intervention than from control clusters. However, when we repeat the analysis in Table

5.9 for older children living in intervention clusters (born before July 2005, hence whose

mothers were not eligible to receive the counselors' visits when they were young infants),

we �nd that their health status is worse (though not signi�cantly so) in intervention

than in control clusters. This provides suggestive evidence that those who attrited

from intervention clusters are, if anything, relatively healthier than those attriting from

control clusters (results available upon request).

We also address the issue of attrition directly using a Heckman selection model

(Heckman 1979). A �rst stage Probit model estimates the probability that a sampled

woman (and therefore her household) was successfully interviewed in the follow-up
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surveys as a function of the intervention and characteristics of the assigned interviewer

at �rst follow-up (given that the majority of attrition occurred between baseline and

�rst follow up). Estimates from the �rst stage yield an inverse-Mills Ratio, which enters

as an additional regressor in the second stage - equation (5) augmented with the inverse

Mills Ratio - thereby correcting for selection due to attrition.

The interviewer characteristics provide a source of exogenous variation in the �rst

stage (see for instance Zabel 1998, Fitzgerald et al. 1998). Speci�cally, we use the num-

ber of children aged 0-3 in the interviewer's household and the size of the interviewer's

plot of land, both of which proxy for the ease and intensity with which interviewers were

able to track respondents. Individuals with young children may be more intrinsically

motivated to take part in a study on child health, and/or they may know many other

community members with young children; interviewers with a larger plot of land have a

higher opportunity cost of time. Both of these factors turn out to be jointly strong pre-

dictors of whether or not a woman is interviewed (p-value of joint signi�cance <0.01).

A key identi�cation assumption is that interviewer characteristics are uncorrelated with

respondents' characteristics and outcomes. We believe this assumption to be reasonable

in this context.34

Table 5.11 reports the estimates of the program e�ects for two outcomes, house-

hold consumption and main respondent's labor supply.35 As can be seen, the selection

corrected estimates (middle panel) are very close in magnitude to the OLS estimates

reported earlier (repeated here in the top panel), thereby providing additional evidence

that our results are not driven by attrition bias.

34A concern noted by Thomas et al. 2012 is that good interviewers may be assigned to the most
di�cult clusters. In our case this concern is not relevant due to the process through which interviewers
were allocated to clusters. Clusters were paired so as to include an intervention and a control cluster in
the pairing. Among potential interviewers residing in either of the two clusters, the best was selected
as an interviewer to cover the pair of clusters (and hence the interviewer was not allocated to the area
from a central pool). The fact that there was just 1 interviewer per pair of clusters makes it very
unlikely that chosen interviewers were representative of the population of the cluster.

35The baseline census does not include information on men or individual children, so we do not know
who attrited.
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Table 5.10: Di�erences in characteristics between those who attrited and those who did
notTable A1. Differences in characteristics between those that attrited and those who did not 

  
Non-

attrited 

Difference 
Attrited - Not 

Attrited p-value 
Woman's Characteristics in 2004 

   Married (dv = 1) 0.646 -0.112 0.004** 
Some Primary Schooling or Higher 0.704 0.053 0.068+ 
Some Secondary Schooling or Higher 0.055 0.042 0.001** 
Age (years) 25.169 -1.904 0.002** 
Chewa 0.934 -0.021 0.118 
Christian 0.982 -0.008 0.184 
Farmer 0.661 -0.104 0.002** 
Student 0.213 0.087 0.002** 
Small Business/Rural Artisan 0.050 0.005 0.555 
Age less than 16 in 2004 0.142 0.068 0.000** 

    Household Characteristics in 2004 
   Agricultural household 0.996 -0.010 0.088+ 

Main Flooring Material: Dirt, sand or dung 0.910 -0.046 0.001** 
Main roofing Material: Natural Material 0.859 -0.044 0.062+ 
HH Members Work on Own Agricultural Land 0.925 -0.032 0.048+ 
Piped water 0.026 0.014 0.106 
Traditional pit toilet (dv = 1) 0.818 -0.053 0.046* 
# of hh members 5.837 -0.090 0.468 
# of sleeping rooms 2.215 0.002 0.943 
HH has electricity 0.004 0.002 0.651 
HH has radio 0.646 -0.003 0.833 
HH has bicycle 0.511 0.014 0.583 
HH has motorcycle 0.006 0.006 0.210 
HH has car 0.006 -0.002 0.330 
HH has paraffin lamp 0.947 -0.016 0.044** 
HH has oxcart 0.048 0.007 0.472 
N 1594 902 

         
Notes to Table: + indicates significant at the 10% level, * indicates significant at the 5% level. p-values 
reported are computed using the wild cluster bootstrap-t procedure as in Cameron et al. 2008, explained in 
section 4.1. Non-attrited refers to women (and their households) actually interviewed in 2008-09 (and used 
in the analysis). Attrited refers to women (and their households) drawn to be part of the sample in 2008-09, 
but who were not interviewed. 
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Table 5.11: Heckman Selection Equation Results
 

Table A2: Heckman selection equation results 

 
[1] [2] 

  Food Index 
Main Respondent Labor 

Supply 
Ordinary Least Squares 

  Tz 0.218* -0.077 
Standard Error [0.082] [0.187] 
Wild Cluster Bootstrap p-value {0.018} {0.769} 
Randomisation Inference p-value {0.037} {0.659} 

   Observations 3200 2938 
R-squared 0.063 0.088 
IntraCluster Correlation 0.087 0.165 
Mean Control Areas -0.10 -0.03 
      
Heckman Selection Model for Attrition 

 Tz 0.216* -0.096 
Standard Error [0.108] [0.234] 
Inverse Mills ratio -0.683 -0.700 

 
[0.463] [0.866] 

   Selection Equation (coefficients) 
 Tz -0.08 -0.061 

 
[0.141] [0.141] 

# children 0-3 0.221* 0.252** 

 
[0.092] [0.090] 

land size (acres) -0.017 -0.015 

 
[0.014] [0.015] 

Observations 4986 4621 

   Notes to Table: Standard errors computed using the cluster-correlated Huber-White estimator are 
reported in brackets, with clustering at the level of the cluster (at which treatment was assigned); wild 
cluster bootstrap-t p-values in curly brackets. Standard errors for Heckman Selection model computed 
using a block bootstrap method. Regressions include controls for dummies for the month of interview 
and cluster-level education and Chewa ethnicity in 2004. Column 2 regression includes controls for age 
and age-squared. Sample in column 1, upper panel, includes all households at waves 1 or 2; sample in 
column 2, upper panel, includes all main respondents aged 15-65 in waves 1 or 2. Sample in column 1, 
lower panel, includes all households of women drawn to be surveyed in wave 1 or 2 regardless of 
whether surveyed; sample in column 2, lower panel, includes all women drawn to be surveyed in wave 1 
or 2 regardless of whether surveyed. Households/women who attrited between the baseline and wave 1 
are considered to have attrited in wave 2 as well. Excluded variables in the second stage of the Heckman 
Selection Model are "# children 0-3" (number of children of interviewer aged 0-3 at wave 1) and "land 
size(acres)" (interviewer's land size in acres at wave 1). ** p<0.01, * p<0.05, + p<0.1. 
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5.8.2 Proofs

Proof of Proposition 1

The optimization problem that the household solves is

Max
{A,L,C1,C2}

AαLβCγ11 Cγ22

s.t. : A+ p1C1 + p2C2 ≤ w(T − L)

Given that the objective function is increasing in each argument, the budget con-

straint will be binding at the optimum. We use the budget constraint to solve for A

and substitute in the objective function to obtain:

Max
{L,C1,C2}

F (L,C1, C2)

where F (L,C1, C2) ≡(w(T − L)− p1C1 − p2C2)αLβCγδ1 Cγθ2 . The �rst order conditions

are:

FC1(L,C1, C2) ≡ − αp1

w(T − L)− p1C1 − p2C2
+
γ1

C1
= 0 (e)

FC2(L,C1, C2) ≡ − αp2

w(T − L)− p1C1 − p2C2
+
γ2

C2
= 0 (f)

FL(L,C1, C2) ≡ − αw

w(T − L)− p1C1 − p2C2
+
β

L
= 0. (g)

It will be useful to use how the di�erent cross-derivatives relate to FLC1 :

Fc1c2 = FLC1

p2

w
, (h)

Fc2c2 = FLC1

p2
2

wp1
− γ2

c2
2

, (i)

Fc2L = FLC1

p2

p1
, (j)

FLL = FLC1

w

p1
− β

L2
. (k)
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Di�erentiating the �rst order conditions (e)-(g) with respect to γ1, we get:
Fc1c1 Fc1c2 Fc1L

Fc1c2 Fc2c2 Fc2L

Fc1L Fc2L FLL



dC1

dC2

dL

 = −


Fc1γ1

Fc2γ1

FLγ1

 dγ1,

where Fc2γ1 = 0 and FLγ1 = 0. Using Cramer's rule, we obtain that

dC1

dγ1
= −

Fc1γ1
(
Fc2c2FLL − F 2

c2L

)
|H|

,

dC2

dγ1
= −Fc1γ1 (Fc1c2FLL − Fc1LFc2L)

|H|
,

dL

dγ1
= −Fc1γ1 (Fc1c2Fc2L − Fc1LFc2c2)

|H|
,

where

|H| =

∣∣∣∣∣∣∣∣∣∣
Fc1c1 Fc1c2 Fc1L

Fc1c2 Fc2c2 Fc2L

Fc1L Fc2L FLL

∣∣∣∣∣∣∣∣∣∣
Note that Fc1γ1 > 0, and that the second order condition ensure both

(
Fc2c2FLL − F 2

c2L

)
>

0, |H| < 0. Hence, we get that
dC1

dγ1
> 0. Using (h)-(k), the above comparative statics

can be simpli�ed as:

dC1

dγ1
=
Fc1γ1(Fc1L

(
βp22
L2wp1

+ γ2w
C2

2p1

)
− βγ2

C2
2L

2 )

|H|
> 0, (l)

dC2

dγ1
= −

Fc1γ1Fc1L

(
βp2
wL2

)
|H|

< 0, (m)

dL

dγ1
= −

Fc1γ1Fc1L

(
γ2
c22

)
|H|

< 0, (n)

where we have used that Fc1L < 0.

Using the budget constraint, we have that

dA

dγ1
= −w dL

dγ1
− p1

dC1

dγ1
− p2

dC2

dγ1
, (o)

238



5.8. Appendix5. Nutrition, Information and Household Behavior: Experimental Evidence from Malawi

which simpli�es to

dA

dγ1
=
Fc1γ1

(
γ2βp1
LC2

2

)
|H|

< 0,

after substituting (l)-(n) into (o).

Denote total consumption by TC = A+ p1C1 + p2C2. Using the budget constraint,

and (n), we can conclude that dTC
dγ1

= −w dL
dγ1

>0

5.8.3 Monte Carlo Simulation

Standard errors based on cluster-correlated Huber-White standard errors might be too

small when the number of clusters is relatively small (Wooldridge 2004, Bertrand et al.

2004, Donald & Lang 2007, and Cameron et al. 2008). This might lead to over-rejection

of the null hypothesis that the coe�cient of interest is zero when it is correct. To deal

with this issue, in the paper we report p-values for the null hypothesis of no e�ect using

the two leading approaches for valid inference in this case: wild cluster bootstrap-t

(Cameron et al. 2008) and randomization inference (Fisher 1935, Rosenbaum 2002).

Since there is limited evidence on when these approaches are valid (knowledge on the

performance of the wild bootstrap-t is based on simulations from a dataset with features

which may not match those of the data we use), we here provide the results of a Monte

Carlo simulation to estimate the test size (the probability that the null hypothesis is

rejected when it is true) for a nominal signi�cance level of 5%. We next provide the

details of the Monte Carlo simulation.

We analyze 8 Data Generating Processes (DGPs), one for each of the columns in

Table 5.2. In each DGP, the sample and covariates are the ones that we use to estimate

the regressions in Table 5.2. The parameters of the DGP (coe�cients multiplying the

covariates, variance of the error term and intra-cluster correlation) are also the ones

that we obtain when we estimate the regressions in Table 5.2. Hence, the results from

the Monte Carlo simulation are indeed informative about our case. For each column of

Table 5.2, we follow the steps below:

Step 1: Use OLS to estimate regression (5.4) in which the dependent variable, Yict,

and the sample are the ones indicated in the heading of the corresponding column in

Table 5.2. The estimates, [α̂0, β̂1, β̂2, β̂3, µ̂t], which are the same as those reported in

Table 5.2, are saved and used in the steps below (except β̂1, which is discarded). Using

the residuals from this OLS regression, we estimate the intra-cluster correlation and the

variance of the error term [ρ̂u, σ̂
2
u].

Step 2: Obtain 24 draws (our number of clusters) from a standardized normal

distribution
{
θ̃c

}24

c=1
.
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Step 3: Obtain N draws (number of observations) from a standardized normal dis-

tribution, {ε̃i}Ni=1.

Step 4: Using the parameter values of step 1, and the random draw from step 2 and

3, [α̂0, α̂2, σ̂
2
ε ], we obtain simulated values for the dependent variable, Ỹict, under the

assumption that the treatment e�ect is null, that is,

Ỹict = α̂0 + 0 ∗ Tc +Xictβ̂2 + Zc0β̂3 + µ̂t + σ̂θθ̃c + σ̂εε̃ict

where σ̂2
u = σ̂2

θ + σ̂2
ε and ρ̂u =

σ̂2
θ

σ̂2
θ + σ̂2

ε

.

Step 5: We use OLS to estimate regression (5.4),

Yict = α+ β1Tc +Xictβ2 + Zc0β3 + μt + uict

using the simulated dependent variable calculated in step 4. We use three di�erent

methods for inference (cluster-correlated Huber-White standard errors, wild cluster

bootstrap-t, randomization inference) to obtain three di�erent p-values for the null

hypothesis that β1 is zero. Under each method, we reject the null hypothesis at 5%

signi�cance if its respective p-value < 0.05.

Step 6: Repeat steps 2-5 1000 times, keeping Tc, Xict, Zc0 and the parameters from

step 1, [α̂0, β̂1, β̂2, β̂3, µ̂t, ρ̂u, σ̂
2
u] �xed. Hence, the only di�erences across repetitions are

the random draws from steps 2 and 3, and hence the simulated values of the dependent

variable, which are used in step 5.

For each method (cluster-correlated Huber-White standard errors, wild cluster bootstrap-

t, randomization inference), the estimated test size, π (reported in Table 5.12) is the

number of repetitions where the null hypothesis is rejected over 1000, the number of

simulations. A 95% con�dence interval for the estimated test size can be computed us-

ing the formula π± 1.96 ∗
√

0.05 ∗ 0.95/1000, where 1.96 is the 97.5% standard normal

critical value. In Table 5.12, we report whether the estimated test size is signi�cantly

di�erent from the nominal one (0.05).

The �rst row shows the test size when we use cluster-correlated Huber-White stan-

dard errors to form the t-statistic. As expected, the test sizes are considerably larger

than 0.05 and hence the test clearly over-rejects the null. Randomization inference

provides test sizes that are generally statistically close to the nominal test size, and if

anything slightly below it. The results of the wild-t bootstrap procedure are also quite

close to the nominal size, but slightly above it for some cases (although not by much).

Because one inference procedure yield test sizes slightly above the nominal size and

the other one slightly below, it is reassuring that we obtain very similar p-values for

the di�erent outcome variables across Tables 5.2-5.9. These results are informative for
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other researchers not only because it extends the characteristics of the Data Generating

Processes in which these procedures are shown to work, but also because it compares

side by side the two leading approaches for carrying out inference with a small number

of clusters, which, to our knowledge has not been done so far.

5.8.4 Outcome Measures

In this appendix, we detail the measures for each of our outcomes of interest.

Child Consumption We collected information on child-speci�c intake of liquids and

solid foods, focusing on diet variety. These are reported by the main respondent, who

is the mother in the majority (92%) of cases. For children under the age of 2, there are

three measures of liquid intake - whether or not (s)he had maternal milk, other milk, or

water in the 3 days prior to the survey. In the second follow-up survey, there are also

data on whether or not certain foods were consumed in the 3 days prior to the survey

by all children aged less than 6 years. We use whether the children had any porridge,

nsima,36 meat, �sh, eggs or beans, and fruit or vegetables.

Food Consumption We collected information at the household level on the quan-

tities consumed and purchased of over 25 di�erent food items in the week preceding

the survey, and the amounts spent on them. In 2009-10, information was also collected

on conversion factors from the most-frequented markets and trading centres, which are

used to convert non-standard measurement units (such as a heap of tomatoes) into

standard measurement units (such as kilograms).

Food consumption aggregates are computed by summing up food expenditures and

adding on the values of non-purchased food. To impute the latter, we �rst use conversion

factors to convert quantities measured in non-standard units to standard units, and

then use median unit values to impute their value.37 Finally, we obtain per-capita

consumption values by dividing the relevant value by household size.

36Nsima is a thick paste made from maize �our and is a staple food in Malawi. Apart from being
di�cult to digest for infants, nsima does not contain all of the nutrients required by infants. MaiMwana
recommends giving porridge to infants, ideally mixed with vegetables or protein, rather than nsima.

37These conversion factors from the second follow-up were applied to data from both waves. Median
unit values are computed by dividing expenditure on a certain good by the quantity purchased, and
taking the median at the cluster level. In the small number of cases where there were insu�cient
observations within a cluster to reliably compute the median, it was taken at the district level instead.
This method of imputation is similar to that used by Attanasio et al. (2013). As a robustness check,
we also valued consumption using the market prices rather than the median unit values. This is not
our preferred method, since most households rarely purchase the foods they commonly consume from
the markets. Reassuringly, though, both methods yield a food consumption share of total non-durable
consumption of 0.86.
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Adult Labor Supply Labor supply is measured in three ways: whether or not an

individual is engaged in an income-generating activity; whether or not an individual has

a secondary income-generating activity; and the total number of hours worked in the

week preceding the survey (number of days worked in the week preceding the survey

multiplied by the number of hours worked per day; set to zero for those not working).

Child Health Both physical growth and morbidity are used as indicators of child

health. Physical growth is measured by height and weight. For height, we use the

standardized height-for-age z-score. Unlike height, weight is non-monotonic because

both having too high a weight and too low a weight is unhealthy and hence undesirable.

Hence, we use whether the child has a healthy weight for his/her age, and whether

he/she has a healthy weight for his/her height. Healthy weight for his/her age occurs

when the weight-for-age z-score is within -2 standard deviations +2 standard deviations

from the WHO norm. Healthy weight-for-height is de�ned in an analogous way. Child

morbidity is maternal-reported and includes the prevalence of diarrhea, fast breathing,

fever, chills, and vomiting in the 15 days prior to the survey.
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5.8.5 Additional Tables

Table 5.13: Outcome Measures for Each Domain

APPENDIX E

Table E1: Outcome Measures for Each Domain

Domain Outcome Measures Constituting Index

Nutrition knowledge See exact questions in Appendix 5.8.6

Child Liquid Intake
Water intake in 3 days preceding survey; Intake 
of milk other than maternal in 3 days preceding 

survey

Child solid intake

Intake of any proteins in 3 days preceding 
survey; intake of any staples (nsima or 

porridge) in 3 days preceding survey; intake of 
any fruit and vegetables in 3 days preceding 

survey

Household Food Consumption
Amounts (in kwacha) of cereals, proteins, fruit 

and vegetables and other foods

Adult Labor Supply
Whether or not the individual works; whether 
or not the individual has 2 jobs; hours worked

Child Physical Growth
Height for age z-score; whether the child has a 

healthy weight for age z-score; whether the 
child has a healthy weight for height z-score

Child Morbidity
Whether or not the child did not suffer from 

diarrhoea; vomiting; fast breathing; fever; and 
chills in the 15 days preceding the survey

Adult Health

Whether or not the adult can walk 5 kms easily; 
whether or not the individual can carry a 20 kg 
load easily; ability to carry out daily activities; 

whether or not the individual suffered from 
diarrhoea; fever; cough; chills; and vomiting in 

30 days preceding survey
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Table 5.14: Descriptive Statistics on Outcome Variables, Control ClustersTable E2: Descriptive Statistics of Outcome Variables, Control Clusters

Outcome Variable Mean Std Dev Mean Std Dev Mean Std Dev

Nutrition Knowledge (correct answer=1)

Knowledge Index -0.040 0.434 n/a n/a n/a n/a

Breastfeeding when infant has diarrhoea 0.216 0.412 0.216 0.412 n/a n/a

Biscuits or groundnuts/soya more nutritious for kids aged 6-36 months? 0.938 0.242 0.938 0.242 n/a n/a

Age when solid foods should be given 0.880 0.325 0.880 0.325 n/a n/a

Feeding baby when woman is HIV positive 0.394 0.489 n/a n/a 0.394 0.489

Is nsima or porridge more nutritious for infant aged > 6 months 0.858 0.349 n/a n/a 0.858 0.349

Best way of cooking fish with porridge 0.140 0.348 n/a n/a 0.140 0.348

Should eggs be given to an infant aged > 9 months? 0.718 0.450 n/a n/a 0.718 0.450

Child Food Intake, < 6 months

Index 0.010 0.824 n/a n/a 0.010 0.824

Water 0.474 0.503 n/a n/a 0.474 0.503

Non-maternal milk 0.103 0.305 n/a n/a 0.103 0.305

Child Food Intake, > 6 months

Index -0.001 0.489 n/a n/a -0.001 0.489

Any beans 0.256 0.437 n/a n/a 0.256 0.437

Any meat 0.289 0.453 n/a n/a 0.289 0.453

Any fish 0.461 0.499 n/a n/a 0.461 0.499

Any eggs 0.160 0.367 n/a n/a 0.160 0.367

Any vegetables 0.958 0.200 n/a n/a 0.958 0.200

Any fruit 0.699 0.459 n/a n/a 0.699 0.459

Any nsima 0.929 0.257 n/a n/a 0.929 0.257

Any porridge 0.799 0.401 n/a n/a 0.799 0.401

Household Consumption

Food Index -0.098 0.654 -0.076 0.664 -0.132 0.670

Per capita cereal consumption (MK) 605.911 379.674 731.243 403.121 471.466 299.458

Per capita fruit and vegetable consumption (MK) 679.831 585.218 572.906 537.757 794.530 612.081

Per capita protein-rich food consumption (MK) 349.086 483.191 370.902 525.027 325.684 432.968

Per capita other foods consumption (MK) 149.492 495.483 164.119 225.059 133.801 156.341

Male Labor Supply

Index -0.065 0.723 -0.085 0.721 -0.044 0.727

Works (yes=1) 0.818 0.386 0.825 0.380 0.812 0.391

Works in two jobs (yes=1) 0.094 0.292 0.096 0.294 0.092 0.289

Hours worked 25.728 20.341 24.550 17.978 26.858 22.327

Female Labor Supply

Index -0.051 0.719 -0.067 0.729 -0.032 0.712

Works (yes=1) 0.846 0.361 0.827 0.378 0.866 0.341

Works in two jobs (yes=1) 0.086 0.280 0.098 0.297 0.074 0.261

Hours worked 24.449 17.409 23.692 16.895 25.213 17.889

Child Anthropometrics, > 6 months

Index 0.287 0.525 0.254 0.522 0.311 0.528

Height for age z-score -2.326 1.499 -2.339 1.500 -2.315 1.499

Healthy height for weight (yes=1) 0.852 0.355 0.859 0.348 0.847 0.360

Healthy weight (yes=1) 0.829 0.377 0.785 0.411 0.863 0.344

Child Morbidity, > 6 months

Index (reversed) 0.000 0.591 0.001 0.594 -0.001 0.577

Suffered diarrhoea (yes=1) 0.253 0.435 0.354 0.479 0.164 0.370

Suffered from vomiting (yes=1) 0.207 0.405 0.237 0.426 0.181 0.385

Suffered from fast breathing (yes=1) 0.100 0.301 0.112 0.315 0.090 0.287

Suffered fever (yes=1) 0.507 0.500 0.551 0.498 0.469 0.499

Suffered from chills (yes=1) 0.146 0.353 0.155 0.363 0.138 0.345

Pooled Wave 1 Wave 2

Notes to Table: The table includes data on control clusters only. Sample for knowledge index includes households present in both waves of the survey, with a

female main respondent aged 15 years or more; Sample of children aged > 6 months includes those born after July 2005 (when the intervention began), and

who would have been aged at most around 53 months at wave 2; Sample for Household Consumption includes all households; Sample for male (female) labor

supply includes males (females) aged 15-65. Child food consumption data collected in wave 2 only. Knowledge index constructed from wave 1 responses to 3

questions, and wave 2 responses to 4 questions asked in this wave only.

245
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Table 5.15: Index Components for Female Labor SupplyTable E3: Index Components for Adult Female Labor Supply

[1] [2] [3] [4]

Summary 

Index Works

Has at 

least 2 

jobs

Weekly 

hours 

worked

Tz 0.018 -0.03 0.040 -1.740

Standard Error [0.165] [0.104] [0.023] [3.308]

Wild Cluster Bootstrap p-value {0.915} {0.799} {0.120} {0.633}

Randomization Inference p-value {0.903} {0.742} {0.101} {0.585}

Observations 4138 4138 4138 4138

R-squared 0.136 0.144 0.045 0.149

IntraCluster Correlation 0.14 0.222 0.0265 0.144

Mean, Control -0.05 0.847 0.0867 24.54

Adult Females

Notes to Table: All regressions include controls for age, age-squared, cluster-level education and

Chewa ethnicity in 2004, and dummies for the month of interview. Standard errors computed

using the cluster-correlated Huber-White estimator are reported in square brackets, with

clustering at the level of the the cluster (at which treatment was assigned); wild cluster bootstrap-

t and randomisation inference p-values in curly brackets. ** p<0.01, * p<0.05, + p<0.1. Sample

includes all females aged 15-65 years. "Summary Index" contains the variables in columns 2-4

and is computed as described in section 4.4. "Works" is an indicator of whether individual had an 

income-generating activity at the time of the survey, "Has at least 2 jobs" is an indicator for

whether individual had at least 2 income generating activities, "Weekly hours worked" give the

total hours worked in the week prior to the survey on both income generating activities.
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Table 5.19: E�ects on Family Planning and FertilityTable E7: Effects on family planning and fertility 

[1] [2]

Use of any modern 

family planning 

method

Number of 

children since 

intervention 

began

Tc 0.023 -0.049

Standard Error [0.052] [0.040]

Wild Cluster Bootstrap p-value {0.667} {0.300}

Randomisation Inference p-value {0.652} {0.525}

Observations 2809 1655

R-squared 0.065 0.089

IntraCluster Correlation 0.036 0.014

Mean, Control 0.378 0.583

Notes to Table: Standard errors computed using the cluster-correlated Huber-White

estimator are reported in square brackets, with clustering at the level of the cluster (at

which treatment was assigned); wild cluster bootstrap-t p-values in curly brackets. All

regressions includes controls for age, age-squared, and (family planning regression

only) for cluster-level Chewa ethnicity and average cluster-level education, both

measured in 2004, and dummies for the month of interview. "Number of children

since July 2005" is the number of children born to the main respondent and surveyed

at age 1 month since July 2005; Column 1 sample includes women 17-43 years old

(when available, both waves responses are included). Sample in column 2 includes all

main respondents in wave 1 linked to the Mai Mwana Health Surveillance System,

which measures at age 1 month, all children born to these women since the start of the

intervention.  ** p<0.01, * p<0.05, + p<0.1.

5.8.6 Knowledge Questions

1. If an infant is being breastfed and su�ers from diarrhoea, should the breastfeeding:

(a) Continue as usual

(b) Increase

(c) Decrease

(d) Stop and replace with another type of milk or liquid

(e) Don't Know

2. Which of the following is most nutritious for infants between 6 months and 3 year?

(a) Biscuits
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(b) Groundnuts or soya

(c) They both have the same nutritional value

(d) Don't Know

3. When should you start to give some solid foods to the baby?

(a) From birth

(b) After 1 month old

(c) After 3 months old

(d) After 6 months old

(e) Don't Know

4. If a woman is HIV positive, how should she feed her baby?

(a) Exclusive breast feeding for 6 months, followed by early cessation

(b) Exclusive breast feeding for 6 months, followed by complementary feeding

(c) Complementary feeding from birth

(d) Don't Know

5. What is more nutritious for a child older than 6 months:

(a) Nsima

(b) Phala (porridge)

(c) Both are the same

6. Can you explain to me how best to cook �sh with phala for a child older than 6

months (tick all those mentioned).

(a) Pound the �sh

(b) Sieve the powder

(c) Add powder to �ower/phala

(d) Use powder + �our to prepare phala

(e) None of the above

(f) Don't Know

7. Should eggs be given to an infant aged 9 months and above?
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(a) Yes

(b) No

(c) Don't Know
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Chapter 6

Conclusion and Future Work

This dissertation uses household micro-data, combined with economic theory, to study

how informal insurance in extended family networks in developing countries varies with

features of network structure; and the consequences of incorrect knowledge of the child

health production function on health and non-health choices.

Chapter 2 provides an overview of methods to identify social e�ects � the e�ects of

social networks on outcomes � in linear social e�ects models when networks data (de-

tailed data on agents and exact interactions between them) is available. It �rst provides

a common framework nesting the most widely used models in this class, and thereafter

gives an overview of the theoretical models underlying each empirical speci�cation. It

then outlines methods to deal with one key source of endogeneity � network forma-

tion � including methods for specifying and estimating models of network formation.

Networks are high-dimensional objects, which complicates this exercise. Thereafter,

it tackles issues to do with measuring the network. It brings together literature from

across many disciplines on the consequences of partial observation on the network on

the accuracy of measured network statistics, and parameter estimates using these; and

outlines methods proposed to deal with measurement error. This is a fast evolving

literature, as methods are developed and adapted to analyse increasingly available de-

tailed network data. The review also highlights areas for future work. These include

developing network formation models that are feasible to compute, and in developing

low cost ways of collecting accurate measures of network structure, including those that

do not require a census of the network. Work by (Banerjee et al. 2016) makes some

promising �rst steps.

Thereafter, Chapter 3 considers theoretically and empirically how risk sharing varies

with the average number of socially close and distant connections in a household's

network. Socially close connections are better able to enforce informal arrangements,
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6. Conclusion and Future Work

but may be more economically similar and hence o�er fewer opportunities for risk

sharing; thereby potentially generating a trade-o� between these. Theoretically, when

both enforcement and risk sharing opportunities are important for risk sharing, this

trade-o� generates a U-shaped (inverse U-shaped) relationship between risk sharing

and the number of socially close and distant connections in a household's network. The

chapter then studies this relationship empirically using data on within-village extended

family networks. It documents that socially distant connections do indeed provide

more opportunities for risk sharing in this context, and that these opportunities are

particularly important for the e�ective functioning of within-village extended family

network based insurance: networks with more socially distant connections provide more

risk sharing. No relationship is found for socially close connections. This chapter

provides some of the �rst evidence documenting that risk sharing opportunities vary

with social distance, and highlights the importance of incorporating this variation in

models of risk sharing in social networks. Moreover, the �ndings also raise the question

of where this variation arises from. The chapter speculates on some reasons for this,

including the presence of credit constraints and labour market imperfections preventing

diversi�cation across socially close households. A more complete analysis on exact

drivers of this �nding is left to future work. A second question raised by this chapter

relates to the interaction between within- and outside- village extended family networks

in risk sharing concerns. Risk sharing concerns are likely to in�uence location decisions

for members of the same extended family network. Future work should consider this

question, and consequently e�ects on overall risk sharing of the complete extended

family network.

Chapter 4 studies the relationship between group size and informal risk sharing in ru-

ral Malawi, in a setting with imperfect enforcement and coalitional deviations. Building

on (Genicot & Ray 2003), the chapter �rst shows that in such a setting, the relation-

ship between risk sharing and group size is theoretically ambiguous. The question is

empirically analysed using data from Malawi with information on sibship sizes. The

chapter exploits a social norm among the largest ethnic group in the data � the Chewa

� which indicates that a woman's brothers have responsibility for the wellbeing of her

household to de�ne the potential risk sharing group, and also construct a placebo test

that alleviates concerns that estimates are biased by unobserved variables that might

be correlated with risk sharing and group size. We �nd that households where the wife

has many brothers are poorly insured against crop loss events. A calibration exercise

indicates that the threat of coalitional deviations can explain the empirical �ndings. A

natural question is whether such a relationship exists in other settings. This is left to

future work.
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Finally, Chapter 5 uses exogenous variation in mothers' knowledge of the child health

production function, induced by a cluster randomised control trial in rural Malawi, to

study whether improving knowledge in�uences health and non-health choices. The

chapter uses a simple theoretical model to show that changing mothers' knowledge will

in�uence households to change child consumption patterns towards foods it realises are

more productive, such as proteins and fruits and vegetables. Household consumption

and adult labour supply could increase, though the ultimate e�ect is ambiguous. Em-

pirically, the chapter establishes that the intervention improved knowledge. In line with

this, children's diets and nutritional status improved, as did household food consump-

tion, and male labour supply. We hypothesise that two features of the context might

have contributed to the success of the intervention: �rst, the provision of information

was a continuous, rather than one-o�, event within the community. Regular visits by

counselors to di�erent community members would have helped spread information, and

also served as a reminder of the information, thereby making it more salient. Second,

the main ethnic group in the study area � the Chewa � is a traditionally matrilineal

group, in which women are more likely to have more bargaining power within the house-

hold, potentially making it easier for them to implement the information provided, and

to encourage fathers to work more. Further work is needed on how intra-household dy-

namics in�uence households' responses to information interventions of the type studied

in this chapter. This will undoubtedly help shed light on the likely success of such an

intervention in other settings.
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