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ABSTRACT: 27 

New technologies have vastly increased the available data on animal movement and 28 

behaviour. Consequently, new methods deciphering the spatial and temporal interactions 29 

between individuals and their environments are vital. Network analyses offer a powerful 30 

suite of tools to disentangle the complexity within these dynamic systems and we review 31 

these tools, their application, and how they have generated new ecological and behavioural 32 

insights. We suggest that network theory can be used to model and predict the influence of 33 

ecological and environmental parameters on animal movement, focusing on spatial and 34 

social connectivity, with fundamental implications for conservation. Refining how we 35 

construct and randomise spatial networks at different temporal scales will help establish 36 

network theory as a prominent, hypothesis-generating tool in movement ecology. 37 

Keywords: animal tracking; connectivity; graph theory; spatial networks; social behaviour; 38 

telemetry  39 
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Reducing complexity in a technological age 42 

Since antiquity the flow of valuable goods such as silk from China, spices from India or ivory 43 

from Africa, have criss-crossed the globe on trade networks that have been heavily 44 

influenced by geography and the prevailing socio-cultural climate [1]; these factors have had 45 

extraordinary impact on the evolution of human society over the last 13000 years [2]. 46 

Analogously, animal movement, that is reliant on the underlying geographic landscape and 47 

the social environment in which animals find themselves, can strongly influence the flow of 48 

genetic material, infectious disease and cultural innovations within a population [3–5]. The 49 

analysis of social systems has received considerable attention in the scientific literature and 50 

robust, quantitative analyses of animal social networks are now firmly embedded in 51 

behavioural ecology and evolution [6–9]. Despite considerable theoretical overlap and 52 

broad utility in the study of human mobility and transportation networks (e.g. [10,11]), 53 

movement ecologists have been slow to adopt ‘graph theory’ (see Glossary) as a framework 54 

for quantifying habitat connectivity. In order to help refine our understanding of the 55 

mechanistic links between movement behaviour, the environment and individual 56 

motivation or physiological traits however, dynamic spatially-informed models are key 57 

[12,13], not least because they allow us to visually identify patterns relating to ecological 58 

processes. Recently, with technological developments that have enhanced our ability to 59 

track multiple individuals concurrently over long periods [14–17], the requirement for 60 

analytical methods that allow us to interpret how global patterns are shaped by the 61 

movements of many individuals, have brought network analyses back into the limelight.  62 

Networks themselves have an intuitive appeal, utilising metrics that facilitate the 63 

identification of central players, which are key to flow and connectivity within a given 64 
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system [18](Box 1); this provides a means to explore connectivity at multiple scales, 65 

clarifying the relationship between structure and process in biological systems [19,20]. 66 

Analyses of movement data, retrieved from numerous active or passive methods, currently 67 

rely heavily on correlative measures of fixed units (e.g. presence-absence data) to explore 68 

inter- and intraspecific comparisons or environmental predictors of movement. Adopting a 69 

‘network perspective’ however, helps to quantify dynamics while accounting for the non-70 

independence of movement steps. Networks achieve this by considering relationships 71 

between network edges that represent the transition between paired locations within an 72 

individuals’ movement network. The flexibility with which we can define these edges, from a 73 

simple A to B transition for an individual, to the correlation of route similarity between 74 

individuals potentially moving as a collective [21], is crucial for extracting and delineating 75 

behaviour from very large data sets or where we have limited knowledge of the study 76 

system. Consequently, movement networks can be spatially explicit and dynamic, 77 

explanatory or predictive; they provide a powerful means to visualise, interpret and 78 

interrogate animal tracking data, generating new hypotheses with clear applications in 79 

conservation and resource management.   80 

In this review, we draw on recent developments in the acquisition and analysis of 81 

spatial data to explore how movement ecology is benefiting from the convergent evolution 82 

of network tools across multiple disciplines. The network approach, for example, will clearly 83 

benefit from advances in the fields of biologging and machine-sensing of behavioural data 84 

which have considerably progressed our understanding of wild animal biology [15,22,23] or 85 

urban planning and modelling of human mobility within geography [10,24–26]. We discuss 86 

how network theory is generating new hypotheses and explore the novel insights into 87 
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ecological connectivity provided through animal movement networks. Further, we 88 

investigate the interplay between social and spatial networks through recent advances that 89 

allow inference of social networks from the temporary nature of visitation patterns at 90 

logging stations. Still in its infancy, we highlight a number of areas where we see this field is 91 

expanding and discuss the future impact this emergent research theme will have on 92 

individual and collective movement in the context of ecology, evolution and conservation. 93 

 94 

Constructing movement networks  95 

Static or dynamic edges? 96 

Discrete, localised movements from autonomous fixed arrays (AFAs) such as camera traps 97 

or acoustic receivers, or the high resolution GPS tracking of individuals during migration or 98 

collective movement [14,16,21], all present some form of connectivity of landscapes. Such 99 

data is thus amenable to the construction and appraisal of network features (Fig. 1). 100 

Depending on the research question of interest, networks can be either static or dynamic. 101 

Static spatial networks capture the flow of resources or information between locations, 102 

where movement data is pooled across multiple sampling periods creating weighted 103 

network edges, the properties of which inform the directionality and strength of flow within 104 

the system [11,27]. Such networks are important as they can provide a rich understanding 105 

of how fixed environmental constraints drive animal movement decisions [28], and thus 106 

how the environment shapes patterns in social networks. For example, if the environment 107 

restricts movement of animals between areas, this can result in assortative behaviours [29], 108 

and potentially the emergence of local traditions [30]. By contrast, dynamic networks of 109 
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movement, that is the repeated aggregation of movement steps through time (Fig. 1) 110 

and/or the correlation of edges among individuals through time, can enable us to extract 111 

fundamental behavioural insight from long-term tracking data despite the significant 112 

analytical challenges of incorporating time in networks (Box 2). Dynamic networks for 113 

example, have been used to reveal shared decision-making about movement in non-human 114 

primates [31] and hierarchical group behaviours by examining the lagged correlation of 115 

heading routes in collective flocks of birds [21].  116 

Representation of nodes 117 

Networks can take two possible forms; bipartite or ‘two-mode’ networks and unipartite, 118 

‘one-mode’ networks (Fig. 1). Bipartite networks contain two very distinct types of nodes 119 

(e.g. individuals and locations) and links are established between them. For example, 120 

Fortuna et al. [32] consider the modular structure of bipartite graphs of giant noctule bats, 121 

Nyctalus lasiopterus roosting in a network of trees and consider the implications of this 122 

structure on the spread and management of disease. Bipartite networks, often the 123 

analytical precursor of the two forms, can prove useful for explaining modularity  (the 124 

clustering of discrete units) and nestedness (hierarchies of visitation) within a network [32–125 

34]. These metrics can be useful in guiding which network components are likely to be 126 

important when the data are converted to a unipartite network. Importantly, bipartite 127 

networks offer a heuristic framework for systems where there are limited data, but that 128 

enable growth in complexity as more data become available [34].  Alternatively, unipartite 129 

networks, for example, individuals in social networks or locations in movement networks, 130 

reveal structure within nodes of the same type. Where nodes represent fixed spatial 131 

locations (e.g. in AFAs) unipartite networks better represent the movement of the individual 132 
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or group, albeit in a discretised manner. Comparisons of such networks can reveal 133 

interesting shifts in space use as individuals develop over time [35] or differences between 134 

species [36] that might reflect cryptic, temporal segregation of resource use in spatially 135 

overlapping species. Visualisation of the network structure and the ease with which 136 

networks can be restricted to different time periods, age classes, sexes – as with social 137 

networks – helps quickly identify pertinent questions to explore within the data using 138 

quantitative measures of centrality, connectivity or community formation associated with 139 

graph theory (see Box 1). Network metrics (reviewed comprehensively in [18] and 140 

specifically for animal societies in [37]) report the structural properties of a network at local 141 

(individual nodes) and ‘global’ scales (mean across nodes). These metrics provide dynamic 142 

tools for comparing movement graphs between species [33,38–40] or against theoretical 143 

models [41]. As a word of caution however, the size, density or duration of data can strongly 144 

influence network structure, raising important questions about how best to truly compare 145 

movement networks (see Outstanding Questions); relating these metrics to other 146 

information captured in the data, however, can reveal considerable new ecological insights 147 

into animal ecology (Table 1).  148 

Generating new insights and ecological applications 149 

In many terrestrial ecosystems, human land use and resource acquisition has led to 150 

widespread landscape fragmentation, isolating organisms to discrete patches of suitable 151 

habitat [42]. Consequently, the influence of fragmentation on animal and plant populations 152 

has proven a rich vein of research with some applying graph theory to assess the relative 153 

importance of individual patches to overall landscape connectivity based on metrics of 154 

edges that link important habitat or resources [34]. Studies on invertebrate pollinators, for 155 
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example, have revealed the importance of corridors to increase movements between 156 

fragmented habitats within plant-pollinator networks [27,38]. Migration routes in long 157 

distance avian migrants also rely on a mosaic of connected stopover sites to rest, feed or 158 

shelter from bad weather. The arrival and departure of Oriental White Storks, Ciconia 159 

boyciana at migratory stopover sites were modelled as a network of connected components 160 

to identify the shortest path lengths and associated staging sites fundamental to the 161 

connectivity of the full migration route [43]. There is considerable scope for such tools to 162 

help inform the ways in which we conserve and manage species by measuring or forecasting 163 

the impact of human disturbance on movement or by monitoring endangered species 164 

tagged with tracking devices. As an example, variation in the spatial autocorrelation of 165 

animal movement steps, post reintroduction, is likely to have considerable bearing on how 166 

breeding pairs acclimate to their new environment. Determining how they disperse and 167 

where and when the sexes come together, will inform how many individuals are needed to 168 

support a successful reintroduction programme that is fundamentally rooted in the ecology 169 

of the species in question [44].  170 

Understanding the patterns, dynamics and drivers of mobility 171 

More broadly, network analyses enable us to deconstruct animal movement patterns into 172 

individual behavioural processes (e.g. dispersal patterns) and population-level biological 173 

motivation such as social drivers or environmental factors [28]. Network community 174 

detection algorithms, for example, offer ways to explore the core space use of species at 175 

multiple scales by redefining what comprise the network nodes (e.g. individual receivers, 176 

fixed quadrats, different habitat types) revealing the underlying social and spatial drivers of 177 

movement [33]. Recently, networks have also had significant impact on our understanding 178 



9 
 

of broad-scale patterns of mobility in human societies, not least for modelling global 179 

transport and cargo networks [11,25], with considerable success in recreating and 180 

predicting human movement from networks of mobile phone usage [10,26,45](see Table 1 181 

for summary). How and when we socialise and how this is influenced by routine movements 182 

between familiar locations, can all be captured from networks of mobile phone transmitters 183 

or radio frequency identification systems, such as public transportation ticketing systems 184 

(e.g. London’s Oyster card system). Additionally, while social data on conspecifics can be 185 

used to improve predictions about the location of unknown individuals [46], locational data 186 

from animal tracking, can be used strategically to recreate a broader understanding of social 187 

dynamics in a population (Box 3).  188 

The emergence of spatial networks in animal movement ecology has been particularly 189 

useful in systems where knowledge of connectivity and multi-individual ranging behaviour is 190 

difficult to study, such as marine systems (e.g. [33,35,39,41,47,48]) where movement must 191 

sometimes be inferred between discrete locational fixes. More widely however, the 192 

development and application of biologging technologies are progressing faster than our 193 

ability to analyse the vast data they generate [15,33,47]. Network analyses, alongside a 194 

number of other burgeoning methodologies (e.g. Bayesian bridges [13]; step-selection 195 

methods [49]; behavioural state modelling [50]), now offer more integrative, comparative 196 

and hypothesis-driven approaches to movement ecology [16,33,35,47]. As such, network 197 

tools are finding a place in conservation and management by enabling us to measure and 198 

quantify singular and correlative linkages between areas maintained by unseen animals, 199 

that traditional static analyses likely miss. This has proven key, for example, for 200 

understanding the fission-fusion dynamics of commercially important fishes between 201 
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networks of fish aggregating devices [51], for measuring nutrient transfer by marine 202 

predators within mesophotic coral reef communities [39] or for quantifying the transport 203 

and spread of disease within coastal aquaculture farms [52]. 204 

       205 

Spatial patterns within movement networks 206 

The utility of spatial graphs in ecology has been largely driven by the need to better 207 

understand disease dynamics and rates of transmission within populations and across 208 

geographic landscapes [32,45,53–59]. This body of research has broadly informed how we 209 

model spatial networks of flow and connectivity and use networks as predictive tools 210 

[32,57] incorporating the distance between nodes within the underlying mobility network.  211 

It is important to model the modularity and the dynamic structural properties of a 212 

movement network as this can reflect the underlying robustness (or vulnerability) of the 213 

biological landscape through which animals move. Network structure can be characterised 214 

by the distribution of node-based metrics within the population. For example, a power-law 215 

degree distribution is indicative of a disproportionately low number of nodes harbouring a 216 

high percentage of the connections; these nodes are the hubs within the network [60] and 217 

might indicate priority areas for conservation due to a high in- and out-flow of individuals. In 218 

fact multiple species of roving herbivorous fish were found to be heavily reliant on a few 219 

well-connected areas of the Great Barrier Reef – monitored using an acoustic AFA – 220 

revealing inherent vulnerabilities in the ‘ultra small-world’ nature of these movement 221 

networks, should these areas with a high degree centrality become perturbed [41]. We 222 

caution however, that without a high number of nodes within a network (e.g. hundreds to 223 
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thousands), such properties are very difficult to truly determine [61]. Finn et al. [33] argue 224 

that spatial networks are much more likely to take the form of a regular graph where each 225 

node is connected to its nearest neighbour, but this can be dependent on in-built structure 226 

in the data (e.g. array layout or sampling frequency). Another way to assess the robustness 227 

of a measured animal movement network is to evaluate network degradation through the 228 

systematic removal of nodes to mimic habitat loss [35], a tool likely to prove informative for 229 

predictive management. This has been used to good effect to show that the activity space of 230 

pigeye and spottail sharks [36] and migration routes of oriental white storks [43] become 231 

significantly fragmented, then disconnected, after the removal of just a few habitat nodes 232 

that are of critical ecological importance to these animals. For some ecosystems or species 233 

in particular, these hubs for animal mobility – whether on a migration route (e.g. watering 234 

holes) or part of a core activity area (e.g. latrines) – might not be immediately apparent; 235 

density estimates of individual occurrences for instance, might tell us nothing about the 236 

repeated ranging behaviour or the time associated with such behaviour, that can be 237 

captured by the relative flow of movements to and from the surrounding habitats. 238 

Spatial autocorrelation within networks is the likelihood that nodes that are 239 

geographically nearer to each other are more likely than random to share similar metrics 240 

than those further away. While this poses a potential challenge to how we develop null 241 

models for significance testing of spatial networks (see Box 4), it can also inform interesting 242 

questions about how animals use space. The spatial assortment of nodes within a weighted 243 

movement network for example, could be indicative of behavioural mechanisms such as 244 

central place foraging, whereas assortment by habitat type suggests that movement is 245 

perhaps driven predominantly by resource distribution, allowing us to make generalisations 246 
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about patterns of space use [62]. Further, the correlation of activity at different spatial 247 

nodes can be tracked repeatedly through time to generate hypotheses about peak flow 248 

patterns. We predict that these types of techniques will prove useful for monitoring the 249 

impacts of climate change through time on route determination and repeatability in 250 

migratory animals. For these tools to be robust however, null hypothesis significance testing 251 

is vital [8](Box 4).     252 

 253 

Future research directions 254 

As graph theory and its utility continue to develop in parallel across multiple disciplines, 255 

from physics to the computer sciences and from genetics to mathematical biology, the 256 

potential to broaden the scope of these exciting tools in movement ecology grows. We 257 

predict significant developments in this field by combining network-based approaches with 258 

other measures of individual biology such as machine-sensed energetics (e.g. accelerometer 259 

tags), genetic profiling and personal observations of behaviour, providing multiple attributes 260 

that can be associated with the network nodes and edges. Such holistic, integrated 261 

approaches have already proven highly successful in providing a deep mechanistic 262 

understanding of behaviour in rather cryptic species [63].   263 

Capturing visitation chronology and duration 264 

There are ongoing challenges associated with incorporating time in movement networks. 265 

We foresee great potential in methods that search for repeated topologies (e.g. temporally 266 

recurring motifs) or that adopt time-ordered and time-aggregated networks within the 267 

movement structure [64–66], combined with behavioural state modelling that allows us to 268 
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explore transitional shifts [48,50,67]. Furthermore, we anticipate entropy maximisation 269 

techniques being incorporated into movement networks to predict probable flow strength 270 

and directionality based on the relative loading of units – this could be individuals or 271 

resources – at each node within the spatial network. Such techniques have proven 272 

extremely successful in a geographic context for predicting the emergent patternation of 273 

the 2011 London riots for example [24], or the chronology and dimensionality of human 274 

settlements in the Middle Bronze and Iron Ages in Syria [68]. Such innovations are likely to 275 

help inform temporal analyses as directionality of edges pertain to time also. 276 

Understanding the mechanisms behind movement through time might also be 277 

facilitated by adopting a multiplex approach to connectivity [69]. This would provide two 278 

interesting developments in how we analyse movement networks: First, by quantifying the 279 

trajectory of changes in continuous measures of dyadic metrics, deviations from this 280 

trajectory will highlight the timing and magnitude of non-random changes in movement 281 

patterns allowing us to detect subtle, but significant shifts in behaviour [69]. Second, looking 282 

for correlative relationships between multiple measures of habitat connectivity, for example 283 

the transfer of material carried on the prevailing wind or current, will provide a means of 284 

measuring the influence of environmental parameters on movement that account for 285 

directionality and transition time that cannot be captured without dynamic analyses. 286 

Route repeatability and refinement 287 

With recent evidence that repeatable social network positions can be indicative of 288 

personality traits within animals [70–72], we foresee an interesting avenue of research 289 

determining whether individual movement trajectories through a landscape might show 290 

consistent variation or perhaps plasticity during ontogeny. Here, visitation chronology can 291 
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be captured as a bipartite network, the properties of which might be compared across 292 

individuals in the population. This could have interesting implications for animals moving in 293 

groups: Using light-weight, GPS trackers for example, route fidelity in solo homing pigeons 294 

become refined in accuracy over repeated journeys [73]; these routes might then 295 

recapitulate under ‘social’ flocking scenarios in ways that are predictive of social 296 

relationships [74]. Similarly, the migratory journeys of Atlantic Puffins are strongly 297 

recapitulated within individuals following their own routes during what otherwise appear to 298 

be dispersive migrations [75]. In fact recent advances in the analyses of vast trajectory data 299 

within geography and urban planning suggest that network analyses can improve the 300 

positional accuracy of GPS data to reduce data redundancy and better interpolate or 301 

explore individual and collective trajectories [76]. With such huge data from these fields, 302 

researchers can now fully harness the predictive power of network tools for understanding 303 

emergent spatial patterns across many different contexts [24,68]. In species for which such 304 

tracking data is not feasible, simple, binary presence-absence data, analysed as a connected 305 

network, can help us address critical ecological questions surrounding the behavioural 306 

motivation of animals living in challenging or remote environments. Interestingly, artificial 307 

neural networks, used to estimate movement probability kernels, offer movement models 308 

that now integrate the spatial structure, the spatial variability of the resource landscape and 309 

individual memory of previously visited locations, strengthening the link between pattern, 310 

personality and process [13,77]. Further questions of interest are listed in the Outstanding 311 

Questions. 312 
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Concluding remarks 313 

Spatial connectivity in biological systems can be quantified at myriad scales and using 314 

broadly different data collection methods. Only recently has technology enabled us to 315 

monitor, round-the-clock, the behaviour of tens, hundreds, or even thousands of individuals 316 

concurrently for periods of weeks, months or even years [14–16,78–80]. Graph theory has 317 

already proven an intuitive and informative paradigm for the measurement and appraisal of 318 

complex connected systems from social networks to transport systems and beyond 319 

[25,60,81]. Network-based analyses offer a robust, quantitative set of metrics that 320 

complement traditional means of understanding movement ecology within AFAs of camera 321 

traps, acoustic receivers, mobile phone masts, RFID stations, or from continuous satellite 322 

tracking data. With the current unprecedented availability of high-resolution and/or long-323 

term tracking data, it is more important than ever that we begin to connect the tools 324 

available to the appropriate research questions [82]. In addition to movement, the temporal 325 

component associated with arrival and departure of animals at network nodes can offer 326 

information on the social interactions of free ranging tagged animals through analysis of 327 

individual co-occurrences [83,84]. These methods are one of a number of burgeoning 328 

disciplines – including data mining [23], machine learning [85] and automated image-based 329 

tracking [17] – that utilise recent advances in computational power to analyse large, 330 

complex time-series data and that are guiding more integrative, comparative and 331 

hypothesis-driven approaches in the field of animal movement ecology [23,47]. Using 332 

network-based tools to understand the movement, flow and connectivity of habitats and 333 

individuals in the wild, offers new opportunities to unravel underlying mechanisms and to 334 

provide crucial new understanding of the ecology and behaviour of free-ranging animals. 335 



16 
 

Acknowledgements 336 

We would like to thank C. Carbone, D. Farine and one anonymous reviewer for their helpful 337 

feedback on earlier drafts of the manuscript. Both authors acknowledge core mission 338 

funding from the Zoological Society of London. 339 

References  340 

1  Seland, E.H. (2013) Networks and social cohesion in ancient Indian Ocean trade: 341 

geography, ethnicity, religion. J. Glob. Hist. 8, 373–390 342 

2  Diamond, J.M. (1998) Guns, germs, and steel: A short history of everybody for the last 343 

13,000 years, Vintage. 344 

3  Allen, J. et al. (2013) Network-Based Diffusion Analysis Reveals Cultural Transmission 345 

of Lobtail Feeding in Humpback Whales. Science (80-. ). 340, 485–488 346 

4  Bohonak,  a J. Dispersal, gene flow, and population structure. , Quarterly Review of 347 

Biology, 74. (1999) , 21–45 348 

5  Fèvre, E.M. et al. (2006) Animal movements and the spread of infectious diseases. 349 

Trends Microbiol. 14, 125–131 350 

6  Pinter-Wollman, N. et al. The dynamics of animal social networks: Analytical, 351 

conceptual, and theoretical advances. , Behavioral Ecology, 25. (2014) , 242–255 352 

7  Krause, J. et al. (2014) Animal Social Networks, Oxford University. 353 

8  Croft, D.P. et al. Hypothesis testing in animal social networks. , Trends in Ecology and 354 

Evolution, 26. (2011) , 502–507 355 

9  Kurvers, R.H.J.M. et al. (2014) The evolutionary and ecological consequences of 356 



17 
 

animal social networks: emerging issues. Trends Ecol. Evol. 29, 326–335 357 

10  Louail, T. et al. (2015) Uncovering the spatial structure of mobility networks. Nat. 358 

Commun. 6, 6007 359 

11  Kaluza, P. et al. (2010) The complex network of global cargo ship movements. J. R. 360 

Soc. Interface 7, 1093–1103 361 

12  Morales, J.M. et al. (2010) Building the bridge between animal movement and 362 

population dynamics. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365, 2289–2301 363 

13  Dalziel, B.D. et al. (2008) Fitting probability distributions to animal movement 364 

trajectories: using artificial neural networks to link distance, resources, and memory. 365 

Am. Nat. 172, 248–258 366 

14  Kays, R. et al. (2015) Terrestrial animal tracking as an eye on life and planet. Science 367 

(80-. ). 348, aaa2478–aaa2478 368 

15  Rutz, C. and Hays, G.C. (2009) New frontiers in biologging science. Biol. Lett. 5, 289–369 

292 370 

16  Hussey, N.E. et al. (2015) Aquatic animal telemetry: A panoramic window into the 371 

underwater world. Science (80-. ). 348, 1255642–1255642 372 

17  Dell, A.I. et al. (2014) Automated image-based tracking and its application in ecology. 373 

Trends Ecol. Evol. 29, 417–428 374 

18  Newman, M. (2010) Networks: An Introduction, Oxford University Press. 375 

19  Cowan, R. and Jonard, N. (2004) Network structure and the diffusion of knowledge. J. 376 

Econ. Dyn. Control 28, 1557–1575 377 



18 
 

20  Dale, M.R.T. and Fortin, M.-J. (2010) From Graphs to Spatial Graphs. Annu. Rev. Ecol. 378 

Evol. Syst. 41, 21–38 379 

21  Nagy, M. et al. (2010) Hierarchical group dynamics in pigeon flocks. Nature 464, 890–380 

893 381 

22  Kabra, M. et al. (2013) JAABA: interactive machine learning for automatic annotation 382 

of animal behavior. Nat Meth 10, 64–67 383 

23  Krause, J. et al. (2013) Reality mining of animal social systems. Trends Ecol. Evol. 28, 384 

541–551 385 

24  Davies, T.P. et al. (2013) A mathematical model of the London riots and their policing. 386 

Sci. Rep. 3,  387 

25  Choi, J.H. et al. (2006) Comparing world city networks: A network analysis of Internet 388 

backbone and air transport intercity linkages. Glob. Networks 6, 81–99 389 

26  Song, C. et al. (2010) Limits of predictability in human mobility. Science 327, 1018–390 

1021 391 

27  Haddad, N.M. (1999) Corridor and distance effects on interpatch movements: A 392 

landscape experiment with butterflies. Ecol. Appl. 9, 612–622 393 

28  Farine, D.R. et al. (2015) The role of social and ecological processes in structuring 394 

animal populations: a case study from automated tracking of wild birds. R. Soc. open 395 

Sci. 2, 150057 396 

29  Farine, D.R. (2014) Measuring phenotypic assortment in animal social networks: 397 

Weighted associations are more robust than binary edges. Anim. Behav. 89, 141–153 398 



19 
 

30  Aplin, L.M. et al. (2015) Experimentally induced innovations lead to persistent culture 399 

via conformity in wild birds. Nature 518, 538–541 400 

31  Strandburg-Peshkin, A. et al. (2015) Shared decision-making drives collective 401 

movement in wild baboons. Science (80-. ). 348, 1358–1361 402 

32  Fortuna, M. a. et al. (2009) The roosting spatial network of a bird-predator bat. 403 

Ecology 90, 934–944 404 

33  Finn, J.T. et al. (2014) Applying network methods to acoustic telemetry data: 405 

Modeling the movements of tropical marine fishes. Ecol. Modell. 293, 139–149 406 

34  Urban, D. and Keitt, T. (2001) LANDSCAPE CONNECTIVITY: A GRAPH-THEORETIC 407 

PERSPECTIVE. Ecology 82, 1205–1218 408 

35  Jacoby, D.M.P. et al. (2012) Developing a deeper understanding of animal movements 409 

and spatial dynamics through novel application of network analyses. Methods Ecol. 410 

Evol. 3, 574–583 411 

36  Lédée, E.J.I. et al. (2015) A comparison between traditional kernel-based methods 412 

and network analysis: an example from two nearshore shark species. Anim. Behav. 413 

103, 17–28 414 

37  Croft, D.P. et al. (2008) Exploring Animal Social Networks, Princeton University Press. 415 

38  Lima, L.L.F. De et al. (2015) Application of network theory to mark recapture data 416 

allows insights into population structure of two Heliconius species. 5, 43–54 417 

39  Papastamatiou, Y. et al. (2015) Movements and foraging of predators associated with 418 

mesophotic coral reefs and their potential for linking ecological habitats. Mar. Ecol. 419 

Prog. Ser. 521, 155–170 420 



20 
 

40  Nöremark, M. et al. (2011) Network analysis of cattle and pig movements in Sweden: 421 

Measures relevant for disease control and risk based surveillance. Prev. Vet. Med. 99, 422 

78–90 423 

41  Fox, R.J. and Bellwood, D.R. (2014) Herbivores in a small world: Network theory 424 

highlights vulnerability in the function of herbivory on coral reefs. Funct. Ecol. 28, 425 

642–651 426 

42  Foley, J.A. et al. (2005) Global consequences of land use. Science 309, 570–574 427 

43  Shimazaki, H. et al. (2004) Network analysis of potential migration routes for Oriental 428 

White Storks (Ciconia boyciana). Ecol. Res. 19, 683–698 429 

44  Ewen, J.G. et al. (2012) Reintroduction Biology: Integrating Science and Management, 430 

Wiley-Blackwell. 431 

45  Wesolowski,  a. et al. (2012) Quantifying the Impact of Human Mobility on Malaria. 432 

Science (80-. ). 338, 267–270 433 

46  Li, J. et al. (2014) Social Information Improves Location Prediction in the Wild. Proc. 434 

2015 Int. Work. Trajectoy-based Behav. Anal.  435 

47  Donaldson, M.R. et al. (2014) Making connections in aquatic ecosystems with 436 

acoustic telemetry monitoring. Front. Ecol. Environ. 12, 565–573 437 

48  Stehfest, K.M. et al. (2015) Markov models and network analysis reveal sex-specific 438 

differences in the space-use of a coastal apex predator. Oikos 124, 307–318 439 

49  Miller, J. a. (2015) Towards a Better Understanding of Dynamic Interaction Metrics for 440 

Wildlife: a Null Model Approach. Trans. GIS 19, n/a–n/a 441 



21 
 

50  Patterson, T. a. et al. (2009) Classifying movement behaviour in relation to 442 

environmental conditions using hidden Markov models. J. Anim. Ecol. 78, 1113–1123 443 

51  Stehfest, K.M. et al. (2013) Network analysis of acoustic tracking data reveals the 444 

structure and stability of fish aggregations in the ocean. Anim. Behav. 85, 839–848 445 

52  Munro, L. a. and Gregory,  a. (2009) Application of network analysis to farmed 446 

salmonid movement data from Scotland. J. Fish Dis. 32, 641–644 447 

53  Dubé, C. et al. (2008) Comparing network analysis measures to determine potential 448 

epidemic size of highly contagious exotic diseases in fragmented monthly networks of 449 

dairy cattle movements in Ontario, Canada. Transbound. Emerg. Dis. 55, 382–392 450 

54  Godfrey, S.S. (2013) Networks and the ecology of parasite transmission: A framework 451 

for wildlife parasitology. Int. J. Parasitol. Parasites Wildl. 2, 235–245 452 

55  Keeling, M.J. et al. (2010) Individual identity and movement networks for disease 453 

metapopulations. Proc. Natl. Acad. Sci. U. S. A. 107, 8866–8870 454 

56  Proulx, S.R. et al. (2005) Network thinking in ecology and evolution. Trends Ecol. Evol. 455 

20, 345–353 456 

57  Salathé, M. et al. (2010) A high-resolution human contact network for infectious 457 

disease transmission. Proc. Natl. Acad. Sci. U. S. A. 107, 22020–22025 458 

58  Adelman, J.S. et al. (2015) Feeder use predicts both acquisition and transmission of a 459 

contagious pathogen in a North American songbird. Proc. Biol. Sci. 282,  460 

59  Vanderwaal, K.L. et al. (2013) Linking social and pathogen transmission networks 461 

using microbial genetics in giraffe (Giraffa camelopardalis). J. Anim. Ecol. DOI: 462 

10.1111/1365-2656.12137 463 



22 
 

60  Watts, D.J. et al. (1998) Collective dynamics of “small-world” networks. Nature 393, 464 

440–2 465 

61  James, R. et al. (2009) Potential banana skins in animal social network analysis. 466 

Behav. Ecol. Sociobiol. 63, 989–997 467 

62  Börger, L. et al. (2008) Are there general mechanisms of animal home range 468 

behaviour? A review and prospects for future research. Ecol. Lett. 11, 637–650 469 

63  Wilson, A.D.M. et al. (2015) Integrating network analysis, sensor tags, and 470 

observation to understand shark ecology and behavior. Behav. Ecol. 00, arv115 471 

64  Blonder, B. et al. (2012) Temporal dynamics and network analysis. Methods Ecol. Evol. 472 

3, 958–972 473 

65  Holme, P. and Saramäki, J. (2012) Temporal networks. Phys. Rep. 519, 97–125 474 

66  Blonder, B. and Dornhaus, A. (2011) Time-ordered networks reveal limitations to 475 

information flow in ant colonies. PLoS One 6, 1–8 476 

67  Garcia, J. et al. (2015) Spatial behavior of two coral reef fishes within a Caribbean 477 

Marine Protected Area. Mar. Environ. Res. 109, 41–51 478 

68  Davies, T. et al. (2014) Application of an entropy maximizing and dynamics model for 479 

understanding settlement structure: The Khabur Triangle in the Middle Bronze and 480 

Iron Ages. J. Archaeol. Sci. 43, 141–154 481 

69  Hobson, E. a. et al. (2013) An analytical framework for quantifying and testing 482 

patterns of temporal dynamics in social networks. Anim. Behav. 85, 83–96 483 

70  Jacoby, D.M.P. et al. (2014) Shark personalities? Repeatability of social network traits 484 



23 
 

in a widely distributed predatory fish. Behav. Ecol. Sociobiol. 68, 1995–2003 485 

71  Wilson, A.D.M. et al. (2013) Network position: a key component in the 486 

characterization of social personality types. Behav. Ecol. Sociobiol. 67, 163–173 487 

72  Aplin, L.M. et al. (2015) Consistent individual differences in the social phenotypes of 488 

great tits. Anim. Behav. 108, 117–127 489 

73  Meade, J. et al. (2005) Homing pigeons develop local route stereotypy. Proc. R. Soc. B 490 

Biol. Sci. 272, 17–23 491 

74  Freeman, R. et al. (2011) Group decisions and individual differences: route fidelity 492 

predicts flight leadership in homing pigeons (Columba livia). Biol. Lett. 7, 63–66 493 

75  Guilford, T. et al. (2011) A Dispersive Migration in the Atlantic Puffin and Its 494 

Implications for Migratory Navigation. PLoS One 6, e21336 495 

76  Guo, D. et al. (2010) A graph-based approach to vehicle trajectory analysis. J. Locat. 496 

Based Serv. 4, 183–199 497 

77  Chapman, B.B. et al. (2011) To boldly go: individual differences in boldness influence 498 

migratory tendency. Ecol. Lett. 14, 871–876 499 

78  Heupel, M.R. et al. (2006) Automated acoustic tracking of aquatic animals: scales, 500 

design and deployment of listening station arrays. Mar. Freshw. Res. 57, 1–13 501 

79  Ropert-Coudert, Y. and Wilson, R. (2005) Trends and perspectives in animal- attached 502 

remote sensing. Front Ecol Env. 3, 437–444 503 

80  Cooke, S.J. et al. (2004) Biotelemetry: a mechanistic approach to ecology. Trends Ecol. 504 

Evol. 19, 334–343 505 



24 
 

81  Dorogovtsev, S.N. and Mendes, J.F.F. (2013) Evolution of Networks: From Biological 506 

Nets to the Internet and WWW, Oxford University Press. 507 

82  Börger, L. (2016) Stuck in motion ? Reconnecting questions and tools in movement 508 

ecology. 85, 5–10 509 

83  Psorakis, I. et al. (2012) Inferring social network structure in ecological systems from 510 

spatio-temporal data streams. J. R. Soc. Interface 9, 3055–3066 511 

84  Psorakis, I. et al. (2015) Inferring social structure from temporal data. Behav. Ecol. 512 

Sociobiol. DOI: 10.1007/s00265-015-1906-0 513 

85  Olden, J.D. et al. (2008) Machine learning methods without tears: a primer for 514 

ecologists. Q. Rev. Biol. 83, 171–193 515 

86  Fletcher, R.J. et al. (2011) Social network models predict movement and connectivity 516 

in ecological landscapes. Proc. Natl. Acad. Sci. 108, 19282–19287 517 

87  Lookingbill, T. et al. (2010) Combining a Dispersal Model with Network Theory to 518 

Assess Habitat Connectivity. Ecol. Appl. 20, 427–441 519 

88  Fortuna, M. a et al. (2006) Spatial network structure and amphibian persistence in 520 

stochastic environments. Proc. R. Soc. B Biol. Sci. 273, 1429–1434 521 

89  Boogert, N.J. et al. (2014) Developmental stress predicts social network position.  522 

90  Sims, D.W. et al. (2006) Encounter success of free-ranging marine predator 523 

movements across a dynamic prey landscape. Proc. Biol. Sci. 273, 1195–1201 524 

91  Goodale, E. et al. (2010) Interspecific information transfer influences animal 525 

community structure. Trends Ecol. Evol. 25, 354–361 526 



25 
 

92  Axelrod, R. and Hamilton, W.D. The Evolution of Cooperation. , Science, 211. (1981) , 527 

1390–6 528 

93  Aplin, L.M. et al. (2013) Individual personalities predict social behaviour in wild 529 

networks of great tits (Parus major). Ecol. Lett. 16, 1365–1372 530 

94  Farine, D.R. et al. (2015) Interspecific social networks promote information 531 

transmission in wild songbirds. Proc. R. Soc. London B Biol. Sci. 282,  532 

95  Furmston, T. et al. (2015) A Significance Test for Inferring Affiliation Networks from 533 

Spatio-Temporal Data. PLoS One 10, e0132417 534 

96  Farine, D.R. and Whitehead, H. (2015) Constructing, conducting, and interpreting 535 

animal social network analysis. J. Anim. Ecol. DOI: 10.1111/1365-2656.12418 536 

97  Godfrey, S.S. et al. (2014) A contact-based social network of lizards is defined by low 537 

genetic relatedness among strongly connected individuals. Anim. Behav. 97, 35–43 538 

98  Farine, D.R. (2013) Animal social network inference and permutations for ecologists 539 

in R using asnipe. Methods Ecol. Evol. 4, 1187–1194 540 

  541 



26 
 

Glossary 542 

Adjacency matrix: an n x n matrix linking all nodes in a network via some form of 543 

interaction, in this case movements of animals between one receiver and another. The 544 

matrix can be either symmetric or asymmetric to represent non-directed or directed 545 

interactions. 546 

Autonomous fixed arrays (AFA): a cluster of sedentary biologging devices capable of 547 

wirelessly receiving or capturing long-term information (months to years) on animal space 548 

use, through logging presence-absence, where animals are often individually identifiable 549 

(e.g. radio frequency or acoustic receivers, camera traps). 550 

Bipartite graph: the modelled relationship between two different classes of node, in this 551 

instance a matrix of individuals-by-location. 552 

Empirically derived Markov model (EDMM): deterministic model that accounts for the 553 

temporal dynamics of transitions between states or, in this instance, the movements 554 

between locations within AFA. These models assume that any movement is based purely on 555 

the current state, not preceding states and that transition probabilities between states 556 

remain the same over time.  557 

Graph theory: a branch of mathematics that allow us to model the structure of pairwise 558 

relations between objects in the form of a network. Objects are typically represented by 559 

nodes or vertices and relations by edges between nodes. 560 

Infinite Gaussian Mixture Models (IGMM): a probabilistic Bayesian model, with an 561 

undefined prior number of mixture components, used to statistically infer aggregated or 562 
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clustered distributions within data from course observations and/or time series sampling of 563 

the population. 564 

Kernel utilisation distribution (KUD): a two dimensional probability density function that 565 

estimates the probability of finding an animal within an area based on a given set of 566 

recorded locations.  567 

Movement network: movements of an individual or group of organisms between locations, 568 

modelled using graph theory. 569 

Social network: the structure describing a series of nodes or individuals and the 570 

accumulated dyadic linkages formed through some form of direct interaction. For animal 571 

social networks this might take the form of agonistic or grooming behaviours, shared group 572 

membership or communicative interactions. 573 

Spatial network: a network graph where nodes have a fixed geographic location and edges 574 

are derived from counts or ratios of directed animal movements between the nodes; spatial 575 

networks will have a fixed distribution of inter-node distances. Movement networks are an 576 

example of a spatially restricted network.  577 
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Table 1. Application of network metrics to explore animal movement and landscape ecology 578 

Species 
Data collection 
method 

Movement network 
analysesa 

New ecological insights Refs 

Terrestrial 
    

Common buckeye, 
Junonia coenia; 
Variegated fritillary, 
Euptoieta claudia 

Mark-release-
recapture 

Inter-patch movements; 
geographically-weighted 
proxy for degree  

Corridors increase long-
distance movements of 
habitat restricted species 

[27] 

Cactus bug, 
Chelinidea vittiger 

Mark-release-
recapture 

Betweenness; clustering 
coefficient; density 

Determining which 
method of network 
construction best predicts 
real-world habitat linkages 

[86] 

Dairy cattle,  

Shipment records 
from Diary Herd 
Improvement 
database 

In degree; out degree 

Key advances in 
understanding infection 
chains and disease 
outbreak across the dairy 
industry 

[40,53,5
5] 

Delmarva fox 
squirrel, Sciurus 
niger cinereus 

Simulated 
dispersion data 
across suitable 
habitat 

Betweenness; degree 
distribution; edge 
redundancy; null 
modelling 

Revealing bottlenecks to 
dispersal as targets for 
conservation 

[87] 

Everglades snail kite, 
Rostrhamus 
sociabilis plumbeus 

Mark-release-
recapture 

Betweenness; clustering 
coefficient; density 

Determining which 
method of network 
construction best predicts 
real-world habitat linkages 

[86] 

Giant noctule bat, 
Nyctalus lasiopterus 

Radio tracking to 
and from roost 
trees 

Degree centrality; 
betweenness centrality; 
community detection; 
null modelling 

Spatial and social 
segregation of the 
population influences rate 
and shape of disease 
dynamics 

[32] 

Human, homo 
sapiens 

Ship monitoring 
systems (global 
database) 

Shipping port 
betweenness centrality; 
strength; degree 
distribution 

Connectivity of cargo ship 
ports possess a heavy-
tailed distribution 

[11] 

Human, homo 
sapiens 

Mobile phone 
locational data 

Network density; 
distance clustering; 
entropy of individual 
trajectory 

Human movement is 
highly predictable 

[10,26] 

Human, homo 
sapiens 

Mobile phone 
locational data 

Weighted networks; 
network stability of 
parasite transmission 

Revealing travel routes 
key to malaria 
epidemiology 

[45] 

Mexican spotted 
owl, Strix 
occidentalis lucida 

Modelling of 
suitable habitat 
patches 

Edge removal; node 
removal; null modelling 

Population predicted to 
persist despite substantial 
loss of habitat  

[34] 
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Oriental white 
storks, Ciconia 
boyciana 

Satellite tracking 
derived stopover 
sites 

Path length 
Determining key stopover 
sites critical to migration 
route connectivity 

[43] 

Red Postman, 
Helioconius erato; 
Common Postman, 
Helioconius 
melpomene 

Mark-release-
recapture 

Mean strength; degree 
distribution; clustering 
coefficient; network 
diameter 

Comparable network 
structures between 
species; identifying 
resource hotspots of high 
connectivity 

[38] 

Marine 
    

Atlantic Salmon, 
Salmo salar; 
Rainbow trout, 
Oncorhynchus 
mykiss (farmed) 

Fish Health 
Inspectorate live 
fish transport 
database 

Degree centrality 

Identified sites of 
increased infection 
vulnerability and spread in 
fish farms  

[52] 

Bonefish, Albula 
vulpes; Great 
Baracuda, 
Sphyraena 
barracuda; Permit, 
Trachinotus falcatus 

Acoustic 
telemetry (AFA) 

Degree distribution; 
community detection 
algorithms 

Differentiation of species 
movement strategies as 
either central place 
forager or territory holder 

[33] 

Blunt-head 
parrotfish, Chlorurus 
microrhinos; 
Rivulated parrotfish, 
Scarus rivulatus; 
Scribbled rabbitfish, 
Siganus doliatus  

Acoustic 
telemetry (AFA) 

Path length; clustering 
coefficient; ’small world’ 
structural properties 

Reef species make 
predictable movements 
that are heavily reliant on 
a few well-connected 
parts of the reef. 

[41] 

Broadnose sevengill 
shark, Notorynchus 
cepedianus 

Acoustic 
telemetry (AFA) 

Eigenvector centrality; 
EDMM analysis 

Spatial segregation of the 
sexes as reveal through 
combining network 
statistics with Markov 
models 

[48] 

Caribbean reef 
shark, Carcharhinus 
perezi; Small spotted 
catshark, 
Scyliorhinus canicula 

Acoustic 
telemetry (AFA) 

Degree; edge filtering;  
betweenness; network 
density; average path 
length 

Network visualisation help 
to explore hypotheses and 
abiotic variables predict 
movement  

[35] 

Galapagos shark, 
Carcharhinus 
galapagensis; Giant 
trevally, Caranx 
ignobilis 

Acoustic 
telemetry (AFA) 

Degree centrality; 
betweenness 

Marine predators are 
important in the nutrient 
transfer between reef 
habitats 

[39] 

Pigeye shark, 
Carcharhinus 
amboinensis; 
spottail shark, 
Carcharhinus sorrah 

Acoustic 
telemetry (AFA) 

Eigenvector centrality; 
closeness; strength; 
community detection 

Marine predators utilise 
movement corridors 
between vulnerable core 
areas  

[36] 
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Schoolmaster 
snapper, Lutjanus 
apodus; Stoplight 
parrotfish, 
Sparisoma viride 

Acoustic 
telemetry (AFA) 

Eigenvector centrality; 
EDMM analysis 

Inter- and intraspecific 
differences in spatio-
temporal patterns of reef 
fishes  

[67] 

Yellowfin tuna, 
Thunnus albacares 

Acoustic 
telemetry (AFA) 

Mean degree; network 
density; fragmentation; 
mean strength 

Layout of artificial fish 
aggregating devices (FAD) 
can influence tuna 
connectivity, cohesion and 
management 

[51] 

a See Box 1 for discussion of the different available network metrics 579 

  580 
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Figure 1. Using graph theory to analyse ecological data 581 

Animal movement data can be gathered through numerous active and passive monitoring 582 

techniques and with careful consideration can be used to construct static or dynamic, 583 

bipartite or unipartite networks. Network metrics help to describe the important structural 584 

properties at multiple scales informing the generation of hypotheses about when, where 585 

and how animals interact with their environments. Quantitative network tools can then be 586 

employed to make comparisons between species, individuals or different temporal scales or 587 

to make predictions about the impact of habitat change on movement ecology (e.g. Knock-588 

out experiments).  589 
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Box 1. The properties of movement networks  590 

Most movement networks of locational nodes and movement edges can be analysed with 591 

standard metrics that report the structural and connective properties within a network. 592 

Here we outline the utility of such metrics for defining areas of critical importance in 593 

movement networks. Unweighted, binary networks (Fig 1i) simply indicate whether an 594 

animal has moved between two locations and this relationship can be accompanied by 595 

directionality (Fig. 1ii). In movement networks there are also two key temporal measures 596 

that accompany an edge: 1) time the edge occurred (T-D), providing some chronology of 597 

edge formation and 2) duration (Δtm), which is the time taken from leaving one node to 598 

arriving at another. Weighting the edges informs the frequency with which that movement 599 

has occurred and by averaging the sums of the linked weights arriving and departing from a 600 

location, we obtain the relative node strength (indicated by node size in Fig 1iii). Across the 601 

global cargo shipping network, average node strength was found to scale superlinearly with 602 

degree – the number of unweighted edges attached to a node – reflecting interesting 603 

properties of transportation networks where busy ‘hubs’ are better able to deal with higher 604 

percentage and heavier weighting of flow [11]. 605 

Single node-based centrality measures can inform the relative importance of habitat 606 

patches [87] and the distribution of these measures across the network might be used to 607 

characterise the robustness of a system to fragmentation and animal dispersal [41,88]. We 608 

have encountered degree but there are a number of other measures including edge 609 

betweenness and eigenvector centrality that can indicate important ‘corridors’ that link 610 

multiple subgroups of the spatial network (e.g. red node, Fig. 1). Additionally, the clustering 611 

coefficient and global measures of community detection can apportion the network into 612 
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subgroups should activity be restricted to statistically higher within- than between-group 613 

movements (i.e. spatial assortment represented by the dotted lines in Fig. 1). While the 614 

formation of clusters is often likely to favour spatially close locations, in ecosystems that are 615 

subject to stochastic fragmentation such as temporarily flooded ponds, clustering can 616 

indicate potential and time-associated habitat to freshwater residents such as amphibians 617 

[88]. For wider ranging or migratory species shortest path length (blue lines, Fig. 1) can 618 

illustrate the most efficient routes through a mosaic of habitats helping to understand the 619 

implications of animals that cannot, or fail to take these routes [43].  620 

 621 

Box 1 Figure 1. Metrics within unweighted (i), directed (ii) and weighted (iii) elements of a 622 

movement network across a small AFA. Here, we represent summed degree weight (node 623 

size, iii), community structuring (dotted line), high betweenness centrality (red node) and 624 

shortest path length between location X and Y (blue lines). Each movement edge is 625 

associated with a specific time, date and duration.   626 
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Box 2. The importance of time in movement networks 627 

The interaction of animals and their environment is a spatial and temporal process. Static 628 

spatial networks condense time reflecting the overriding structure and its associated 629 

processes. Sometimes, incorporating a temporal element is important however, and this can 630 

be done at a number of scales. Movement networks might be considered at daily, seasonal, 631 

annual or other meaningful periods to reveal how changes in conditions correlating with 632 

these arbitrary periods influence how animals move [35]. We might partially capture this by 633 

having directional edges. This perspective generates very different structures and patterns 634 

to undirected networks. Such classifications though, still aggregate movements into a single 635 

matrix for each period (although, see [89] for an exception) and this can be rather 636 

subjective, potentially leading to the loss of important characteristics of the animal’s space 637 

use [48,67,76]. Alternatively, with high-resolution tracking, comes the potential to explore 638 

the spatio-temporal autocorrelation of multiple individuals to understand behaviours such 639 

as collective movement and leadership [21]. 640 

The directional transition between one node and another is accompanied by a 641 

measure of time relating to previous and subsequent detections. Decisions taken by the 642 

animal within this time are generally unknown due to the resolution of the data, however, 643 

individual consistency in these transition times, or changes under different scenarios still 644 

inform the dynamics of movement. For example, the route directedness of animals between 645 

areas of abundant resources (which could reasonably be expected to negatively correlate 646 

with transition time), might increase during times when patchy areas of resource become 647 

unavailable. While analyses of dynamic networks are still far from resolved, there have been 648 

interesting developments that treat these transitions as states of a Markov chain [48,50,67], 649 
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where the edges in the network represent the probability of transitioning between areas or 650 

patches. Using data from acoustically tagged sevengill sharks, Notorynchus cepedianus, 651 

Stehfest et al. [48] compare empirically derived Markov models (EDMM) and network 652 

analyses of shark movements. They found that both methods were comparable for 653 

revealing sex-specific differences in movement but that the EDMM preserved the 654 

chronological detection sequence thus performing better at defining priority areas [48]. In 655 

addition to EDMMs, calculating multiple measures of movement counts across successive 656 

time steps and then fitting linear models to dyadic strength (that is the connectivity of two 657 

locations through repeated flow of animals between them) offers one way of monitoring 658 

the shifting dynamics of movement patterns through time [69].  659 

  660 
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Box 3. Spatial and social interactions within AFAs 661 

Movement and social behaviour are intrinsically linked and the concept of encounter rates 662 

is a central tenant in ecology, having broad influence on community structuring [12], 663 

predator-prey dynamics [90] and information transfer [91] driving the evolution of socially 664 

dependent behaviours such as cooperation [92]. The movement network approach, applied 665 

to passive telemetric data [35] delves deeper than traditional analytical methods to consider 666 

the connectivity of habitats via the animals that move between the receivers allowing 667 

greater power to test hypotheses from presence-absence data (Fig. 1A, B). Indeed flow 668 

within a system is heavily dependent upon the structural properties of the network, 669 

revealing a great deal about the connective importance of individual nodes [18] and can 670 

help – in the context of spatial networks – better inform areas to prioritise for conservation. 671 

An interesting development of this conceptual framework is that by considering the 672 

nodes of an AFA as inherently connected, the arrival and departure of individual animals at 673 

receiver locations can be mapped in space and time to explore co-occurrences and social 674 

interactions in free-ranging, fully unperturbed animals. Using a rich, long-term data set of 675 

electronically tagged great tits, Parus major in Wytham Woods, Oxfordshire (UK), 676 

researchers at the Edward Grey Institute first conceived the idea that wild social interactions 677 

might be inferred based on the arrival and departure of individuals in an array of RFID 678 

receivers [[83], Figure 1C]. Statistically significant ‘gathering events’, which can be thought 679 

of as social sampling periods, can be revealed through the application of data mining 680 

techniques (e.g. GMMs) to the spatio-temporal data stream. This approach has recently 681 

facilitated the study of long-term, dynamic social networks in passerine birds providing 682 

substantial insight into the ecological and evolutionary implications of social interactions in 683 

the wild [28,84,93–95]. This system relies upon attracting individuals to the receivers (i.e. 684 
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PIT tag readers at feeding stations) to infer interactions during feeding bouts. It remains to 685 

be seen however, whether the same approach can be used to sample incidental wild social 686 

interactions using passive AFAs. If successful, this approach will help further reconcile the 687 

link, in situ, between population dynamics and animal movement [12]. 688 

 689 

Box 3 Figure 1. Simplified schematic illustrating the construction and application of 690 

movement and social networks from AFA data. (A) AFA of eight receivers where a time (∆tm) 691 

is associated with the movement (m) of an individual(s) between locations (i), a lemon 692 

shark, Negaprion brevirostris approaching an acoustic receiver (ii) (credit Matt Potenski). (B) 693 

Movement networks with a corresponding total time (∑(∆tm)) of three differently coloured 694 

individuals through our hypothetical AFA (i) and a real movement network of giant trevally, 695 

Caranx ignobilis through an AFA at Pearl and Hermes Atoll in the Pacific Ocean (ii), redrawn 696 

from [39]. (C) Social co-occurrences (s) of individuals within a time frame (∆tS) determined 697 

using a Gaussian Mixture Model (i); great tits, Parus major (credit Luc Viatour, CC BY_SA), 698 

have been extensively studied using Passive Integrated Transponder (PIT) tags and receivers 699 

at feeding stations to infer social foraging networks in the wild (ii), redrawn from [84].  700 
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Box 4 Null modelling of spatial data 701 

Null models that incorporate randomisation procedures enable us to control for the non-702 

independence associated with network data (see [8,37,96] for an overview). Movement 703 

networks are also spatially embedded and so null models must account for the spatial 704 

relationships between nodes. Spatially-informed null models are already prevalent in animal 705 

social network analysis to control the confound that some habitats are more likely to see 706 

aggregation of individuals due to variation in the optimality of habitat types [8,29,96]. 707 

However, there are numerous ways in which network data can be randomised. Given the 708 

linear nature of mobility we would expect movement networks in most instances to be 709 

highly structured and randomisation procedures and the test statistics chosen for 710 

hypothesis testing must reflect this. 711 

Node permutation of a movement adjacency matrix allows randomisation of the 712 

locations visited while retaining the number of possible locations. Alternatively, edge 713 

permutation (i.e. movements, directed or undirected) can be used to test whether the 714 

observed frequency with which animals move between areas is a non-random process. Both 715 

procedures however, have limitations that increase the likelihood of type I and type II error 716 

(see [8,29] for discussion). Instead, shuffling of the data stream, that is randomisation of the 717 

raw visitation pattern and chronology prior to constructing a network, provides a more 718 

biologically meaningful method for determining whether movement is truly non-random 719 

[96]. A novel randomisation procedure outlined in [97], combines both node-based and 720 

data-stream approaches in order to permute data gathered via GPS tracking devices. 721 

Further, multiple null models can be used to evaluate competing hypotheses [25]. Choosing 722 

a test statistic that is relevant to spatially restricted nodes is also important and edge-based 723 
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metrics such as least-cost path, route path diameter and route redundancy can be highly 724 

informative for understanding the connectivity of spatial networks [20]. Further detailed 725 

discussion of randomising spatial and the spatial component of animal social networks is 726 

available and would be recommended for future applications [8,29,96,98]. 727 
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