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Autophagy and cellular metabolism are tightly linked processes, but how individual metabolic enzymes regulate
the process of autophagy is not well understood. This study implicates ribose-5-phosphate isomerase (RPIA), a
key regulator of the pentose phosphate pathway, in the control of autophagy. We used a dual gene deletion strat-
egy, combining shRNA-mediated knockdown studies with CRISPR/Cas9 genome editing. Knockdown of RPIA by
shRNA or genomic deletion by CRISPR/Cas9 genome editing, results in an increase of ATG4B-mediated LC3 pro-
cessing and in the appearance of LC3-positive autophagosomes in cells. Increased LC3 processing upon knock-

g;{xvords' down of RPIA can be reversed by treatment with the antioxidant N-acetyl cysteine. The results are consistent
Autophagy with a model in which RPIA suppresses autophagy and LC3 processing by modulation of redox signaling.
CRISPR © 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
Cas9 (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Macroautophagy (hereafter autophagy) is a physiological process in
response to low levels of metabolites and nutrients, that provides addi-
tional energy to the cell through the induction of a lysosomal degradation
pathway and recycling of cellular constituents [31]. Conditions such as
starvation, stress and pathogen infections induce autophagy, and basal
autophagy is an important process for cellular homeostasis. A key regula-
tor of autophagy is the serine/threonine kinase mTORC1 (hereafter
mTOR), which inhibits formation of autophagosomes. Inhibition of
mTOR by knockdown or treatment with the small molecule inhibitors
rapamycin or torin induces autophagy, and inhibition of upstream kinases
such as AKT1 that activate mTOR also results in the induction of autoph-
agy [8]. In the process of autophagosome maturation, members of the LC3
family are cleaved by ATG4 proteases, lipidated and incorporated into ma-
turing autophagosomes, in which LC3B (hereafter LC3) is the predomi-
nant form. In this process, cytoplasmic LC3-I accumulates in LC3-
positive puncta following lipid modification of LC3 (LC3-II) and can be
used as a marker for autophagosome numbers. The various stages of
LC3 maturation can also be measured by immunoblotting.

In the past several years, metabolic inputs such as AMP/ATP levels
through AMP kinase regulation [2,12,22] and amino acid sensing by the
Rag GTPase and mTOR [11,35] have been found to regulate autophagy.
Other metabolic processes such as glycolysis, Acetyl-CoA synthesis and
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fatty acid oxidation have been found to play an important role in the reg-
ulation of autophagy as well [13,33,39]. Overall, it is thought that catabolic
processes increase autophagic flux, whereas anabolic processes may re-
duce autophagy. The control of autophagy by metabolic processes can
be classified into two major pathways: one is via direct sensing of the
levels of metabolic intermediates as is the case for amino acids, and the
other is through mechanisms that modulate the oxidative status of the
cell. Reactive oxygen species and reductive equivalents are pivotal in
the regulation of autophagy. In most cells, the generation of reductive
equivalents is mediated by the pentose phosphate pathway (PPP).

The PPP catabolizes glucose-6-phosphate to generate reductive
equivalents in the form of NADPH, and in addition, generates ribose-5-
phosphate, a precursor for synthesis of pentose-ribosyl pyrophosphate
(PRPP) and all nucleotides. Enzymes within this pathway, including
glucose-6-phosphate dehydrogenase (G6PD) and transketolase have
been proposed as tumor oncogenes [25,26], suggesting that their
control is de-regulated in certain cancers. In addition, regulatory control
of ribose-phosphate pyrophosphokinase (PRS2) and G6PD by mitogenic
signals can account for increased enzymatic activities under certain
conditions [4,16,34,40,41,44,45]. Starvation results in drastic changes
in the activity of enzymes in this pathway, leading to decreased PRPP
synthesis and increased production of xylulose-5-phosphate [5,6,36].
The sensitivity to growth conditions and implication in some forms of
tumor development suggest that enzymes in the pentose-phosphate
pathways are responsive to, and perhaps control, cell survival pathways,
mitogenic signaling, and autophagy.

Ribose-5-phosphate isomerase (RPIA) catalyzes the first step of the
non-oxidative branch of the PPP and as such is positioned to act as the
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gatekeeper that determines whether the pathway primarily generates
PRPP and nucleotide precursors, or alternatively recycles metabolites
for generation of NADPH and reductive equivalents. Both processes
have previously been linked to autophagy. This report identifies the
consequences of RPIA depletion to autophagy. We have applied a rigor-
ous approach applying a combination of sShRNA-mediated knockdown
and CRISPR/Cas9 genome engineering to validate the effect of RPIA de-
pletion on autophagosome formation.

2. Materials and methods
2.1. Plasmids

The pX335 CRISPR/nCas9 plasmid was obtained from Addgene
(#42335). Oligos used for cloning are described in Table 1. pLKO.1 con-
trol and RPIA shRNA plasmids were purchased from Sigma (see Table
1). The retroviral shRNA hairpin vector pMOWS-5.2 was generated by
inserting the full H1 promoter sequence into pMOWS [18]. The shRNA
sequences were cloned as adapters in pMOWS-5.2 immediately up-
stream of the H1 promoter using EcoRI and BamHI. The empty
PMOWS-5.2 vector or a vector with shRNA targeting GFP were used as
controls. RPIA was sub-cloned using the EcoRI and Notl restriction
sites in pEAK12-Flag. Primers used are indicated in Table 1.

2.2. Cell culture

All cell lines were cultured in Dulbecco's modified Eagle's
medium (DMEM), + high glucose, + GlutaMAX™ (ThermoFisher
Scientific®, 61965-026) and supplemented with 1 mM sodium
pyruvate (ThermoFisher Scientific® 11360-070), 100 U/ml
Penicillin-Streptomycin (ThermoFisher Scientific®, 15140-122)
and 10% Fetal Calf Serum (Sigma, 12133C) unless otherwise stated.
All live cells were incubated at 37 °C and 5% CO2. Murine fetal liver
cells from day 13.5 embryos were prepared as described [19]. Fol-
lowing compounds/reagents were used as indicated: bafilomycin
A (Sigma®, B1793), puromycin dihydrochloride (Sigma®, P9620),
DMSO (Sigma®, D2650) Earle's Balanced Salt Solution (EBSS;
ThermoFisher Scientific®, 24010-043), torin 1 (Merck-Millipore,
475991) and N-acetyl cysteine (Sigma, A9165).

2.3. Transfection and transduction

Transfection and transduction were performed as previously de-
scribed [21]. Cells were seeded at appropriate densities (to achieve
20-50% confluence on the following day) in 6 or 12 well plates for west-
ern blotting and in 96 well plates for imaging and luciferase assays. On
the following day, cells were transiently transfected with 1 pg (6
well), 0.5 pg (12 well) or 100 ng (96 well) of control and knockdown/

overexpression plasmids as indicated using Xtreme gene 9 (Roche) or
polyethylenimine (PEI) for 6/12 wells and lipofectamine 2000 (Thermo
Fisher Scientific) or PEI for 96 wells according to the manufacturers’
instructions.

24. Western-blotting

Total protein of the cell lysate was extracted from cells (after
treatment as indicated) in confluent 6 or 12 well dishes after 1x
wash with PBS by using 60-100 pl of Nonidet P-40 (NP-40) lysis buff-
er (50 mM Tris-HCl pH 7.4, 200 mM NacCl, 0.1 mM EDTA, 10% glycerol,
0.5% NP-40) including cOmplete and PhosSTOP protease & phospha-
tase inhibitors (Roche, 4906837001 & 11873580001). The cells were
incubated with lysis buffer for 10 min, then transferred to centrifuge
tubes and centrifuged at 13,200 rpm for 20 min at 4 °C. The superna-
tant was then transferred to a new tube. Protein concentration was
determined with a BCA assay kit (Thermo Scientific, #23228) ac-
cording to the manufacturer's instructions. Equal amounts of protein
(15-20 pg) for each sample were mixed with 2 x Laemmli sample
buffer (4% SDS, 10% 2-mercaptoethanol, 20% glycerol, 0.004%
bromophenol blue, 0.125 M Tris-HCl pH 6.8), heated at 95 °C for
5 min, separated on a 4-20% SDS-PAGE gel and then transferred to
a PDVF membrane (Millipore, #1620260). After transfer, presence
of proteins and equal loading of lysates was confirmed using
Ponceau S (Sigma, P3504) and membranes were blocked at 1 h in
5% milk powder in PBS-tween or 2% BSA in TBS-tween. The primary
antibodies include anti LC3B (Sigma, L7543), anti phospho-S6 Kinase
(Cell Signaling, 9234), anti S6 Kinase (Cell Signaling, 2708), anti p62/
SQSTM1 (Sigma, P0067), anti Vinculin (Abcam, ab129002) and anti
Actin (Sigma, 2228). Secondary antibodies used were IRdye 680RD
and 800CW (Licor) or anti-rabbit HRP and anti-mouse HRP. Mem-
brane was stripped when appropriate by using stripping buffer
(62.5 mM Tris-HCL pH 6.8, 2% SDS and 100 mM -mercaptoethanol).
Bands were detected using an Odyssey fluorescence analyzer (Licor)
or Image Quant (GE Healthcare Life Sciences). Densitometry analysis
was performed using Fiji.

2.5. Luciferase assays

Luciferase assays were performed as previously described [27].
Briefly, supernatants were collected and mixed with substrate buffer
containing native coelenterazine before reading in the PerkinElmer En-
vision II.

2.6. Immunofluorescence

Cells were washed 1 x with PBS, fixed for 15 min with 4% PFA at
room temperature or with 100% cold methanol on ice (LC3-staining).

TABLE 1
Sequences of various primers used in this study. F - forward and R - reverse, RT - reverse transcription.
Designation Sequence Used in
sh-1 CCGGCGGGTACACAAATGGAGTGAACTCGAGTTCACTCCATTTGTGTACCCGTTTTTG Knockdown of RPIA
sh-2 CCGGGCTGATGAAGTAGATGCTGATCTCGAGATCAGCATCTACTTCATCAGCTTTTTG Knockdown of RPIA
sh-3 CCGGGAATTGGAAGTGGTTCTACAACTCGAGTTGTAGAACCACTTCCAATTCTTTTITG Knockdown of RPIA
sh-4 CCGGGAAGTGAATACAGCTATCAAACTCGAGTTTGATAGCTGTATTCACTTCTTTTTG Knockdown of RPIA, pMOWS cloning
RT-RPIA F GGCGGTGCTGGCAACACAAG RT-PCR
RT-RPIAR TGGCGGGCCTGGAAGGAAGT RT-PCR
GAPDH F GAAATCCCATCACCATCTTCCAGG RT-PCR
GAPDH R GAGCCCCAGCCTTCTCCATG RT-PCR
sgRNA-R CACCGGCCGCACGTGGGAACCCGGG CRISPR reverse strand nicking
SgRNA-F CACCGTGCCGGGGCGTGCACAGTCT CRISPR forward strand nicking
CRISPR gen F GCGAATCCAGATAGGGGTTCCTCGAAGC CRISPR - genomic PCR

CRISPR gen R GCAAGCTTAGCAGGGAAGAGGGGTCTAA

CRISPR - genomic PCR
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For immunostaining, cells were washed 3 x, permeabilized at room
temperature with 0.1% TX-100 for 10 min and washed again 1 x. Non-
specific binding was blocked using 3% goat serum (Gibco) in PBS
(blocking solution) for 30 min and the cells were then incubated with
1:200 diluted rabbit anti LC3B (Sigma, L7543) in blocking solution for
2 h. After washing 2 x, cells were incubated with 1:400 diluted goat
anti rabbit Alexa 568 (ThermoFisher Scientific, A-11011) for 1 h. After
washing 2 x, cells were stained with 1:10,000 diluted Hoechst 33342
(ThermoFisher Scientific, H1399) for 10 min and washed once.

2.7. Image acquisition and analysis

Images were acquired using an inverted confocal microscope
(Leica TCS SPE) or an Opera LX microscope (Perkin-Elmer) with 6-
12 replicas per condition and 30 images per well. Image analysis
was performed using Fiji or Columbus (PerkinElmer). Briefly, cell nu-
clei (cell numbers) were identified and counted based on selection of
the nuclear channel (405 nm) and nuclei detection method C. The
cytoplasm was identified as above using method A (GFP intensity
for knockdown, LC3 staining for CRISPR). Transfected cells were se-
lected based on intensity threshold of the GFP channel (488 nm)
and cell size. On those cells, spots were detected using the LC3 chan-
nel (562 nm) and spot detection method A, which is based on a
threshold of relative spot intensity in the surrounding pixels. The se-
lection criteria were further refined to select for puncta size and
roundness to reduce the number of false positives. Puncta numbers
were normalized to cell number and cell area, and puncta area was
normalized to cell area. On Fiji, cell area (cytoplasm) was measured
based on a binary threshold across all images & conditions. Puncta
were measured as maxima with a noise threshold = 50.

A

pLKO.1 sh-1 sh-2 sh-3 sh-4

LC3-II/LC3-I

— LC3-I
T —— T —, LC3-Il

WY S S W W Vinculin

2.8. RT-PCR

Total RNA was extracted using the GeneJET RNA Purification Kit
(Fermentas) followed by DNase treatment (Fermentas). cDNA was syn-
thesized with the RevertAid Reverse Transcriptase Kit (Fermentas) ac-
cording to the manufacturer's instructions and using oligo(dT)
primers. RPIA expression was measured with Maxima POWER SYBR
Green Master Mix (Fermentas) in a CFx Connect optics module (BioRad)
using GAPDH as reference gene. Primers used are indicated in Table 1.

Relative RPIA transcriptional levels are presented as fold of 2724t =
27(ACt RPIA — ACt GAPDH)‘

2.9. CRISPR/Cas9 genome editing

For genomic modification at the RPIA locus on chromosome 2p11.2
in Hela cells, the CRISPR/Cas9 double nicking strategy [38] was applied
as described. In brief, RPIA specific sgRNAs vectors targeting exon 1
were created and used according to the protocol. Oligo sequences that
were used for sgRNA generation to clone into pX335 (containing
nCas9) are indicated in Table 1. 6.5 x 10* cells were seeded in 24
well plates and co-transfected the next day with 200 ng of each
sgRNA vector (400 ng pX335 for control, labeled CR-WT) + 100 ng
pBabe mCherry-puro (empty pMOWS for selection control) using
lipofectamine according to the manufacturer's instructions. After 48 h,
cells were selected in culture medium containing puromycin at 1.0 pg/
ml and fresh selection medium was provided every 2-3 days. Cells
were selected and expanded for a total of 18 days. Selection control
cells were completely dead after 7 days. After 10 days, individual clonal
colonies were picked using 3 mm trypsin-soaked cloning discs and
further expanded in 24 well, 6 well and ultimately in 10 cm petri dishes.

2.5
B

LC3-Il/vinculin

B e e e

D 2o

150+

100+

RPIA/GAPDH mRNA

Fig. 1. LC3-processing is increased upon knockdown of RPIA. A) Immunoblot of LC3-processing in HeLa cells at 72 h post-transfection with control (pLKO.1) vector or shRNA vectors against
RPIA (sh1-4). B, C) Densitometry analysis of LC-II/vinculin and LC3-1I/LC3-I levels was performed using Fiji. Data represent mean = SD, n = 2. D) Expression levels of RPIA at 72 h post-
transfection in HeLa cells using qPCR, normalized to GAPDH. Data represent mean + SD, n = 3.
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Genomic DNA was obtained using QuickExtract™ DNA Extraction Solu-
tion (Cambio, QE09050) according to the manufacturer's instructions
and genomic PCR was performed using Pfusion polymerase (NEB) and
primers as indicated in Table 1. Genomic PCR products were purified

A Act-dN-GLuc
(control reporter)

Act-LC3-dN-GLuc

using the PCR cleanup kit (Qiagen) and run on a 2% Agarose gel, or di-
rectly sequenced (Source BioScience's Sanger sequencing), or first
cloned into pGEM-T easy (Promega) vectors prior to sequencing in
order to identify the allelic variations on both chromosomes.
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Fig. 2. Knockdown of RPIA increases ATG4B-mediated cleavage of LC3. A) Schematic overview of the ATG4B-mediated luciferase release assay. Luciferase is secreted from the cells and a
chemiluminescence signal in the supernatant can be measured. B) Luciferase release assay 24 h post-transfection with the indicated plasmids in 293ET cells transduced with the indicated
reporter constructs. Data represent mean + SD, n = 3. C) Luciferase activity of supernatant collected 96 h post-transduction with control (pMOWS) and shRPIA in 293ET cells as indicated.
Data represent mean = SD, n = 3.D, E) Luciferase activity of supernatants in transduced MCF7 (E) and primary murine fetal liver cells (F) collected 96 or 24 h hours post-transduction with
control (pMOWS) and shRPIA, respectively. Data represent mean =+ SD, n = 3. F) 293ET cells were co-transfected with Flag-RPIA-WT and Flag-RPIA™* (resistant to ShRNA knockdown)
together with the indicated shRNA constructs. Cell lysates were resolved by PAGE and blotted using a Flag-antibody (top panel) and beta-actin as a loading control (bottom panel). These
results demonstrate that RPIA™® is resistant to knockdown with shRPIA. G) Luciferase release assay 96 h post-transfection with control (pMOWS), shRPIA and 4 shRNA resistant RPIA in

293ET cells expressing Act-LC3-dNGLuc. Data represent mean 4 SD, n = 3.
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Fig. 3. GFP-LC3 puncta are increased upon knockdown of RPIA. A) GFP-LC3 puncta in stably expressing GFP-LC3 cells, transfected with control (pMOWS) and pMOWS-shRPIA, imaged after
96 h knockdown. Cells were treated 1% DMSO or with 10 nM bafilomycin A (baf) in EBSS medium for two hours. Images were acquired on an inverted confocal Leica SPE microscope with a
63 x objective, scale bar = 10 um. B) Puncta were identified and analyzed using Fiji image analysis software. Data represent mean 4+ SD of 1000-3000 cells from 2 independent

experiments. ***p < 0.001.

fwd E1

IRGATAGGGGTTCC'I‘CGMECEACAGMCTACATTTCCCAGCAAGACCCGCGCAGCAGGBCACGCAGAC’IGTGTGDGTMBCGACCAGATI‘I‘CCGGGGGAGCCGGGGGCGGGACTI‘L‘AGCGGREGCCGGAG
BgRNA-rev

'C CCG GGT TCC C

CGA GGC GTC GGG ATG CAG CGC CCC GGG CCC TTC AGC ACC CTC TAC GGG CGG GTC TTG GCC CCC CTG CCC GGG AGE GCC GGG GGC GCG GCC TCC GGC GGA GGA GGG ARC AGC TGG GAC
L P G s

M Q R P G P F s T L i G R v L A P L P G R A G G A A 5 G G G G N s W D
...__BGRNA-rev AgRNA- Fwd
r 1
AC GTG CGG CTG CCG GGG CGT GCA CAG TCT GGE ACC CGT GGC GGT GCT GGC AAC ACA AGC ACC AGC TGC GGG GAC TCC AAC AGC ATC TGC CCG GCC CCC TCC ACG ATG TCC AAG GCC GAG GAG GCC ARG AA
H v R L B G R A Q 8 (<] i R e] ] A (] N i 8 b 8 c {c] D 8 N 8 I < B A P 8 T M 8 K A B E A K X

G CTG GCe
L A

=l

CGC GCE GCT GTG GAG AAC CAC GTG AGG GTG AGC ACT TCG AAR CGT GGG GCG CGG GGC GCA TGT CCT TGG CGT GAT GGG CTA CTG TTG CGC GTT GTG GGT GCT GCC GGG GCG CGC CTA GCT
R A A v E N H v R

rev E1

T 1
CCT GGC AGG GCG GGA GCT GAG TGA GAG GGT AGA GGG TGT GCA CTT TAC CCG AGT TTA GAC CCC TCT TCC CTG CT

B C

198 180 200 a0 220 0 240 2350 260 270
G AGEGECGEGGECAEGECC TEEEGEEGAGE AGGGAACAGCTGGE ACC TEECGEGTTCECACGTGCGEE TECCGEEGCGTGCACAGTETGGGACEE

< CR-WT f| W\H\ ||| ||||W”ﬂ||||\|u”“ | “‘ M| _Jf.nr ”ﬁl\‘f 'EM‘HM!'UL”HI(IMH‘P i I,I‘, | ffl IW

25 2
& §‘D 180
[~

100 bp
. DNA ladder

2
3 u,.,uu,..wuw.,-u,u.‘-.u-a ao uu» crae ww— ccr unm—wcwwwun cenpes w socasodcer

CR-1 ulll fth
MM&&Mﬂ' |L|[|U " "r' It A m MM&MML@MMW
i i
i
500 CR-2 i
Al I‘l‘H A E [
M&Mm

bt il |
predlcted fragment size: 650bp e “J“ ‘Wﬂwrp |||||||I|l/|||l [ U Lo |H i ||
D L mﬂmmwmm

CR-WT AGGCGTCGGGATGCAGCGCCCCGGGCCCTTCAGCACCCTCTACGGECGGGTCTTGGCCCCGCTGLCC CGGGGGCGCGGCCTCCGGL
CR-1.1 AGGCGTCGGGATGCAGCGCCCCGGGCCCTTCAGCACCCTCTACGEECGEGTCTTGGCCCCGCTECCCGEGAGEECCEEEEGCGCEECCTCCGECEGAGEAGEGAACAGCTGGGACCTCCCGGE - TGEEGTTCCCACGTGCEGCTEGCCGEEGCEGTGCA
CR-1.2 AGGCGTCGGGATGCAGCGCCCCGGGCCCTTCAGCACCCACTACGEECEEGTCTTGECCCCECTECCCEEGAGEECCEEEEECECEECCTCCGGECEGAGEAGGEAACAG- - ===~~~ === === ===
CR-2.1 AGGCGTC! AGCGCCCCGGGCCCTTCAGCACCCTCTACGEGCGGGTCTTGGCCCCGCTGLCK CGGGGGCGCGGCCTCCGGL ACAGCTGGGACCTCCCGGGTTCGGETTCCCACGTGCGGCTGCCGGGGCEGTGCA

CR-2.2 AGGCGTCGGGATGCAGCGCCCCEGECCCTTCAGCACCCTCTACGRECEEGTCTTGECCCCGCTECCC CEGEEACECEECCTCCOR ACAG-- ==

AR ARk AR R AR R AR AR R AR R AR AR RA AT R AR R AR R R R AR R R R R AR AR AR kR AR AR R AR AR AR R AR R AR AR AR E

CR-WT CAGTCTGGGACCCETGECGETGCTGECAACACAAGCACCAGCTGCEEGEACTCCAACAGCATCTGCCCEECCCCCTCCACGAT GTCCAAGECCCAGGAGGCCAAGARGCTGGCGEECCECECEGCTGTGEAGAACCACGTGAGGGTGAGCACTT
CR-1.1 CAGTCTGGGACCCGTGGCGGTGCTGGCAACACAAGCACCAGCTGCEGGGACTCCAACAGCATCTGCCCGGCCCCCTCCACGAT GTCCAAGGCCGAGGAGGCCAAGAAGCTGGCGGGCCGCGCGGCTGTGGAGARTCACGTGAGGGTGAGCACTT
CTGGEGAGCGGTGCTGGCAACACAAGCACCAGCTGCEGGGACTCCAGCAGCATCTGCCCGGCCCCCTCCACGAT GTCCARGGCCCAGGAGGCCAAGARGCTGECGGGCCEGCECGECEETGEAGAACCACGTGGEGGTGAGCACTT

CR-1.2 ======mmm-
CR-2.1 CAGTCTGGGACCCGTGGCGGTGCTGGCAACACAAGCACCAGCTGCGGEGACT CCARCAGCATCTGCCCGGCCCCCTCCACGAT GTCCAAGGCCGAGGAGGCCARGAAGCTGGCGGGCCGCGCGECTGTGRAGAACCACATGAGGGTGAGCACTT
CR-2.2 -- - - CTGECAGCGCTECTEECAGCACAAGCACCAGCTGCEEGEACTCCAACAGCATCTCCCCGECCCCCTCCACGAT GCTCCAAGGCCGAGGACECCARCAACCTCECGECCCECECEECTETCCACAACCACGTCGACCGETCACCACTT

T AL e T
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CR-WT and CR clones by Sanger sequencing. Red arrows indicate start of mixed base pair reads. D) Sequence alignment of CR-WT and CR clones sequencing reactions using

Clustalw.
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3. Results
3.1. RPIA inhibits ATG4B-mediated processing of LC3

In order to study the effect of RPIA depletion on autophagy, we test-
ed four different shRNA targeting sequences for knockdown of human
RPIA in Hela cells. We monitored LC3 processing by immunoblotting,
taking the increase in lipidated LC3-II, which correlates with increased
autophagosome numbers, as a surrogate for the induction of the au-
tophagic state. Upon transfection of shRNAs targeting RPIA, we ob-
served a significant increase in LC3-1I compared to LC3-I, suggesting
an increase in basal autophagy (Fig. 1A), with all four shRNA sequences
being equally effective to cause an increase in LC3-II to LC3-1 and LC3-II
to loading control (vinculin) ratios (Fig. 1B, C). Efficient knockdown of
RPIA transcripts by all four shRNAs was shown by RT-PCR (Fig. 1D).

A CR-WT CR-1 CR-2 CR-WT CR-1 CR-2
(Baf - - - + + + )
LC3-l
— R ——— |_C3-||
—— g e— — — ACtin

+

CR-2
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Next, we investigated whether the effect of RPIA depletion on LC3
processing is via the autophagy protease ATG4B. By using the Gaussia lu-
ciferase release assay to monitor cellular ATG4B activity (Fig. 2A) as pre-
viously described [17,20], we assessed the effect of sShRNA-mediated
knockdown of RPIA on ATG4B activity. The sh-4 sequence was inserted
in the retroviral expression vector pMOWS-5.2, previously found to ex-
press transcripts at very high levels in a wide variety of cell types, in-
cluding hematopoietic stem cells [18]. The construct (designated
shRPIA) was co-transfected with Act-LC3-dNGLuc in 293ET cells and lu-
ciferase activity measured in supernatants after 24 h as readout for cel-
lular ATG4B activity. Following the co-transfection of ATG4B cDNA as a
positive control, we observed a 13.6-fold increase in luciferase activity
in supernatants compared to control cells that were transfected with
GFP cDNA (Fig. 2B). shRNA-mediated knockdown of RPIA gave a signif-
icant 4-fold induction of secreted luciferase compared to control cells
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(Fig. 2B). An increase in luciferase release was not observed in cells ex-
pressing an Act-dNGLuc construct that is devoid of the LC3 cleavage
motif (Fig. 2C), indicating that shRPIA specifically enhances cleavage
of LC3. These results were confirmed in MCF7 cells (Fig. 2D) and fetal
liver cells, which express high levels of RPIA (Fig. 2E).

Next, we generated a Flag-tagged mutant RPIA cDNA sequence with
silent nucleotide changes (designated Flag-RPIA™®) that confers resis-
tance to shRPIA-mediated knockdown. shRPIA-mediated knockdown
significantly reduced the levels of wild-type RPIA (Flag-RPIA-WT), but
did not affect the levels of Flag-RPIA™® (Fig. 2F), validating its use for res-
cue experiments. When Act-LC3-dNGLUC was co-transfected with
shRPIA, an increase in ATG4B activity was observed (Fig. 2G). Upon
co-transfection of Flag-RPIA™®, this increase in released luciferase by
shRPIA was reverted, thus attesting to the on-target activity of sShRPIA
(Fig. 2G). These results support the notion that shRNA-mediated knock-
down of RPIA impairs ATG4B-mediated LC3 processing.

3.2. RPIA knockdown increases autophagosome numbers

Next, we wanted to test whether an increase in ATG4B-mediated
LC3 processing is accompanied by an increase in autophagosome num-
bers. We transfected shRPIA or control vector in stably expressing GFP-
LC3 Hela cells, treated cells with bafilomycin A or DMSO control and
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observed GFP-LC3 puncta formation by fluorescence microscopy. We
observed an increase in LC3 puncta under basal conditions that was fur-
ther enhanced upon treatment with bafilomycin (Fig. 3A, B). These re-
sults suggest that RPIA suppresses basal autophagy. Following
prolonged culture, the cells developed a weaker phenotype, suggestive
of an adaptation to RPIA deficiency, an effect that has been observed for
other metabolic enzymes [30].

3.3. Generation of a CRISPR knockout cell line deficient in RPIA

To further validate the shRNA findings, we modified the RPIA locus
in HeLa cells using CRISPR/Cas9 genome editing [ 14]. In order to reduce
potential off-target effects, we used a double nickase approach [38], de-
signing two guide RNA (gRNA) sequences that target the first exon of
RPIA, spaced 40 nucleotides apart (Fig. 4A). It has previously been
shown that introduction of staggered nicks into genomic DNA frequent-
ly leads to generation of a double-stranded break (DSB), which is imper-
fectly repaired by non-homologous-end-joining (NHE]), creating
insertions/deletions (Indels) that disrupt gene function. RPIA-modified
cell lines (labeled CR1-3) were generated by co-transfection of two
sgRNAs + nCas9 and a pBABE-mCherry/puromycin containing vector,
and a control cell line (CR-WT) was also generated using the same pro-
tocol but with a vector lacking the sgRNA sequences. Successful
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modification in puromycin-selected and expanded clones was initially
tested by genomic PCR amplification (Fig. 4B). Three clones that showed
a modification at the predicted locus and control cells were then sub-
jected to Sanger sequencing of PCR amplicons. In all three clones
(CR1-3), only mixed sequence traces were observed at the expected lo-
cation, indicating that the genomic sequence had been modified (Fig.
4C). A large-scale mapping of the HeLa cell genome has recently identi-
fied that HeLa cells have a copy number of 2 or less for the majority of
chromosome 2 [1], including the RPIA locus. Therefore, we expect to re-
cover two different allelic mutations within the genome-edited region.
In order to identify the exact genomic modification on both chromo-
somes at this locus, we sub-cloned the genomic PCR products and se-
quenced individual bacterial clones (Fig. 4D). From all three RPIA-
modified clones, we did not recover any wild-type sequence. From
clone CR-1, all sequenced plasmid inserts showed out-of-frame muta-
tions, whereas plasmids from clones CR-2 and CR-3 showed at least
one in-frame mutation in addition to out-of-frame mutations. From
clone CR-2, one insert sequence with a 6 bp insertion was recovered,
whereas from CR-3, a 12 bp deletion was identified. For all three clones,
2 non-identical modified alleles were identified. Based on the observed
sequence changes, transcription of RPIA in clone CR-1 is expected to
produce a missense product from both alleles that is deficient in full-
length RPIA.

We then used CR-1 and CR-2 to assess the effect of RPIA knockout
on LC3 processing and LC3- positive puncta. Under basal conditions,
we observed an increase in the ratio of LC3-II to the loading control by
immunoblotting, but not following treatment with bafilomycin A, an in-
hibitor of lysosome acidification, when compared to CR-WT control cells
(Fig. 5A-B). Similarly, both mutant clones showed a remarkable in-
crease in LC3-positive puncta compared to CR-WT cells (Fig. 5C-D).
Upon treatment with bafilomycin A, an increase in LC3-positive puncta
was observed for control cells, that was not observed in clones CR-1 and
CR-2 (Fig. 5C-D). Thus, our results confirm that RPIA is an endogenous
inhibitor of basal autophagy.

3.4. Enhanced LC3 processing upon knockdown of RPIA can be reversed by
treatment with the antioxidant N-acety! cysteine

In order to gain mechanistic insights into how RPIA regulates LC3
processing and autophagy, we investigated the consequence of RPIA
knockdown on metabolic signaling pathways. We transfected shRNA
vectors targeting RPIA that significantly reduced RPIA transcript levels
(Fig. 1D) in HEK293T cells and performed immunoblotting for LC3,
p62, phospho-S6 kinase and total S6 kinase. Cells were treated with
torin to block mTOR signaling, bafilomycin A to disrupt autophagic
flux, a combination of torin plus bafilomycin A, and N-acetyl cysteine
to modulate the redox state of cells. Further, cells were starved in
EBSS medium (Fig. 6). As previously observed (Figs. 1A, 5A), depletion
of RPIA under basal conditions enhanced the level of LC3-II (Fig. 6A,
lanes 1-4). Treatments with EBSS, bafilomycin, torin and bafilomycin
plus torin resulted in a significant increase of LC3-II levels, in line with
their expected action to enhance processing of LC3 (Fig. 6A, lanes 1, 5,
9, 13, 17). Knockdown of RPIA did not significantly further increase
LC3-II levels upon these treatments, in line with our previous observa-
tions. p62 levels were reduced upon treatment with EBSS and torin,
an effect that was reversed by co-treatment of torin with bafilomycin
A (Fig. 6A). Knockdown of RPIA under any of these conditions did not af-
fect p62 levels. Similarly, phospho-S6K levels were not changed by RPIA
depletion, while phospho-S6K was sensitive to mTOR inhibition by
EBSS, torin and torin plus bafilomycin A. Overall, these results suggest
that RPIA-mediated inhibition of LC3 processing does not correlate
with changes in mTOR-mediated signaling.

Next, in order to investigate whether RPIA-mediated inhibition of
LC3 processing is sensitive to treatment with an antioxidant agent, we
treated cells with N-acetyl cysteine and monitored LC3 processing and
signaling responses. Interestingly, the increase in LC3-II under basal

conditions upon knockdown of RPIA was completely reversed by treat-
ment with N-acetyl cysteine (Fig. 6A, lanes 17-20). Similarly, enhanced
luciferase release upon RPIA knockdown under basal conditions was re-
versed by treatment with N-acetyl cysteine (Fig. 6B), supporting the no-
tion that the observed effects involve redox signaling responses.
Collectively, these data are consistent with the view that RPIA sup-
presses autophagosome formation and impairs LC3 processing.

4. Discussion

The interplay between autophagy, metabolism and signaling is not
very well understood. The regulation of autophagy by the metabolic
state of cells is an emerging field of research, and recently multiple
metabolic enzymes have been implicated in the regulation of autopha-
gy, including transketolase [32], fatty acid synthase [42], phosphofruc-
tokinase [24,47], transglutaminase [3,9,10,43] and acetyl-coenzyme A
synthase [13,29]. These studies suggest that additional metabolic
pathways influence the regulation of autophagy, in addition to amino
acid sensing by Rag GTPase/mTOR, and AMP kinase mediated signaling
to suppress ULK1 activity in early steps of autophagosome formation
[12,22]. Here, we have identified a gene in the pentose phosphate
pathway that inhibits autophagosome formation and LC3 processing.

There is some evidence that RPIA is involved in a number of diseases,
including metabolic disorders and cancer. Mutations in the RPIA gene
cause a rare disease called ribose-5-phosphate isomerase deficiency
[15]. One patient has been identified with this disorder that manifests
with leucoencephalopathy and peripheral neuropathy. The role of
RPIA in other diseases requires further investigation. For instance,
while compelling arguments have been made for metabolic products
of the PPP in cancer cell regulation, it is possible that RPIA exerts non-
enzymatic signaling functions that may contribute to disease. Further-
more, a recent study pointed out that modulating RPIA levels might
serve as therapeutic strategy for aging and neurodegenerative disorders
[46].

Recently, a role for RPIA in oncogenic signaling has been identified. A
link between RPIA and PP2A/ERK signaling in hepatocarcinogenesis was
reported [7] and it was found that RPIA mRNA expression levels are in-
creased in HCC patients. Cells overexpressing RPIA showed increased
proliferation, enhanced colony formation and accelerated tumor growth
in a xenograft mouse model. siRNA-mediated knockdown of RPIA re-
sulted in reduced cell growth in Hep3B and PLC5 liver cancer cell
lines. However, RPIA may play an inhibitory role in the progression of
some tumors, as increased hyper methylation of the RPIA locus has
been observed in breast cancer [23]. Furthermore, it has been shown
that microRNAs can target the RPIA gene and the downstream PRPS1
gene that drives nucleoside formation from ribose-5-phosphate, leading
to reduced PPP flux and proliferation in human colorectal cancer cells
[37]. PRPS1 regulates the formation of PRPP from ribose-5-phosphate
and ATP. Thus, the PRPS1/2 genes are key molecules for diverting the
PPP metabolites into the nucleoside formation branch. Indeed, many
diseases have been linked to PRPS1/2, including cancer. How the ob-
served role in oncogenic signaling is linked to autophagy remains to
be studied in more detail. Overall, we propose a role for RPIA in the reg-
ulation of autophagy, which will have importance for the selection of
anti-cancer therapies targeting this novel mode of regulation.
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