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ABSTRACT 
 

The effect of variable sampling duration on the determination of exponential decay rates using integrating samplers has 
been explored. The theoretical basis is developed and two practical methods are presented for processing sampled data, an 
iterative linear least squares approach and a non-linear least squares approach. These methods are compared to a simple, 
non-iterative, linear least squares approach that neglects the variation in sample duration, for idealised and experimental 
data. The degree of error introduced by the simple method, using three different reference times, is determined for a range 
of sampling parameters. Errors in the estimated decay rate were seen to depend on the product of the true decay rate and 
the initial sample duration, and also the ratio of sample duration to the previous sample. In addition, the error was affected 
by intervals in the sampling sequence when present. Errors as large as 80% were observed for the parameter range studied. 
Despite the introduction of large errors in the decay rate, neglecting variation in sample time did not lead to strong 
deviation from linearity in curve fitting and may not be apparent to the unwary. 
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INTRODUCTION 
 

The measurement of airborne aerosol concentrations can 
now be achieved with near real-time instrumentation for 
many applications (Fierz et al., 2002; Agranovski et al., 
2003; Kimmel et al., 2011; Jung and Lee, 2013). However, 
collection using single or staged impactors still plays a key 
role in aerosol science (Park et al., 2009), whether for 
collecting a physical sample for subsequent analysis or to 
act as a reference method. These methods rely upon collecting 
a sample over a period of time and can be considered as 
integrating samplers. One application area where 
impaction is frequently used is the characterisation of bio-
aerosol concentrations (Li et al., 2009) and, in particular, 
the measurement of their rate of decay within a chamber. 

In order to calculate the concentration decay rate in such 
circumstances it is necessary to know the change of 
concentration with time. When aerosol decay is governed by 
an exponential decay, the concentration can rapidly decay. 
In some circumstances there may be benefit from using 
longer sampling periods at later times to increase the number 
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of particles collected. However, the integrating nature of 
such samplers introduces additional considerations into the 
subsequent analysis of the data. This short paper explores the 
analysis of aerosol data for the measurement of exponential 
decay rates, sampled using integrating samplers and the 
implications of varying sampling periods within the same 
experiment. Following consideration of the underlying 
theory, calculations are presented for idealised data and for 
an example dataset. A practical method is presented for the 
calculation of decay rates from integrated data using variable 
sampling times. The authors are not aware of any previous 
work on this problem in the field of aerosol science. 

 
THEORY 
 
Fixed Sampling Durations 

We assume that the airborne concentration being measured 
is subject to a first-order decay with a rate, λ [s–1], which is 
unknown and is to be determined by the experiment. The 
equation describing its variation with time is therefore 
 
C(t) = C0e

–λt (1) 
 
where C is the concentration [particles/m3] at time t and C0 
is the initial concentration. 

A sampler collecting a sample of air at a fixed flow rate, 
Q [m3/s] with a constant efficiency, ε, between times ts and 
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ts + ∆t will collect N particles, where N is given by 
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ts is the start of the sampling period, and ∆t is the sampling 
duration.  

Substituting (1) for C(t), integrating and taking the natural 
logarithm gives 
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Considering first the case when the sampling duration, 

∆t, is constant, this expression can be compared with the 
equation for a straight line, y = mx + c. It can be seen that 
plotting ln(N) against ts will result in a line with gradient, 
m = –λ. All of the parameters in the first term on the right 
hand side of the equation have been assumed to be constant 
and contribute to the intercept. In fact it can also be shown 
that plotting ln(N) against ts + ∆t will also yield a line with 
the same gradient, although a different intercept. A simple 
linear least squares fitting of the data in this form will 
therefore lead to a value for λ. 

It is common practice to plot the natural logarithm of the 
mean concentration measured at each time against time. 
The mean concentration for a sample can be calculated as 
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Substituting this into (3) and rearranging gives 
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This equation shows that plotting ln( C ) against ts will 

also result in a line with gradient, m = –λ, when ∆t is 
constant. It is interesting to note that the intercept is given 
by the first two terms on the right hand side and will not be 
equal to ln(C0). However, the value of C0 can be calculated 
once λ has been determined since ∆t is known. Also, using the 
series definition of the exponential function and disregarding 
higher order terms, it can be shown that 
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Therefore, when λ∆t is small Eq. (5) becomes 
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and the intercept approaches ln(C0). For example, when λ∆t 
= 0.1 the error in C0 is equal to –4.8%. 

 
Variable Sampling Durations  

In the case of variable sample duration we revisit (3) 

and separate the variable term from the constant term and 
make explicit the dependence of ∆t on ts as follows: 
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In this expression the first term on the right hand side is 

constant, but now both the second and third terms vary 
with ts, since ∆t is variable. The values of ∆t are known, 
but there is now a non-linear relationship between N and ts. 

One approach for calculating λ is to proceed iteratively. 
Rearranging Eq. (8) gives 
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 (9) 

 
If an initial estimate is made for λ then the left hand side 

of (9) can be plotted against ts as before and a least squares 
regression performed. The resulting value for λ can be used 
to update the estimate. The process can then be repeated 
until the change in the value of λ is below a given tolerance. 
Such a procedure can be easily performed in a spreadsheet 
environment. 

Alternatively, a non-linear least squares method can be 
employed. For example, the Levenberg-Marquardt approach 
(Levenberg, 1944; Marquardt, 1963) is one algorithm that 
is widely implemented for non-linear curve fitting in 
numerical software (SciPy Community, 2012). 
 
EXAMPLE DATA 
 
Idealised Data 

To demonstrate the influence of sampling duration we 
examine idealised data and the effect of integrated sampling. 
We compare the effect of variation in sampling duration 
using a simple non-iterative linear least squares approach 
and the correct non-linear approach. 

We consider idealised decay data sampled with a sequence 
of five samples with increasing sample duration. The 
sampling sequence is defined by an initial sample duration, 
∆t0, a factor, r, by which the sample duration increases, 
where r = ∆ti+1/∆ti, and an interval, s, between the end of 
one sample and the start of the next. Real data may be 
affected by experimental noise. However, the nature of the 
noise will depend on the specific measurement method 
used and has not been considered in this study in order to 
keep the results as general as possible. 

Fig. 1 shows the case where λ = 0.1667 min–1 (10 h–1), 
∆t0 = 1 min, r = 2.0 and s = 1.0 min. The graph shows how 
the instantaneous concentration and the average concentration, 

C , for each sample, varies with time. It is clear that the 
average concentration underestimates the instantaneous 
concentration at the start time (ts) and overestimates it at 
the end (ts + ∆t). Lines have been included that join the 
concentrations at the start (ts), mean (ts + ∆t/2) and the end 
time of each sample (ts + ∆t). Whilst the instantaneous 
concentration follows a straight line, the connected sample 
points do not. The gradients of the line sections for the ts 
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Fig. 1. Instantaneous concentration (thick line) and average concentration (bars) measured by an integrated sampler and 
the same data plotted using start, mean and end times. Concentration normalised by initial concentration and plotted on a 
logarithmic vertical scale. 

 

and ts + ∆t cases are considerably different to that of the 
instantaneous concentration line. This indicates that the 
use of uncorrected data in these cases would result in a 
considerable error in the decay rate estimate.  

A linear least squares fit to the logarithm of the average 
concentration and each of the reference times based on Eq. 
(5) has been performed using the NumPy v1.6.2 (Oliphant, 
2007) PythonTM v2.7.3 (Beazley, 2009) library. A non-linear 
fit was also performed using the Levenberg-Marquardt method 
implemented in the SciPy v0.11.0 (SciPy Community, 2012) 
PythonTM library. The logarithm of N was fitted to the right 
hand side of Eq. (3), with both λ and C0 to be determined. 

The resulting line fits and the decay rates are shown in 
Fig. 2. It can be seen that the non-linear method returns the 
true decay rate (0.167 min–1) whilst the linear fits either 
underestimate (–27%, –6.4%) or overestimate (31%) the 
rate depending on the reference time used. Although the 
linear least squares lines are not a perfect fit to the data, the 
deviations are not so large that they will necessarily indicate 
that the analysis approach is invalid. There is therefore a 
danger that the decay rate calculated by one of these methods 
may be used without recognition of the error introduced. 

The case examined shows that, if not correctly accounted 
for, the use of variable sample duration can have a large 
effect on the derived decay rate. To examine a broad range 
of cases, the sampling parameters were varied over a wide 
range of values shown in Table 1. The length of the initial 
sample duration was related to the decay rate. A range of 
values for the dimensionless parameter λ∆t0 was used to 
define these values. The number of samples was held 
constant at five. A total of 840 cases were examined and 
the decay rates calculated for each of the four methods. 

The results showed that the non-linear method always 

returned the correct decay rate for the idealised data as 
expected. The resulting decay rates determined from the 
linear least squares approach are shown in Table 2. For the 
case when s = 0 min the results were seen to depend only 
on λ∆t0 and r. This can be shown to be consistent with 
analysis of the error in the last sample based on Eq. (5). 
Increasing r results in greater deviation from the true decay 
rate for ts + ∆t/2 and ts + ∆t. This is also true for ts for values 
of r ≤ 1.5, but the relationship becomes more complex for 
larger r and higher values of λ∆t0. Larger values of λ∆t0 for 
a given r decrease the calculated decay rate. This increases 
the error for ts + ∆t/2 and ts + ∆t, whilst it gets closer to the 
true value for ts for the parameter range considered here. 
The example case considered above suggested that using the 
ts + ∆t/2 time yielded the least error. This wider analysis 
indicates that this is not always the case, particularly when 
λ∆t0 is large.  

The effect of varying the sampling interval is shown by 
the data in Table 3 for the case when r = 2.0. This data can be 
compared to the case when s = 0 min in Table 2. Increasing 
the interval between samples improves the estimate of the 
decay rate, especially for smaller values of λ∆t0. However, 
no consideration has been given to the sensitivity of the 
sample analysis technique and an increased sample interval 
may result in lower concentrations adversely affecting the 
analysis. 

 
Experimental Data  

The importance of accounting for variable sample duration 
is illustrated with a small example experimental data set. 
Bio-aerosol concentrations were measured within a small 
chamber containing a portable air cleaning device following 
the dissemination of a test aerosol. The air within the chamber
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Fig. 2. Comparison of estimated decay rates using the linear least squares approach with start, mean and end times, and the 
non-linear Levenberg-Marquardt curve fitting. Initial sample duration 1 min, geometric increase in sample duration 2 and 
interval between samples 1 min. 

 

Table 1. Sampling parameter ranges. 

Decay rate [h–1] 1.0 2.0 5.0 10 20  
 [min–1] 0.0167 0.0333 0.0833 0.167 0.333  

λ∆t0 [-] 0.0333 0.100 0.333 1.00 3.33  
r [-] 1.0 1.2 1.5 2.0 3.0 5.0 
s [min] 0.0 1.0 3.0 5.0   

 

Table 2. Predicted decay rate ratio (λ/λtrue) for six different sample duration ratios (r) and dependence on the product of 
decay rate and initial sample duration (λ∆t0) using three reference times (ts, ts + ∆t/2 and ts + ∆t) for s = 0 min. 

λ∆t0 
r = 1.0 r = 1.2 r = 1.5 

ts ts + ∆t/2 ts + ∆t ts ts + ∆t/2 ts + ∆t ts ts + ∆t/2 ts + ∆t 
0.033 1.000 1.000 1.000 1.099 0.999 0.916 1.246 0.997 0.831 
0.100 1.000 1.000 1.000 1.097 0.998 0.915 1.237 0.990 0.825 
0.333 1.000 1.000 1.000 1.091 0.992 0.910 1.209 0.967 0.806 
1.000 1.000 1.000 1.000 1.075 0.978 0.896 1.143 0.914 0.762 
3.333 1.000 1.000 1.000 1.039 0.944 0.865 1.057 0.845 0.704 

 

λ∆t0 
r = 2.0 r = 3.0 r = 5.0 

ts ts + ∆t/2 ts + ∆t ts ts + ∆t/2 ts + ∆t ts ts + ∆t/2 ts + ∆t 
0.033 1.476 0.984 0.738 1.780 0.890 0.593 1.553 0.518 0.311 
0.100 1.430 0.953 0.715 1.500 0.750 0.500 1.236 0.412 0.247 
0.333 1.300 0.867 0.650 1.219 0.609 0.406 1.083 0.361 0.217 
1.000 1.147 0.765 0.574 1.086 0.543 0.362 1.030 0.343 0.206 
3.333 1.050 0.700 0.525 1.027 0.514 0.342 1.009 0.336 0.202 

 

was well-mixed during the experiment. A microbial surrogate 
test aerosol was generated in a 1 m3 chamber for 1 min and 
allowed to mix. After 5 min the air cleaning device was 
turned on and three sequential air samples taken; two of 1 min 
duration followed by a single sample of 2 min duration. 
There was an interval of 3 min between the end of one 

sample and the beginning of the next. 
An Andersen six-stage viable sampler was used to 

collect samples from the chamber. The concentration data 
for the 0.65–1.10 μm diameter range was used for the 
subsequent analysis, expressed as colony forming units 
(CFU) per unit volume of air. The highest concentration
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Table 3. Predicted decay rate ratio (λ/λtrue) for three different inter-sample intervals, s, for r = 2.0 and λ = 5.0 h–1. 

λ∆t0 
s = 1.0 min s = 3.0 min s = 5.0 min 

ts ts + ∆t/2 ts + ∆t ts ts + ∆t/2 ts + ∆t ts ts + ∆t/2 ts + ∆t 
0.033 1.291 0.989 0.801 1.160 0.993 0.867 1.110 0.995 0.901 
0.100 1.357 0.959 0.741 1.263 0.968 0.783 1.208 0.973 0.814 
0.333 1.283 0.872 0.660 1.255 0.882 0.680 1.231 0.891 0.698 
1.000 1.145 0.768 0.578 1.140 0.774 0.586 1.135 0.780 0.595 
3.333 1.050 0.701 0.526 1.049 0.704 0.529 1.049 0.706 0.532 

 

Table 4. Calculated decay rates (λ [min–1]) and coefficients of determination (R2) for example experimental measurements 
using non-linear and linear least squares approach with different reference times. Individual data (first three rows for each 
case), mean, standard deviation (S.d) and ratio to non-linear estimate shown. 

 Non-linear ts ts + ∆t/2 ts + ∆t 
λ R2 λ R2 λ R2 λ R2 

Case 1         
Data 0.411 0.990 0.435 0.996 0.408 0.991 0.384 0.985 

 0.543 0.994 0.569 0.998 0.534 0.993 0.502 0.987 
 0.501 0.986 0.527 0.993 0.494 0.986 0.464 0.978 

Mean 0.485 0.990 0.510 0.995 0.479 0.990 0.450 0.983 
S.d. 0.067 0.004 0.068 0.003 0.064 0.004 0.060 0.005 

/ nl   1.000  1.052  0.987  0.928  

Case 2         
Data 0.682 0.985 0.714 0.992 0.669 0.984 0.628 0.976 

 0.575 0.997 0.605 0.999 0.568 0.996 0.534 0.992 
 0.668 0.971 0.701 0.964 0.663 0.976 0.628 0.984 

Mean 0.641 0.984 0.673 0.985 0.633 0.985 0.597 0.984 
S.d. 0.058 0.013 0.060 0.018 0.057 0.010 0.054 0.008 

/ nl   1.000  1.049  0.987  0.930  

 

measured in this range was 6.5 × 104 CFU m–3 and the 
highest total concentration summed over all size ranges 
was 1.9 × 105 CFU m–3. Two different air cleaning devices 
were examined (Cases 1 and 2). The details of the devices 
are not relevant to the interpretation of the data and are not 
provided for reasons of commercial confidentiality. The 
experiment was repeated three times for each air cleaning 
device. 

The data were analysed by plotting the left hand side of 
Eq. (9) against ts using an initial estimate of λ. The gradient of 
the line was used to refine the estimate of λ until there was 
a difference of less than 1 × 10–6 between the values. The 
values were also compared with values calculated using 
the non-linear Levenberg-Marquardt method and were found 
to be very similar (0.07%–0.8% error). 

For comparison, values were also calculated by neglecting 
the variable sample duration and plotting the logarithm of 
the average concentration against each of ts, ts + ∆t/2 and 
ts + ∆t. The resulting values are shown in Table 4. 

The variation in sample duration is not as dramatic for 
these experimental data as some of the cases considered 
for the idealised data. However, the estimates of the decay 
rate show the same patterns. Specifically, the mean values 
(  ) obtained using the logarithm of the average 
concentration and the start time (ts) are higher than the 
mean non-linear value ( nl ) and are lower when the mean 
and end times are used. It is also interesting to note that, 

although the calculated decay rates are different between 
the two cases, the ratios between the mean decay rates 
calculated by each method are very close between the 
cases (difference ≤ 0.003). 

The examples explored here highlight the likely influence 
of variation in sample duration on the determined decay 
rate. However, this work is by necessity limited in scope. 
As discussed, the influence of experimental noise has not 
been systematically examined. The effect on the intercept 
has been explored theoretically, but not demonstrated in 
the example data as this is believed to be of less interest in the 
majority of studies. In addition, only one particular sampling 
sequence has been examined for the idealised data. It is 
possible to consider how a sampling sequence with variable 
duration might be optimised for a given experiment with a 
known sampling sensitivity. In some circumstances, it is also 
possible to overlap the sampling period of sequential samples. 
For the sake of brevity and clarity, neither of these more 
complicated aspects have been explored in this work. 
 
CONCLUSIONS 
 

The use of variable sampling duration when measuring 
an exponentially decaying concentration requires careful 
data analysis to accurately determine the decay rate. The 
theoretical basis for this analysis has been explored. An 
iterative approach using linear least squares curve fitting or 
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a non-linear curve fitting routine can be used to determine 
the decay rate. 

The error introduced by neglecting the variable sampling 
duration has been explored using idealised data for a range 
of typical parameters. Plotting the logarithm of the average 
concentration using the start time tends to overestimate the 
decay rate, whilst the use of the mean and end times 
underestimates the rate. 

When there is no interval between samples the error 
depends on the ratio of sample durations between subsequent 
samples and the product of the initial sample duration and 
the decay rate. For the parameter ranges considered, the 
error in decay rate can be as large as ± 80%. However, 
whilst neglecting the variable sample duration can introduce 
considerable error, this may not be apparent from the 
deviation from linearity in the curve fit. Examination of an 
experimental data set for concentration decay in a small 
chamber with variable sample duration shows the same 
pattern for the difference in derived decay rates.  

While the application to the measurement of concentration 
decay has been explored, this approach may be relevant more 
broadly to other integrated measurements in the presence 
of a decay process. 
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