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To the editor: 

Whole-genome bisulfite sequencing (WGBS) has become an integral part of basic and clinical 

research and has been widely used to generate reference methylomes since 20101,2. However, 

because of the initial high cost of a 30X WGBS methylome3, no saturation analysis was carried out 

to assess the information that can be harnessed from individual methylome features at different 

sequencing coverage. Consequently, the International Human Epigenome Consortium (IHEC)4 

decided to sequence reference methylomes to 30X coverage, which was believed to adequately 

capture the majority of the methylation signal for subsequent analyses.  



 Here, we report the first saturation analysis for WGBS. We assessed the effect of coverage 

on the identification of five features that inform on key aspects of the methylome, including 

informative CpG sites (iCGs), differentially methylated positions (DMPs), differentially methylated 

regions (DMRs), blocks of comethylation (COMETs) and differentially methylated COMETs 

(DMCs). Using downsampling by sequentially removing random WGBS reads and thereby 

reducing coverage, we were able to assess loss of information for each of the above features in a 

coverage-, resolution- and complexity-dependant manner. Individual CpG methylation states 

defined by iCGs and methylation changes defined by DMPs represented the highest (single base) 

level of resolution and lowest level of complexity. Vice versa, COMETs and DMCs had the lowest 

resolution but represented the highest levels of feature complexity while DMRs represented 

medium resolution and complexity. Based on this analysis, we showed that the current reference 

methylome coverage (30X) results in ~50% loss of DMPs and thus is only of limited use for high 

resolution feature analysis such as DMPs. 

 

We analyzed a total of 13 WGBS methylomes (M1-13) which are summarized in Supplementary 

Table 1 and Methods and shared with Libertini et al., Nature Communications. Except for M13, all 

methylomes were generated by the Roadmap Epigenomics11 (www.roadmapepigenomics.org/) 

and BLUEPRINT12 (www.blueprint-epigenome.eu/) projects. The same methylomes were also 

used in a parallel study9 (Libertini et al., Nature Communications) describing the COMET, DMC 

and information recovery analyses. To our knowledge, M1-3 are the deepest methylomes reported 

to date and thus constitute particularly valuable references for future studies. 

 

Downsampling is the method of choice for saturation analysis and assessing coverage-dependent 

information loss. It requires a static reference methylome against which to downsample a deep 

coverage test methylome of choice and superior results are achieved if both methylomes are 

available in multiple replicates as described below. For the static reference, we evaluated two pre-

IHEC (M45, M136) and four IHEC (M7-10) methylomes (Figure 1A) and selected the superior IHEC 

replicates M7-10 (derived from human embryonic stem cells and generated by the Roadmap 

Epigenomics Project) against which to downsample deep coverage test replicates M1-2 (derived 

from purified human monocytes and generated by the BLUEPRINT Project). For each of the five 

features described above, the test methylomes (M1-2) were randomly downsampled to different 

read coverage levels and assessed for information loss by comparison to the static reference 

methylomes (M7-10). For the analysis of iCGs, DMPs and DMRs, we used BSmooth7 and 

RADmeth8 and COMETgazer9 and COMETvintage9 (Libertini et al., Nature Communications; 

https://github.com/rifathamoudi/COMETgazer) for the analysis of COMETs and DMCs. 

  

Figure 2A shows the saturation analysis of iCGs, DMPs, DMRs, COMETs and DMCs for M1-2 by 

downsampling from 83X or 91X to 5X sequence coverage. For each coverage and feature, the 

http://www.roadmapepigenomics.org/
https://github.com/rifathamoudi/COMETgazer


respective percentages of retained information are plotted on the Y-axis. The total number of M1-2 

features called at highest coverage against M7-10 is set to 100%. While 95% of iCGs are retained 

at the current reference methylome coverage of 30X, only 50% of the 757,623 DMPs called at 

maximum coverage are called in double replicate analysis using RADmeth (Figure 2A) and 45% in 

single replicate analysis using Fisher's Exact Test (Figure 1B) (χ², p < 0.0001). A 45-50% DMP 

loss is confirmed using other reference methylomes (M7-10 or M11-12, Figure 2B). This loss of 

information has not previously been reported for methylome analyses at 30X coverage. In 

comparison, the higher complexity (but lower resolution) DMRs, COMETs and DMCs retain 

between 85-95% of the information. At 10X coverage ~77% and ~85% of DMC and COMET 

information, respectively, is retained compared to only ~40% for DMRs. Notably, using first 

derivatives, the information loss starts at ~85X for DMPs and ~8X for DMCs (Mann-Whitney, p < 

0.0001) (Supplementary Information, Statistical Analysis). 

 

The main advantage of WGBS over less expensive enrichment-based methods, such as 

methylated DNA immunoprecipitation sequencing (MeDIP-seq)10 is the ability to detect DNA 

methylation at single base resolution. MeDIP-seq only allows detection of DMRs but not DMPs. 

While reduced representation bisulfite sequencing (RRBS) 11 also has single base resolution and 

thus allows detection of DMPs, it only covers about 10% of the methylome, mostly in CpG-rich 

regions such as CpG islands. The increased resolution and coverage of WGBS enables the 

identification of genome-wide DMPs as exemplified for the identification of dynamic CpG sites 

through analysis of over 40 WGBS data sets12. As our saturation analysis revealed that DMP 

calling at ~30X coverage only captures ~50% of DMPs in a replicate analysis, we assessed if part 

of the lost information could be recovered through RRBS spike-in. As DMP loss occurs frequently 

in CpG-rich sequences, we spiked simulated RRBS (M14-15) into WGBS (M1-M2) data, resulting 

in a quantitative DMP recovery of 5% at 30X and ~12% at 10X (Figure 3). This figure can be used 

as a guide to estimate DMP information gain for spiking RRBS into WGBS at different coverage.   

 

We report the first saturation analysis for WGBS-based methylomes that has implications for 

subsequent feature analyses of the reference methylomes generated by the Roadmap 

Epigenomics Programme13, BLUEPRINT14 and other members of the International Human 

Epigenome Consortium (http://www.ihec-epigenomes.org/).  

 

Our results demonstrate that methylomes generated at 30X coverage and single replicate are not 

adequate for quantitative identification of DMPs, arguably the most desirable feature of WGBS 

methylome analysis. To improve detection of methylation features from existing data, we have 

developed two algorithms (COMETgazer9 and COMETvintage9; Libertini et al., Nature 

Communications) that allow partial recovery of the lost information even at low (5X) coverage. 

These methods do require 2 methylome replicates, indicating that replicates are more important 

http://www.ihec-epigenomes.org/


than coverage in terms of maximising the accuracy of signal that can be identified from the data. 

Currently, IHEC standards allow for single replicate methylomes and 60% of current IHEC 

methylomes are in fact single replicate. Based on the results of this saturation analysis, we 

recommend multiple replicates for future methylome sequencing.  
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Figure Legends 

 

 

Figure 1. Single replicate analysis. A, Saturation analysis of DMP calling decay of monocyte 

methylome (M1) versus pre IHEC (M4, M13) and IHEC (M3, M6-7, M9-11) methylomes using 

Fisher's Exact Test. Based on this result, we decided to exclude the pre IHEC methylomes (M4, 

M13) from the main analysis. The analysis highlights a potential technical issue of pre IHEC 

methylomes generated on GAII compared to IHEC methylomes generated on HiSeq platforms. B, 

Saturation analysis of all differential methylation features using M1-2 and M3, M7-10. Single 

replicate DMP calls (M1 vs M3) and replicate RADmeth analysis show a different decay and a 

crossover pattern. Note that in the single replicate analysis the reference (M3) is at 91X. 

Figure 2. Saturation analysis of deep replicate methylomes. A, Downsampling of methylome 

features for deep M1-2 against static M7-10. The analysis was conducted with RADmeth for DMPs, 

BSmooth for DMRs and COMETvintage for DMCs. B, Replicate DMP analysis for deep M1-2 

against static M7-10 or M11-12 reference methylomes as calculated by RADmeth. This represents 

two independent analyses as combined results showing DMP analysis variation (shaded standard 

error).   Downsampling iterations were run for each of the selected features by shrinking coverage 

by 5% for each downsampling from 100% to 5% of the data. The absolute deviation from feature 

calls at 100% is represented as percentage values. Coloured loess curve and shaded standard 

error provide estimates of information retained at each coverage across all iterations. 

 

Figure 3. RRBS spike-in simulation. WGBS methyomes (M1-M2) were downsampled and spiked-

in with static ~90X RRBS simulated datasets (M14-M15). Replicate DMP analysis of M1-2 versus 

M7-8 was performed using RADmeth. The % information rescued reports the % difference in 

RADmeth DMP calling in the spike-in versus the WGBS alone.  
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Figure 3 

 


