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Abstract. We present a technique for the rapid and reliable prediction of linear-functional outputs of
elliptic coercive partial differential equations with affine parameter dependence. The essential compo-
nents are (i) (provably) rapidly convergent global reduced-basis approximations – Galerkin projection
onto a space WN spanned by solutions of the governing partial differential equation at N selected
points in parameter space; (ii) a posteriori error estimation – relaxations of the error-residual equa-
tion that provide inexpensive bounds for the error in the outputs of interest; and (iii) off-line/on-line
computational procedures – methods which decouple the generation and projection stages of the ap-
proximation process. The operation count for the on-line stage – in which, given a new parameter
value, we calculate the output of interest and associated error bound – depends only on N (typically
very small) and the parametric complexity of the problem; the method is thus ideally suited for the
repeated and rapid evaluations required in the context of parameter estimation, design, optimization,
and real-time control. In our earlier work we develop a rigorous a posteriori error bound framework for
reduced-basis approximations of elliptic coercive equations. The resulting error estimates are, in some
cases, quite sharp: the ratio of the estimated error in the output to the true error in the output, or
effectivity , is close to (but always greater than) unity. However, in other cases, the necessary “bound
conditioners” – in essence, operator preconditioners that (i) satisfy an additional spectral “bound” re-
quirement, and (ii) admit the reduced-basis off-line/on-line computational stratagem – either can not
be found, or yield unacceptably large effectivities. In this paper we introduce a new class of improved
bound conditioners: the critical innovation is the direct approximation of the parametric dependence
of the inverse of the operator (rather than the operator itself); we thereby accommodate higher-order
(e.g., piecewise linear) effectivity constructions while simultaneously preserving on-line efficiency. Sim-
ple convex analysis and elementary approximation theory suffice to prove the necessary bounding and
convergence properties.
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Résumé. Nous présentons une technique pour la prédiction rapide et sûre de sorties – fonctionnelles
linéaires – d’équations coercives aux dérivées partielles avec une dépendance affine en fonction des
paramètres. Les composantes essentielles sont (i) approximations globales par bases-réduites rapide-
ment convergentes – projection de Galerkin sur un espace WN engendré par les solutions de l’équation
aux dérivées partielles à N points sélectionnés dans l’espace des paramètres ; (ii) estimation d’erreur
a posteriori – relaxations de l’équation de l’erreur qui fournissent des bornes peu coûteuses pour l’erreur
effectuée sur la sortie d’intérêt ; et (iii) procédures de calcul en différé/en ligne – méthodes qui décou-
plent l’étape de génération de l’étape de projection de l’approximation. Le décompte des opérations
pour l’étape en ligne – dans laquelle, étant donnée une nouvelle valeur du paramètre, nous calculons la
sortie d’intérêt et les bornes de l’erreur associées – dépend uniquement de N (typiquement très petit)
et de la complexité paramétrique du problème ; la méthode est ainsi idéalement applicable pour des
évaluations répétées et rapides dans un contexte d’estimation de paramètre, de design, d’optimisation,
et de contrôle temps réel. Dans nos travaux précédents, nous avons développé un cadre rigoureux
a posteriori pour les bornes de l’erreur due à l’approximation par bases-réduites d’équations elliptiques
coercives. Les estimations d’erreur résultantes sont, dans certains cas, très précis : le rapport entre
l’erreur estimée et la véritable erreur effectuée sur la sortie, encore appelée efficacité, est proche de
(mais toujours plus grande que) l’unité. Cependant, dans d’autres contextes, les “conditioneurs pour
les bornes” – essentiellement des opérateurs/préconditioneurs qui (i) satisfont une condition spectrale
“borne” supplémentaire, et (ii) admettent le stratagème de calcul bases-réduites en différé/en ligne –
peuvent soit ne pas être trouvés soit impliquent des efficacités larges inacceptables. Dans ce papier,
nous introduisons une nouvelle classe de conditioneurs pour les bornes améliorés : l’innovation essen-
tielle est l’approximation directe de la dépendance paramétrique de l’inverse de l’opérateur (plutôt que
celle de l’opérateur elle-même) ; de ce fait nous facilitons la construction d’ordre élevée (e.g. linéaires
par morceaux) de l’efficacité tout en préservant les performances de l’étape en ligne. Une analyse de
convexité simple et un usage élémentaire de théorie de l’approximation sont suffisantes à prouver les
propriétés nécessaires de convergence et de bornes.

Introduction

The optimization, control, and characterization of an engineering component or system requires the predic-
tion of certain “quantities of interest”, or performance metrics, which we shall denote outputs – for example
deflections, maximum stresses, maximum temperatures, heat transfer rates, flowrates, or lifts and drags. These
outputs are typically expressed as functionals of field variables associated with a parametrized partial differ-
ential equation which describes the physical behavior of the component or system. The parameters, which we
shall denote inputs , serve to identify a particular “configuration” of the component: these inputs may represent
design or decision variables, such as geometry – for example, in optimization studies; actuator variables, such
as throttle power – for example in real-time control applications; or characterization variables, such as physical
properties – for example in inverse problems. We thus arrive at an implicit input–output relationship, evaluation
of which demands solution of the underlying partial differential equation.

Our goal is the development of computational methods that permit rapid and reliable evaluation of this
partial-differential-equation-induced input-output relationship in the limit of many queries – that is, in the
design and optimization, control, and characterization contexts. The “many query” limit has certainly received
considerable attention: from “fast loads” or multiple right-hand side notions (e.g. [7,8]) to matrix perturbation
theories (e.g. [1,19]) to continuation methods (e.g. [2,17]). Our particular approach is based on the reduced-basis
method, first introduced in the late 1970s for nonlinear structural analysis [3, 13], and subsequently developed
more broadly in the 1980s and 1990s [5, 6, 9, 14, 15, 18]. The reduced-basis method recognizes that the field
variable is not, in fact, some arbitrary member of the infinite-dimensional solution space associated with the
partial differential equation; rather, the field variable resides, or “evolves”, on a much lower-dimensional manifold
induced by the parametric dependence.

The reduced-basis approach as earlier articulated is local in parameter space in both practice and theory. To
wit, Lagrangian or Taylor approximation spaces for the low-dimensional manifold are typically defined relative



A POSTERIORI ERROR ESTIMATION OF µPDES: “CONVEX INVERSE” BOUND CONDITIONERS 1009

to a particular parameter point; and the associated a priori convergence theory relies on asymptotic arguments
in sufficiently small neighborhoods [9]. As a result, the computational improvements – relative to conventional
(say) finite element approximation – are often quite modest [15]. Our work [10,12,16] differs from these earlier
efforts in several important ways: first, we develop (in some cases, provably) global approximation spaces;
second, we introduce rigorous a posteriori error estimators ; and third, we exploit off-line/on-line computational
decompositions (see [5] for an earlier application of this strategy within the reduced–basis context). These three
ingredients allow us – for the restricted but important class of “parameter-affine” problems – to reliably decouple
the generation and projection stages of reduced-basis approximation, thereby effecting computational economies
of several orders of magnitude.

In our earlier work we develop a rigorous a posteriori error bound framework for reduced-basis approximations
of elliptic coercive equations. The resulting error estimates are, in some cases, quite sharp: the ratio of the
estimated error in the output to the true error in the output, or effectivity, is close to (but always greater
than) unity. However, in other cases, the necessary “bound conditioners” – in essence, operator preconditioners
that (i) satisfy an additional spectral “bound” requirement, and (ii) admit the reduced-basis off-line/on-line
computational stratagem – either can not be found, or yield unacceptably large effectivities. In this paper we
introduce a new class of improved bound conditioners: the critical innovation is the direct approximation of the
parametric dependence of the inverse of the operator (rather than the operator itself); we thereby accommodate
higher-order (e.g., piecewise-linear) effectivity constructions while simultaneously preserving on-line efficiency.
Simple convex analysis and elementary approximation theory suffice to prove the necessary bounding and
convergence properties.

In Section 1 we present the problem statement, and demonstrate the monotonicity and convexity results on
which our new bound conditioner formulation is constructed. In Section 2 we describe the new a posteriori error
estimation framework, and prove the requisite a posteriori bound results. In Section 3 we develop the a priori
convergence theory for our output bounds for the special case of a single parameter. Finally, in Section 4, we
present numerical results for several illustrative “model-problem” examples.

1. Problem formulation

1.1. Exact statement

We first introduce a Hilbert space Y , and associated inner product and norm (·, ·) and ‖ · ‖ ≡ (·, ·)1/2,
respectively. We next introduce the dual space of Y , Y ′, and the associated duality pairing between Y and Y ′,
Y ′〈·, ·〉Y ≡ 〈·, ·〉.

We then define, for any µ ∈ Dµ ⊂ R
P , the parametrized (distributional) operator A(µ) : Y → Y ′. We assume

that A(µ) = A(Θ(µ)), where, for any θ ∈ R
Q
+, A(θ) : Y → Y ′ is given by

A(θ) = A0 +
Q∑

q=1

θq Aq,

and the Θq : Dµ → R+, q = 0, . . . , Q, are non-negative functions (for future reference, we also define Θ0 ≡ 1).
Here R+ refers to the non-negative real numbers. The range of Θ is denoted Dθ; and we define θmin (≥ 0), θmax

(assumed finite), and Dθ
box ⊂ R

Q
+ as

θmin
q ≡ sup t{t∈R+ | Θq(µ)≥t, ∀µ∈Dµ}, q = 1, . . . , Q,

θmax
q ≡ inf t{t∈R+ | Θq(µ)≤t, ∀µ∈Dµ}, q = 1, . . . , Q,

and Dθ
box ≡ ΠQ

q=1[θ
min
q , θmax

q ], respectively.



1010 K. VEROY, D.V. ROVAS AND A.T. PATERA

Finally, we require that A0 is continuous, symmetric, and coercive, and that the Aq, q = 1, . . . , Q, are
continuous, symmetric, and positive-semidefinite (〈Aqv, v〉 ≥ 0, ∀ v ∈ Y ); it follows that A(θ) (respectively,
A(µ)) is continuous, symmetric, and coercive for all θ in Dθ

box (respectively, for all µ in Dµ).
Our problem can then be stated as: given a µ ∈ Dµ, and linear functional F ∈ Y ′, evaluate the output

s(µ) = 〈F, u(µ)〉,

where u(µ) ∈ Y is the unique solution of A(Θ(µ)) u(µ) = F ; we shall interpret the latter as

〈A(Θ(µ)) u(µ), v〉 = 〈F, v〉, ∀ v ∈ Y. (1.1)

Note that s(µ) may also be interpreted as the energy of the solution; s(µ) = 〈F, u(µ)〉 = 〈A(Θ(µ)) u(µ), u(µ)〉 –
and is hence strictly positive. (In this paper, the output s(µ) is “compliant”, and the operator A(θ) is symmetric;
however, our formulation is readily extended [16] to treat both noncompliant outputs, s(µ) = 〈L, u(µ)〉 for given
L ∈ Y ′, and non-symmetric (but still coercive) operators.)

We may also express our output as

s(µ) = 〈F, A−1(Θ(µ))F 〉 · (1.2)

Here, for any θ ∈ Dθ
box, A−1(θ) : Y ′ → Y is the (continuous, symmetric, coercive) inverse of A(θ); in particular,

∀ G ∈ Y ′, 〈A(θ) A−1(θ) G, v〉 = 〈G, v〉, ∀ v ∈ Y .

1.2. “Truth” approximation

The u(µ) of (1.1) are, in general, not calculable. In order to construct our reduced-basis space we will therefore
require a finite-dimensional “truth” approximation to Y , which we shall denote Ỹ ; Ỹ is an N -dimensional
subspace of Y . For example, for Ω ⊂ R

d=1, 2, or 3, and Y ⊂ H1(Ω) ≡ {v ∈ L2(Ω), ∇v ∈ (L2(Ω))d} (here L2(Ω)
is the space of square-integrable functions over Ω), Ỹ will typically be a finite element approximation space
associated with a very fine triangulation of Ω. In general, we expect that N will be very large.

Our (Galerkin) truth approximation can be stated as: given a µ ∈ Dµ, evaluate the output

s̃(µ) = 〈F, ũ(µ)〉, (1.3)

where ũ(µ) ∈ Ỹ is the unique solution of

〈A(Θ(µ)) ũ(µ), v〉 = 〈F, v〉, ∀ v ∈ Ỹ . (1.4)

As before, the output can be expressed as a (strictly positive) energy: s̃(µ) = 〈F, ũ(µ)〉 = 〈A(Θ(µ)) ũ(µ), ũ(µ)〉.
It shall prove convenient to express (1.3, 1.4) in terms of a (in fact, any) basis for Ỹ , {φi, i = 1, . . . ,N}.

To wit, we first introduce the matrices Ãq ∈ R
N×N , q = 0, . . . , Q, as Ãq i j = 〈Aφj , φi〉, 1 ≤ i, j ≤ N ; it is

readily shown that Ã0 (respectively, Ãq, q = 1, . . . , Q) is symmetric positive-definite (respectively, symmetric
positive-semidefinite). For any θ ∈ Dθ

box, we then define Ã(θ) ∈ R
N×N as

Ã(θ) = Ã0 +
Q∑

q=1

θq Ãq;

Ã(θ) is symmetric positive-definite for all θ ∈ Dθ
box. In a similar fashion we introduce F̃ ∈ R

N as F̃i = 〈F, φi〉,
1 ≤ i ≤ N .
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Our truth approximation can then be restated as: given a µ ∈ Dµ, evaluate the output

s̃(µ) = F̃
T
ũ(µ),

where ũ(µ) ∈ R
N is the unique solution of

Ã(Θ(µ)) ũ(µ) = F̃ ; (1.5)

here T refers to the algebraic transpose. Note that ũ(µ) and ũ(µ) = (ũ1, . . . , ũN ) are related via

ũ(µ) =
N∑

j=1

ũj(µ) φj .

As always, our compliance output can be expressed as an energy:

s̃(µ) = ũT (µ) Ã(Θ(µ)) ũ(µ),

or, equivalently,

s̃(µ) = F̃
T

Ã
−1

(Θ(µ)) F̃ , (1.6)

where Ã
−1

(θ) is the (symmetric, positive-definite) inverse of Ã(θ). Note that since N is large, solution of (1.5),
and hence evaluation of s̃(µ), will be computationally expensive.

1.3. Monotonicity and convexity of the inverse

In this section we prove that the quadratic forms associated with A−1(θ) and Ã
−1

(θ) are monotonic and
convex in the parameter θ. To begin, we define J : Dθ

box × Y ′ → R and J̃ : Dθ
box × R

N → R as

J (θ, G) = 〈G, A−1(θ) G〉,

J̃ (θ, G) = GT Ã
−1

(θ) G . (1.7)

Also, given θ1 ∈ Dθ
box, θ2 ∈ Dθ

box, and τ ∈ [0, 1], we define Jseg(τ ; θ1, θ2; G) = J (θ1 + τ(θ2 − θ1), G), and
J̃seg(τ ; θ1, θ2; G) = J̃ (θ1 + τ(θ2 − θ1), G).

We also define Aseg(τ ; θ1, θ2) = A(θ1 + τ(θ2 − θ1)) and Ãseg(τ ; θ1, θ2) = Ã(θ1 + τ(θ2 − θ1)). We can then
write

Aseg(τ ; θ1, θ2) = A0 +
Q∑

q=1

θ1
q Aq + τ

Q∑
q=1

(θ2
q − θ1

q) Aq,

Ãseg(τ ; θ1, θ2) = Ã0 +
Q∑

q=1

θ1
q Ãq + τ

Q∑
q=1

(θ2
q − θ1

q) Ãq. (1.8)

Note that Jseg(τ ; θ1, θ2; G) = 〈G, A−1
seg(τ ; θ1, θ2) G〉 and J̃seg(τ ; θ1, θ2; G) = GT Ã

−1

seg(τ ; θ1, θ2) G.
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We first consider monotonicity in

Proposition 1.1. J (θ, G) and J̃ (θ, G) are non-increasing functions: for any θ1 ∈ Dθ
box, θ2 ∈ Dθ

box, such that
θ2 ≥ θ1 (i.e., θ2

q ≥ θ1
q , q = 1, . . . , Q), J (θ2, G) ≤ J (θ1, G) for any G ∈ Y ′, and J̃ (θ2, G) ≤ J̃ (θ1, G) for any

G ∈ R
N .

Proof. We give the proof for J̃ (θ, G); similar arguments apply to J (θ, G).
We need only demonstrate that, for any (fixed) θ1, θ2 such that θ2 ≥ θ1, and any (fixed) G ∈ R

N ,

dJ̃seg(τ ; θ1, θ2; G)
dτ

≤ 0, ∀ τ ∈ [0, 1].

To evaluate dJ̃seg/dτ , we note that

dJ̃seg(τ ; θ1, θ2; G)
dτ

= GT d
dτ

(
Ã

−1

seg(τ ; θ1, θ2)
)

G;

it thus remains only to show that d(Ã
−1

seg(τ ; θ1, θ2))/dτ is symmetric negative-semidefinite.

To this end, we note that Ã
−1

seg(τ ; θ1, θ2) Ãseg(τ ; θ1, θ2) = Id (the identity), and thus

d
dτ

(
Ã

−1

seg(τ ; θ1, θ2)
)

Ãseg(τ ; θ1, θ2) + Ã
−1

seg(τ ; θ1, θ2)
d
dτ

(
Ãseg(τ ; θ1, θ2)

)
= 0.

Application of (1.8) then yields

d
dτ

(
Ã

−1

seg(τ ; θ1, θ2)
)

= −Ã
−1

seg(τ ; θ1, θ2)

(
Q∑

q=1

(θ2
q − θ1

q) Ãq

)
Ã

−1

seg(τ ; θ1, θ2);

the desired result then directly follows, since θ2
q ≥ θ1

q , and the Ãq are symmetric positive-semidefinite.

We next consider convexity in

Proposition 1.2. J (θ, G) and J̃ (θ, G) are convex functions of θ: for any θ1 ∈ Dθ
box, θ2 ∈ Dθ

box, and for all
τ ∈ [0, 1], J (θ1 + τ(θ2 − θ1), G) ≤ (1 − τ) J (θ1, G) + τJ (θ2, G) for any G ∈ Y ′, and J̃ (θ1 + τ(θ2 − θ1), G)
≤ (1 − τ) J̃ (θ1, G) + τ J̃ (θ2, G) for any G ∈ R

N .

Proof. We give the proof for J̃ (θ, G); similar arguments apply to J (θ, G).
We need to demonstrate that, for any θ1 ∈ Dθ

box, θ2 ∈ Dθ
box, and τ ∈ [0, 1], J̃seg(τ ; θ1, θ2, G) ≤ (1 −

τ)J̃seg(0; θ1, θ2; G) + τ J̃seg(1; θ1, θ2; G) for any G ∈ R
N . From standard results in convex analysis [4] it suffices

to show that, for any (fixed) G ∈ R
N ,

d2J̃seg(τ ; θ1, θ2; G)
dτ2

≥ 0, ∀ τ ∈ [0, 1].

From the definition of J̃seg(τ ; θ1, θ2; G), it thus remains only to show that d2(Ã
−1

seg(τ ; θ1, θ2))/dτ2 is symmetric
positive-semidefinite.
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To this end, we continue the differentiation of Proposition 1.1 to obtain

d2

dτ2

(
Ã

−1

seg(τ ; θ1, θ2)
)

= − d
dτ

(
Ã

−1

seg(τ ; θ1, θ2)
)( Q∑

q=1

(θ2
q − θ1

q)Ãq

)
Ã

−1

seg(τ ; θ1, θ2)

−Ã
−1

seg(τ ; θ1, θ2)

(
Q∑

q=1

(θ2
q − θ1

q) Ãq

)
d
dτ

(
Ã

−1

seg(τ ; θ1, θ2)
)

= 2Ã
−1

seg(τ ; θ1, θ2)
(∑Q

q=1 (θ2
q − θ1

q) Ãq

)
Ã

−1

seg(τ ; θ1, θ2)
(∑Q

q=1 (θ2
q − θ1

q) Ãq

)
Ã

−1

seg(τ ; θ1, θ2).

The desired result then directly follows since Ã
−1

seg(τ ; θ1, θ2) is symmetric positive-definite.

Note that we can deduce from Propositions 1.1 and 1.2, and the relations (1.2) and (1.6), various properties
of the parametric dependence of the output: for example, in the simple case in which P = Q, Dµ is a convex
set in R

P
+, and Θq(µ) = µq, q = 1, . . . , Q, we directly obtain the result that s(µ) and s̃(µ) are non-increasing,

convex functions of µ. The true value of Propositions 1.1 and 1.2, however, will be in constructing bound
conditioners.

2. Reduced-basis output bounds

2.1. Preliminaries

We first introduce a “µ” sample Sµ
N = {µ1, . . . , µN}, where µn ∈ Dµ, n = 1, . . . , N . We then define our

reduced-basis space WN = span {ζ̃n, n = 1, . . . , N}, where ζ̃n = ũ(µn), n = 1, . . . , N . Recall that ũ(µn) is the
solution of (1.4) for µ = µn. For future reference we denote ζ̃

n
= ũ(µn), n = 1, . . . , N .

We next introduce a “θ” sample Sθ
M = {θ1, . . . , θM}, where θm ∈ Dθ

box, m = 1, . . . , M . To each µ in Dµ we
then associate (i) a set of |E(µ)| indices E(µ) ⊂ {1, . . . , M}, and (ii) a point in Dθ

box, θ(µ) ≤ Θ(µ), such that

θ(µ) =
∑

j∈E(µ)

αj(µ) θj

for a given set of coefficients αj(µ) satisfying 0 ≤ αj(µ) ≤ 1, ∀ j ∈ E(µ), and
∑

j∈E(µ) αj(µ) = 1. We implicitly
assume that Sθ

M is chosen such that, for all µ ∈ Dµ, such a construction is possible; a deficient sample Sθ
M can

always be rendered compliant simply by replacing one point with θmin.
We now introduce our bound conditioner B̃(µ) ∈ R

N×N as

B̃(µ) =


 ∑

j∈E(µ)

αj(µ)Ã
−1

(θj)


−1

. (2.1)

Clearly, B̃
−1

(µ) and hence B̃(µ) are symmetric positive-definite. In words, B̃
−1

(µ) is an approximation to
Ã

−1
(Θ(µ)) constructed as a convex combination of Ã

−1
at “neighboring” θ. We shall consider three different

bound conditioners in this paper.
The first is a single-point conditioner, and will be labeled SP. Here we set M = 1, Sθ

M = {θmin}, |E(µ)| = 1,
E(µ) = {1}, and θ(µ) = θmin. This conditioner is a special case of our earlier bound conditioner formula-
tion [10, 16], in which we take B̃(µ) = g(µ) Â (Â independent of µ); SP corresponds to g(µ) = 1, Â = Ã(θmin).
Note in our earlier work we typically choose not SP, but rather a different single-point conditioner given by
g(µ) = min(1, min(Θq(µ), q = 1, . . . , Q)), Â = Ã(θ = (1, . . . , 1)). We do not consider the development of this
“min(1, θ)” conditioner any further in this paper, since first, it does not readily fit into the current “convex
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approximation” context, and second, except for Θ(µ) close to (1, . . . , 1), it yields worse results than SP – in
particular for min(Θq(µ), q = 1, . . . , Q) small. However, in the numerical experiments of Section 4, we will
include the “min(1, θ)” conditioner results (labeled as SP′).

The second bound conditioner we develop here is piecewise-constant, and will be labeled PC. Now we set
M ≥ 1, Sθ

M = {θ1 = θmin, θ2, . . . , θM}, and |E(µ)| = 1, and choose E(µ) = {j1(µ)} such that θ(µ) ≡ θj1(µ)

≤ Θ(µ). There will often be many possible choices for j1(µ); we can either establish a definition of closeness,
or alternatively consider all possible candidates and select the best (in the sense of yielding the lowest upper
bound as defined in Sect. 2.2).

The third bound conditioner we develop here is piecewise-linear, and will be labeled PL. Now we set M
≥ Q + 1, Sθ

M = {θ1, . . . , θM}, and |E(µ)| = Q + 1, and choose E(µ) such that the θj , j ∈ E(µ), form a (Q + 1)-
simplex containing θ(µ) ≡ Θ(µ). Again, there will often be several choices for the index set E(µ) and associated
simplex; we can either establish an a priori criterion for goodness (e.g., related to simplex size), or instead
evaluate all candidates and select the best in the sense of “lowest upper bound”. Note that, for µ for which Sθ

M

contains no Θ(µ)-containing (Q + 1)-simplex, we must accept a lower-order simplex and θ(µ) < Θ(µ) (e.g., in
the worst case, we revert to PC).

2.2. Two-step approximation

The importance of this two-step procedure will become clearer in Section 3. In the first step we compute
our predictor , sN (µ); in the second step we compute our bounds , s−N (µ) ≤ s̃(µ) ≤ s+

N (µ). Although the latter
may be gainfully interpreted as a posteriori estimators, we prefer to view the bounds as “improved” predictors
imbued with a sense of direction – and hence certainty.

2.2.1. Predictor

In the first step, given a µ ∈ Dµ, we find sN (µ) = 〈F, uN (µ)〉, where uN(µ) ∈ WN satisfies

〈A(Θ(µ)) uN(µ), v〉 = 〈F, v〉, ∀ v ∈ WN .

We may also express the output as an energy, sN (µ) = 〈A(Θ(µ)) uN (µ), uN (µ)〉.
In terms of our basis functions, we can define the symmetric positive-definite matrix AN (µ) ∈ R

N×N as
AN i j(µ) = 〈A(Θ(µ)) ζ̃j , ζ̃i〉, 1 ≤ i, j ≤ N , and the vector FN ∈ R

N as FN i = 〈F, ζ̃i〉, 1 ≤ i ≤ N . It is a simple
matter to observe that

AN (θ) = AN 0 +
Q∑

q=1

θq AN q, (2.2)

where (ANq)i j = 〈Aq ζ̃j , ζ̃i〉, 1 ≤ i, j ≤ N , 0 ≤ q ≤ Q; note that the ANq ∈ R
N×N , 0 ≤ q ≤ Q, are independent

of θ.
Our first step can then be restated as: given a µ ∈ Dµ, find sN (µ) = FT

NuN (µ), where uN(µ) ∈ R
N is the

unique solution to
AN(Θ(µ)) uN (µ) = FN .

Note that uN (µ) =
∑N

j=1 uN j(µ) ζ̃j . The output may also be expressed as sN (µ) = uT
N (µ) AN (Θ(µ)) uN (µ)

= F T
N A−1

N (Θ(µ)) FN .

2.2.2. Lower and upper bounds

We first define our residual R ∈ Y ′ as 〈R(µ), v〉 ≡ 〈F −A(Θ(µ)) uN(µ), v〉, ∀ v ∈ Y ; and then R̃(µ) ∈ R
N as

R̃i(µ) = 〈R(µ), φi〉 i = 1, . . . ,N . We note for future reference that

R̃(µ) = F̃ − Ã(Θ(µ)) ũN (µ), (2.3)
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where ũN (µ) ∈ R
N is given by

ũN (µ) =
N∑

n=1

uNn(µ) ζ̃
n
; (2.4)

by construction, uN(µ) =
∑N

i=1 ũN i(µ) φi.
We now find ê(µ) ∈ R

N such that

B̃(µ) ê(µ) = R̃(µ); (2.5)

this equation will of course have a unique solution since B̃(µ) is symmetric positive-definite.
We can now define our lower and upper bounds as

s−N (µ) = sN (µ),

and
s+

N (µ) = sN (µ) + ∆N (µ),

where ∆N (µ), the bound gap, is given by

∆N (µ) ≡ êT (µ) B̃(µ) ê(µ)

= R̃
T
(µ) B̃

−1
(µ) R̃(µ)

= R̃
T
(µ) ê(µ).

The first two expressions (respectively, third expression) for the bound gap will prove useful in the theoretical
(respectively, computational) context.

2.3. Bounding properties

It remains to demonstrate our claim that s−N (µ) ≤ s̃(µ) ≤ s+
N (µ) for all N ≥ 1. We first consider

Proposition 2.1. For all µ ∈ Dµ, and all N ≥ 1, s−N (µ) ≤ s̃(µ).

Proof. We have that

s̃(µ) − sN (µ) = 〈F, ũ(µ) − uN(µ)〉

= 〈A(Θ(µ)) ũ(µ), ũ(µ) − uN(µ)〉

= 〈A(Θ(µ)) (ũ(µ) − uN (µ)), ũ(µ)〉

= 〈A(Θ(µ)) (ũ(µ) − uN (µ)), ũ(µ) − uN(µ)〉 (2.6)

≥ 0

from the definition of s̃(µ), equation (1.4), symmetry of A, Galerkin orthogonality, and coercivity, respectively.
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This lower bound proof is a standard result in variational approximation theory. We now turn to the less
trivial upper bound in

Proposition 2.2. For all µ ∈ Dµ, and all N ≥ 1, s+
N (µ) ≥ s̃(µ).

Proof. We first define ẽ ∈ R
N as ẽ = ũ − ũN ; we then note from (1.5) and (2.3) that

Ã(Θ(µ)) ẽ(µ) = R̃(µ), (2.7)

which is the usual error-residual relationship. It then follows from (2.6) of Proposition 2.1 that

s̃(µ) − sN (µ) = ẽT (µ) Ã(Θ(µ)) ẽ(µ)

= R̃
T
(µ) Ã

−1
(Θ(µ)) R̃(µ).

It thus only remains to prove that

ηN (µ) ≡ s+
N (µ) − sN (µ)
s̃(µ) − sN(µ)

=
∆N (µ)

s̃(µ) − sN (µ)
=

R̃
T
(µ) B̃

−1
(µ) R̃(µ)

R̃
T
(µ) Ã

−1
(Θ(µ)) R̃(µ)

(2.8)

is greater than unity; note ηN (µ) is denoted the effectivity.
From the definitions (1.7) and (2.1) we immediately note that

ηN (µ) =

∑
j∈E(µ)

αj(µ) J̃ (θj , R̃(µ))

J̃ (Θ(µ), R̃(µ))
·

But from the construction of the αj(µ), the choice of E(µ), Proposition 1.2, classical results in convex analysis,
and Proposition 1.1, it directly follows that, for any G ∈ R

N (and therefore for G = R̃(µ)),

∑
j∈E(µ)

αj(µ) J̃ (θj , G) ≥ J̃ (θ(µ), G) ≥ J̃ (Θ(µ), G),

which concludes the proof.

We must now address the computation of s−N (µ) and s+
N(µ).

2.4. Computational procedure: Off-line/on-line decomposition

2.4.1. The predictor sN (µ)

We review here arguments given in great detail in [16]; early applications of this approach may be found
in [5].

In an off-line stage, we find the ζ̃
n
, n = 1, . . . , N (N Ã-solves), and form the AN q, 0 ≤ q ≤ Q ((Q + 1)N2

Ã-inner products), and FN (NN operations). In the on-line stage – given any new µ – we need only form AN (µ)
from the ANq ((Q+1)N2 operations), find uN (µ) (O(N3) operations), and evaluate sN (µ) (N operations). The
essential point is that the on-line complexity (and storage – O(QN2)) is independent of the very large dimension
of the truth space Ỹ , N ; in particular, since N is typically very small (see the a priori results of Sect. 3 and
the numerical results of Sect. 4), “real-time” response is obtained.
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2.4.2. The upper bound s+
N (µ)

The arguments here differ slightly from those presented in [16] for our simpler bound conditioners. We first
note from (2.1–2.5) that

ê(µ) =
∑

j∈E(µ)

αj(µ) Ã
−1

(θj)

[
F̃ −

Q∑
q=0

N∑
n=1

Θq(µ) uNn(µ) Ãq ζ̃
n

]
;

recall that Θ0 = 1. It follows that we may express ê(µ) as

ê(µ) =
∑

j∈E(µ)

αj(µ)

[
z̃j
00 +

Q∑
q=0

N∑
n=1

Θq(µ) uNn(µ) z̃j
qn

]
,

where for all j ∈ {1, . . . , M}, Ã(θj)z̃j
00 = F̃ , and Ã(θj)z̃j

qn = −Ãq ζ̃
n
, 0 ≤ q ≤ Q, 1 ≤ n ≤ N . We may thus

express our bound gap ∆N (µ) as

∆N (µ) = R̃
T
(µ) ê(µ) =

∑
j∈E(µ)

αj(µ)

[
F̃ −

Q∑
q=0

N∑
n=1

Θq(µ) uNn(µ) Ãq ζ̃
n

]T

z̃j

00 +
Q∑

q′=0

N∑
n′=1

Θq′(µ) uNn′(µ) z̃j
q′n′




=
∑

j∈E(µ)

αj(µ)

[
cj +

Q∑
q=0

N∑
n=1

Θq(µ) uNn(µ) Λj
qn

+
Q∑

q=0

N∑
n=1

Q∑
q′=0

N∑
n′=1

Θq(µ) Θq′(µ) uNn(µ) uNn′(µ) Γj
qq′nn′


 , (2.9)

where for all j ∈ {1, . . . , M}, cj = F̃
T

z̃j
00, Λj

qn = F̃
T

z̃j
qn − ζ̃

T

n
Ãq z̃j

00 for 0 ≤ q ≤ Q, 1 ≤ n ≤ N , and

Γj
qq′nn′ = −ζ̃

T

n
Ãq z̃j

q′n′ for 0 ≤ q, q′ ≤ Q, 1 ≤ n, n′ ≤ N .
The off-line/on-line decomposition is now clear. In the off-line stage we compute the z̃j

00 and z̃j
qn(M((Q +

1)N +1) Ã-solves) and the cj, Λj
qn, and Γj

qq′nn′ (predominated by M ((Q+1)2N2+(Q+1)N) Ã-inner products).
In the on-line stage we need “only” perform the sum (2.9), which requires |E(µ)|((Q + 1)2N2 + (Q + 1)N + 1)
operations. The essential point is that the on-line complexity (and storage – O(M(Q + 1)2N2)) is independent
of N . It is true, however, that the Q scaling is not too appealing, in particular for the piecewise-linear bound
conditioner (PL) for which |E(µ)| = Q+1. However, in general, for Q not too large, real-time (on-line) response
is not compromised; indeed, for Q � N , the on-line cost is dominated by the calculation of uN (O(N3) inversion
of AN ), and there is thus little (on-line) reason not to choose the more accurate PL conditioner. (As regards
on-line storage, we shall have more to say about M in Sect. 4.3.)

We note that the off-line/on-line decomposition depends critically on the “separability” of B̃
−1

as a sum of
products of parameter-dependent functions (the αj(µ)) and parameter-independent operators (the Ã

−1
(θj)). In

turn, it is the direct approximation of Ã
−1

(Θ(µ)) (i.e., by a convex combination of Ã
−1

(θj)) rather than of
Ã(Θ(µ)) (e.g., by a convex combination of Ã(θj)) that permits us to achieve this separability while simultane-
ously pursuing a “high-order” bound conditioner. In particular, a computationally efficient (on-line complexity
independent of N ) formulation of a piecewise-linear bound conditioner is not possible if we insist – as is the
case, de facto, in the “g(µ)” formulation – on direct approximation of Ã(Θ(µ)).

Of course, the purpose of higher order bound conditioners is to achieve some fixed (known, certain) accuracy –
as measured by ∆N (µ) – at lower computational effort; we must therefore understand the convergence properties
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of ∆N (µ) for our different bound conditioners. In Section 3 we present an a priori theory for ∆N (µ) for the
particular case P = Q = 1. And in Section 4 we present numerical results that corroborate our P = Q = 1
theory, and that provide empirical evidence that the method continues to perform well even for P > 1, Q > 1.
In Sections 3 and 4 we also re-address computational complexity.

3. A PRIORI theory: P = Q = 1

3.1. General framework

We first introduce an a priori framework for the general case; we then proceed to the case P = Q = 1 in
which we can obtain all the necessary estimates.

Depending on the context and application, we will either invoke the lower bound (s−N (µ)) or upper bound
(s+

N (µ)) as our estimator for s̃(µ). For example, in an optimization exercise in which s̃(µ) enters as a constraint
s̃(µ) ≤ smax (respectively, s̃(µ) ≥ smin), we will replace this condition with s+

N (µ) ≤ smax (respectively, s−N (µ)
≥ smin) so as to ensure satisfaction/feasibility even in the presence of approximation errors. The rigorous
bounding properties proven in Section 2.3 provide the requisite certainty.

But we of course also require accuracy: if, in the optimization context cited above, s+
N (µ) or s−N (µ) is not

close to s̃(µ), then our design may be seriously suboptimal . Since |s+
N (µ) − s̃(µ)| ≤ |s+

N (µ) − s−N (µ)| = ∆N (µ)
and |s̃(µ)− s−N (µ)| ≤ |s+

N (µ)− s−N (µ)| = ∆N (µ), it is the convergence of ∆N (µ) to zero as a function of N that
we must understand. In particular, from (2.8) and (2.6) we may write

∆N (µ) = s+
N (µ) − s−N (µ) = (s̃(µ) − sN (µ))

(
s+

N (µ) − s−N (µ)
s̃(µ) − sN (µ)

)

= 〈A(Θ(µ)) ẽ(µ), ẽ(µ)〉 ηN (µ),

where ẽ(µ) = ũ(µ) − uN(µ). In some sense, the first factor, 〈A(Θ(µ))ẽ(µ), ẽ(µ)〉, measures the error in the
solution ũ(µ) − uN (µ), while the second factor, the effectivity ηN (µ), measures the ratio of the actual and
estimated errors; the former should be small, while the latter should be close to unity (of course approaching
from above, as guaranteed by Prop. 2.2). As we shall see, this two-step factorization is important not only as
a theoretical construct: it is this factorization which permits us to achieve high accuracy while simultaneously
honoring our bound requirements.

The effectivity analysis is facilitated by the introduction of the following generalized eigenvalue problem:
given a µ ∈ Dµ, find (ξ̃

i
(µ) ∈ R

N , ρi(µ) ∈ R), i = 1, . . . ,N , such that

Ã(µ) ξ̃
i
(µ) = ρi(µ) B̃(µ) ξ̃

i
(µ), (3.1)

with normalization ξ̃
T

i
(µ)B̃(µ)ξ̃

i
(µ) = ci(µ) (the constant is not important). The eigenvalues are real and

positive; we denote the minimum and maximum eigenvalues as ρmin(µ) and ρmax(µ), respectively.
It is then standard to show that

ρmin(µ) = min
v∈RN

vT Ã(Θ(µ)) v

vT B̃(µ) v
= min

w∈RN

wT B̃
−1/2

(µ) Ã(Θ(µ)) B̃
−1/2

(µ) w

wT w

= min
w∈RN

wT w

wT B̃
1/2

(µ) Ã
−1

(Θ(µ)) B̃
1/2

(µ) w

= min
z∈RN

zT B̃
−1

(µ) z

zT Ã
−1

(Θ(µ)) z
≥ 1,
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where the last inequality follows from Proposition 2.2; indeed, ρmin(µ) is a lower bound for the effectivity ηN (µ),
and hence ρmin(µ) ≥ 1 is our (sufficient) condition for s+

N (µ) ≥ s̃(µ) (this can also be motivated very simply from
variational arguments). Note that in this paper we exploit monotonicity and convexity to implicitly demonstrate
ρmin(µ) ≥ 1; but the former are certainly not necessary conditions for the latter – the bounding properties of
the SP′ “min(1, θ)” g(µ) conditioner are most easily proven by direct appeal to the Rayleigh quotient expression
for ρmin(µ).

As might be expected, ρmax(µ) = maxv∈RN (vT Ã(Θ(µ)) v)/(vT B̃(µ) v) = maxz∈RN (zT B̃
−1

(µ) z)/(zT Ã
−1

(Θ(µ)) z) is an upper bound for the effectivity. We can also derive this from (2.5) and (2.7):

êT (µ) B̃(µ) ê(µ) = êT (µ) R̃(µ) = êT (µ) Ã(Θ(µ)) ẽ(µ)

≤ (ẽT (µ) Ã(Θ(µ)) ẽ(µ))1/2(êT (µ) Ã(Θ(µ)) ê(µ))1/2

≤ ρ
1/2
max(µ)(ẽT (µ) Ã(Θ(µ)) ẽ(µ))1/2 (êT (µ) B̃(µ) ê(µ))1/2;

it follows that s+
N (µ) − sN (µ) = êT (µ)B̃(µ) ê(µ) ≤ ρmax(µ) (ẽT (µ) Ã(Θ(µ)) ẽ(µ)) = ρmax(µ) (s̃(µ) − sN (µ)), or

equivalently, ηN (µ) ≤ ρmax(µ). Clearly, we wish ρmax(µ) to be as close to unity, and hence as close to ρmin(µ),
as possible: we thus see that good bound conditioners are similar to good (iterative) preconditioners – both
satisfy ρmax(µ)/ρmin(µ) ∼= 1 – except that bound conditioners must satisfy the additional spectral requirement
ρmin(µ) ≥ 1. (Of course, our bound conditioners would not be appropriate in the iterative solution context
since our off-line/on-line computational stratagem would not be relevant.)

3.2. P = Q = 1 model problem

We would thus like to understand the convergence of ∆N (µ) to zero as a function of N . Unfortunately, we
do not yet have a general theory; we can, at present, treat completely only the case P = Q = 1. In particular,
we consider the case in which A(µ) = A0 + µA1 (and hence Θ1(µ) = µ), and µ ∈ Dµ ≡ [0, µmax]. From our
continuity and coercivity assumptions, there exists a positive real constant γ1 such that

〈A1v, v〉 ≤ γ1〈A0v, v〉; (3.2)

it thus follows that 〈A(µ)v, v〉 ≤ (1 + µmaxγ1) 〈A0v, v〉. Defining ‖ · ‖2 ≡ 〈A0·, ·〉, we may thus write

∆N (µ) ≤ (1 + µmaxγ1) ‖ũ(µ) − uN (µ)‖2 ηN (µ). (3.3)

It remains to bound ‖ũ(µ) − uN (µ)‖ and ηN (µ); and, in particular, to understand the convergence rate of
‖ũ(µ) − uN(µ)‖ → 0 and ηN (µ) → 1 (or at least a constant) as N increases.

The proofs for both ‖ũ(µ) − uN (µ)‖ [11] and ηN (µ) implicate a particular “optimal” logarithmic point
distribution which we thus impose a priori . In particular, we introduce an upper bound for γ1, γ, and a “log
increment” δN = (ln(γµmax + 1))/(N − 1); we then define

µn = exp{− lnγ + (n − 1)δN} − γ−1, 1 ≤ n ≤ N, (3.4)

and take Sµ
N = {µ1, . . . , µN}. Clearly, ln(µn + γ−1) is uniformly distributed.

For our bound conditioners we shall consider SP, SP′, PC, and PL. For SP, θmin = 0; and for SP′, g(µ) =
min(1, µ) (SP′ is in fact not defined for µ = 0, and ηSP′

N (µ) will become increasingly poor as µ → 0). For PC
and PL we choose M = N and Sθ

M = {(θ1 =) µ1, . . . , (θM =) µN} = Sµ
N (“staggered” Sµ

N − Sθ
M meshes are

considered in Sect. 4). For PC, we take E(µ) = {j1(µ)} such that θ(µ) ≡ θj1(µ) ≤ µ ∈ [θj1(µ), θj1(µ)+1] (i.e.,
θ(µ) is the largest θj ∈ Sθ

M such that θj ≤ µ). Finally, for PL, E(µ) = {j1(µ), j2(µ) = j1(µ) + 1} such that
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θ(µ) ≡ Θ(µ) = µ ∈ [θj1(µ), θj2(µ)] – the vertices of our 2-simplex (i.e., segment) are the two points nearest to µ
in (Sθ

M =) Sµ
N .

Finally, in the proofs below, we shall require the following generalized eigenvalue problem: find (χ̃
k

∈
R

N , λk ∈ R), k = 1, . . . ,N , satisfying Ã1 χ̃
k

= λk Ã0 χ̃
k
, χ̃T

k
Ã0 χ̃

k
= 1. We shall order the (perforce real

and non-negative) eigenvalues as 0 < λ1 ≤ · · · ≤ λN ≤ γ1, where the last inequality follows directly from the
Rayleigh quotient and (3.2). The χ̃

k
, k = 1, . . . ,N , are of course a complete basis for R

N . (Note that for the
corresponding eigenvalue problem defined over the infinite-dimensional space Y we must anticipate, for many
A1, a continuous spectrum).

3.3. Convergence proofs

We begin by restating the main result of [11, 12] in

Lemma 3.1. For N ≥ Ncrit ≡ 1 + e ln(γµmax + 1) and all µ ∈ Dµ,

‖ũ(µ) − uN(µ)‖ ≤ (1 + µmaxγ1)1/2 ‖ũ(0)‖ e−
�

N
Ncrit

�
,

where we recall that ‖ · ‖2 = 〈A0·, ·〉·
Proof. See Theorem 3 of [11] (for c∗ = 1).

We see that we obtain exponential convergence, uniformly for all µ in Dµ. Furthermore, the convergence
threshold parameter Ncrit = 1 + e ln(γµmax + 1), and the exponential convergence rate 1/Ncrit, depend only
weakly – logarithmically – on γ1 and µmax (which together comprise the continuity-coercivity ratio). In short,
we expect extremely rapid convergence even for large parameter ranges. The sensitivity of these results to
the point distribution is not too great; in [11, 12] we consider a “log distribution on the average” with little
detriment to the final result.

To obtain a bound for ηN (µ) we need to obtain a bound for ρmax(µ). We do this in

Lemma 3.2. For all µ ∈ Dµ,

ηSP
N (µ) ≤ 1 + γ1µ

max ≡ ηSP
N (µ), (3.5)

ηPC
N (µ) ≤ eδN ≡ ηPC

N (µ), (3.6)

ηPL
N (µ) ≤ 1 +

(eδN − 1)2

4eδN
≡ ηPL

N (µ). (3.7)

Proof. We first rewrite the eigenvalue problem (3.1) as


 ∑

j∈E(µ)

αj(µ) Ã
−1

(µj)


 Ã(µ) ξ̃

k
(µ) = ρk(µ) ξ̃

k
(µ), k = 1, . . . , N.

We then claim that ξ̃
k

= χ̃
k
, and

ρk(µ) =
∑

j∈E(µ)

1 + µλk

1 + µjλk
αj(µ).
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To show this, we note that Ã(µ)χ̃
k

= (1 + µλk)Ã0χ̃k
, and thus Ã

−1
(µ)Ã0χ̃k

= (1 + µλk)−1χ̃
k
; applying first

the former and then the latter (for µ = µj) yields
 ∑

j∈E(µ)

αj(µ) Ã
−1

(µj)


 Ã(µ) χ̃

k
=


 ∑

j∈E(µ)

1 + µλk

1 + µjλk
αj(µ)


 χ̃

k
, k = 1, . . . ,N ,

as desired.
For the SP case, ρmax(µ) ≤ maxλ∈[0,γ1](1 + µλ), and our result (3.5) then directly follows. For the PC case,

we obtain

ρmax(µ) ≤ max
n∈{1,... ,N−1}

max
λ∈[0,γ1]

1 + µn+1λ

1 + µnλ
·

But (3.6) then directly follows, since from (3.2), γ ≥ γ1 ≥ λN , and (3.4),

1 + µn+1λ

1 + µnλ
= 1 +

µn+1 − µn

λ−1 + µn
≤ 1 +

µn+1 − µn

γ−1 + µn

= 1 +
exp{− lnγ + nδN} − exp{− lnγ + (n − 1)δN}

exp{− lnγ + (n − 1)δN}
= eδN .

Turning now to our piecewise-linear bound conditioner, we can write

ηN (µ) ≤ ρmax(µ) ≤ max
n∈{1,... ,N−1}

max
λ∈[0,γ1]

max
τ∈[0,1]

Fn(τ, λ),

where, for n = 1, . . . , N − 1,

Fn(τ, λ) = (1 + (µn + τ(µn+1 − µn))λ)
[

1 − τ

1 + µnλ
+

τ

1 + µn+1λ

]
·

It is a simple matter to show that Fn(τ, λ) is maximized at τ = 1/2 (independent of n and λ), and that

Fn

(
1
2
, λ

)
= 1 +

1
4

(µn+1 − µn)2λ2

(1 + µn+1λ)(1 + µnλ)
·

The desired result (3.7) then directly follows, since from (3.2), γ ≥ γ1 ≥ λN , and (3.4),

(µn+1 − µn)2λ2

(1 + µn+1λ)(1 + µnλ)
≤ (µn+1 − µn)2

(γ−1 + µn+1)(γ−1 + µn)

=
(exp{− lnγ + nδN} − exp{− lnγ + (n − 1)δN})2
(exp{− lnγ + nδN})(exp{− lnγ + (n − 1)δN})

=
(eδN − 1)2

eδN
·

This concludes the proof.
We note that, for both the PC and PL conditioner, ηN (µn) = ∆N (µn)/(s̃(µn) − sN (µn)) = 0/0, n =

1, . . . , N − 1, since ẽ(µ) = ê(µ) = 0 for µ = µn, n = 1, . . . , N − 1 (and, in fact, for n = N for PL). But if we
expand R̃(µn + ε) = ε R̃µ(µn)+ · · · , then it is a simple matter to show that ρmin(µn + ε)+O(ε) ≤ ηN (µn + ε) ≤
ρmax(µn + ε) + O(ε), and hence that ηN (µn) = 1 since ρmin(µn) = ρmax(µn) = 1, n = 1, . . . , N − 1.
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We see, first, how both the PC and PL proofs directly implicate the log point distribution – we wish to
keep (µn+1 − µn)/µn+1 roughly constant. (Note the appearance of the log in the proof of Lem. 3.1 is not
quite as transparent.) Second, we see that, as expected, the PC and PL bound conditioners yield linear
(exp(δN )−1 ∼ δN ∼ O(1/(N−1)) as N → ∞) and quadratic ((exp(δN )−1)2/ exp(δN ) ∼ (δN )2 ∼ O(1/(N−1)2)
as N → ∞) convergence to unity, respectively. Third, we see that, even for modest N , our PC and certainly
PL bound conditioners should yield ηN (µ) close to unity – even for large γ and µmax. Fourth, and finally, we
can further improve (at no additional on-line cost) the piecewise-linear conditioner by better choice of Sθ

M : in
particular, a staggered Sµ

N − Sθ
M promises better effectivities; this is demonstrated empirically in Section 4.

We can now prove (say, for the PL conditioner)

Proposition 3.3. For N ≥ Ncrit ≡ 1 + e ln(γµmax + 1), our piecewise-linear (PL) bound conditioner yields

∆N (µ) ≤ (1 + µmaxγ1)2 ‖ũ(0)‖2 e−( 2N
Ncrit

)

{
1 +

1
4

(
e

ln(γµmax+1)
N−1 − 1

)2
}

(3.8)

for all µ ∈ Dµ.

Proof. The result directly follows from (3.3), Lemmas 3.1 and 3.2, and eδN > 1.

Similar results apply to the SP and PC cases. We note that the only N dependence in (3.8), through ‖ũ(0)‖, is
readily removed, thus demonstrating stability with respect to the fineness of the (finite element) truth approx-
imation (i.e., the limit N → ∞).

We can now understand the importance of the two-step approximation of Section 2.2. In particular, for
(say) PL, we can easily construct an upper bound for s̃(µ) directly as

s+,direct
N (µ) = F̃

T


 ∑

j∈E(µ)

αj(µ) Ã
−1

(θj)


 F̃ , (3.9)

which certainly satisfies s+, direct
N (µ) ≥ s̃(µ) by virtue of (1.6) and Proposition 1.2. However, the convergence

rate of this combined “predictor-and -bound” will be only N−2, versus the e−( 2N
Ncrit

)
N−2 convergence rate of

our “predictor-then-bound”. The latter performs much better than the former because our perforce lower-order
bound construction is not for the output itself , but rather for the estimate of the error in the output ; whereas
a (say) 20% error in the output is not acceptable, a 20% error in the (exponentially small) error in the output
is acceptable. In essence, it is best to separate the accuracy and bounding requirements and approximations.

We note also that (3.9) is, in fact, a trivial application of convexity:

s+, direct
N (µ) = F̃

T


 ∑

j∈E(µ)

αj(µ) Ã
−1

(θj)


 F̃ =

∑
j∈E(µ)

αj(µ)F̃
T

Ã
−1

(θj) F̃ =
∑

j∈E(µ)

αj(µ) s̃(µj);

we are really just linearly interpolating the (convex) output. In contrast,

∆N (µ) = R̃
T
(µ)


 ∑

j∈E(µ)

αj(µ) Ã
−1

(θj)


 R̃(µ)

is not just interpolating the error (which is not convex, and in fact is zero at the θj = µj); rather, we are truly
interpolating the inverse with subsequent application to µ-dependent data (the residual).
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4. Numerical results

4.1. Example I: P = Q = 1

We consider −uxx + µu = 0 on a domain Ω ≡ ]0, 1[ with a Neumann boundary condition ux = −1 at
x = 0 and a Dirichlet boundary condition u = 0 at x = 1; our output of interest is s(µ) = u(µ)|x=0 for
µ ∈ Dµ ≡ [0.01, 104]. Our problem can then be formulated as: given a µ ∈ Dµ, find s(µ) = 〈F, u(µ)〉, where
u(µ) ∈ Y = {v ∈ H1(Ω) | v|x=1 = 0} is the solution to (1.1); for our example,

〈A(Θ(µ))w, v〉 =
∫ 1

0

vx wx︸ ︷︷ ︸
〈A0w,v〉

+ µ︸︷︷︸
Θ1(µ)

∫ 1

0

v w︸ ︷︷ ︸
〈A1w,v〉

, ∀ w, v ∈ Y,

〈F, v〉 = v|x=0 , ∀ v ∈ Y,

P = Q = 1, and Θ1(µ) = Θ(µ) = µ. We choose for our truth approximation space Ỹ a linear finite element
space of dimension N = 1000.

We choose for our “µ” sample, Sµ
N , the logarithmic point distribution of Section 3.2. We present in Table 1

the error in our predictor (and lower bound), sN (µ) (= s−N (µ)), as a function of N , for µ = 7, 500. We observe
the exponential convergence implied by (2.6) and Lemma 3.1.

Table 1. Error and effectivities (for SP′, SP, PC, and PL) as a function of N for a represen-
tative point µ = 7, 500.

N (s̃(µ) − sN (µ))/s̃(µ) ηSP′
N (µ) − 1 ηSP

N (µ) − 1 ηPC
N (µ) − 1 ηPL

N (µ) − 1

2 9.55 × 10−3 30.44 32.81 32.81 8.10
3 5.78 × 10−3 25.17 26.57 6.89 1.64
4 2.51 × 10−3 18.68 19.27 2.81 0.64
5 9.19 × 10−4 14.19 14.44 1.63 0.36
6 2.98 × 10−4 11.09 11.21 1.10 0.24
7 8.77 × 10−5 8.91 8.97 0.81 0.17
8 2.36 × 10−5 7.33 7.37 0.63 0.13
9 5.84 × 10−6 6.15 6.18 0.51 0.10
10 1.33 × 10−6 5.25 5.27 0.41 0.08

We now examine the effectivity for the SP′, SP, PC, and PL bound conditioners described in Section 3.2.
For PC and PL we consider two different θ-samples: a non-staggered grid for which M = N and θn = µn, n =
1, . . . , N (and hence Sθ

M = Sµ
N ); and a staggered grid with M = N +1, θ1 = µ1, θN+1 = µN , and ln(θm +γ−1) =

1
2

[
ln(µm−1 + γ−1) + ln(µm + γ−1)

]
, m = 2, . . . , N . All of our results are for a particular “representative” point

µ = 7, 500.
We begin with the results for the non-staggered grid. We present in Table 1 ηSP′

N (µ)−1, ηSP
N (µ)−1, ηPC

N (µ)−1,
and ηPL

N (µ) − 1 as a function of N . The conditioners SP and SP′ behave in roughly the same fashion (since
µ � 1); for neither SP′ nor SP does the effectivity converge to unity as N → ∞. The PC conditioner performs
considerably better than SP′ or SP; and clearly ηPC

N (µ) → 1 as N → ∞, roughly as 1/(N − 1) (see below). The
PL conditioner is even better than PC; and ηPL

N (µ) → 1 as N → ∞ now roughly as 1/(N − 1)2 (see below).
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Table 2. Ratio of the effectivities and our a priori upper bound for the effectivities as a
function of N for PC and PL.

N
(ηPC

N (µ)−1)
(ηPC

N (µ)−1)
(ηPL

N (µ)−1)
(ηPL

N (µ)−1)
2 247.09 250.22

3 12.92 13.42

4 6.79 7.08

5 5.20 5.28

6 4.57 4.44

7 4.29 3.95

8 4.17 3.64

9 4.16 3.43

10 4.20 3.29

To better ascertain the convergence rates, we present in Table 2
(
ηPC

N (µ) − 1
)
/
(
ηPC

N (µ) − 1
)

and
(
ηPL

N (µ) − 1
)
/
(
ηPL

N (µ) − 1
)

as a function of N . We observe that our a priori bounds for the PC and PL
conditioners are relatively precise as regards rate, though clearly somewhat pessimistic as regards amplitude.

We now turn to the results for the staggered grid. In particular, we present in Table 3 (ηPC
N (µ)−1)stag/(ηPC

N (µ)−
1)non-stag and (ηPL

N (µ)−1)stag/(ηPL
N (µ)−1)non-stag as a function of N . As expected, the extra “zeroes”associated

with the staggered arrangement yield both better effectivities for fixed N , and, it would appear, more rapid
convergence of the effectivity to unity as N increases.

Table 3. Ratio of the effectivities for a non-staggered and staggered grid as a function of N
for PC and PL.

N
(ηPC

N (µ)−1)stag

(ηPC
N (µ)−1)non-stag

(ηPL
N (µ)−1)stag

(ηPL
N (µ)−1)non-stag

2 0.30206 0.29661

3 0.25996 0.24534

4 0.29905 0.27985

5 0.31683 0.29775

6 0.32087 0.30371

7 0.31567 0.30117

8 0.30399 0.29154

9 0.28700 0.27664

10 0.26546 0.25697

If we were to perform a “minimum on-line complexity at fixed error (∆N (µ))” analysis, no doubt (staggered)
PC would be preferred. (In practice, of course, we must also consider the off-line complexity and on-line storage.)
In particular, given the rapid convergence of ∆N (µ) to zero as N increases, NPC

ε (µ) ≡ {N | ∆PC
N (µ) = ε} will

be only very slightly larger than NPL
ε (µ) ≡ {N |∆PL

N (µ) = ε}: the additional “N” work for PC will thus be less
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than the additional “Q” work for PL. (Recall that for SP′, SP, and PC (respectively, PL) the on-line complexity
to compute s+

N (µ) is roughly 4N2 (respectively, 8N2).)

4.2. Example II: P = Q = 2

We now consider −uxx + µ1u = 0 in a domain Ω ≡ ]0, 1[ with a Neumann boundary condition ux = −1 at
x = 0 and a Robin boundary condition ux + µ2u = 0 at x = 1; our output of interest is s(µ) = u(µ)|x=0 for
µ = (µ1, µ2) ∈ Dµ ≡ [1, 1000] × [0.001, 0.1]. Our problem can then be formulated as: given a µ ∈ Dµ, find
s(µ) = 〈F, u(µ)〉, where u(µ) ∈ Y = H1(Ω) is the solution to (1.1); for our example,

〈A(Θ(µ))w, v〉 =
∫ 1

0

vxwx︸ ︷︷ ︸
〈A0w,v〉

+ µ1︸︷︷︸
Θ1(µ)

∫ 1

0

v w︸ ︷︷ ︸
〈A1w,v〉

+ µ2︸︷︷︸
Θ2(µ)

(v w)|x=1︸ ︷︷ ︸
〈A2w,v〉

, ∀ w, v ∈ Y,

〈F, v〉 = v|x=0 , ∀ v ∈ Y,

P = Q = 2, and Θq(µ) = µq, q = 1, 2. We choose for our truth approximation space Ỹ a linear finite element
space of dimension N = 1000.

We choose for our “µ” sample, Sµ
N , a random bi-logarithmic point distribution [16]. We present in Table 4

the error in our predictor (and lower bound), sN (µ) (= s−N (µ)), as a function of N for µ = (200, 0.06). We
observe that very rapid convergence is still obtained even for P > 1.

Table 4. Error and effectivities (for SP′, SP, PC, and PL) as a function of N for µ = (200, 0.06).

N (s̃(µ) − sN (µ))/s̃(µ) ηSP′
N (µ) − 1 ηSP

N (µ) − 1 ηPC
N (µ) − 1 ηPL

N (µ) − 1

3 3.73 × 10−3 191.26 19.68 4.52 1.57
4 5.30 × 10−4 92.17 8.30 3.21 1.15
5 2.77 × 10−5 70.80 5.62 2.64 0.96
6 3.60 × 10−8 49.42 2.96 1.85 0.69
7 2.53 × 10−9 31.27 1.01 0.60 0.10
8 5.75 × 10−10 24.68 0.57 0.40 0.05

We now examine the effectivity for SP′, SP, PC, and PL. We present results for a non-staggered mesh, M = N
and Sθ

M = Sµ
N ; note, however, that a staggered mesh does, indeed, again improve the results, in particular for

PC. For our numerical tests, we consider µ = (200, 0.06). There are often several points in Sθ
M such that θj ≤ µ

– we choose (for PC) the point which yields the lowest upper bound; and there are often several simplices
(triangles) in Sθ

M that contain µ – we choose (for PL) the simplex that yields the lowest upper bound.
We present in Table 4 ηSP′

N (µ)−1, ηSP
N (µ)−1, ηPC

N (µ)−1, and ηPL
N (µ)−1 as a function of N . The conditioner

SP′ now performs very poorly due to the small value of µ2; however, SP performs quite well, at least for larger N .
As in our P = Q = 1 example, PC is better than SP, in particular for smaller N ; and PL is considerably better
than PC, in particular for larger N . We note that, due to the usual curse of dimensionality,

∣∣θ̄(µ) − Θ(µ)
∣∣

for PC, and the size of our simplex for PL, will grow (for fixed M) as P = Q increases; the good effectivities of
Table 4 are thus somewhat surprising. Future tests must consider “worst case” effectivities for all µ ∈ Dµ.

As for P = Q = 1, the “minimum on-line complexity at fixed error (∆N (µ))” analysis no doubt again
prefers PC; PL (which scales as 27N2) is now even more expensive relative to PC (which scales as 9N2).
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4.3. Example III: P = 1, Q = 2; “θ patterns”

There are many cases, in particular involving geometric variations, in which Q is larger than P . If this implies
M (much) larger than N , the off-line complexity and on-line storage for PC and PL could become prohibitive.
However, since Dθ is the image of Dµ under Θ(µ), Dθ will be a low-dimensional manifold in R

Q
+ – and we can

thus hope that M = Const(independent of N)N will suffice. We present here an example which supports this
claim.

We consider −∇2u = 1
µ in a domain Ω0 ≡ ]0, 1[ × ]0, µ[ with homogeneous Dirichlet conditions on the

boundary, Γ0; our output of interest is s(µ) = 1
µ

∫
Ω0

u(µ) for µ ∈ Dµ ≡ [µmin, 1] = [0.1, 1]. Our problem can
then be formulated (after affine mapping Ω0 → Ω = ]0, 1[ × ]0, 1[ ) as: given a µ ∈ Dµ, find s(µ) = 〈F, u(µ)〉,
where u(µ) ∈ Y = H1

0 (Ω) = {v ∈ H1(Ω) | v|Γ = 0} is the solution to (1.1); for our example,

〈A(Θ(µ))w, v〉 = µmin

∫
Ω

vxwx + vywy︸ ︷︷ ︸
〈A0w,v〉

+ (µ − µmin)︸ ︷︷ ︸
Θ1(µ)

∫
Ω

vxwx︸ ︷︷ ︸
〈A1w,v〉

+
(

1
µ
− µmin

)
︸ ︷︷ ︸

Θ2(µ)

∫
Ω

vywy︸ ︷︷ ︸
〈A2w,v〉

, ∀w, v ∈ Y,

〈F, v〉 =
∫

Ω

v, ∀v ∈ Y,

P = 1, Q = 2, Θ1(µ) = µ − µmin, and Θ2(µ) = 1
µ − µmin.

We take for Sµ
N our usual logarithmic distribution over the interval Dµ. We present in Table 5 the error in

our predictor (and lower bound), sN (µ) (= s−N (µ)), as a function of N for µ = 0.11. We again observe very
rapid convergence.

Table 5. Error and effectivities (for SP′, SP, PC, and PL) as a function of N for µ = 0.11.

N (s̃(µ) − sN (µ))/s̃(µ) ηSP′
N (µ) − 1 ηSP

N (µ) − 1 ηPC
N (µ) − 1 ηPL

N (µ) − 1

2 1.06 × 10−4 98.12 2.05 2.05 0.18
3 5.43 × 10−5 141.27 2.53 1.37 0.12
4 1.12 × 10−5 29.47 1.37 0.73 0.05
5 1.48 × 10−6 146.34 2.60 0.75 0.06
6 6.06 × 10−7 71.22 1.48 0.49 0.04
7 1.61 × 10−7 136.59 3.32 0.61 0.05
8 1.91 × 10−8 41.35 1.25 0.35 0.02

We now construct our “θ” sample, Sθ
M . We first note that the µn ∈ Sµ

N map to the “◦” points on the curve
Dθ of Figure 1. For PC we consider M = N − 1, and take Sθ

M to be the “•” points of Figure 1; for any
µ ∈ Dµ(⇒ Θ(µ) ∈ Dθ) there is a unique θj ∈ Sθ

M such that θj ≤ Θ(µ). For PL we consider M = 2N − 1,
and take Sθ

M to be the “◦” points and “•” points of Figure 1; for any µ ∈ Dµ(⇒ Θ(µ) ∈ Dθ), E(µ) is then
chosen such that the resulting simplex is the (unique) right triangle containing Θ(µ). We conduct our tests for
µ = 0.11, which we mark as “∗” in Figure 1; the associated PL simplex is indicated in Figure 1 as dashed lines.

We present in Table 5 ηSP′
N (µ) − 1, ηSP

N (µ) − 1, ηPC
N (µ) − 1, and ηPL

N (µ) − 1 as a function of N . As for the
previous example, SP′ performs poorly; SP, PC, and PL all perform reasonably well, with PC better than SP,
and PL better than PC. To the extent that this problem is representative, we conclude that M = Const N is
indeed sufficient even for Q > P .
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Figure 1. Points in Dθ
box which serve to construct Sθ

M for PC and PL.

It is admittedly disappointing that, even for this last example, PC is probably preferred over PL. However,
there are problems for which s̃(µ) − sN (µ) will converge more slowly with N , in which case PL will perhaps
be redeemed: N will be larger, and hence the “N work” (to find uN (µ)) may dominate the “Q work” (to find
∆N (µ)); and NPC

ε (µ)/NPL
ε (µ) will be larger, and hence the “N work” for PC may dominate the “N work”

for PL. In any event, we have provided here a general and unified framework for the construction and evaluation
of a wide variety of reduced-basis bound conditioners; future work must apply this framework to a more realistic
suite of problems.

Many of the ideas in this paper originate in our joint work with Professor Yvon Maday of University of Paris VI, and
Dr. Gabriel Turicini of ASCI-CNRS Orsay and INRIA Rocquencourt. We also thank Dr. Christophe Prud’homme of
MIT, Dr. Luc Machiels of McKinsey Corporation, and Professor Jaime Peraire of MIT for helpful discussions on reduced-
basis methods and a posteriori error estimation. This work was supported by the Singapore-MIT Alliance, by DARPA
and AFOSR under Grant F49620-01-1-0458, by DARPA and ONR under Grant N00014-01-1-0523 (Subcontract 340-
6218-3), and by NASA under Grant NAG-1-1978. This work was performed while D.R. was in residence at University
of Paris VI, partially supported by a Chateaubriand Fellowship.
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