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Abstract 

 
 

Circadian rhythms are daily cycles of physiological functions which oscillate under the 

control of the circadian clock in order to coincide with the temporal demands of the 

light/dark cycle of the day. The importance of the integrity of the circadian clock in 

health and disease has emerged in recent years; perturbations of the circadian clock are 

associated with an increased risk of malignancy and metabolic syndrome. In this study, 

I aimed to examine whether RNAi modification of Bmal1, a core component of the 

circadian clock, could be used to improve wound healing. 

Chronic wounds are a global problem, in part caused by diabetes and ageing. Currently 

there is no effective pharmaceutical treatment; wound care by specialist nurses and 

physical methods such as compression bandages are the main course of action. 

Originally, the aim was to use DNA antisense to transiently knock down Bmal1.  It 

became clear that this was having a toxic effect so several other approaches to knocking 

down Bmal1 expression were attempted. Ultimately, I used a lentiviral vector to 

transduce cells with an shRNA construct and also generated a Bmal1:luciferase reporter 

cell line to measure the oscillations of Bmal1 in vitro.  Experiments using the reporter 

cells demonstrated that commonly used methods to synchronise the circadian clock in 

mammalian cells confirmed that these measures are unnecessary. The generation of 

cells with Bmal1 knockdown was only partially successful; however, an experiment 

using a heterogeneous population of Bmal1 knockdown cells indicates that this 

intervention reduces the migration rate of these cells in a scratch wound assay but 

further experiments are required to definitively determine the effects once a stable 

knockdown cell line has been established. If these preliminary results are true then the 

knockdown of Bmal1 is not likely to have a beneficial effect on wound healing.  
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 The circadian clock 1.1.

Circadian rhythms control aspects of one's daily life such as the sleep/wake cycle, 

diurnal fluctuation in hormones relating to metabolic control and body temperature 

amongst other numerous examples.  

 

(Hastings, O’Neill, & Maywood, 2007) 

Figure 1.1 Circadian rhythms are seen in multiple aspects of human 

physiology.  

As shown above, the circadian clock controls daily fluctuations in body temperature, micturition 

volume, blood flow and blood pressure (left hand graphs) and daily fluctuations in multiple 

hormones (right hand graphs). 

 

There are numerous reviews on the subject (R. Y. Moore, 1997; Ripperger & Schibler, 

2001; Reppert & Weaver, 2002; Takahashi, Hong, Ko, & McDearmon, 2008; Pevet & 

Challet, 2011). A circadian clock that regulates biological processes is found in all 

organisms, including plants, bacteria, insects and mammals. See Figure 1.1  The work 
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‘circadian’ derives from ‘circa’ meaning around and ‘dies’ meaning day. For a 

biological rhythm to be deemed circadian it must repeat approximately every 24 hours,  

must persist in the absence of external cues (for example, daylight), must be entrainable, 

i.e. adaptable according to environmental conditions, for example they can be 

synchronised with the local time. An example of this phenomenon is the sleep-wake 

cycle. When one travels across time zones, the sleep-wake cycle adjusts to the local 

time over the course of several days.  

 

In mammals the circadian clock is regulated primarily by the Zeitgeber (meaning ‘time-

giver’ in German) daylight. There are many other factors that can influence circadian 

rhythms, such as time of feeding and exercise, but daylight has the greatest influence. 

Typically the effect on circadian rhythms in constant dark is that the period (the unit of 

repeating circadian patterns) lengthens. This is called 'free-running'. 

 

Light is detected by melanopsin (Hattar et al., 2002) in photo-sensitive retinal ganglion 

cells which send photic information via the retino-hypothalamic tract (R. Y. Moore & 

Lenn, 1972) to the suprachiasmatic nuclei (SCN) which act as the central circadian 

clock. See Figure 1.2. Light dependent synchronisation is the same in diurnal and 

nocturnal animals (Mrosovsky, Edelstein, Hastings, & Maywood, 2001; Caldelas, 

Poirel, Sicard, Pvet, & Challet, 2003). The inputs to the SCN are both photic and non-

photic; daylight is detected by the photosensitive cells of the retina which send a signal 

to the ventrolateral part of the SCN via the retinohypothalamic tract (RHT) (R. Y. 

Moore & Lenn, 1972). This causes the release of glutamate and pituitary adenylate 

cyclase-activating protein which in turn induce the expression of clock genes (Hannibal 

et al., 1997). The main intracellular pathway for this is via the extracellular signal-

regulated kinase pathway (ERK). Activation of ERK causes the phosphorylation of 
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cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) 

which then binds to cAMP response elements in the promoters of genes such as Per1 

and Per2 (Period transcripts) and activates their transcription (Kornhauser, Mayo, & 

Takahashi, 1996; Obrietan, Impey, & Storm, 1998; Grewal, York, & Stork, 1999; 

Coogan & Piggins, 2003). These genes are only inducible when light hits the retina 

during the dark phase, resulting in the periodic phase either advancing or being delayed 

in mammals; this is called 'resetting'. This effect is not seen in mice with Per1/Per2 

mutations (Akiyama et al., 1999). 

Light derived signals also reach the SCN via the intergeniculate leaflets (IGL) and along 

the geniculo-hypothalamic tract (GHT) (R. Y. Moore & Card, 1994). This occurs 

slightly after the RHT signal, so it may modulate the response to light. The IGL is also 

stimulated by non-photic signals via dorsal raphe nucleus (DRN) and integrates these 

signals to the SCN. Non-photic cues such as activity/exercise are sent to the SCN from 

the DRN via serotonin signalling (Kiss, Leranth, & Halasz, 1984; van den Pol & 

Tsujimoto, 1985). 

 
 
(Dibner, Schibler, & Albrecht, 2010) 

 

Figure 1.2 The regulatory pathways of central circadian clock 
 
Photo-sensitive retinal ganglion cells detect light and stimulates the suprachiasmatic nuclei via 

the retino-hypothalamic tract to regulate the central circadian clock 



   

19 

 

 

  

The SCN sends messages to the body by several means; in the brain there are various 

efferents which terminate in different areas but there must also exist a paracrine element 

to the signalling as projections of SCN neurons are not required for establishment of 

locomotor activity rhythms and additionally transplanted SCN tissue can restore 

rhythms in many areas of the brain (Silver, LeSauter, Tresco, & Lehman, 1996).  

The SCN is also thought to control hormone rhythms such as melatonin and 

corticosterone, i.e. hormone release from the pineal gland and the adrenal cortex. The 

sensitivity of the adrenal cortex to adrenocorticotropic hormone (ACTH) changes 

throughout the day which affects the amount of corticosterone secreted (Buijs et al., 

1999; Kaneko, Hiroshige, Shinsako, & Dallman, 2012). See Figure 1.3. Exposure to 

light affects gene expression in both the adrenal gland and liver (Ishida et al., 2005). 

 

In the SCN the phase of clock expression is the same in diurnal and nocturnal animals 

due to its dependence of light cues for synchronisation but the phase of circadian gene 

expression varies greatly in the peripheral tissues of diurnal and nocturnal animals (i.e. 

the downstream effects of SCN signalling differ in diurnal vs. nocturnal animals.) 

(Vosko, Hagenauer, Hummer, & Lee, 2009) 

  

Another way in which the circadian clock can be entrained is via timing of feeding. If 

food availability is limited to a small window within the day the circadian rhythms 

adjust to correlate with food availability (Stephan, 2002). On a molecular level, the 

peripheral circadian clocks share the same regulatory proteins as found in the SCN (K 

Yagita, Tamanini, van Der Horst, & Okamura, 2001) . Up to 10% of all genes are 

expressed in a rhythmical fashion that indicates that they are under circadian control. 

Feeding related synchronisation is independent of the SCN - it occurs even in animals 

with ablated SCN and conversely it does not shift the timing phases within the SCN. 



   

20 

 

Even double CLOCK knockout animals can be entrained with food (Oishi, Miyazaki, & 

Ishida, 2002). Restricted feeding results in an altered glucocorticoid rhythm (this is 

usually under SCN control).  

 

Restricted feeding results in a reduction in nocturnal core temperature (Damiola, 2000). 

If the incubation temperature of cultured fibroblasts is lowered correspondingly, it 

enables the pattern of circadian oscillations to persist for longer following 

synchronisation (Welsh, Yoo, Liu, Takahashi, & Kay, 2004; S. A. Brown et al., 2008). 

In mice, elevating the night-time housing temperature causes a change in circadian gene 

expression in the liver but not the SCN, indicating that this is another modulator of 

peripheral circadian clocks (Cailotto et al., 2009). Peripheral circadian clocks can be 

altered locally via sympathetic nerve ablation in the pineal gland or liver which causes 

the cessation of Per gene expression. The reverse effect can be achieved using 

adrenergic agonists, indicating that some of the control of peripheral circadian 

rhythmicity is under the influence of the sympathetic nervous system (Cailotto et al., 

2009).                                        
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(Dibner et al., 2010)  

Figure 1.3 SCN signalling to the peripheral circadian clocks 
The central clock controls the peripheral circadian clocks via neural, endocrine and  

paracrine signalling. 

  



   

22 

 

 Core circadian clock genes 1.2.

The molecular clocks within the SCN neurons consist of a transcription-translation 

feedback loop. The 2 core genes are Clock and Bmal1 which encode the transcription  

factors CLOCK (circadian locomotor output cycles Kaput) (Vitaterna et al., 1994) and 

Bmal1 (Brain and muscle Aryl hydrocarbon receptor nuclear translocator-like protein 

(ARNTL)). These transcription factors heterodimerise and bind to E-box sequences, 

where they activate the transcription of Period and Cryptochrome genes. See Figure 

1.4. Alternatively CLOCK homologues, such as NPAS2 bind to Bmal1 to perform the 

same function (Debruyne et al., 2006; Asher & Schibler, 2006). In turn, the Period (Per) 

and Cryptochrome (Cry) proteins form oligomers which translocate to the nucleus 

where they inhibit CLOCK:Bmal1 induced transcription (Froy, Chang, & Reppert, 

2002; Reppert & Weaver, 2002). All of the clock genes undergo 24 hour oscillations in 

mammals with the exception of CLOCK (Dunlap, 1999).  

 

Bmal1 is also negatively regulated by reverse erythroblastosis virus α (REV-ERBα) 

(Preitner et al., 2002) and positively regulated by retinoic acid receptor-related orphan 

receptors (RORα and RORγ) via ROR response elements (Sato et al., 2004). See 

Figure 1.4. The function of the circadian clock depends on Bmal1 to maintain normal 

oscillations. Unlike other core components that exist in paralog pairs (e.g. Per1 & Per2), 

Bmal1 knockdown also affects its paralog, Bmal2, so the ablation of Bmal1 alone 

serves to disrupt the circadian clock (Shi et al., 2010). CLOCK can be functionally 

replaced by Npas2 but not in the periphery (DeBruyne, Weaver, & Reppert, 2007). In 

2000, Bunger et al. demonstrated that Bmal1
-/-

 mice lack circadian rhythms. 
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Figure 1.4 Core circadian genes  after (Froy, 2011)  
The oscillations of core circadian genes are regulated via a double negative feedback loop; the 

CLOCK:Bmal1 heterodimer activates the transcription of Period and Cryptochrome proteins 

which in turn inhibit their own transcription. Rev-erb and Rors negatively feedback onto their 

transcription  via a similar mechanism. 

 

 

 Circadian clocks and the skin 1.3.

The core circadian genes have been shown to be expressed in several types of mouse 

skin (dorsal, flank, vibrissa) oscillating in a circadian manner under both light/dark and 

dark/dark conditions in both keratinocytes and fibroblasts. This rhythmicity is under the 

control of the central clock in the SCN; external light has no impact on the expression 

levels of the core circadian proteins (Bjarnason et al., 2001; Tanioka et al., 2009).  

 

The clock proteins have also been shown to be expressed in primary skin cells and 

fibroblast cell lines (W. Brown, 1991; Balsalobre, ADamiola & Schibler, 1998; 

Kazuhiro Yagita & Okamura, 2000; Zanello, Jackson, & Holick, 2000; K Yagita et al., 

2001; Nagoshi, Saini, Bauer, Laroche, Naef, Schibler, et al., 2004; Nagoshi, Brown, 

Dibner, Kornmann, & Schibler, 2005; S. A. Brown et al., 2005; Menger et al., 2007). In 

immortalised fibroblast cell lines the clock has been shown to be out of phase in 
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neighbouring cells but synchronization can be achieved by the addition of the 

glucocorticoid agonist dexamethasone (Ripperger & Schibler 2001,  Balsalobre et al. 

2000) . Synchronization can also be induced by stimulation of the cells with glucose 

(Hirota et al., 2002); high serum treatment (Balsalobre, ADamiola & Schibler, 1998; 

Nagoshi et al., 2005; Osland et al., 2011); forskolin (K Yagita & Okamura, 2000); 

prostaglandin E (Tsuchiya, Minami, Kadotani, & Nishida, 2005) even merely changing 

the culture medium has been said to induce some synchronicity of clock protein 

expression (Yamazaki, 2000). The same peripheral clock also exists in human skin 

(Bjarnason et al., 2001; Sandu et al., 2012) however, the outputs are at the opposite 

phases as mice are nocturnal (W. Brown, 1991). 

 

Bmal1 has been shown to be of key importance in the circadian regulation of cell 

proliferation in skin; In a Bmal1 homozygous knockout mouse, there was shown to be 

constantly elevated epidermal cell proliferation. This was demonstrated to be specific to 

Bmal1 intrinsic to keratinocytes via the creation of a keratinocyte-only Bmal1 selective 

deletion model which proved that Bmal1 is fundamental for the “time-of-day 

dependant” proliferation of keratinocytes during cell division in the epidermis 

(Geyfman et al., 2012). The same authors also demonstrated that the sensitivity to UVB 

induced DNA damage is highest late at night in mice during the maximal S phase (i.e. 

when it would be dark). This is the opposite in humans – S phase in the epidermis being 

in the afternoon and possibly explains the susceptibility of humans to skin cancers 

(Gaddameedhi, Selby, Kaufmann, Smart, & Sancar, 2011a; Geyfman et al., 2012).  

 

Janich et al (2011) used a Bmal1
-/-

 mouse model to investigate the effects of the 

circadian clock on the skin. They found that these mice had reduced levels of epidermal 

differentiation genes resulting in the reduced activation of basal inter-follicular 
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epidermal cells and consequently inefficient epidermal self-renewal and concomitant 

accumulation of terminally differentiated corneal cells at 5 months old.  

 Wound Healing 1.4.

Normal wound healing is a process involving four distinct but overlapping phases (See 

Figure 1.4); initially there is haemostasis; damage to cells in the wound results in the up 

regulation of stress signal pathways which is induced by the phosphorylation cascade of 

signalling molecules. (Kobayashi, Aiba, Yoshino, & Tagami, 2003) This results in 

changes to cell survival, metabolism and gene expression. Damaged cells leak 

endogenous molecules, such as damage-associated molecular pattern molecules. 

(Bianchi, 2007) 

 

The first response to injury is clotting; platelets are activated and aggregate to form an 

insoluble fibrin clot. This arrests the bleeding and also provides a temporary matrix for 

the regrowth of the wound bed. Growth factors attach to the clot and cells migrate 

through it to initiate the healing process. (Nurden, Nurden, Sanchez, Andia, & Anitua, 

2008) The platelets and serum in the clotted blood also release growth factors to 

enhance the healing process. (Bahou & Gnatenko, 2004) 

 

There is subsequently an inflammatory phase where there is an influx of neutrophils to 

remove bacteria and damaged tissue via phagocytosis. Mechanical signals caused by the 

wound and electrical signals resulting from disrupted membranes may also be cues to 

induce healing (Nuccitelli, Nuccitelli, Ramlatchan, Sanger, & Smith; Kippenberger et 

al., 2000). Toll-like receptors on the surface of macrophages recognize any invading 

pathogens and evoke an inflammatory response (Shaykhiev, Behr, & Bals, 2008). 

Damaged blood vessels leak leucocytes (predominantly neutrophils) into the wound and 

immune cells within the wound are activated (Noli & Miolo, 2001). 
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Growth factor signals then attract more neutrophils and macrophages to the wound site. 

The inflammatory cells kill micro-organisms and clear up cellular debris (Dovi, 

Szpaderska, & DiPietro, 2004; M.-H. Kim et al., 2008). The nitric oxide and reactive 

oxygen species that they generate help to exert an effect on wound repair, but must be 

cleared by catalytic enzymes to prevent tissue damage (Schäfer & Werner, 2008). The 

inflammatory cytokines also help to regulate angiogenesis. Angiogenesis is the 

sprouting of wound edge capillaries into the wound bed where they form a micro-

vasculature within the granulation tissue to permit the delivery of nutrients and oxygen 

(Tonnesen, Feng, & Clark, 2000).  

 

The dermis is repaired via formation of granulation tissue secondary to invasion of 

fibroblasts which secrete a collagen matrix (Hinz, 2007). These fibroblasts are derived 

from the wound edge, fibrocytes in circulation and bone marrow progenitor cells (Abe 

et al., 1998). Some of the fibroblasts become contractile myofibroblasts expressing α-

smooth muscle actin. Their contractile action helps to draw the edges of the wound 

together and help to align the collagen fibre in the scar tissue (Hinz, 2007). 

 

The epidermis is repaired via re-epithelialisation; keratinocytes migrate to close the 

wound which requires them to alter their adhesion state so that they can move from the 

basement membrane through the clot (Nguyen, Gil, & Carter, 2000; Ilina & Friedl, 

2009). They migrate using lamellipodia made largely from actin (Mitchison & Cramer, 

1996). Additionally, epidermal and follicular stem cells are recruited to form a new 

epidermal layer (Fuchs, 2008). This requires partial digestion of the clot by matrix 

metalloproteinases to permit the cells to migrate between the scab and the healthy 

underlying tissue (Pilcher et al., 1999). The final stage of wound healing is called 

resolution; the barrier function of the skin is repaired and the skin regains its typical 
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appearance to a greater or lesser extent depending on the amount of scarring. Once the 

keratinocytes close the wound they must cease to migrate and proliferate and instead re-

stratify. Additionally the microvasculature in the scar matures and the extra-cellular 

matrix is remodelled and the myofibroblasts undergo apoptosis (Ulrich et al., 2007; 

Hinz, 2007). 

 

Neutrophils leave the site of the wound via apoptosis or by migrating back to the 

circulation (Haslett, 1992; Mathias et al., 2006) and macrophages are de-activated, the 

inflammatory markers are taken up by non-functional receptors on inflammatory cells 

(D’Amico et al., 2000). Anti-inflammatory molecule production is the final step to 

dampen down the inflammatory response (Schwab, Chiang, Arita, & Serhan, 2007; 

Perretti & Gavins, 2012).  

Problems that can occur in the resolution phase are that the inflammation can persist or 

that the keratinocytes over-proliferate, leading to keloid scar formation (Wynn, 2008). 
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(Werner & Grose, 2003) 

Figure 1.5 Phases of wound healing  
In normal wound healing there are distinct but overlapping phases. Haemostasis is the first 

phase, mediated via the activation and aggregation of platelets to form a clot. This is followed 

by an inflammatory phase; immune cells clear any infection and damaged tissue. Concurrently 

the wound is resolved via the migration of skin cells to the wound site and the production of 

granulation tissue. Remodelling of the scar tissue occurs over subsequent days – years.  

 

 Chronic wounds 1.5.

Chronic wounds are those that are characterised by a prolonged healing time, failure to 

heal or recurrence of the wound. One factor in the aetiology of chronic wounds is an 

excessive inflammatory response, resulting in excessive secretion of matrix 

metalloproteinase by neutrophils, causing degradation of the connective tissue 

underlying the wound. Additionally these hard-to-heal wounds often have a large 

quantity of reactive oxygen species present that also leads to tissue damage and hinders 

the healing process See Figure 1.6.(Diegelmann & Evans, 2004). 

 



   

29 

 

 

(Eming, Krieg, & Davidson, 2007) 

Figure 1.6 Chronic wound causes 
A major cause of chronic wounds is an excessive inflammatory response which degrades the 

underlying connective tissue. Coupled with an absence of  cell migration the healing process is 

hindered and the failure to resolve the wound  increases the risk of recurrent infection. 

  

Chronic wounds are a common problem, causing poor quality of life and morbidity. The 

five year mortality rate for patients with diabetic or ischaemic ulcers is higher than that 

of prostate or breast cancer patients (Armstrong, Wrobel, & Robbins, 2007) although 

arguably this could be a reflection of the severity of their diabetes, not a direct effect of 

the ulcers per se. The financial costs of treating chronic wounds are estimated at being 

in excess of 1 billion pounds a year in the UK (P Kranke, Mh, M, Schnabel, & Se, 

2012). The most common types of chronic wound in the West are diabetic or vascular 

ulcers, pressure sores and those secondary to oncological radiation therapy (P Kranke et 

al., 2012). Given the increasingly ageing population and the rising prevalence of 

diabetes it is likely that the extent of this problem will continue to worsen. Currently an 

effective therapeutic solution for chronic wounds is lacking. In recent years several 

studies have attempted to harness the effects of recombinant growth factors, delivered 

locally (Barrientos, Brem, Stojadinovic, & Tomic-Canic, 2014). For example, a study 



   

30 

 

using recombinant human granulocyte macrophage colony stimulating factor had some 

encouraging results, albeit in a small sample size (50% of the treated ulcers healed over 

6 months) (Da Costa, Jesus, Aniceto, & Mendes, 1999). Another study used platelet 

derived growth factor applied topically as a gel; they saw a 39% increase in complete 

healing of ulcers with a median size of 1.5 cm
2
 (Smiell et al., 1999). Vascular 

endothelial growth factor 1 has used in a phase I clinical trial to ameliorate wound 

healing in chronic neuropathic diabetic wounds (Hanft et al., 2008). Although these 

studies are encouraging, the consensus on these treatments so far is that more extensive 

testing is required (Rennert et al., 2013; Barrientos et al., 2014). 

 Project background 1.6.

Studies have shown an interesting effect of ‘switching off’ the circadian clock on the 

migration of zebrafish fibroblasts. In zebrafish the fibroblasts are not normally seen to 

migrate, but when their circadian clock was knocked down they spontaneously started 

to migrate. In mammalian fibroblasts that were stably knocked down with shRNA 

against CLOCK, a core circadian gene, an increased rate of migration was observed in 

comparison to controls (Becker/Whitmore labs, unpublished data). These findings 

indicated that ‘stopping’ the circadian clock within the wound area might have a 

beneficial effect in wound healing. It was proposed that the use of RNAi to transiently 

stop the clock might reduce the risks of off-target effects. The Becker lab had already 

had success in developing an antisense oligodeoxynucleotides (asODNs) targeted to 

knock down connexin 43; therefore this work follows on from a pilot study in the use of 

asODNs to knock down Bmal1 and in silico expansion of the asODN sequences to 

optimise their efficacy.  
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 Hypothesis 1.7.

Transient knockdown of key circadian clock regulating genes can accelerate wound 

healing in mammalian cells and is a potential target for therapeutic use. 

 Thesis aims 1.8.

This study aims to discover whether manipulation of the circadian clock, by various 

means, has beneficial effects on wound healing.  

The main aims were: 

1) Optimisation of asODNs by continuing in vivo experiments and by in silico 

expansion of the sequences to ensure a more biologically stable asODN 

2) Development of a tool to knockdown Bmal1 in order to disrupt the circadian 

clock. 

3) Measuring the functional effects of knocking down Bmal1 wound healing in 

vitro. 
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 Materials and Methods 2.
  



   

33 

 

 Cell Culture 2.1.

2.1.1. Cell maintenance 
 

All experiments (unless stated otherwise) were done using NIH 3T3 cells which are a 

murine fibroblast cell line generated in 1962 from Swiss mouse embryos and have 

become a standard fibroblast cell line. 3T3 refers to the manner in which they were 

immortalised;  “3-day transfer, inoculum 3 x 10^5 cells”(Todaro & Green, 1963). The 

cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) with added 

GlutaMAX™, supplemented with 10% Donor Bovine Serum (DBS) and penicillin-

streptomycin at 100 U/ml (all Life Technologies Ltd.) at 37 ºC with 5% CO2 in a 

humidified  incubator. Cells were grown in T175 flasks (Nunclon Easyfilter), unless 

otherwise stated, until near confluence and then split as required. They were split by 

aspirating the culture medium, rinsing with sterile PBS and incubation with 6 ml 

Trypsin-EDTA (Life Technologies Ltd.) until all had detached. The trypsin was then 

inactivated by the addition of 6 ml of growth medium and transferred to fresh flask(s) 

containing pre-warmed growth medium. 

Cell storage 

Stocks were frozen down in growth medium supplemented with 10% DMSO (Sigma-

Aldrich Company Ltd.) in cryovials and stored at -80ºC until needed. 

Cell counting 

Where required cells were counted in the following way: They were removed from the 

flasks by trypsinisation and inactivation as described above. 10 µl of the concentrated 

cells solution was mixed with 10µl Trypan Blue (Life Technologies Ltd.) and added to a 

haemocytometer (Bright Line, Sigma-Aldrich Ltd.). Any dead cells stain blue. Cells 

were counted in each large quadrant and an average was taken. This number was 
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multiplied by 2 to account for the dilution with Trypan Blue and 10,000 to give the 

number of cells per millilitre.  

 Molecular Biology  2.2.

2.2.1. Western Blotting 

Protein extraction 

Cells were grown and treated in 6-well plates. They were harvested by aspiration of 

culture medium and rinsing and aspiration with sterile PBS. RIPA buffer containing 

freshly dissolved PhosStop and cOmplete Protease Inhibitor Cocktail Tablets (1 of each 

per 10ml of buffer) was added directly to the wells (typically 100 µl) over ice and 

incubated for 2 minutes. The cells were scraped from the dishes and the lysate was 

transferred to 1.5 ml Eppendorf tubes. The lysate was centrifuged for 15 minutes at full 

speed in a bench-top Eppendorf micro-centrifuge to aggregate the DNA so that it could 

be removed from the lysate. Protein concentration was determined using the Pierce™ 

BCA Protein Assay Kit (Life Technologies Ltd). This is a colorimetric assay than 

enables accurate quantification of the protein concentration by using protein standards 

to generate a standard curve. Typically the protein samples were diluted 1:5 in RIPA 

buffer so this was factored into the calculations.  

SDS-PAGE 

Prior to SDS-PAGE the protein samples were all diluted with RIPA buffer to the same 

concentration, typically 1µg/µl in a volume of 30 µl. Thereafter 10µl of 4x NuPAGE 

LDS sample buffer (Life Technologies Ltd.) containing 20% β-mercaptoethanol was 

added to the protein samples and  they were heated at 95°C for 5 minutes to denature 

the proteins. Then they were transferred to ice and briefly centrifuged to reincorporate 

any condensation. 
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30 µl of each sample was loaded into each lane in a 12% acrylamide gel (12% Mini-

PROTEAN
®
 TGX™ Precast Gel, Bio-Rad Ltd.). Precision Plus Protein™ standard 

(Bio-Rad Ltd.) was loaded into at least one lane. The gels were inserted into a mini-

Protean Tetra system (Bio-Rad Ltd.) and electrophoresed at 70 V for 10 minutes and 

thereafter at 100 V for 70 minutes under 1X Tris-Bis running buffer (Bio-Rad Ltd.) 

The gels were blotted onto nitrocellulose membranes (Bio-Rad Ltd.) using the mini-

Protean Tetra blotting unit with 1X transfer buffer containing 20% methanol. The lanes 

were removed from the gels which were then sandwiched between the nitrocellulose 

membrane, blotting paper and transfer sponges which had been pre-soaked in transfer 

buffer (all Bio-Rad Ltd.). The gels were blotted for 60 minutes at 100 V.  

The membranes were incubated with Ponceau (Sigma-Aldrich Ltd.) to ensure even 

blotting prior to being incubated on a shaker with blocking solution (5% non-fat milk in 

TBS) for an hour at room temperature. Then the primary antibodies were added at the 

following concentrations (Table 1) overnight at 4ºC on a shaker, followed by 3 x 5 

minute washing prior to incubation in the appropriate secondary antibody (Table 2) for  

60 mins at room temperature.  

Table 2.1  Primary antibodies used in Western blotting 
Primary 

antibody 

Catalogue code Manufacturer Raised in Concentration 

of use  

Bmal1 H170 Santa Cruz Rabbit 1:400 

GAPDH G9545 Sigma Rabbit 1:4000 

β-actin Ab8227 Abcam Rabbit 1:4000 

α-tubulin 13090310 AbD Serotec Rat 1:2500 

Cyclophilin A Ab41684 Abcam Rabbit 1:4000 

 

  

http://www.bio-rad.com/en-uk/sku/456-1043edu-12-mini-protean-tgx-precast-gel
http://www.bio-rad.com/en-uk/sku/456-1043edu-12-mini-protean-tgx-precast-gel
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Table 2.2 Secondary antibodies used in Western blotting 

Secondary 

antibody 

Catalogue code Manufacturer Raised in Concentration  

Anti-rabbit 

HRP 

conjugated 

A0545 Sigma Goat 1:4000 

Anti-rat HRP 

conjugated 

AP136P Calbiochem 

(now 

Chemicon) 

Goat 1:4000 

 

 

Table 2.3 Buffers and reagents used for SDS-PAGE 

Running buffer for 

separation of proteins via 

electrophoresis 

 

Tris/Glycine/Sodium 

Dodecyl Sulphate (SDS) 

 

25 mM Tris 

192 mM Glycine 

0.1 % w/v SDS  

pH 8.3 

Transfer buffer for blotting 

the proteins onto the 

membranes 

 

Tris/Glycine 

 

2 5mM Tris 

192 mM Glycine 

20 % methanol 

pH 8.3 

Buffer for washing the 

blots 

Tris Buffered Saline-Tween 

20 (TBS-T) 

20 mM Tris 

500 mM NaCl 

pH 7.5 

Tween 20 0.1% 

Blocking solution 10 % non-fat powdered 

milk (Bio-Rad) in TBS-T 

 

 

All components were purchased from Bio-Rad or Sigma-Aldrich 

 

The membranes were washed at least 3 times over 30 minutes on a shaker to remove 

background signal then they were incubated with Pierce Enhanced Chemiluminescence 
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Western Blotting Substrate for 2 minutes prior to being imaged on a Chemi-Doc MP 

imaging system (Bio-Rad). 

2.2.2. RT-PCR 

RNA isolation 

Cells for RT-PCR were grown in 6 well plates. RNA was isolated using the Qiagen 

RNeasy Plus kit. 350µl of RLT buffer was used to lyse the cells. The lysate was 

transferred to QiaShredder tubes and centrifuged for 2 minutes at full speed to 

homogenise the lysate and shear the DNA. The lysate was transferred to gDNA spin 

columns and centrifuged at full speed for 1 minute to remove genomic DNA. This 

lysate was mixed with an equal volume of 70% ethanol and added to an RNeasy column 

and centrifuged for 30 seconds. Columns were washed with RW buffer (350 µl), then 

RPE buffer (500µl) and centrifuged for 30 seconds each. Then 500µl RPE buffer was 

added and the spin columns were centrifuged for 2 minutes. At each step the flow-

through was discarded and the columns were transferred to clean 2ml collection tubes. 

The spin columns were then centrifuged for 2 minutes with open lids to enable the 

membrane s to dry and any residual ethanol to evaporate. Thereafter 30µl of RNAse and 

DNAse free water was used to elute the RNA. The concentration and purity of the RNA 

was evaluated via a spectrophotometer (Nanodrop ND-1000).  The minimum value for 

the 260/280 nm and 260/230 nm absorbance ratios accepted was 2. If the samples were 

not up to this standard they were concentrated and cleaned up using the MinElute kit 

(Qiagen). 

2.2.3. cDNA synthesis 
 

1µg of RNA was used for cDNA synthesis, diluted to a volume of 10 µl in RNAse-free 

water in RNAse and DNAse-free 0.5 ml microcentrifuge tubes (Axygen). To this 3µl of 

Master mix 1 was added and the first part of the PCR programme was run. Meanwhile 
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Mastermix 2 was prepared on ice. 7uL of Mastermix 2 was added to each tube and the 

remainder of the programme was run. 

Mastermix 1 (volumes per sample) 

1uL each of Random Primers, Oligo dT and dNTP (all Life Technologies Ltd.)  

Mastermix 2 (volumes per sample) 

4 µl 5x first strand buffer 

2 µl DTT 

0.5 µl RNAse out 

0.5 µl Superscript II Reverse Transcriptase 

(all components were from Life Technologies Ltd.)  

Additionally one tube of cDNA was made without the Reverse Transcriptase as a 

control. 

PCR programme for cDNA synthesis 

Initial denaturing step  65°C for 5 minutes 

Holding step   10°C until recommenced (during addition of the 2
nd

 

mastermix) 

25°C for 10 minutes 

42°C for 1 hour 

70°C for 15 minutes 

 

geNorm Assay 

The primers for normalisation were selected following a geNorm ™ analysis of a panel 

of 12 housekeeping gene primer sets from Primer Design Ltd. This assay established the 

more stable housekeeping genes in this system. The best combination of genes was 

determined to be GAPDH and SDHA.  

The assay required testing 5 untreated samples and 5 treated samples in triplicate for 

each gene and the QBase+™ software used a bespoke algorithm to establish which gene 

or combination of genes were the most stable under the conditions measured. 
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Table 2.4  Primers for RTPCR 

species 

Official gene 

symbol 

Accession 

number 

Anchor 

Nucleotide 

Context length sequence 

(bp) 

MOUSE Arntl (Bmal 1) NM_007489 926 98 

MOUSE GAPDH NM_008084.2 793 180 

MOUSE SDHA NM_023281.1 2018 181 

  

The cDNA was diluted 10 times for RTPCR. The mastermix for each gene was as 

follows: 

Per well: 

10 µl SYBR green (Sigma-Aldrich Ltd.) 

1µl primer (Primer Design Ltd.) 

4 µl water 

15µl of this mastermix was added per well of a white 96-Well Skirted PCR Plate (Bio-

Rad) 

per sample in triplicate. 5 µl of diluted cDNA was added to each well in triplicate for 

each sample and mixed thoroughly. The plates were sealed with Microseal® 'B' 

Adhesive Seals, Optical, (Bio-Rad) and kept at 4°C as required. Just prior to running the 

RTPCR programme the plates were briefly centrifuged to ensure all of the mixture was 

incorporated. 

Plates were run on a Bio-Rad CFX96 PCR detection system. 

RT-PCR Programme 

The signal was amplified as follows: 

1. 94°C for 2 mins 

2. 94°C for 15 seconds 

3. 60°C for 30 seconds 

4. 72°C for 30 seconds 

5. Plate read 

 

Steps 2 to 5 were repeated 39 times then the melting curve was measured at 60°C to 

90°C. 

 



   

40 

 

2.2.4. RT-PCR Analysis 
 

The arithmetic mean and standard deviation of the CT values were determined to enable 

the possibility of erasing any outliers from the technical triplicates. Thereafter the 

standard ΔΔCT method was used to calculate the relative fold expression of the gene of 

interest. The arithmetic mean of the housekeeping genes was subtracted from the 

arithmetic mean of the gene of interest to give the ΔCT value. The highest ΔCT value 

was then subtracted from each ΔCT value to produce the ΔΔCT values.  

Relative fold expression = 2
(-ΔΔCT) 

The Reverse Transcriptase control CT values were checked to ensure that there was no 

amplification of genomic DNA affecting the RNA expression analysis. 

2.2.5. Immunofluorescence 
 

Immunofluorescence was used to assess the transfection or transduction efficiency of 

several types of RNAi. 

Cells were seeded at the same density as the requirement for each different protocol in 

Millicell© EZ slides with a surface area per well of 1.2 cm
2
 (Merck Millipore) and 

transfected accordingly. 48 or 72 hours after transfection the cells were washed twice 

with PBS then fixed for 5 minutes with PFA at room temperature. Then the cells were 

permeabilised with PBS-Triton 0.1% (Sigma-Aldrich Ltd.) for 10 minutes at room 

temperature if antibody staining was required. Then the proteins were blocked with 

Universal Protein Blocking Reagent (Genetex, Inc.) diluted 1:100 in PBS-Triton 0.1% 

for 30 minutes at room temperature. Primary antibodies were incubated overnight on a 

shaker at 4°C diluted in blocking solution. After three five minute washes in PBS-Triton 

0.1% on a shaker the cells were incubated with the secondary antibody for a hour at 

room temperature then washed three times with PBS-Triton 0.1% and Hoechst  (Life 

Technologies Ltd.) was added as a nuclear stain for 5 minutes followed with a further 
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wash. The slides were mounted with Citifluor ™ and the coverslips (22 x 50 mm, 

VWR) were sealed with clear nail varnish and allowed to dry prior to imaging. 

Slides were imaged using a Leica fluorescence microscope. The same settings were 

used for each well. For transfection efficiency the number of cells as measured by 

nuclear staining were divided by the number of cells expressing the protein or 

fluorophore or interest and multiplied by 100 to give percentage efficiency. 

Where the constructs I was introducing contained a fluorophore the protocol was as 

above but excluding the blocking and antibody steps. 

Table 2.5 Antibodies used for immunofluorescence 
  Catalogue 

code 

Manufacturer Raised in Concentration 

Primary 

antibody 

Monoclonal 

anti-flag M2 

F3165 Sigma Mouse 1:200 

Secondary 

antibody 

Alexa 

Fluor™ 488 

anti-mouse 

A-11029 Life 

Technologies 

Ltd. 

Goat 1:500 

 

 Transfection protocols 2.3.

2.3.1. Fugene 6 
For the majority of experiments Fugene 6 (Roche) was used according to the 

manufacturer’s recommendations. The ratio of Fugene to DNA was optimised by 

transfecting fluorescent probes in a plasmid vector at ratios of 6:1, 4:1, 3:1 and 1.5:1. 

Cell density was also varied for each of these conditions and the optimal protocol was 

deemed to be at a cell density of 60-70% confluence with a ratio of Fugene to DNA of 

4:1.  

Cells were seeded to be 60% confluent the following day. Two hours prior to 

transfection the culture medium was replaced with warmed culture medium that did not 

contain antibiotics which can affect transfection. Transfection mixes were made by 
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adding Fugene 6 to OptiMEM™ (Life Technologies) at room temperature and swirling 

gently to mix. After five minutes incubation the DNA was added and flicked to mix. 

The transfection mix was left to incubate and form complexes for half an hour at room 

temperature. The transfection complexes were added to the cells drop wise and the 

plates were swirled gently to mix. Cells were assayed typically after 48 hours to assess 

the transfection efficiency. 

2.3.2. Transduction  
 

Approval for performing genetic modification (GM) using lentiviral vectors was 

obtained from UCL GM Safety Officer following a risk assessment (see Appendix). 293 

FT cells (Life Technologies Ltd.) were maintained in DMEM containing 10% FBS, 

penicillin-streptomycin at 100 U/ml and Geneticin at 500µg/ml (all Life Technologies 

Ltd.) at 37 ºC with 5% CO
2 

in a humidified incubator. Prior to transduction cells were 

seeded in DMEM containing 10% FBS, penicillin-streptomycin (P-S) at 100 U/ml and 

25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer. The buffer 

protects the viability of the viral particles; 293FT cells are fast-growing and can cause 

the culture medium to become too acidic otherwise. Second generation viral particles 

were generated by transfecting 293FT cells with the following plasmids: 

pCMV-dR8.2, pCMV-VSV-G and transfer plasmids psi-LVRU6MP containing four 

different shRNA clones targeted against murine Bmal1 and one scrambled shRNA 

control. 

6 - 24 hours later the culture medium was changed. 48 and 72 hours thereafter the virus-

containing supernatant was harvested and filtered through a .45 µM syringe-driven filter 

to remove any cell debris.  

3
rd

 generation viral particles were generated using the Lenti-Pac™ system from 

Genecopoeia. 2 days prior to transfection 293FT cells were seeded at 1.4 x 10
6
 cells per 

10cm dish. On the day of transfection complexes were made as following: 
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2.5 µg transfer plasmid containing the shRNA knockdown constructs +5 µL of Lenti-

Pac™ were diluted in 200 µL OptiMEM (Life Technologies). 

 

15 µL Endofectin (Genecopoeia) was diluted in 200 µL OptiMEM (Life Technologies). 

The diluted Endofectin was added to the DNA mix drop-wise whilst gently vortexing. 

Complexes were incubated at room temperature for 15 minutes before transfection. 14 

hours later the culture medium was replaced with 10 mL fresh culture medium 

containing 20 µL TitreBoost™ (Genecopoeia). 48 hours post-transfection the 

supernatant was harvested, centrifuged at 500 x g for 5 minutes and then filtered 

through a 0.45 µM polyththersulfone (PES) membrane to remove any cell debris. 

 

Viral supernatant was concentrated by adding 4 volumes of PEG-it™ polyethylene 

glycol solution to the viral supernatant, mixing thoroughly by inversion and 

refrigeration for at least 24 hours. The ‘pegged’ viral solution was then centrifuged at 

4°C for 30 minutes at 1500 x g. The pellet was resuspended in HEPES buffered DMEM 

(as above) at a 10 -100 times concentration with comparison to the neat viral 

supernatant. Viral titre was established using a Alliance HIV-1 P24 antigen ELISA Kit. 

NIH 3T3 cells were transduced with the concentrated virus solution at concentrations of 

0.1 viral particles to 1000 viral particles per fibroblast in the presence of 8mg/ml 

polybrene or DEAE-Dextran (both Sigma). 48 hours following transduction the cells 

were either assayed for signs of the expression of a fluorescent marker (mCherry) or 

resistance to puromycin via the addition of DMEM containing 10% FBS, 10,000IU P-S 

and 2 µg/ml puromycin.  

  

pCMV-dR8.2 dvpr was a gift from Bob Weinberg (Addgene plasmid # 8455 

pCMV-VSV-G was a gift from Bob Weinberg (Addgene plasmid # 8454) 
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 Scratch Wound Assay 2.4.

A scratch wound assay is a standard in vitro experiment to assess cell migration into an 

artificially created ‘wound’ as a proxy for wound healing (Liang, Park, & Guan, 2007). 

Cells were seeded in 96 well Image Lock Essenbio plates   (EssenBio, U.K.)  and 

uniform horizontal scratches were made with the ‘Wound-maker’(EssenBio). The wells 

were gently washed twice to with sterile PBS to remove any loose cells and warm 

culture medium was replaced. The plates were imaged in an INCUCYTE™ imager 

within a humidified cell culture incubator at 37°C and 5% CO
2
 and imaged 

approximately every hour for 3 days. The cell migration rate was analysed using a 

plugin for ImageJ written by Mr Daniel Ciantar of the UCL Confocal Unit. In brief, the 

images from the same well were stacked and the average pixel distance of the ‘wound 

edge’ was measured across the whole image to provide a pixels/hour migration rate. 
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 In vivo assays 2.5.

6 week old ICR mice were maintained according to UK Home Office regulations. The 

mice were induced with 4% isofluorane and buphrenorphine was administered 

subcutaneously for analgesia. The dorsal area was shaved and the skin cleaned with 

70% ethanol. Four 6mm full thickness wounds were made using a biopsy punch. See 

Figure 2.1. Antisense or DNAzyme sequences were applied in 30% pluronic gel at 

100mM. Each mouse was treated with one vehicle-only control and three different 

sequences in the other wounds. Three days later the mice were humanely sacrificed and 

the tissue was harvested and fixed in 4% paraformaldehyde at 4°C for a minimum of 24 

hours. Then the tissue was bisected and half was sent to be paraffin embedded, 

sectioned and stained with haematoxylin and eosin (H & E) at UCL IQpath (Institute of 

Neurology, UCL) to facilitate histological analysis of the extent of re-epithelialisation. 

 

Figure 2.1 Mouse wound model 

Four 6 mm full thickness wounds were made in the dorsal skin of the mice, using a punch 

biopsy. The numbering relates to the positions of the treatments. 
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2.5.1. Analysis of in vivo wound healing 
 

Macroscopic     images     were     taken     of     all     wounds using a dissection microscope 

(Leica  MZFLIII) at a fixed    magnification    of    1.25x    fitted with a  

Leica    DFC310FX   camera. The change in macroscopic wound area after 3 days was 

measured using ImageJ (NIH).       H & E stained slides were imaged using a DM2500 

Leica bright-field microscope at a magnification of 20X. The images were exported as 

TIFFS. The distance of re-epithelialisation was measured by tracing the distance from 

the wound edge to the end of the outgrowth of the keratinocyte layer on each side of the 

wound and analysed using ImageJ.  

 

The first experiment analysed by the author was undertaken by other lab members prior 

to the start of the PhD project. Some of the treatments used in the first experiment were 

DNAzymes. One observation from the macroscopic analysis of the data was that the 

DNAzyme equivalent of an antisense treatment also tested at that time appeared to be 

more effective at reducing the macroscopic area of the wound. (For example Bmal 750 

antisense is the same as Bmal 23 but without the catalytic loop). Therefore for the 

second experiment this was tested by making some antisense sequences from 

DNAzymes and vice versa.  

 In silico 2.6.

The original 16 mer antisense sequences were designed using the principles set out by 

Law et al (Law, Zhang, & Stott, 2006) by Dr Peter Cormie (unpublished data, 

Becker/Whitmore labs). Further to extensive in vivo testing not yielding any positive 

effects from these sequences it was hypothesised that one reason for this might be due 

to the relative shortness of the sequences rendering them sensitive to rapid clearing by 

endogenous nucleases. Previous studies in the lab have shown that 30 mer 
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oligonucleotides are more resilient to catalysis. The original anti-Bmal1 sense 

sequences were used as a template.  

Up to 29 bases of the Bmal1 sense code were added to the beginning or the end of the 

template sequences in this way: 

ttagaatatgcagaacaccaaggaaggatcaagaatgcaagggaggcccacagtcagatt 

 

ggaaggatcaagaatgcaagggaggcccac 

aggaaggatcaagaatgcaagggaggccca 

aaggaaggatcaagaatgcaagggaggccc 

caaggaaggatcaagaatgcaagggaggcc 

ccaaggaaggatcaagaatgcaagggaggc 

accaaggaaggatcaagaatgcaagggagg 

caccaaggaaggatcaagaatgcaagggag 

acaccaaggaaggatcaagaatgcaaggga 

aacaccaaggaaggatcaagaatgcaaggg 

gaacaccaaggaaggatcaagaatgcaagg 

agaacaccaaggaaggatcaagaatgcaag 

cagaacaccaaggaaggatcaagaatgcaa 

gcagaacaccaaggaaggatcaagaatgca 

tgcagaacaccaaggaaggatcaagaatgc 

atgcagaacaccaaggaaggatcaagaatg  

 

722  

catggaaggttagaatatgcagaacaccaaggaaggatcaagaatgcaagggaggcccacagtcagattgaaaaga  

aggaaggatcaagaatgcaagggaggcccacagtcagattgaaaagaggcgtcgggacaaaatgaacagtttcatt 

 

atggaaggttagaatatgcagaacaccaag 

tggaaggttagaatatgcagaacaccaagg 

ggaaggttagaatatgcagaacaccaagga 

gaaggttagaatatgcagaacaccaaggaa 

aaggttagaatatgcagaacaccaaggaag 

aggttagaatatgcagaacaccaaggaagg 

ggttagaatatgcagaacaccaaggaagga 

gttagaatatgcagaacaccaaggaaggat 

ttagaatatgcagaacaccaaggaaggatc 

tagaatatgcagaacaccaaggaaggatca 

agaatatgcagaacaccaaggaaggatcaa 

gaatatgcagaacaccaaggaaggatcaag 

aatatgcagaacaccaaggaaggatcaaga 

atatgcagaacaccaaggaaggatcaagaa 

tatgcagaacaccaaggaaggatcaagaat 

atgcagaacaccaaggaaggatcaagaatg 

tgcagaacaccaaggaaggatcaagaatgc 

gcagaacaccaaggaaggatcaagaatgca 

cagaacaccaaggaaggatcaagaatgcaa 

agaacaccaaggaaggatcaagaatgcaag 

gaacaccaaggaaggatcaagaatgcaagg 

aacaccaaggaaggatcaagaatgcaaggg 
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acaccaaggaaggatcaagaatgcaaggga 

caccaaggaaggatcaagaatgcaagggag 

accaaggaaggatcaagaatgcaagggagg 

ccaaggaaggatcaagaatgcaagggaggc 

caaggaaggatcaagaatgcaagggaggcc 

aaggaaggatcaagaatgcaagggaggccc 

aggaaggatcaagaatgcaagggaggccca 

ggaaggatcaagaatgcaagggaggcccac 

gaaggatcaagaatgcaagggaggcccaca 

aaggatcaagaatgcaagggaggcccacag 

aggatcaagaatgcaagggaggcccacagt 

ggatcaagaatgcaagggaggcccacagtc 

gatcaagaatgcaagggaggcccacagtca 

atcaagaatgcaagggaggcccacagtcag 

tcaagaatgcaagggaggcccacagtcaga 

caagaatgcaagggaggcccacagtcagat 

aagaatgcaagggaggcccacagtcagatt 

agaatgcaagggaggcccacagtcagattg 

gaatgcaagggaggcccacagtcagattga 

aatgcaagggaggcccacagtcagattgaa 

atgcaagggaggcccacagtcagattgaaa 

tgcaagggaggcccacagtcagattgaaaa 

gcaagggaggcccacagtcagattgaaaag 

 

The emboldened letters above represent the reverse complement of the antisense 

sequence (i.e. the sense sequence). Initially this was kept intact and a total of 14 bases 

were added, shifting the template one base at a time. Then this was expanded further so 

that as little as one base from the original sequence was included in the potential 30 

mer. Thereafter several exclusion rules whittled down the number of candidates. These 

rules are as follows: 

 

1. The sense sequence must not begin with ‘a’ (as the antisense should not end in 

‘t’) 

2. CpG (i.e. c adjacent to g 5’ – 3’) could not be included as these are not found in 

an unmethylated form in mammalian cells and can trigger an immune 

response(Becker, Lin, & Green, 1999). 



   

49 

 

3. No sequence should contain more than one G triplet or any G quartet as these 

can fold into secondary structures or form G quadruplexes via hydrogen 

bonding. 

4. For a similar reason the sense sequence must not have more than three Cs or Gs 

in the first 5 bases. 

 

Once these rules were applied the resulting possible candidates (see example below) 

were copied into Microsoft Excel and the reverse complement was generated using ApE 

(A plasmid Editor) v. 2.0.45 (Davis, n.d.). 

 

Subsequently these reverse complement antisense sequences were run through the 

Sigma Genosys DNA calculator (Sigma, n.d.) to generate the melting temperature, GC 

content, prediction of likelihood of forming a secondary structure or primer dimer. 

 

Sequences were eliminated if the melting temperature was lower than 37°C or if the GC 

content was lower than 40% or higher than 65% or if there was a prediction of primer 

dimer formation or a secondary structure classified as being stronger than ‘weak’.  

 

The remaining candidate sequences were screened for sequence homology with other 

genes. Any sequences with at least 3 mismatches for other genes were included at this 

point. This was checked using FASTA (Pearson, n.d.; Pearson & Lipman, 1988). 

Thereafter the remaining candidates were also checked for homology with human 

Bmal1 and other genes as the ultimate goal would be to produce an antisense that would 

be effective in aiding human wound healing. 
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 Preliminary in vivo 3.

experiments 
  



   

51 

 

 Introduction 3.1.

3.1.1. Background 
 

The original basis for this project was an observation made by a previous post-doctoral 

fellow that zebrafish fibroblasts lacking a functional circadian clock migrate in culture 

whereas, normally, these cells do not migrate (personal communication, Dr Peter 

Cormie, unpublished observations). Work in the Becker laboratory has for some time 

focused on wound healing and the manipulation of connexin expression in the skin via 

antisense oligodeoxynucleotides (asODNs)(Qiu et al., 2003; Mendoza-Naranjo et al., 

2012). These observations lead to the idea that transiently disrupting the circadian clock 

might lead to increased cell migration in skin wounds and could be used therapeutically 

to ameliorate the healing of chronic wounds. This chapter describes the preliminary 

findings of in vivo studies undertaken to provide a proof-of-concept data. With 

exception to the first in vivo experiment (figure 3.3) all of the following work was done 

by the author including the analysis of the first experiment. 

3.1.2. Transiently disrupting the circadian clock 
 

As described in Chapter 1, the core genes controlling the circadian clock are Bmal1 and 

CLOCK. Dr Cormie designed 16 mer asODNs targeted to Bmal1 and CLOCK using the 

starting point of DNAzyme design as described by Law et al. (2006) See table 3.1 . 
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3.1.3. DNAzymes 
 

DNAzymes are RNA cleaving molecules that consist of a catalytic region of 15 

deoxynucleotides with a substrate-recognition domain of approximately 8 

deoxynucleotides on each end (Santoro & Joyce, 1997, 1998).  

 

 

 

   (Ruble, Richards, Cheung-Lau, & Dmochowski, 2012) 

Figure 3.1 DNAzyme schematic 
DNAzymes bind to the complementary RNA and cleave the RNA so that it is not translated. 

They are designed by selecting AU or GU sites in the target mRNA, generating the 

reverse complement of this sequence and replacing the A or G with the catalytic 

sequence ggctagctacaacga (Santoro & Joyce, 1997, 1998; Law et al., 2006). See Figure 

3.1. They are useful as a tool for selecting sites on the mRNA which are susceptible to 

catalysis; i.e. sites that are accessible. Additionally, they can be rapidly tested in vitro 

by incubation of the target mRNA with the DNAzyme and running the products on an 

agarose gel to determine if the mRNA has been cleaved (Law et al., 2006; Baum & 

Silverman, 2008). One limitation of DNAzymes is that they are rapidly degraded in vivo 

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=pGBq-wyFHHzfYM&tbnid=NJFRcSza5SatHM:&ved=0CAUQjRw&url=http://www.sciencedirect.com/science/article/pii/S0020169311009017&ei=mEsVUbOnMYmA0AXskYDwDg&bvm=bv.42080656,d.d2k&psig=AFQjCNHuD1CsX0L3RwUyqKxhrtm5ExS4Nw&ust=1360436467238511
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and, therefore, their potential use as a therapeutic drug is greatly reduced (Baum & 

Silverman, 2008). For this reason, the majority of the DNAzyme sequences were then 

converted to asODNs by removal of the catalytic sequence prior to testing in vivo.  

 Antisense Oligonucleotides 3.2.

Antisense oligonucleotides (ODNs) were first developed as a method to analyse the 

relationship between deoxyribonucleic (DNA), messenger ribonucleic acid (mRNA) 

and the proteins they encode (Paterson, Robertst, & Kuff, 1977) Shortly after this, in 

1978, antisense was used to inhibit the production of Rous sarcoma virus in infected 

chick embryo fibroblast cultures (Zamecnik & Stephenson, 1978; Stephenson & 

Zamecnik, 1978). 

 

The laboratory in which this project originated believes that antisense DNA is a safe 

and effective way of knocking down a target protein in vivo. The Becker lab uses 

antisense as a topical application for enhancing wound healing. The antisense is 

delivered in the medium of 30% pluronic gel (Becker et al., 1999) which has the 

advantage of being a non-toxic gel that is liquid at 4°C, but sets when it warms up, e.g. 

on contact with the skin. This enables accurate topical application and ensures that the 

ODN stays in contact with the wound area for prolonged period. 

 

3.1.1 Mechanisms of action 

During transcription, RNA polymerase synthesises mRNA from the template (or non-

coding) strand of DNA. This is the reverse complement of the template DNA, and is an 

exact match for the coding DNA 5’ to 3’ sequence with the exception that thymines are 

substituted for uracils in mRNA.  Thereafter the mRNA is translated into protein in the 

cytoplasm of the cell via ribosomal RNA. Antisense ODNs utilise the cells’ own protein 
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translation mechanism to disrupt de novo synthesis of proteins via one of the three 

following mechanisms: the first is that the short sequence of DNA (typically 15 - 30 

nucleotides long, or 15mer - 30mer) binds to the complementary sequence on the 

mRNA and activates RNAse H, which cleaves the mRNA and leads to its degradation; 

secondly, translation can be blocked via steric hindrance; thirdly, translation can be 

disrupted by the inhibition of splicing; and fourthly, the ODN can destabilise translation 

by binding to pre-mRNA. Any of these modes of action can ultimately result in down 

regulation of the target protein. See Figure 3.2. 

 

Figure 3.2  Antisense down regulation of protein translation  

(Robinson, 2004) 
Binding of the Antisense DNA oligonucleotide to the mRNA interferes with the 

translation of the mRNA into their protein. 
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 Methods 3.3.

Animal experiments were undertaken as per Chapter 2, section 2.5.  In the first in vivo 

experiment the treatments were oriented as follows: 

 

 

Table 3.1 Antisense sequences used in preliminary experiments 

    antisense 

bmal 180 catcgttatgggacta 

bmal 722 cattcttgatccttcc 

bmal 750 cttttcaatctgactg 

bmal 1639 atgaaaatactcataa 

bmal 1749 gtgataaaagaaccat 

bmal 1782 gggttcatgaaagtga 

bmal 2044 gatgaccctcttatcc 

bmal 2056 tggaaggaatgtctgg 

bmal 2337 gcatctgcttccaaca 

clock 15 tccaccaaccatcaaa 

clock 8 gtcaacaatgagctca 
 

The sequences were named for their starting base position on the target mRNA. 

  

Position 1 Pluronic (or untreated) 

control 

Positions 2-4 Antisense ODNs 
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 Results 3.4.

 

Figure 3.3 and Figure 3.4 depict data from the first in vivo experiment analysed by the 

author. The experiment had previously been conducted by other lab members. Due to an 

insufficiency of (vehicle only) pluronic gel during the experiment, one set of mice had a 

‘no treatment’ control wound. 

 

Figure 3.3 Antisense ODNs increase wound healing in vivo 
4 full thickness dorsal skin wounds were treated with antisense sequences as indicated in 0. 3 

days later the tissue was harvested and macroscopic images were taken with a Leica dissection 

microscope at a fixed magnification. (a) representative images of the wounds from each 

treatment in the ‘pluronic control’ group.  (b) the macroscopic area of the wounds normalised to 

the pluronic control wound in each mouse. Statistical analysis was done by Kruskal-Wallis with 

Dunnett’s post-hoc test. n=6 
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Figure 3.4  ODN sequence Bmal 180 increases wound closure rate with 

comparison to no treatment 
4 full thickness dorsal skin wounds were treated with antisense sequences as indicated in 

Methods 2.5. 3 days later the tissue was harvested and macroscopic images were taken with a 

Leica dissection microscope at a fixed magnification. (a) representative images of the wounds 

from each treatment in the group where ‘no treatment’ was the control wound.  (b) shows the 

macroscopic area of the wounds normalised to the untreated control wound in each mouse. 

Statistical analysis was done by Kruskal-Wallis with Dunnett’s post-hoc test. n=6 

  

a 

b 
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Following the promising results on the basis of the macroscopic analysis of the first in 

vivo experiment the macroscopic results arising from the following experiment were 

quite disappointing. See Figure 3.5.  In hindsight, it is likely that this was mainly due to 

moving the position of the pluronic control from the top left position to the bottom right 

position on the mouse.  This phenomenon is discussed in more detail below. Another 

fault with this experiment was that some of the DNAzyme converted to antisense or 

antisense converted to DNAzyme sequences did not follow the rules of their design 

properly so these were omitted from the subsequent analysis of the re-epithelialisation 

See Figure 3.3.  

 

Figure 3.5  Macroscopic area measurements of the wounds cease to 

demonstrate the effects seen previously when the position of the 

control wound was moved.  
4 full thickness dorsal skin wounds were treated with antisense sequences as indicated in 

Methods 2.5. 3 days later, the tissue was harvested and macroscopic images were taken with a 

Leica dissection microscope at a fixed magnification. Wound area was measured using ImageJ. 

Columns depict mean area in pixels ± SEM. ANOVA with Bonferroni post hoc tests were used 

for the statistical analysis .n = 6* p<0.05 Independent samples t test (SPSS)



 

 

 

Figure 3.6 No significance was seen between treated and control 

wounds in re-epithelialisation after the position of the control wound 

was moved. 
4 full thickness dorsal skin wounds were treated with antisense sequences as indicated in 

Methods 2.5. 3 days later, the tissue was harvested send for embedding and H & E staining. 

These are the same wounds measured in Figure 3.5. The distance of re-epithelialisation was 

measured using ImageJ. Columns depict mean distance in microns/100 ± SEM. ANOVA with 

Bonferroni post hoc tests were used for the statistical analysis.n = 6 
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Figure 3.7 Antisense ODNs appear to decrease wound area 

significantly when the original experimental conditions were used.  
4 full thickness dorsal skin wounds were treated with antisense sequences as indicated in 

Methods 2.5. 3 days later, the tissue was harvested and macroscopic images were taken with a 

Leica dissection microscope at a fixed magnification. Wound area was measured using ImageJ. 

Columns depict mean area in pixels ± SEM. ANOVA with Bonferroni post hoc tests were used 

for the statistical analysis. n = 6 

 

 
 

Figure 3.8 Re-epithelialisation measurements made from the same 

tissue as the macroscopic images in Figure 3.7 show no difference in 

healing rate between treated and untreated samples.  
4 full thickness dorsal skin wounds were treated with antisense sequences as indicated in 

Methods 2.5. 3 days later, the tissue was harvested send for embedding and H & E staining. The 

distance of re-epithelialisation was measured using ImageJ. Columns depict mean distance in 

microns/100 ± SEM. ANOVA with Bonferroni post hoc tests were used for the statistical 

analysis. n = 6 
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Figure 3.9 Macroscopic wound area is reduced with antisense ODN 

treatment.  
4 full thickness dorsal skin wounds were treated with antisense sequences as indicated in 

Methods 2.5. 3 days later, the tissue was harvested and macroscopic images were taken with a 

Leica dissection microscope at a fixed magnification. Wound area was measured using ImageJ. 

Columns depict mean area in pixels and normalised to the pluronic control in each mouse ± 

SEM. ANOVA with Bonferroni post hoc tests were used for the statistical analysis. n = 6 
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Figure 3.10 Re-epithelialisation measurements made from the same 

tissue as the macroscopic images in Figure 3.9 show no difference in 

healing rate between treated and untreated samples.  

 4 full thickness dorsal skin wounds were treated with antisense sequences as indicated in 

Methods 2.5. 3 days later, the tissue was harvested send for embedding and H & E staining. The 

distance of re-epithelialisation was measured using ImageJ. Columns depict mean distance 

normalised to pluronic control ± SEM. ANOVA with Bonferroni post hoc tests were used for 

the statistical analysis.n = 6 

 

It was observed that the macroscopic data from the in vivo experiments to this point had 

a tendency to show that the bottom right hand wound was the smallest. It was 

hypothesized that this is probably an artefact due to the stretching of the skin and the 

direction of the tissue folding when the punches were made. In addition, the sequences 

that were used in the bottom right hand wound do not perform as well when moved to 

another position.  See overleaf for examples of images.  
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Figure 3.11 Macroscopic images of the wounds used to produce the 

data in Figure 3.5 
In the above images, the order of the wounds on the mouse from left to right as you see them on 

the page are top right, top left, bottom right, bottom left. The pieces of woodchip are from the 

animals’ bedding; this was subsequently changed to an absorbent matting to prevent inclusion 

of foreign material in the wounds. In the above experiment  the tissue was folded from the 

mouse’s left to right to make the punch wounds. 
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Figure 3.12 Representative macroscopic images used to produce the 

data in Figure 3.7 
In the above images, the order of the wounds on the mouse from left to right as you see them on 

the page are top right, top left, bottom right, bottom left. In this experiment the tissue was 

folded from the mouse’s right to left to make the punch wounds.  
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 Figure 3.13  The direction of tissue folding influences the macroscopic 

wound area. 
4 full thickness dorsal skin wounds were treated with the same antisense sequences in wounds 

2, 3 and 4 and the direction of the tissue fold was alternated when making wounds.  

3 days later, the tissue was harvested and macroscopic images were taken with a Leica 

dissection microscope at a fixed magnification. Wound area was measured using ImageJ. 

Columns depict mean area normalised to pluronic control ± SEM. ANOVA with Bonferroni 

post hoc tests were used for the statistical analysis. n = 2 

 

This experiment demonstrated that there are two main factors that affect the size of the 

wounds; the position on the mouse and the direction of the fold. The wounds nearer to 

the head and over the most humped part of the spine are larger and more stretched, 

whereas those nearer to the tail are smaller and more elliptical, probably because the 

skin in this area is looser. Additionally, the wounds that are on the underside of the fold 

when the punch-holes are made are smaller, possibly due to the way the skin retracts as 

the mouse is turned onto its side. See Figure 3.14.  In light of this, it was recognised that 

the macroscopic data are not a very reliable indicator of the efficacy of the treatments, 

and that the primary outcome measurement should be re-epithelialisation.  
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Figure 3.14 Punch wound method 
Wounds were made by lying the anaesthetized mice on their sides, stretching the loose dorsal 

skin  and making 2 full thickness punch biopsies though both layers of the fold, resulting in 4 

wounds 

 

 

 

Figure 3.15 The position of the wound affects the degree of re-

epithelialisation  
4 full thickness dorsal skin wounds were treated with the same antisense sequences in 

wounds 2, 3 and 4 and the direction of the tissue fold was alternated when making 

wounds. 3 days later, the tissue was harvested send for embedding and H & E staining. 

The distance of re-epithelialisation was measured using ImageJ. Columns depict mean 

distance of re-epithelialisation normalised to pluronic control ± SEM 
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Figure 3.16 The position of the control wound influences the size of the 

macroscopic wound area.  
An analysis of the mean macroscopic size of the pluronic control wounds when they were in the 

top left versus bottom right. In experiment 1 the pluronic control was in the top left, in 

experiment 2 it was in the bottom right. This also demonstrates the effect of the wound position 

on macroscopic wound area measurement.  

Statistical analysis was done using Independent samples Student’s t-test on SPSS. p<0.05. 

(Experiment 1 n = 15, experiment 2 n=30) 

 

Figure 3.17 Combining anti-CLOCK and anti-Bmal1 asODNs lead to 

significantly reduced re-epithelialisation.  
4 full thickness dorsal skin wounds were treated with antisense sequences as indicated in 

Methods 2.5. 3 days later, the tissue was harvested and sent for embedding and H & E staining. 

The distance of re-epithelialisation was measured using ImageJ. Columns depict mean distance 

normalised to pluronic control ± SEM. ANOVA with Dunnett’s post hoc tests were used for the 

statistical analysis. n = 6 
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Figure 3.18 The asODNs do not significantly increase re-

epithelialisation of the wounds.   
Re-epithelialisation data from all of the comparable experiments using single asODN treatments 

were pooled and re-analysed. The only significant findings arising from the re-analysis were 

negative; a significant reduction in re-epithelialisation. Statistical analysis of significance was 

done using Kruskal-Wallis with Dunnett’s post-hoc on SPSS. n=10-16. *= p<0.05 

 

After having reviewed the original data, it was decided that it might be worth trying 

some of the DNAzymes that had been tested for their functional ability to cleave the 

RNA in a biochemical assay and shown some promise in vitro in previous studies in 

fibroblast cell cultures (scratch wound assays and Western Blot) by past lab members 

(although the n numbers were too small for statistical significance).  
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Figure 3.19 Treatment with DNAzymes does not significantly increase 

re-epithelialisation 
4 full thickness dorsal skin wounds were treated with the same antisense sequences in wounds 

2, 3 and 4 and the direction of the tissue fold was alternated when making wounds.  

3 days later, the tissue was harvested and sent for embedding and H & E staining. The distance 

of re-epithelialisation was measured using ImageJ. Columns depict mean distance of re-

epithelialisation in micrometres ± SEM. Statistical analysis was done with ANOVA on SPSS. 

No significant difference was found between treated and untreated samples. n=6. 

  

Treatment with DNAzymes at 100 mM 
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 Discussion  3.5.

 

Initially the macroscopic appearance of the asODN treated wounds was very promising. 

It appeared as though there had been a strong effect of the asODNs on some of the 

wounds. It was possible that the use of wood chip as bedding material was confounding 

the data as the wounds with wood chip inclusions seemed to heal less well (see figure 

3.11).Following further investigation, a pattern developed and it became apparent that 

there was a distinct order to the size of the wounds, regardless of the treatments.  This is 

illustrated by figures 3.11 and 3.12; the wounds are in order of their position on the 

back. It is clearly evident that the wounds in the 4
th

 column of these two figures are 

different sizes. Two main factors affect the size of the wounds; the position on the 

mouse and the direction of the fold. The wounds nearer to the head and over the most 

humped part of the spine are larger and more stretched, whereas those nearer to the tail 

are smaller and more elliptical, probably because the skin in this area is looser and 

hence contracted the wound more effectively than the rostral region of the back. 

Additionally, the wounds that are on the underside of the fold when the punch-holes are 

made are smaller, possibly due to the way the skin retracts as the mouse is turned onto 

its side. In light of this, it was recognised that the macroscopic data are not a very 

reliable indicator of the efficacy of the treatments and that the primary outcome 

measurement should be re-epithelialisation. It is unfortunate that the macroscopic 

appearance of the wounds indicated a positive effect that turned out to be an artefact, 

but this delay was partly due to problems experienced in sectioning the very fragile 

tissue by cryostat which was later resolved by having the tissue paraffin embedded. The 

data from the in vivo work shows that there was no significant effect on wound healing 

of the original 16 mer asODNs. 
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There are several possible reasons why the original sequences did not have a functional 

effect. Firstly, there were some actual errors in the sequences; 3 of the sequences had 

transposition errors; a c where there should have been a g or vice versa. Secondly, the 

sequences were only 16 nucleotides long which makes them much less stable in vivo. 

They are more vulnerable to endogenous nucleases at this size (Aartsma-Rus et al., 

2009). It is regrettable that these sequences had not been screened in vitro prior to 

starting the in vivo work.  

The DNAzymes did not produce a beneficial effect in vivo either; however, this is not 

surprising as there is considerable data to suggest that DNAzyme are not very long-

lived in vivo (Law et al., 2006; Baum & Silverman, 2008). The next logical step to 

develop these sequences was to expand them to being 30 bases (30 mer) long; previous 

work in the laboratory had shown a 30 mer asODN sequence targeted against connexin 

43 to be effective. The next chapter addresses the in silico development and in vitro 

testing of the new elongated sequences.  

 

Subsequent to the discovery of the artefacts introduced by the mouse model wounding 

methods the standard operating procedure for the laboratory was modified. Additionally 

the practice of alternating the wound position and blinding of the treatments was 

introduced. 
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 In silico antisense 4.

deoxyoligonucleotide 

expansion design and in 

vitro testing 
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 Introduction  4.1.

 

Following the hypothesis that the lack of beneficial effect seen with the 16mer asODNs 

was due to the rapid catalysis, the asODNs were elongated as described in Methods 2.6. 

Antisense design is a systematic process based on a set of rules which help to reduce the 

number of possible candidates. The key rules are that the binding site must be accessible 

structurally; the melting temperature must be above 37ºC, preferably above 48°C 

(Aartsma-Rus et al., 2009), and the sequence must not fold itself into any stable 

secondary structures or form primer-dimers that would be stable enough to prevent their 

binding to their target mRNA. There are several motifs which must be avoided; G 

quartets or repeats of G triplets can cause the asODNs to form stacks via hydrogen 

bonding in the P orbital; CpG motifs must be avoided as they are not found in 

mammalian DNA in an unmethylated state so the cell recognizes DNA containing CpGs 

to be of bacterial origin which can illicit an inflammatory response (Becker et al., 1999).  

  

Due to endogenous nucleases asODNs are cleared relatively quickly which reduces the 

risks of toxicity or off-target effects. Additionally the use of asODNs as a topical gel 

directly applied to the wounds reduces any undesired potential systemic effects. The 

disadvantages of this rapid degradation are that it reduces the time available for 

effective silencing of protein translation and that the products of the degradation could 

potentially cause off-target silencing or other side effects as was seen in unmodified 

siRNA (Miller, Braiterman, & Ts’o, 1977; de Fougerolles, Vornlocher, Maraganore, & 

Lieberman, 2007). 

 



 

74 

 

 Results 4.2.

The asODN candidate sequences were systematically selected using the criteria 

previously mentioned. Following this, they were discounted if they did not share 

sufficient homology to human Bmal1.  

 

Table 4.1 16mer asODNs were elongated to produce 25-30mer 

sequences 
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 In vitro testing of new asODNs 4.3.

 

The efficacy of the asODNs to knock down Bmal1 protein was assessed via Western 

blot; mRNA knockdown was assessed by RT-PCR and functional changes were asses 

by Scratch Wound Assay as described in Methods section 2.2. Initially the results were 

promising. In the absence of a satisfactory control for the asODNs, a mock transfected 

‘vehicle only’ control was used. A scrambled asODN control was designed in 

collaboration with the custom oligo department of Sigma Aldrich Ltd. It soon became 

apparent that the scrambled control (which has no homology to any murine mRNA) was 

as effective at knocking down Bmal1 protein as the targeted sequence (see Fig. 4.1). 

Additionally it was observed that GAPDH was also being affected by the asODNs 

(scrambled or otherwise). This effect has also been observed by the Becker lab when 

testing their asODN targeted to Connexin 43 in vitro and also in vivo by a colleague at 

the Cancer Institute (personal communication). For this reason, the asODNs were 

modified to have a phosphorothioate backbone in place of the usual phosphodiester 

backbone.  

 

 Modified antisense DNA oligonucleotides 4.4.

 

As early as 1978, it was established that modifications to the ends of ODNs  improved 

their efficacy (Zamecnik & Stephenson, 1978). These authors demonstrated that the 

‘blocked’ ODNs which had chemical modifications to the 5’ and 3’ ends of the 

sequences had a more pronounced effect on silencing the production of the Rous 

sarcoma virus due to the protective effects that these modifications conferred on 

degradation via cellular nucleases to the phosphodiester bonds in native DNA.  

In 1987, Matsukura et al (1987) introduced phosphorothioate (PS) internucleoside 

linkages to further reduce the susceptibility of the ODNs to cleavage by endonucleases, 
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Subsequently, 2-O-methyl-modified nucleotides at the 5’and 3’ ends were introduced as 

an alternative way to stabilise the molecular integrity of ODNs (Agrawal, Mayrand, 

Zamecnik, & Pederson, 1990). 

 

There have been several different types of chemical modification used to enhance the 

effect of ODNs. The main ones are depicted below:  

 

 

Figure 4.1 Antisense DNA modifications 
From RNA therapeutics: beyond RNA interference and antisense 

Oligonucleotides (Kole, Krainer, & Altman, 2012) 

Figure 4.1 depicts several of the commonly used antisense DNA modifications which 

are predominantly designed to slow down the degradation rate of the sequences in vitro 

/ in vivo 

 

 

Of these modifications, the phosphorothioate (DNA (PS), 2′-O-methoxyethyl (2′-

MOE) and 2′-O-methyl (2′-OMe) moieties are designed to reduce degradation by 

endonucleases. Locked nucleic acids (LNA) increase the binding to the target mRNA.  
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Phosphorodiamidate morpholino oligomers (PMOs) are a more substantial modification 

where the nucleic acids are substituted for morpholine rings, and the internucleoside 

groups are replaced with uncharged phosphorodiamidate groups, resulting in 

degradation resistance and neutral charge. PMOplus contain positively charged 

piperazine groups; peptide-conjugated PMOs contain positively charged arginine-rich 

peptides. Both of these modifications improve the intracellular uptake of the oligomers 

(Kole et al., 2012). 

 

For the purposes of this project, the only modification used was PS – phosphorothioate 

as the aim was to create a patentable asODN and the other modifications mentioned 

above are either prohibitively expensive or proprietary modification designs 

(Summerton & Weller, 1997) and, therefore, not appropriate for the original aims cited 

in the grant application for the project. 

 

 

Table 4.2 asODNs used for further in vitro testing 
asODN name Sequence 

Antisense 1 (PO) TCCTTCCTTGGTGTTCTGCATATTCTAACC 
 

Scrambled 1 (PO) GCAGTCTCAATTCCTCGCTTACCTTTATGT 

Scrambled 2 (PO) GGAACTCTCCTGGTATCGTCTAATAT 

Antisense 1 (PS) T*C*C*T*T*C*C*T*T*G*G*T*G*T*T*C*T 

*G*C*A*T*A*T*T*C*T*A*A*C*C 
 

Scrambled Antisense 1 (PS)  G*C*A*G*T*C*T*C*A*A*T*T*C*C*T 

*C*G*C*T*T*A*C*C*T*T*T*A*T*G*T 
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Figure 4.2 Scrambled asODN knocks down Bmal1 as effectively as the 

targeted sequence. asODNs also knockdown GAPDH. 
NIH 3T3 cells were transfected with antisense and harvested at the intervals as above. Protein 

was extracted and Western blotting done as per section 2.2.1. This is one representative 

experiment of many. The columns represent Bmal1 protein normalised to GAPDH, but as is 

evident above in the circled image of the GAPDH bands, GAPDH is being affected by the 

treatments in a similar manner to incubating cells in old medium. Although the Bmal1 bands to 

the right hand side of the blot appear to have a similar optical density, when normalised it 

appears that antisense 1PO is less effective at reducing the expression of Bmal1 as the optical 

density of GAPDH is noticeably lower in that lane. This phenomenon raised some serious 

queries as to the sequence specificity of the antisense; scrambled asODN is as effective as 

reducing Bmal1 protein. Also the knockdown of housekeeping proteins might suggest that there 

is some level of toxicity.  
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In the mid-nineteen nineties there was research into the use of ODNs as treatment for 

chronic myeloid leukaemia by targeting anti BCR/ABL (Giles, Spiller, Green, Clark, & 

Tidd, 1995; Wu et al., 1995). This was called into question when Vaerman et al 

investigated the mechanisms involved (Vaerman et al., 1997). They believed that many 

of the biological effects observed were not due to ‘sequence-specific inhibition of 

genetic expression’. Following their study of the degradation of ODNs in culture 

medium, they concluded that the cytotoxicity of the ODNs was due to the ‘stepwise 

hydrolysis of the ODN phosphate linkages’ as previously shown (Wickstrom, 1986). 

Further to this, these authors examined the relative anti-proliferative effects of the 

deoxynucleotide mono-phosphates (dNMPs) and found that this phenomenon only 

occurred post-hydrolysis (and not in the more stable phosphothioate oligos) and that the 

intensity of the cytotoxicity was strongest with deoxyguanosine monophosphate 

(dGMP) followed by thymidine monophosphate (TMP), then deoxyadenine 

monophosphate (dAMP), with deoxycytosine monophosphate (dCMP) showing no anti-

proliferative effects whatsoever.  

 

This work was expanded further by Koziolkiewicz et al (2001). This group studied the 

effects of dNMPs and their phosphorothioate analogues, dNMPSs. They measured the 

breakdown of dNMPs over 48 hours by high performance liquid chromatography 

(HPLC) and found that dGMP was completely hydrolysed to deoxyguanosine and 

subsequently to guanine (15%) and xanthine (85%) within that time-frame. This rate of 

degradation was similar for the other dNMPs, but the hydrolyosis of dNMPSs was 

much lower. Similarly to Vaerman et al, they found that dGMP and TMP were more 

toxic to both human umbilical vein endothelial cells (HUVECs) and cervical cancer 

cells (HeLas). A 72 hour incubation with 100 µM deoxyguanosine reduced cell 

numbers by 40-50% and incubation with guanine reduced cell growth by 60%. 
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Conversely, they found that dNMPSs did not inhibit cell proliferation at all, even over 

96 hours of incubation; in fact, with the exception of dCMPS, they stimulated the 

proliferation of promyelocytic HL-60 cells and HUVECs by 20-60%. They 

hypothesized that this effect was due to the rapid dephosphorylation of the dNMPSs by 

ecto 5’nucleotidase (ecto 5’NT) - when they inhibited ecto 5’NT in these cells the 

proliferative effects of the dNMPSs was obliterated. The authors concluded that this 

might be due to an as yet unknown interaction with P2 receptors. 

4.4.1. Aptameric inhibition of off-target molecules 

Another potential side effect that has been found for ODNs is the non-sequence specific 

binding to off target molecules. ODNs have been shown to inhibit thrombin (Bock, 

Griffin, Latham, Vermaas, & Toole, 1992; Bergan, Kyle, Connell, & Neckers, 1995) 

and protein-tyrosine kinase in a non-antisense based mechanism. This is due to the 

secondary or tertiary structure binding to the (non)target. 

 

 Intracellular availability of ODNs 4.5.

Earlier studies ( a R. Thierry & Dritschilo, 1992) compared the uptake of native ODNs 

(POs), phosphorothioate analogues (PSs) and end-capped phosphorothiate ODNs (cap-

PSs). Incubation in culture medium resulted in total degradation of POs, but when 

encapsulated in liposomes they were intact after 5 days. PS and cap-PS oligos were 

much more resistant, with 21% and 40% of oligos undegraded after a 48 hour 

incubation.  The cellular uptake of the three variants, when delivered naked was non-

detectable in POs, slow in PS and faster in cap-PS. Once liposomally encapsulated, the 

uptake of PS was 18-fold and the cap-PS was 7-fold when compared to naked delivery. 

This was assessed via fluoroisothiocyanate (FITC) labelling. The authors concluded that 

the liposomal encapsulation conferred protection to the oligos, reduced their efflux from 
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the cells and additionally permitted a gradual release from endocytic vesicles. Their best 

results were with cap-PS and encapsulated ODNs – they exhibited the highest 

intracellular uptake, the best distribution and longevity within the cell ( a R. Thierry & 

Dritschilo, 1992). 

 

 In vitro testing of non-oligomerised 4.6.

mononucleotides 

 

Further to the discovery that the housekeeping proteins used as a loading control were 

being affected and in light of the work done by Koziolkiewicz et al (2001) more 

Western blots were performed to: 

a) Compare the effects of non-oligomerised mononucleotides (NMPs) versus the 

phosphodiester asODNs. See Figure 4.6 and Figure 4.7 

b) Test the stability of the housekeeping proteins to all treatments by using a total 

protein stain as a loading control. See Figure 4.3. 

c) Retest the effects of the antisense sequences on Bmal1 using total protein 

staining as a loading control. See Figure 4.3 

Amido Black (Sigma Aldrich Ltd) was used prior to blocking the membranes. 

Membranes were briefly exposed to the stain (0.1% w/v) then destained with 25% 

methanol, 10% acetic acid destaining solution until visible bands against the destained 

background. Colorimetric images were obtained using the Bio-Rad ImageLab MP used 

for the chemiluminescent imaging. Thereafter the Western blot process was the same as 

described in Methods 2.2.1. 

The non-oligomerised equivalents of the asODNs were formulated by making 1 mM 

solutions of each dNMP and then mixing them in the same ratio as found in the 



 

82 

 

asODNs. Thereafter, they were diluted as appropriate to obtain 2.5 µM final 

concentration.  

 

4.6.1. Normalisation and analysis of Western Blots  
 

For normalisation between blots an untreated protein lysate was made, aliquotted and 

stored at -20ºC so that the same volume of the identical batch of protein could be loaded 

into the last lane of each Western blot. Thereafter, all proteins on the blot were 

normalised to the optical density (od) of predominant protein band divided by the 

control lane on the colorimetric amido black images.  

                                = 
                                               

                                            

                                                                  

Cells were harvested 6, 24 and 48 hours after treatment in order to assess whether the 

affects seen were due to cytotoxicity. The median half-life of proteins in NIH 3T3s has 

been measured as being 46 hours whereas the median half-life of mRNA was found to 

be 9 hours (Schwanhäusser et al., 2011). 
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Figure 4.3 Bmal1 protein expression 6 hours after treatment is not due 

to a sequence specific effect of asODNs 
 NIH 3T3 cells were seeded to be 60-70% confluent the following day. 2 hours prior to 

treatment the culture medium was refreshed. Thereafter they were treated as indicated above 

with asODNs, transfected with Fugene 6™. The cells were harvested 6 hours later and protein 

was extracted for Western blot analysis. a) Representative image of the membrane post blotting. 

b) The columns represent mean ± SEM Bmal1 protein relative to total protein loaded n=3. One-

way ANOVA with Bonferroni post-hoc test was used to test statistical differences. * p<0.05 
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Figure 4.4 Expression of the housekeeping proteins is not stable 

enough to use as a loading control  
NIH 3T3 cells were seeded to be 60-70% confluent the following day. 2 hours prior to treatment 

the culture medium was refreshed. Thereafter they were treated as indicated above with 

asO\dNs, transfected with Fugene 6™. The cells were harvested 6 hours later and protein was 

extracted for Western blot analysis. The columns represent mean ± SEM: (a) GAPDH protein 

relative to total protein loaded n=3. (b) β-Actin protein relative to total protein loaded n=3. One-

way ANOVA with Bonferroni post-hoc test was used to test statistical differences. * p<0.05 
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Figure 4.5 24 hours following treatment none of the sequences knocks 

down Bmal1 with comparison to the vehicle only control 
NIH 3T3 cells were seeded to be 60-70% confluent the following day. 2 hours prior to treatment 

the culture medium was refreshed. Thereafter they were treated as indicated above with 

asODNs, transfected with Fugene 6™. The cells were harvested 24 hours later and protein was 

extracted for Western Blot analysis. a) Representative image of the membrane post blotting. b) 

The columns represent mean ± SEM Bmal1 protein relative to total protein loaded n=3. One-

way ANOVA with Bonferroni post-hoc test was used to test statistical differences. * p<0.05 
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Figure 4.6 At 24 hours both housekeeping proteins are significantly 

knocked down by the scrambled PO control 
NIH 3T3 cells were seeded to be 60-70% confluent the following day. 2 hours prior to treatment 

the culture medium was refreshed. Thereafter they were treated as indicated above with 

asODNs, transfected with Fugene 6™. The cells were harvested 24 hours later and protein was 

extracted for Western Blot analysis. The columns represent mean ± SEM: (a) GAPDH protein 

relative to total protein loaded n=3. (b) β-Actin protein relative to total protein loaded n=3. One-

way ANOVA with Bonferroni post-hoc test was used to test statistical differences. * p<0.05 
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Figure 4.7 At 48 hours post-treatment all of the asODNs/NMPs except 

scrambled PO 2 knock down Bmal1 with comparison to the vehicle 

only control 
 NIH 3T3 cells were seeded to be 60-70% confluent the following day. 2 hours prior to 

treatment the culture medium was refreshed. Thereafter they were treated as indicated above 

with DNA in an aqueous solution, transfected with Fugene 6™. The cells were harvested 48 

hours later and protein was extracted for Western blot analysis. a) Representative image of the 

membrane post blotting. b) The columns represent mean ± SEM Bmal1 protein relative to total 

protein loaded n=3. One-way ANOVA with Bonferroni post-hoc test was used to test statistical 

differences. * p<0.05 
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Figure 4.8 48 hours post-treatment both of the housekeeping proteins 

are affected by the asODNS/NMPs 
NIH 3T3 cells were seeded to be 60-70% confluent the following day. 2 hours prior to treatment 

the culture medium was refreshed. Thereafter they were treated as indicated above with 

asODNs, transfected with Fugene 6™. The cells were harvested 48 hours later and protein was 

extracted for Western Blot analysis. The columns represent mean ± SEM: (a) GAPDH protein 

relative to total protein loaded n=3. (b) β-Actin protein relative to total protein loaded n=3. One-

way ANOVA with Bonferroni post-hoc test was used to test statistical differences.  p<0.05 
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Figure 4.9 Bmal1 mRNA significantly increases in response to 24 

hours’ treatment with a phosphorothioate asODNs 
NIH 3T3 cells were seeded to be 60-70% confluent the following day. 2 hours prior to treatment 

the culture medium was refreshed. Thereafter they were treated as indicated above with 

asODNs, transfected with Fugene 6™. The cells were harvested a) 6 hours later b) 24 hours 

later and RNA was isolated for RT-PCR. All data were normalised to GAPDH and SDHA. 

Columns represent the fold change of Bmal1 mRNA expression with comparison to the control 

± SEM. One-way ANOVA with Bonferroni post-hoc test was used to test statistical differences.  

p<0.05 
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Figure 4.10 Bmal1 mRNA significantly increases in response to 48 

hours’ treatment with a phosphorothioate asODNs 
 NIH 3T3 cells were seeded to be 60-70% confluent the following day. 2 hours prior to 

treatment the culture medium was refreshed. Thereafter they were treated as indicated above 

with asODNs, transfected with Fugene 6™. The cells were harvested 48 hours later and RNA 

was isolated for RT-PCR. All data were normalised to GAPDH and SDHA. Columns represent 

the fold change of Bmal1 mRNA expression with comparison to the control ± SEM. One-way 

ANOVA with Bonferroni post-hoc test was used to test statistical differences.  p<0.05 
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Figure 4.11 Bmal1 mRNA is not affected by antisense or dNMPs 
NIH 3T3 cells were seeded to be 60-70% confluent the following day. 2 hours prior to treatment 

the culture medium was refreshed. Thereafter they were treated as indicated above with 

asODNs, transfected with Fugene 6™. The cells were harvested 6, 24 and 48 hours later and 

RNA was isolated for RT-PCR. All data were normalised to GAPDH and SDHA. Columns 

represent the fold change of Bmal1 mRNA expression. 
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Figure 4.12 asODNs do not increase migration rate of fibroblasts  
Scratch wound assays were prepared and average distance of cell migration was measured as 

described as per Methods 2.4. Columns represent mean pixels travelled in a) the first 4 hours b) 

the second 4 hours ±SEM. One-way ANOVA with Bonferroni post-hoc test was used to test 

statistical differences.  p<0.05 
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 Discussion 4.7.

The original basis for this project was to develop an antisense oligonucleotide strategy 

to transiently stop the circadian clock by knocking down Bmal1 as a topically applied 

pluronic based gel. Unfortunately the asODNs do not knock down Bmal1 on a sequence 

specific basis; the scrambled control sequence is as effective at knocking down Bmal1 

as the targeted sequence. Additionally, the asODNs appear to have a toxic effect on the 

housekeeping proteins. The effect on Bmal1 protein at 48 hours post-treatment is the 

same for phosphodiester backbone sequence 1, scrambled phosphodiester backbone 

sequence 1 and non-oligomerised sequence 1 which suggests that the asODN is not 

entering the cells as an intact oligonucleotide, but is being rapidly catalysed and that it 

is the dNMPs which are exerting these effects on the cells as shown by earlier studies 

(Wickstrom, 1986; Maria Koziolkiewicz, Gendaszewska, Maszewska, Stein, & Stec, 

2001) 

Further, no knockdown of Bmal1 mRNA was seen with any of the asODNs or dNMPs 

at multiple time points when measured by RT-PCR. The only significant difference seen 

at the mRNA level was an increased in Bmal1 following 24 and 48 hour treatment with 

the phosphorothioate backbone analogue of antisense sequence 1. An increase in cell 

proliferation was seen by Koziolkiewicz et al (2001) when they treated HL-60 and 

HUVEC cells with dNMPSs; they hypothesized that this could be due to P2 receptors. It 

is possible that dNMPSs could have an effect on purinergic signalling. Regardless, these 

investigations have shown that antisense oligonucleotides in this format do not fulfil the 

requirements of the project so alternative methods of knocking down Bmal1 will be 

investigated in the following chapters. Functional assays showed that none of the 

asODNs had an effect on cell migration rate; in fact, they significantly reduced the rate 

of migration in the first 4 hours of the assay, perhaps as a result of the toxicity 

previously discussed. 
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 Ribonucleic acid interference (RNAi) 5.1.

 

RNA interference is: 

 
“RNA interference (RNAi). A form of post- transcriptional gene silencing in which the 

expression or transfection of double- stranded RNA induces degradation by nucleases 

of the homologous endogenous transcripts, resulting in the reduction or loss of gene 

activity.” (Kole et al., 2012) 

 

RNA interference (RNAi) was first demonstrated in Caenorhabditis elegans (c.elegans) 

in 1997 with the introduction of double stranded ribonucleic acid (dsRNA) designed to 

interfere with the expression of unc-22, a gene that encodes a myofilament. The injected 

nematodes displayed the phenotype of a unc-22
-/-

 following a dose representing only a 

few molecules of dsRNA per cell which led the investigators to conclude that there 

must be some amplification or catalytic effect to produce such a phenotype.(Fire et al., 

1998) The mechanism involved the dsRNA being cleaved to several short interfering 

RNAs (siRNAs) approximately 21-22 nucleotides long which lead to an interaction 

with RNA-induced silencing complex (RISC). Within RISC the siRNA unfolds and the 

antisense strand binds to the mRNA which leads to the cleavage of the messenger RNA 

(mRNA) by argonaute 2. (Kole et al., 2012) The conversion of dsRNA to siRNAs is not 

possible in mammalian cells and it was not until 2001 that it was discovered that 

synthetic siRNA can target mRNA in human cells (Elbashir et al., 2001). 
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5.1.1. siRNA 
 

The first in vivo study using siRNA was in mice in 2003 (Ashcroft et al., 2012) where 

siRNA targeted to knock down Fas was used to prevent cytotoxicity in hepatitis. One 

limitation found was that unmodified siRNA is degraded by endogenous nucleases very 

quickly. For that reason, in clinical trials there has been a focus on local delivery (Kole 

et al., 2012). Another potential pitfall with siRNA as a clinical tool is that there are 

possible off target effects; in particular the cleavage of the siRNA to smaller fragments 

can lead to microRNA-like silencing of off-target transcripts (Jackson et al., 2006; 

Jackson & Linsley, 2010). siRNA can also illicit an immune response via activation of 

Toll-like receptors resulting in the activation of pro-inflammatory pathways (de 

Fougerolles et al., 2007). Another possible outcome is the formation of triesters which 

inhibit global protein synthesis through binding to the terminus of tRNA and mRNA 

(Miller et al., 1977). For these reasons pharmaceutical companies reduced investment in 

siRNAs as systemically delivered therapies (Kole et al., 2012). It is still widely used in 

vitro in research to explore the effects of knocking down specific proteins. Several 

companies have developed bespoke modifications to enhance the longevity of the 

molecules (for example Silencer Select™, Life Technologies (Thermo Fisher Scientific 

Inc.). 
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(Kole et al., 2012) 

Figure 5.1 The mechanism of action of siRNA 

 

5.1.2. microRNA 
 

microRNA (miRNA) is a class of non-coding RNAs in the genomes of plants and 

mammals (Lagos-Quintana, Rauhut, Meyer, Borkhardt, & Tuschl, 2003). miRNAs were 

first discovered in Caenorhabditis elegans during the study of developmentally 

regulated lin-4 and let-7 (Reinhart et al., 2000). Mature miRNAs are approximately 21 

nucleotides long. They are derived from 60-80 nucleotide double stranded hairpin RNA 

which are ultimately excised by Dicer RNase III in the cytoplasm (Lee, 2002). 

Originally it was thought that the 3’ untranslated region of the miRNA binds to the 
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5’untranslated region of the mRNA via a ‘seed’ region of 6-7 nucleotides,  leading  to 

the repression of translation of the protein (Lagos-Quintana et al., 2003). Some 

miRNAs have been shown to activate translation (Vasudevan, Tong, & Steitz, 2007) 

and it is possible that other mechanisms for regulatory control by miRNAs are still to be 

discovered (Tay, Zhang, Thomson, Lim, & Rigoutsos, 2008; Ling, Fabbri, & Calin, 

2013).

 

(Ling et al., 2013) 

Figure 5.2 Mechanisms of miRNA regulation of gene expression  

 

5.1.3. Short Hairpin RNA   
 

Short hairpin RNA (shRNA) consists of 19-22 base pairs linked by a 4-11 nucleotide 

loop which bears a similarity to the natural hairpin structure seen in endogenous 
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microRNA. Once incorporated into the cell shRNA is cleaved into siRNA and then 

interferes with protein translation in the same way as siRNA. The predominant 

differences between siRNA and shRNA are that shRNA can be transfected in plasmid 

form or using viral vectors and that shRNA can be used to generate stable cells lines.(C. 

B. Moore, Guthrie, Huang, & Taxman, 2010) (more detail to follow in the section 

‘Delivery methods’) 

(Santa Cruz Biotechnology, n.d.) 

 

5.1.4. Overexpression of a dominant negative protein 
 

Another way to disrupt the function of a protein is to overexpress a truncated non-

functional version. Bmal1 and CLOCK form a heterodimer that drives the transcription 

of downstream circadian proteins, therefore overexpression of a dominant negative 

mutant of Bmal1 that still maintains the moieties that enable it to bind to CLOCK but 

disable the transcriptional activity the circadian can be stopped (Kiyohara et al., 2006). 

 Delivery methods 5.2.

 

5.2.1. Transfection 
 

Transfection is the term used for the non-virally mediated introduction of nucleic acids 

into eukaryotic cells. Most laboratories use a transfection reagent of some type to 

facilitate this as naked nucleic acids are negatively charged so are repelled by the 

negatively charged cell membrane. One class of chemical transfection reagents are the 

cationic polymers such as Diethylaminoethyl-dextran (DEAE-dextran) (Pagano & 

Vaheri, 1965), or polybrene (Kawai & Nishizawa, 1984) which bind to the nucleic acids 

and gives the complex an overall positive charge. Another method to change the net 

charge is co-precipitation with calcium phosphate (Graham & van der Eb, 1973). Other 

positively charged polymers that have been used are polyethyleneimine (PEI) (Boussif 
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et al., 1995) and dendrimers; branched polyamidoamine polymers to effectively 

encapsulate the nucleic acids and enhance their uptake into the cytosol (Haensler & 

Szoka). 

 

 
(Promega Corp, 2015) 

Figure 5.3 The mechanism of action of siRNA 
 

Another class of delivery reagent is the cationic liposome family of reagents (sometimes 

this type of transfection is referred to as ‘lipofection’). The principle is the same; the 

aim is to change the charge on the nucleic acid-liposomal complex to facilitate 

permeation of the cell membrane and also to protect the encapsulated nucleic acids from 

enzymatic degradation. An additional benefit of this method is that is can be used in 

vivo (P. L. Felgner et al., 1987; J. Felgner, Bennett, & Felgner, 1993) and also to 

generate stably integrated nucleic acids into cells for long-term experiments. The 

majority of proprietary transfection reagents available commercially use versions of this 

chemistry (e.g. Lipofectamine, Life Technologies). A commonly used non-lipid based 

transfection reagent is Fugene 6 (Promega) which is popular with cell biologists as it 

can be used in serum-containing medium unlike lipofection reagents. 
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5.2.2. Transient versus Stable Transfection 
In transiently transfected cells the nucleic acids introduced into them  can either cause a 

protein to be over expressed (in the case of mRNA transfection) or knocked down 

transiently, i.e. for a few days, whilst the constructs are still present in the culture 

medium/cytosol. With stable transfection the targeted DNA is incorporated into the 

genome and the altered expression of the target protein persists. Typically the stably 

transfected cells are selected for inclusion of the desired construct via either antibiotic 

resistance or fluorescence-activated cell sorting (FACS). This is achieved by cloning 

antibiotic resistance to, for example, puromycin, into the RNAi construct or by adding a 

fluorescent tag. Post-transfection cells are incubated for a minimum of 48 hours to 

allow time for the expression of the resistance gene or fluorescent marker and are sorted 

by addition or puromycin (or other antibiotic selector such as G418 or hygromycin) to 

the culture medium, following which cells not expressing the desired construct will die 

off or can be sorted via FACS as mentioned above. 

 
(T. K. Kim & Eberwine, 2010) 

5.2.3. Physical methods of transfection 
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Nucleic acids have been delivered into hard-to-transfect cells via direct microinjection 

(Capecchi, 1980), biolistics (gene gun) or electroporation. Microinjection is very time-

consuming and, for this reason, is not a popular method. Biolistics is the process of 

coating gold particles with the DNA and blasting it at the cells (Ye, Daniell, & Sanford, 

1990). Electroporation involves suspension of the cells in a suitable buffer (for example 

growth medium) and passing an electrical current through specially made cuvettes. This 

perturbs the stability of the cells membranes transiently and enables the entry of the 

nucleic acids (Shigekawa & Dower, 1988). The main disadvantage of the latter two 

methods is that there is a high level of cell death. 

5.2.4. RNAi delivery vectors 
 

shRNA is delivered either via bacterial plasmids or a viral vector.  

 

Plasmids 
 

In order to be useful as a cloning tool, plasmids require a bacterial origin of replication, 

an antibiotic resistance gene, and one or more unique restriction enzyme sites. This 

permits the propagation of the plasmid within bacteria and allows selection against any 

bacteria not carrying the plasmid and the restriction enzyme site(s) allow for the cloning 

of a fragment of DNA into the plasmid. See Figure 5.4. 
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(Addgene, n.d.-b) 

Figure 5.4 A plasmid map displaying the qualities required for use in 

transfection 
 

5.2.5. Viral delivery 
 

Viral delivery will be discussed in Chapter 6. 

 

 Methods and materials 5.3.

5.3.1. siRNA 
 

NIH 3T3 cells were seeded to be 70% confluent the following day. Silencer Select ™ 

siRNA sequences targeted to Bmal1, GAPDH (positive control) and non-targeting 

control (all Life Technologies Ltd.) were transfected at the recommended concentration 

(10 nM) using Fugene 6™ as described in Methods 2.3.1. Protein expression was 

measured by Western blotting and mRNA by RT-PCR. In addition to these siRNA 

constructs a FAM-tagged siRNA was used to assess transfection efficiency. FAM is a 

fluorescein based fluorophore that is excited by 488 nm wavelength light. FAM-tagged 

siRNA was used to transfect NIH 3T3s using several different transfection reagents and 
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ratios of reagent to siRNA at multiple cells densities in order to ascertain the optimal 

transfection conditions. 

5.3.2. miRNA 
 

  

NIH 3T3 cells were seeded to be 70% confluent the following day. Synthetic 

mirVana™ mimics and inhibitors (both mir-142-3P) and controls (all Life Technologies 

Ltd.) were transfected at the recommended concentration (10 nM) using Fugene 6™ as 

described in Methods 2.3.1. Protein expression was measured by Western blotting and 

mRNA by RT-PCR. mirVana™.  miRNA mimics are designed to mimic the 

endogenous miRNA mir-142-3p that down-regulates Bmal1 protein translation (Tan et 

al., 2012). miRNA inhibitors are designed to bind to the miRNA and down-regulate 

their activity, so in this case should up-regulate the expression of Bmal1.  

5.3.3. Dominant negative Bmal1 
 

A Bmal1 dominant negative (DN) plasmid and an empty vector (based on the p.CLNC 

backbone from Imgenex - a kind gift from T. Tamai) was transfected using Fugene 6™ 

as described in Methods 2.3.1.  

On a separate occasion cells were electroporated with 50 µg Bmal1DN plasmid DNA 

using a BTX ECM 830 with the following settings taken from the BTX protocol 

database:   
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Table 5.1 Electroporation settings 
Mode T Set on 

500V/CAPACITANCE/RESISTANCE 

(LV) 

Capacitance C 1500μF 

Resistance R R4 (72ohm) 

Chamber Gap BTX Disposable Cuvette P/N 620 (2mm 

gap)  

 

Charging Voltage S 350V 

Desired Field Strength E 1.75kV/cm  

 

Desired Pulse Length t 13 msec 

 

The p.CLNC.Bmal1DN plasmid contains a FLAG tag which is a short polypeptide 

(Hopp et al., 1988) that enables identification of the protein by immunofluorescence 

using an anti-FLAG antibody and a fluorophore conjugated secondary antibody. By 

counterstaining with Hoescht and measuring the ratio of FLAG-positive cells to FLAG-

negative cells the transfection efficiency can be assessed. 

 Transfection optimisation 5.4.

 

As it became apparent that the RNAi was not having an effect, RT-PCR measurement 

of Bmal1 knockdown was repeated using the most successful transfection reagent for 

siRNA (Interferin). See Figure 5.9. Another approach used was co-transfection with 

enoxacin at 50 µM (Sigma Ltd.). It is a broad-spectrum fluoroquinone based antibiotic 

reputed to have a beneficial effect on the transfection efficiency of siRNA and miRNA 

(Shan et al., 2008). Transfection efficiency was assessed by seeding the NIH 3T3s in 

Millipore 8 well chamberslides, transfecting them as per the manufacturers’ instructions 

at a variety of concentrations and cell densities. 48 to 72 hours later cells were fixed in 
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4% PFA, permeabilised with PBS-Triton (0.1% v/v) and, in the case of the FLAG-

tagged construct, incubated with mouse monoclonal anti-FLAG primary antibody for 2 

hours at room temperature whilst on a shaker, washed three times with PBS-Triton and 

then incubated with goat anti-mouse Alexa 488 conjugated secondary antibody for an 

hour at room temperature. After more washes the cells were counterstained with 

Hoescht to stain the nuclei,the slides were mounted with glycerol-PBS mounting 

medium and coverslips were sealed with clear nail-varnish prior to imaging. 

Transfection efficiency was assessed visually as the proportion of green-stained cells to 

the number of blue-stained nuclei. 

 

Table 5.2 Transfection reagents tested 

Transfection reagents Manufacturer 

Lipofectamine L3000 Life Technologies 

RNAiMAX Life Technologies 

Lipofectamine LTX Life Technologies 

Oligofectamine Life Technologies 

Interferin Polyplus transfection 

Jetprime Polyplus transfection 

Fugene 6 Promega 

Fugene HD Promega 

TransIT Mirus 
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 Results 5.5.

 

5.5.1. Short Interfering RNA 

 
  

 

Figure 5.5 Neither miRNA nor siRNA knock down Bmal1 protein 48 

hours post-treatment 
NIH 3T3 cells were seeded to be 60-70% confluent the following day. 2 hours prior to treatment 

the culture medium was refreshed. Thereafter they were treated with 10 nM miRNA/siRNA, 

transfected with Fugene 6™. The cells were harvested 48 hours later and protein was extracted 

for Western blot analysis. a) Representative image of the membrane post blotting. b) The 

columns represent mean ± SEM Bmal1 protein relative to β-actin. n=3. One-way ANOVA with 

Bonferroni post-hoc test was used to test statistical differences. No significant differences were 

found. 

b 

a
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Figure 5.6 neither siRNA nor overexpression of Bmal1 DN reduce the 

expression of Bmal1 48 hours post-treatment 
NIH 3T3s were seeded to be 60-70% confluent the following day. They were transfected with 

the siRNA sequences at 10 nM using Fugene 6™. They were harvested at the time points as 

indicated and RNA was isolated for RT-PCR as described in the Methods section. Columns 

represent Bmal1 mRNA fold expression ± SEM relative to SDHA in NIH 3T3 cells, n = 3. 

Statistical analysis was done using one-way ANOVA on SPSS. There was no significant 

difference. 
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Figure 5.7 Neither siRNA nor Bmal1 DN overexpression enhance the 

migration rate of NIH 3T3s 
NIH 3T3s were seeded to be ~70% confluent the day before transfection. 48 hours post-

transfection the scratch wound assay was done as per Methods section 2.4. Columns represent 

mean distance travelled from the wound edge in pixels ± SEM in the first 4 hours a) & c) then 4 

to 8 hours in b) and d). n = 3  (8 biological replicates per experiment). Statistical analysis was 

done by one way ANOVA using SPSS. No statistical differences were found. 
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 Micro RNA 5.6.

 
. 

 

Figure 5.8 miRNA mimics do not reduce mRNA expression of Bmal1 
Fibroblasts were seeded to be 60-70% confluent the following day. They were transfected with 

the miRNA sequences at 10 nM using Fugene 6™. They were harvested at the time points as 

indicated and RNA was isolated for RT-PCR as described in the Methods section. Columns 

represent Bmal1 mRNA fold expression ± SEM relative to SDHA in a) NIH 3T3 cells, b) 

primary murine fibroblasts n = 3. Statistical analysis was done using one-way ANOVA on 

SPSS. There was no significant difference between the treatments at both time points in either 

type of cell. 
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5.6.1.  Transfection optimisation 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 Representative images of immunofluorescent assessment of 

transfection efficiency. Interferin is the most successful transfection 

reagent for FAM-tagged siRNA 
Blue = Hoechst nuclear stain. Green =  

a) Flag tagged Bmal1DN, immunofluorescence with Alexa 488 secondary antibody 48 hours 

post electroporation,  

b) FAM-tagged siRNA 72 hours post double transfection with Interferin 

c) Flag tagged Bmal1DN, immunofluorescence with Alexa 488 secondary antibody 48 hours 

post transfection with Fugene HD 

a 

c d 

a b 

c d 
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d) Flag tagged Bmal1DN, immunofluorescence with Alexa 488 secondary antibody 48 hours 

post transfection with LTX 

 

 

Figure 5.10 The optimised Interferin transfection protocol conditions 

did not produce a knock-down of Bmal1 or GAPDH after 72 hours 
NIH 3T3s were seeded to be 60-70% confluent the following day. They were transfected with 

the siRNA sequences at 10 nM (1x) or 20 nM (2x) using Interferin™. The following day they 

were retransfected using half the dose of the previous day. They were harvested 72 hours after 

the first transfection and RNA was isolated for RT-PCR as described in the Methods section. 

Columns represent Bmal1 mRNA fold expression relative to SDHA. 

 

 Discussion 5.7.

 

Despite multiple attempts to achieve a knock-down of Bmal1 with siRNA, miRNA and 

Bmal1 DN, none of these RNAi methods was successful.  

Having obtained a fluorophore labelled siRNA and a FLAG-tagged Bmal1 DN 

construct to test the transfection efficiency of siRNA and plasmid DNA the reason for 

the failure of the RNAi to induce a knock-down appears to be that the transfection rate 

is too low to have any appreciable effect. Multiple concentrations of the RNA, ratios of 

RNA to several different transfection reagents and multiple cell seeding densities were 

used on the advice of the manufacturer of the siRNA and miRNA (Life Technologies). 

Additionally a representative from Sigma Aldrich kindly offered the help of their 
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technical support experts. Following lengthy conversations to troubleshoot the possible 

problems they concluded that the only problem could be that the cell line being used 

was difficult to transfect.   Attempts to enhance transfection with enoxacin did not make 

any measurable difference. Even the GAPDH positive control failed to knock down 

GAPDH which indicates that the RNAi was not actually entering the cells rather than 

the problem being of sequence specificity to Bmal1. The greatest success in the myriad 

of reagents used was the use of the transfection reagent Interferin for transfecting FAM-

tagged siRNA see Figure 5.9a. This was on the recommendation of a post-doctoral 

colleague who had used it successfully in the past. Unfortunately the conditions used for 

this successful transfection did not translate into positive results for the target siRNA. 

The target siRNA is a slightly different formulation (Silencer Select ™ as opposed to 

Silencer™) so perhaps it is the proprietary stability modification of the Silencer 

Select™ which is preventing transfection.  

 

Following this discovery other means of knocking-down the target were researched. It 

was hoped that it would be possible to obtain some epidermal tissue from Bmal1 

knockout mice from another laboratory in order to produce primary cells to use but 

sadly there was a breeding problem with the Bmal1
+/- 

mice. In the absence of a tool to 

use to test the theory of stopping the clock a lentiviral licence was obtained to permit 

the use of lentiviral vectors to introduce both an shRNA clone targeted to knocking 

down Bmal1 and also a Bmal1 luciferase reporter to assess the expression of Bmal1.  
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 Introduction to lentiviral vectors 6.1.

 

As none of the alternative methods of RNAi were successful in knocking down Bmal1 

in sufficient NIH 3T3cells, the next approach was to use a lentiviral delivery system. 

6.1.1. Virally mediated RNAi – transduction 
 

Transduction is the introduction of nucleic acids to eukaryotic cells via a viral vector. 

Both adenoviruses and lentiviruses can be used for this purpose. The prime advantage 

of using lentiviruses is that they are capable of transducing both dividing and non-

dividing cells (Coffin, Hughes, & Varmus, 1997). The viral particles are made using a 

packaging cell line, typically a variant of HEK293 cells, such as 293FT (Life 

Technologies). These cells are transfected using an optimised ratio of transfer vector, 

containing the shRNA of interest, a packaging plasmid such as pCMV-dR8.2 dvpr with 

an envelope plasmid such as pCMV-VSV-G (Stewart, 2003). The reason for separating 

the genes that encode the packaging proteins and the envelope protein is for safety. The 

plasmid depository Addgene explains this fully as: 

“The transfer vector encodes the gene of interest and contains the sequences that 

will incorporate into the host cell genome, but cannot produce functional viral 

particles without the genes encoded in the envelope and packaging vectors. 

Unless recombination occurs between the packaging, envelope, and transfer 

vectors, and the resulting construct is packaged into a viral particle, it is not 

possible for viruses normally produced from these systems to replicate and 

produce more virus after the initial infection.” 

 
shRNA constructs are cloned into a suitable bacterial vector, this is amplified by growth 

in competent cells in Luria-Bertani (LB) broth overnight in a shaker at 37°C. The 

plasmid DNA is then isolated from the pelleted bacteria via Maxiprep (Qiagen). This 

can be transfected into the cells using a transfection reagent such as Fugene 6 and can 

be used to transiently transfect cells or produce stable cell lines via selection as 

mentioned previously. 
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The efficacy of the HIV based lentiviral vector is in part due to the gag matrix protein 

which directs it to the nucleus to enable incorporation of the viral DNA 

 (Bukrinsky et al., 1993).  

(Addgene, n.d.-a)  

Figure 6.1 Viral particles are made within 293FT cells following 

transfection with transfer, packaging and envelope plasmids 
Separating the components confers a higher level of biosafety for the user. The 

supernatant containing viral particles is used to transduce target cells to facilitate the 

introduction of the shRNA into the cells.  
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(Dan Cojocari, University Health Network, University of Toronto) 

Figure 6.2 Virally mediated transduction of shRNA constructs 
Viral pseudoparticles are used to facilitate the entry of the shRNA into the cell thereby 

enabling a higher rate of transduction. 
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 Introduction to circadian clock synchronisation in 6.2.

vitro  

 In 1998, Balsalobre et al showed that mammalian cells in culture have a circadian 

clock that can be synchronised by simulating the cells with high serum medium (50% 

horse serum:50% DMEM). Subsequent to this several other compounds have been 

shown to cause a similar effect, for example, dexamethasone (Balsalobre et al., 2000), 

forskolin (Kazuhiro Yagita & Okamura, 2000) and heat shock (43°C for 3 minutes) 

(Tamaru et al., 2011). Each of these methods results in the oscillation of circadian genes 

for approximately three days before they start to dampen as they become 

desynchronised with each other (Welsh et al., 2004; Nagoshi et al., 2005). 

 Methods 6.3.

 

6.3.1. Lentiviral titre evaluation 

Lentiviral particles were generated as described in Section 2.3.2. An enzyme-linked 

immunosorbent assay (ELISA) was used to calculate the viral titre following 

disappointing initial results with using crude viral supernatant. (Alliance HIV-1 P24 

Antigen ELISA Kit, Perkin Elmer). Centrifuged and filtered viral supernatants were 

diluted 1 in 5 with DMEM. A recombinant HIV-1 p24 stock solution was diluted with 

assay diluent to produce a standard curve. 225 µl of each standard and each filtered viral 

supernatant were added to 25 µl of Triton X-100 solution and incubated at 37 °C for 30 

minutes to inactivate the samples. In duplicate, 110 µl of inactivated sample or standard 

were added to the anti-p24 antibody coated 96 well plate for 4 hours incubation at 37 

°C. The wells were then emptied and washed three times with wash buffer. 100 µl 

FITC-conjugated anti-p24 monoclonal antibody (diluted 1:1000 in assay diluent) was 

added to each well and it was incubated at room temperature for an hour on a shaker. 

The wells were then washed three times as before and 100 µl HRP-conjugated anti-
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FITC monoclonal antibody was added. The plate was incubated at room temperature for 

a further hour on the shaker. Following another three washes, 100 µl pre-warmed 

Substrate Solution was added to the wells until a colour change was seen. The enzyme 

reaction was stopped by adding 100 µl Stop Solution was added and the absorbance of 

each well was measured on a spectrophotometer at 450 nm. The value for the p24 

concentration of each viral sample was obtained by plotting a standing curve in 

Microsoft Excel and applying a logarithmic scale to the x-axis and sigmoid curve. The 

formula for the curve was used to calculate the p24 concentration. The number of 

lentiviral particles (LPs) was calculated as follows: 

1 ng p24 = 1.25 x 10
7
 LPs 

6.3.2. Transduction  
 

NIH 3T3s and Bmal1:LUC cells were seeded in 24 well plates at 50,000 cells per well. 

They were transduced 24 hours later in complete DMEM containing heat inactivated 

FBS (10%) and 5 µg/ml polybrene (Sigma-Aldrich Ltd) at a range of concentrations 

from 1 to 10,000 lentiviral particles per cell to ascertain the optimum transduction 

conditions. Cells were incubated at 4°C for 2 hours directly following transduction; they 

were then transferred to a cell culture incubator for an overnight incubation at 37°C, 5% 

CO2. The next morning the culture medium was replaced with complete DMEM 

without polybrene. Cells were split and replated as necessary. Three days after 

transduction the presence of mCherry fluorescence was assessed to quantify the 

transduction efficiency either on a chamberslide, counterstained with Hoescht as 

described in Methods 2.2.7 or by using an inverted microscope (Olympus) to visualise 

fluorescence in growing cells. Transduced cells were selected by the addition of 

puromycin (Life Technologies) at 2 µg/ml.  
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(Genecopoeia, n.d.) 

Figure 6.3 Plasmid map of the Genecopoeia shRNA clones targeted to 

Bmal1 
The shRNA clones from Genecopoeia are incorporated into a plasmid encoding for 

mCherry – a fluorescent marker for determining the transduction of the target cells, and 

puromycin resistance to select for transduced cells. All untransduced cells will die 

within a week, leaving a population of shRNA expressing cells.  
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Figure 6.4 Plasmid map of the Bmal1:LUC construct 
The Bmal1:LUC plasmid also encodes for puromycin resistance. There is no fluorophore in this 

plasmid. 

 

6.3.3. Circadian clock synchronisation assay 
 

Cells were synchronised either by treatment for 2 hours with 50% horse serum DMEM 

for 2 hours followed by 1% FBS DMEM or by a 30 minute treatment with 1 µM 

dexamethasone (from a 1M stock dissolved in ethanol.) followed by normal growth 

medium (all Life Technologies). 

6.3.4. RT-PCR 
 

Cells were synchronised by the methods stated above. Controls were either a like-for 

like medium replacement or 0.001% ethanol (equating to the volume used to dilute the 

dexamethasone). They harvested at time 0 when the synchronisation started, thereafter 

every 4 or 6 hours and immediately lysed and stored at -80°C until the RNA was 

extracted. RT-PCR was executed as per Methods section 2.2.2.  
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6.3.5. Luciferase assay 
 

Cells were seeded at 5,000 cells per well in white flat bottomed 96 well plates 2 days 

prior to the experiment to ensure that they were all fully confluent at the start of the 

assay. Just prior to measuring the growth medium was replaced with phenol red-free 

HEPES buffered DMEM containing 10% (or 1% for serum shocked cells) FBS and 

penicillin-streptomycin at 100 U/ml (all Life Technologies Ltd.) containing 1 mM D-

luciferin (Promega Corporation). The plates were sealed with Bio-Rad adhesive seals as 

used for RT-PCR. The photon counts were measured on a BMG Labtech Optima 

Fluostar preheated to 37°C every hour for 3 days. Controls included wells containing 

medium, but no cells, transduced cells with no luciferin and nontransduced cells with or 

without luciferin. The data was analysed in part by the bespoke BMG Labtech software 

(MARS) and in part by Microsoft Excel; in MARS the data were normalised to blank 

controls and the curve smoothing algorithm was applied (moving average). The data 

were then exported to Excel to calculate the average of a minimum of 5 biological 

replicates for each of 3 experiments and the standard deviation. 

6.3.6.  Incucyte scratch wound assay to assess functional effects of 

Bmal1 knockdown 
 

Cells were seeded 2 days prior to the assay at 5,000 cells per well in an Essen Image 

lock 96 well plate so that they would be confluent on the day of the experiment. The 

cells were scratched as per methods section 2.4.  Images were acquired on an Incucyte 

Zoom of both brightfield and fluorescence in the red wavelength to differentiate 

between cells expressing the shRNA Bmal1 knockdown constructs and those that were 

not so as to be able to measure the relative migration rates of the different populations 

in the same well. Analysis was done using the Essen Zoom software using the tool that 

measures wound density. 
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 Results 6.4.

 

 

Figure 6.5 The control has as much effect as the treatment in cell 

synchronisation of Bmal1 with serum shock 
This is a representative graph of many attempts to measure the effects of serum shock on NIH 

3T3 cells. Cells were seeded 24 hours before the experiment in 6 well plates such that they were 

confluent the following day. They were harvested at 4 hour intervals following the serum shock. 

Data represents Bmal1 mRNA relative to SDHA and GAPDH. 

 

Figure 6.6 Dexamethasone has no more effect than the control in the 

synchronisation of Bmal1 in NIH 3T3s 
This is a representative graph of many attempts to measure the effects of dexamethasone 

treatment on NIH 3T3 cells. Cells were seeded 24 hours before the experiment in 6 well plates 

such that they were confluent the following day. They were harvested at 4 hour intervals 

following the start of the dexamethasone treatment. Data represents Bmal1 mRNA relative to 

SDHA and GAPDH. 
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Figure 6.7 Changing the culture medium for fresh culture medium 

induces circadian oscillations in Bmal1 as effectively as the cell 

synchronisation protocols widely used in the literature. 
 At a constant temperature (37 °C) following treatment to synchronise the circadian clock, 

robust circadian oscillations are seen in NIH 3T3 cells stably expressing Bmal1:LUC with only 

a like-for-like serum change. Data is an average of ≥ 15 biological replicates ± SEM. n = 3 

There appears to be a phase shift of 2 hours between each treatment; the second trough 

appears at 24 hours in the serum shocked cells, 26 hours in the medium change cells and 

28 hours in the dexamethasone treated cells. The following peak is at 48 hours, 50 hours 

and 52 hours respectively.  
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Figure 6.8 The amplitude of the wave in circadian rhythm of Bmal1 

with serum shock is larger than with dexamethasone or medium 

change.  
Data are the mean amplitude of the second wave measured by deducting the mean trough values 

from the mean peak value. Data is an average of ≥ 15 biological replicates ± SEM. n = 3. 

Statistical differences were calculated by one way ANOVA *p < 0.05 using SPSS. 

  
Figure 6.9 Synchronisation by serum shock resulted in a longer period length than 

by the dexamethasone or medium change.  

Data are mean temporal frequency of peak amplitude minus trough ± SEM. Data is an average 

of ≥ 15 biological replicates ± SEM. n = 3. Statistical differences were calculated by one way 

ANOVA *p < 0.05 using SPSS. Mean period length for cells undergoing synchronisation was 

as follows: 23.67 hours for dexamethasone, 25.4 hours for serum shock and 23.34 hours for 

medium change. 
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Figure 6.10 ShRNA knockdown construct 4 significantly reduces the 

mean wound density of transduced NIH 3T3 fibroblasts 
NIH 3T3s expressing the shRNA knockdown constructs targeted to Bmal1 were seeded in 

Essen Image Lock™ 96 well plates 48 hours prior to the scratch wound assay. The assay was 

performed as per Methods section 2.4 with the exception that it was run on an Incucyte Zoom, 

using the brightfield and red fluorescence channels. NIH 3T3s transduced with the shRNA 

sequence 4 had a significantly reduced mean wound density with comparison to those 

transduced with the scrambled shRNA control. Statistical differences were tested using two way 

ANOVA with Dunnett’s post-hoc comparisons using GraphPad Prism. See table 6.1 for 

statistical differences across the time course. Data are mean wound density ± SEM. n = 16 wells 

(1 experiment only) 

 

Table 6.1 Statistical differences in mean wound density between NIH 

3T3s transduced with shRNA construct 4 compared to NIH 3T3s 

transduced with the scrambled control 
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Figure 6.11 Representative image of fluorescent cells expressing 

mCherry overlaid over a brightfield image of the same field of view  

(20 x) 
 
The Bmal1:LUC celled transduced with the mCherry expressing shRNA Bmal1 knockdown 

constructs were imaged in brightfield and with fluorescent excitation at 598 nm.  Transduction 

efficiency was calculated by dividing the number of fluorescent cells by total cells and 

multiplied by 100 to gain a percentage. In Figure 6.11 the cells are Bmal1:LUC transduced with 

the shRNA construct number 4. 23.8% of the cells were fluorescent. Cells were counted using a 

plugin for ImageJ. The percentage of fluorescent Bmal1:LUC cells ranged from 16% to 24%. 
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 Discussion 6.5.

 

6.5.1. Circadian clock synchronisation in vitro 
 

Merely feeding the cells with fresh culture medium is sufficient stimulus to elicit 

circadian clock synchronisation. This explains why the controls in the graphs of Bmal1 

expression measured by RT-PCR had a similar profile to the serum shocked or 

dexamethasone treated cells. The absence of regular oscillations can be explained by the 

fact that the cells were seeded in 6 well plates with multiple time points per plate. 

Transient removal of the plates from the incubator to harvest a different time point 

could potentially be sufficient stimulus to ‘reset’ the circadian clock (personal 

communication, O’Neill laboratory, unpublished). The effect of medium change 

causing synchronisation has been observed previously. See Figure 6.12. 

 

(Maywood et al., 2006, re drawn from Yamazaki, 2000) 

Figure 6.12 Per2 oscillations in NIH 3T3 cells expressing mPer2:LUC 

can be re-initiated by treatment with forskolin or by fresh medium.  
Acute treatment with fresh medium (either containing forskolin, an agent that raises 

cAMP, or without a pharmacological agent) 
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Despite this, the majority of the literature on circadian experimentation in vitro use 

some form of stimulus such as dexamethasone, forskolin, or serum shock to synchronise 

the cells. There is no statistical difference in the amplitude or period length in NIH 3T3 

cells treated with dexamethasone versus a medium change not containing 

dexamethasone. The main difference in the synchronisation protocols seems to be the 

phase shift; dexamethasone shifts the cycle forward by 2 hours with comparison to the 

medium change and serum shock serum shift the cycle by 2 hours in the opposite 

direction. Dexamethasone has been shown to have this effect in vivo in the peripheral 

tissue of rats expressing a luciferase reporter (Stokkan, Yamazaki, Tei, Sakaki, & 

Menaker, 2001) and in vitro in NIH 3T3 cells expressing a Bmal1:luciferase reporter 

(Nagoshi, Saini, Bauer, Laroche, Naef, & Schibler, 2004). 

 

The serum shock seems, in the short term at least, to amplify the circadian wave and 

shift the phase earlier. This could be explained by a recent study published earlier this 

year; Lipton et al (2015) discovered a new role for Bmal1 as a mediator of protein 

translation (in addition to the already known canonical role of transcription factor). In 

this study they demonstrated that Bmal1 is a substrate of the mammalian target of 

rapamycin (mTOR), a nutrient sensing protein. Briefly, Bmal1 is phosphorylated at 

serine 42 by the mTOR effector S6 kinase1 when there is an influx of growth factors 

and nutrients. This results in increased de novo protein synthesis. See Figure 6.13. 
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Figure 6.13 Mechanism by which Bmal1 stimulates protein translation 
Protein translation is upregulated via the phosphorylation of Bmal1 in response to the 

presence of growth factors and nutrients being senses by mTOR (mammalian target of 

rapamycin). 

 

The anabolic effects of this pathway can be reversed by blocking the phosphorylation of 

Bmal1 by S6K1 or by blocking mTOR with rapamycin (Lipton et al., 2015). 

 

Dexamethasone is a glucocorticoid receptor agonist. The effects of glucocorticoid 

signalling are in opposition to mTOR. (Shimizu et al., 2011) 
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Figure 6.14 The interaction between glucocorticoids and mTOR 

(Shimizu et al., 2011) 
Glucocorticoids and mTOR regulate each other via negative feedback. Additionally, the 

activation of mTOR upregulates protein translation. 

 

It seems logical to deduce that if increasing the nutrients and growth factors in vitro 

with 50% serum treatment activates mTOR mediated signalling to Bmal1 then 

dexamethasone treatment would have the exact opposite effect. The mechanism by 

which the phase is shifted is not clear as the translational effects of Bmal1 have not yet 

been measured in the central circadian clock (Lipton et al., 2015). Given the increased 

amplitude seen in the Bmal1:LUC cells stimulated with 50% serum, it seems reasonable 

to hypothesize that the phosphorylation of Bmal1 leads to its own increased synthesis. 

This explains why the amplitude of the oscillations is greater in the serum shocked 

Bmal1:LUC cells. See Figure 6.8. 
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6.5.2. Scratch Wound Assay 
 

shRNA sequence 4 significantly reduced the mean wound density in the scratch wound 

assay despite the fact that only approximately 24% of the cells were transduced. These 

cells also did not proliferate as quickly in culture which could indicate that Bmal1 is 

knocked down in these cells but without quantification of the knockdown by RT-PCR it 

is not possible to be certain. Despite having successfully created Bmal1:LUC 

expressing NIH 3T3s (3T3 /B:L) using a second generation lentiviral construct, 

followed by selection with puromycin to create stably expressing cells the equivalent 

treatment with shRNA knockdown constructs was not as straightforward. Transduction 

of NIH 3T3s with shRNA 4 did produce cells that expressed mCherry, however they 

failed to proliferate and died following puromycin selection. Despite considerable 

attempts to optimise the transduction and viral synthesis conditions the only cells that 

survived were 3T3/B:Ls that were already puromycin resistant, therefore not selectable 

by antibiotic treatment for shRNA expression. The probable explanation for this is that 

the promotor for puromycin resistance expression in the shRNA plasmids (IRES) is not 

as potent as the SV40 promotor in the Bmal1:LUC plasmid (personal communication, 

Genecopoiea technical support), therefore the puromycin concentration used for 

selection of these cells (2 µg) was too strong. If time permitted this would be repeated 

with a selection of lower concentrations to find the optimal conditions for this lentiviral 

system. Alternatively, the mCherry expressing 3T3/B:L cells could be isolated via 

fluorescent-assisted cell sorting (FACS), however this would require a large number of 

cells due to the attrition rate. Another technical issue that was not foreseen was that it 

was not possible to use the Incucyte Zoom data to measure migration rates of the 

separate populations of cells within the individual wells. The algorithm used to measure 

the migration of these cells was mean wound density which was designed by Essen 

Bioscience to control for initial cell density and cell proliferation, therefore normalising 

the mean wound density to the non-wounded areas in the wells.  

 

Without determination of Bma11 knockdown and the use of a functional assay on stably 

knocked down Bmal1 NIH 3T3s it is not possible to draw a definitive conclusion but 

the indications point towards Bmal1 knockdown, or ‘stopping the clock’ having a 

negative effect on wound healing. Further experiments are required to confirm this. 
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 Discussion  7.
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 General discussion 7.1.

 

The importance of chronobiology in medicine has been given substantial attention in 

recent years. This includes various aspects of health and disease such as the association 

of working night shifts with increased cancer risk (Stevens, Brainard, Blask, Lockley, & 

Motta, 2014), the importance of timing of cancer chemotherapy administration for 

optimal effect (Lévi, Okyar, Dulong, Innominato, & Clairambault, 2010) and the 

importance of maintaining the circadian rhythms in cancer treatment (Innominato et al., 

2014). Several studies have addressed the issue of sleep deprivation in intensive care 

units (Huang et al., 2015) and the skin damaging effects, dependent on circadian time of 

day, of exposure to ultra-violet radiation (Desotelle, Wilking, & Ahmad; Geyfman & 

Andersen, 2009; Gaddameedhi, Selby, Kaufmann, Smart, & Sancar, 2011b; Geyfman et 

al., 2012). My study has focused on the effects of manipulating the circadian clock on 

wound healing, with a view to meeting the as yet unmet need for effective treatments 

for chronic wounds. Several approaches to this problem have been investigated, ranging 

from physical treatments, such as the use of compression bandages, to biochemical 

methods such as the use of a variety of growth factors. A meta-analysis in 2012 

identified venous leg ulcers as being the predominant type of chronic wound; they are 

most frequently healed by the use of compression bandages. The basis for this is that the 

cause of the ulcers is venous incompetence which results in venous hypertension. This 

can be ameliorated (and prevented) with compression bandages/stockings. The meta-

analysis sought to compare the benefits of stronger compression versus medium 

compression and the finding was somewhat inconclusive, mainly due to the lack of 

information about other concurrent treatments being used in the various trials assessed. 

The authors, Nelson et al, (2012) stated that there was a need to determine the biological 

mechanism involved in ulcer healing.  Another meta-analysis, originally published in 

2012, but updated earlier this year, sought to assess the evidence for the use of 
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hyperbaric oxygen therapy (HBOT) for chronic ulcers of the lower leg. The benefits 

shown were marginal; they reported a small, short term benefit using HBOT for treating 

diabetic foot ulcers and a possible reduction of wound size in chronic ulcers caused by 

venous incompetence. There was no evidence, positive or negative, for its use in 

treating ulcers caused by arterial insufficiency. The authors highlighted problems found 

conducting the meta-analysis being caused by differences in the studies making them 

difficult to compare; there were many small studies, often with different end points and 

often measuring ulcers of multiple aetiology (Peter Kranke et al., 2015). Another line of 

investigation has been the activation of epidermal stem cells (Plikus et al., 2012).  The 

circadian clock has been shown to be important in several areas of health and disease at 

the whole organism level. On a cellular level it controls the cell cycle (Smaaland, 1996) 

and the skin cells of mice and humans are known to be under circadian control (Tanioka 

et al., 2009; Sandu et al., 2012).  For these reasons it seems reasonable to test whether 

manipulation of the circadian clock can have beneficial effects on wound healing. 

The aims of the present study were: 

 

4) Optimisation of asODNs by continuing in vivo experiments and by in silico 

expansion of the sequences to ensure a more biologically stable asODN. 

5) Development of a tool to knockdown Bmal1 in order to disrupt the circadian 

clock for use in proof of concept in vitro experiments. 

6) Measuring the functional effects of Bmal1knockdown on wound healing in 

vitro. 

In summary, the findings of the study were as follows: 

1) The unmodified asODNs did not have a beneficial effect on wound healing in 

vivo. The initial positive macroscopic results were due to an artefact introduced 

by the established standard laboratory procedure at that time. It became evident 

that the effects seen were position-dependent, not asODN treatment dependent, 
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so an experiment was designed to challenge the theory (using the same drug in 

three positions and alternating the direction of the skin fold for the purpose of 

wounding). This experiment conclusively proved that the suspicions were valid. 

Following the discovery of the artefact, the standard operating procedure was 

altered and the treatments were randomised and blinded to the investigator until 

analysis had taken place to reduce the possibility of operator bias. Following the 

negative results from the original asODN 16 mer sequences, it was hypothesised 

that the asODNs were being degraded by endonucleases too quickly to take 

effect so, thereafter, the sequences were expanded to 30 mer asODNs using 

several criteria (see section 2.6) to filter the possible candidates to 18 sequences 

to be tested in vitro. Again, initially the results looked promising until a proper 

control scrambled sequence was used, at which point it became apparent that the 

knock down was not sequence specific. Additionally, the 30 mer asODNs 

knocked down the three commonly used housekeeping proteins (GAPDH, α-

tubulin and β-actin). It seems likely that this is due to the toxic effects of the 

dNMP by-products of the catalysis of the phosphodiester backboned asODNs 

(de Fouw, Ma, Michalevicz, Gray, & Hoffbrand, 1984). Phosphorothiate 

backboned asODNs were tested as they have been shown to be more stable in 

vitro (A. R. Thierry & Dritschilo, 1992). They did not knock down Bmal1 

either. Further, none of the asODNs were shown to be effective in a functional 

assay (scratch wound assay).  

2) In light of the discoveries regarding the asODNs, other methods of RNAi were 

investigated, such as microRNA, siRNA and the overexpression of Bmal1 

dominant negative. Despite considerable efforts, these methods did not knock 

down Bmal1 or disrupt the circadian clock. At the same time, a tool for 

assessing the circadian oscillations was developed. There were several problems 
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with measuring this by RT-PCR, as detailed in Chapter 6, so a Bmal1:LUC 

expressing lentiviral plasmid was obtained. This permitted the measurement of 

luminescence driven by the Bmal1 promoter at a constant temperature and 

produced robust oscillations. This tool also facilitated the discovery of the phase 

shifts caused by serum shock (SS), and dexamethasone treatment (dex) proved 

that fresh medium is sufficient to synchronise mammalian cells for at least three 

days. This is of note as the majority of reports in the literature are needlessly 

using SS or dex in their circadian experiments (Dibner et al., 2010; Lipton et al., 

2015). The discovery of the phase shift changes caused by SS/dex is in 

concordance with a study published earlier this year linking Bmal1 to mTOR 

signalling (Lipton et al., 2015). 

3)  Partial transduction of Bmal1:LUC expressing NIH 3T3s with shRNA Bmal1 

knockdown lentiviral constructs was achieved, but further optimisation is 

required to produce NIH 3T3s with Bmal1 knockdown that can be selected with 

puromycin to confer a stably knocked down cell line. This will permit 

quantification of the knockdown by RT-PCR and further scratch wound assays 

with a homologous population of Bmal1 knock down NIH 3T3s. The indications 

from the preliminary experiments are that the Bmal1 knockdown reduces cell 

migration into the wound in vitro, but further work is needed to confirm this. 

In light of this, it seems reasonable to speculate as to the probability of a tool to knock 

down Bmal1 being used as a topical treatment for chronic wound healing. 

The majority of the literature suggests that knocking down Bmal1 would have a 

pejorative effect on wound healing. In 2013, Kowalska et al observed wound healing 

defects in multiple circadian clock deficient mouse models, marked by a lack of re-

epithelisation and irregular granulation tissue. 
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“Most wounds in bmal1−/− mice consisted mainly of an inflammatory fibrin 

clot with hardly any fibroblast or keratinocyte proliferation”  (Kowalska et 

al., 2013) 

 

It is important to consider that this work was done using total genetic knockout animals 

as opposed to tissue specific Bmal1 deficiency or in a skin cell line. This is of great 

significance as the phenotype of  Bmal1
-/-

 mouse is severe; females are infertile (Boden, 

Varcoe, Voultsios, & Kennaway, 2010), they display signs of premature ageing and 

have a shorter life-span than their wild type littermates (Kondratov, Kondratova, 

Gorbacheva, Vykhovanets, & Antoch, 2006).   Another group were able to rescue the 

premature ageing phenotype by re-expression of Bmal1 in these animals  (McDearmon 

et al., 2006). Bmal1 null mice also have a propensity for type II diabetes; both CLOCK 

and Bmal1 mutant mice have impaired glucose tolerance and other indicators of 

metabolic syndrome (Turek et al., 2005; Bass & Takahashi, 2010). That being said, 

lentiviral mediated over-expression of Bmal1 in NIH 3T3s results in increased cell 

proliferation (Lin, Chen, Li, Zhao, & Tan, 2013), and the silencing of Bmal1 results in  

the suppression of malignant plural mesothelioma cell proliferation and increased their 

rate of apoptosis (Elshazley et al., 2012). 

Conversely, circadian studies related to skin suggest that knocking down Bmal1 could 

have a positive effect on wound healing. Several studies have looked at the circadian 

control of metabolism and ultraviolet B (UVB) radiation induced damage to skin (Kang, 

Lindsey-Boltz, Reardon, & Sancar, 2010; Gaddameedhi et al., 2011a; Geyfman et al., 

2012). These studies suggest that Bmal1 has a protective role in the skin. Wildtype 

(WT) mice have Bmal1 controlled cell proliferation and metabolic phenotype: 

“In sum, time-of-day–dependent variation in cell proliferation in the 

epidermis is controlled by BMAL1 intrinsic to keratinocytes, and this 

variation correlates with a time-of-day dependent differential sensitivity to 

UVB-induced DNA damage.”(Geyfman et al., 2012)” 
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In the skin of WT mice, the period at which the majority of cells are undergoing S phase  

(night) correlates with the lowest levels of oxidative phosphorylation generated reactive 

oxygen species (ROS) and UVB exposure (Geyfman et al., 2012). Another study 

measuring the metabolism of epidermal stem cells in vivo showed that in WT mice they 

exhibit a glycolytic phenotype at night, presumably to reduce the levels of ROS during 

S phase (Stringari et al., 2015).  In Bmal
-/-

 mice, these oscillations are obliterated so 

ROS levels are constitutively elevated and the time control of S phase is also lost. The 

authors surmised that this could lead to more mutations which would explain their 

premature ageing phenotype. In mice with a keratinocyte specific Bmal1 knockdown a 

constant and elevated rate of cell proliferation was seen in the interfollicular epidermis 

(Geyfman et al., 2012). Epidermal stem cells derived from the hair follicle bulb have 

been shown to contribute to wound repair (Ito et al., 2005). These cells are known to be 

at different states of activity. When Bmal1 is deleted in the basal keratinocyte 

compartment in vivo, an accumulation of dormant stem cells is seen, along with an 

increase in epidermal ageing and reduced tumorigenesis (Janich et al., 2011). A 

subsequent study by the same group demonstrated that the timing of the function of 

epidermal stem cells is under circadian control (Janich et al., 2013). It is possible that 

manipulation of the circadian clock in this population of cells could ameliorate wound 

healing. Given the multiplicity of effects seen in the manipulation of the circadian clock 

in different tissues it is hard to predict what effect the knockdown of Bmal1 would 

have. 
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 Future directions 7.2.

 

Further experiments to create a homogenous population of Bmal1 knock down cells are 

ongoing in order to illucidate the effects on wound healing in vitro. Dependent on the 

results it might be possible to develop a topical treatment to knockdown (or upregulate)  

Bmal1 for use in chronic wounds. Due to the difficulties with transient transfection, 

these experiments have been conducted using NIH 3T3 fibroblasts expressing a stable 

Bmal1 knockdown. For translation to a safe therapy in humans it would be prudent to 

develop a method to transiently modulate Bmal1 within the wound to reduce the risk of 

off-target effects.  
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