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Abstract.   We develop a maximum likelihood (ML) method for estimating migration rates between 36 

species using genomic sequence data.  A species tree is used to accommodate the phylogenetic 37 

relationships among three species, allowing for migration between the two sister species, while the 38 

third species is used as an outgroup.  A Markov chain characterization of the genealogical process of 39 

coalescence and migration is used to integrate out the migration histories at each locus analytically, 40 

while Gaussian quadrature is used to integrate over the coalescent times on each genealogical tree 41 

numerically.  This is an extension of our early implementation of the symmetrical isolation-with-42 

migration model for three species to accommodate arbitrary loci with two or three sequences per locus 43 

and to allow asymmetrical migration rates.  Our implementation can accommodate tens of thousands 44 

of loci, making it feasible to analyze genome-scale datasets to test for gene flow.  We calculate the 45 

posterior probabilities of gene trees at individual loci to identify genomic regions that are likely to 46 

have been transferred between species due to gene flow.  We conduct a simulation study to examine 47 

the statistical properties of the likelihood ratio test for gene flow between the two ingroup species and 48 

of the maximum likelihood estimates of model parameters such as the migration rate.  Inclusion of 49 

data from a third outgroup species is found to increase dramatically the power of the test and the 50 

precision of parameter estimation.  We compiled and analyzed several genomic datasets from the 51 

Drosophila fruit flies.  Our analyses suggest no migration from D. melanogaster to D. simulans, and a 52 

significant amount of gene flow from D. simulans to D. melanogaster, at the rate of ~0.02 migrant 53 

individuals per generation.  We discuss the utility of the multispecies coalescent model for species 54 

tree estimation, accounting for incomplete lineage sorting and migration. 55 

 56 

Migration or gene flow is an important biological process that affects our interpretation of genetic 57 

data from both within and between species (e.g., Patterson et al., 2006; Innan and Watanabe, 2006; 58 

Yamamichi et al., 2012; Leaché et al., 2013; Mallet et al., 2016).  For example, different models of 59 

speciation make different predictions about the presence or absence of gene flow at the time of 60 

species formation.  There is a rich body of literature in population genetics concerning models of 61 

population subdivision and migration, starting from Wright (1931; 1943).  For example, in the finite-62 

island model, any population can exchange migrants with any other (Wright, 1943), while in the 63 

stepping-stone model, only neighboring populations can exchange migrants (Kimura and Weiss, 64 

1964).  The standard single-population coalescent theory (Kingman, 1982) has been extended to deal 65 

with such models of population structure and migration, in the so-called structured coalescent (e.g., 66 

Li, 1976; Strobeck, 1987; Takahata, 1988; Notohara, 1990; Nath and Griffiths, 1993; Wilkinson-67 

Herbots, 1998).  Models of population structure have been implemented in computer programs such 68 

as GENETREE (Bahlo and Griffiths, 2000) and MIGRATE (Beerli and Felsenstein, 1999; 2001; Beerli, 69 

2006), which allow joint estimation of population sizes and migration rates from genetic data.   70 

However, population structure models ignore the phylogenetic relationships among the 71 

populations and their divergence times.  The isolation-with-migration (IM) model is attractive as it 72 
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incorporates the population/species phylogeny in a model of migration.  They allow us to estimate the 73 

migration rates and other parameters such as the species divergence times and population sizes under 74 

more realistic models (Nielsen and Wakeley, 2001; Hey and Nielsen, 2004; Wilkinson-Herbots, 2008; 75 

2012).  Another yet unexplored use of the IM model is species tree estimation under the multispecies 76 

coalescent model with migration, accounting for both incomplete lineage sorting and introgression.  77 

Coalescent-based phylogenetic inference, which accommodate gene tree-species tree discordance due 78 

to incomplete lineage sorting, has been heralded as a paradigm shift in molecular phylogenetics 79 

(Edwards, 2009).  Recent analyses of genomic datasets have found widespread conflicts among 80 

nuclear gene trees and between the mitochondrial gene tree and the nuclear species tree, for example, 81 

in mosquitos (Fontaine et al., 2015), butterflies (Martin et al., 2013), frogs (Zhou et al., 2012), birds 82 

(Ellegren et al., 2012), hares (Melo-Ferreira et al., 2012), bears (Liu et al., 2014; Kutschera et al., 83 

2014), and gibbons (Chan et al., 2013).  Hybridization both between sister species and between non-84 

sister species is commonly observed between modern species, so it is natural to expect it to have 85 

occurred in ancestral species as well, especially during adaptive radiations (Mallet, 2005; Mallet et al., 86 

2016).  Many empirical studies have highlighted incomplete lineage sorting (or rapid radiation) and 87 

gene flow (introgression) as the two major challenges to species tree estimation when the species are 88 

closely related.  While the multispecies coalescent model with gene flow should accommodate both 89 

factors naturally, full likelihood methods of species tree estimation under the model are currently 90 

lacking. 91 

Full likelihood implementation of the IM model for the analysis of genetic sequence data is 92 

challenging because calculation of the likelihood function has to average over the genealogical history 93 

at every locus, which includes the gene tree topology, the branch lengths (the coalescent times), and 94 

the whole migration trajectory (the number, directions and times of all migration events).  The IM 95 

programs (Nielsen and Wakeley, 2001; Hey and Nielsen, 2004; Hey, 2010), for example, are not 96 

practical for analyzing datasets with a few hundred loci (Hey, 2010).  Approximations are often 97 

necessary to analyze genome-scale data with many loci (Gronau et al., 2011). 98 

When there are only a few sequences at a locus, it is possible to integrate out the migration history 99 

either numerically or analytically (Wang and Hey, 2010; Lohse et al., 2011; Zhu and Yang, 2012; 100 

Andersen et al., 2014).  It is then feasible to analyze tens of thousands of loci even though only a few 101 

sequences are sampled at each locus.  Here loci may be defined as loosely linked short genomic 102 

segments that are far apart from each other, so that recombination within a locus is unlikely to affect 103 

the gene tree distribution, while different loci are nearly independent due to recombination events 104 

(Burgess and Yang, 2008; Lohse et al., 2011).  Wang and Hey (2010) used numerical integration and 105 

special functions to integrate out the migration history under the IM model for two species when the 106 

data at every locus consist of two sequences, with one from each species.  A more efficient approach 107 

is to integrate out the migration trajectory analytically by using the Markov chain characterization of 108 

the coalescent process with migration developed in the structured coalescent framework (Notohara, 109 
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1990; Nath and Griffiths, 1993; Hobolth et al., 2011; Zhu and Yang, 2012; Andersen et al., 2014).  110 

For example, with only two sequences at a locus, the probability of the sequence data at any locus 111 

depends on the sequence divergence time t only, and not on the number and times of the migration 112 

events.  The density for t can be calculated analytically (Hobolth et al., 2011;  see also Nath and 113 

Griffiths, 1993; Wilkinson-Herbots, 2008).  Lohse et al. (2011) derived probabilistic distributions of 114 

gene trees using generating functions and symbolic algebra in Mathematica.  The implementation 115 

allows more than two sequences at each locus, thus increasing the power of the analysis (Lohse et al., 116 

2011).   117 

Zhu and Yang (2012) implemented the IM model for three species, assuming symmetry in the 118 

migration rates and population sizes between species 1 and 2 (with M12 = M21 = M, and 1 = 2), while 119 

a third species (species 3) is used as the outgroup.  They constructed a likelihood ratio test (LRT) by 120 

comparing this model, M2 (gene flow), with a null model of no migration with M = 0 (M0: no gene 121 

flow).  In their implementation, the data at every locus are assumed to consist of three sequences, with 122 

one sequence from each species (this data configuration is referred to in this paper as ‘123’).  This 123 

restriction on data leads to reduced power of the test and to an unusual case of unidentifiability (Zhu 124 

and Yang, 2012).  Recently, Andersen et al. (2014) have considered the IM model in a general setting, 125 

in which one ancestral species splits into an arbitrary number of populations at a time in the past (so 126 

that the populations are related by a star phylogeny), allowing for migration between any two 127 

populations.  The authors developed a strategy for ‘lumping’ states in the Markov chain to alleviate 128 

the problem of state-space explosion.  Their implementation, for the case of two diploid individuals 129 

from two species (four sequences per locus), assumed free recombination between any two sites 130 

(alignment columns).  Under this assumption, the data at different sites are independent (conditional 131 

on the species phylogeny and parameters in the model) so that the sequence dataset can be 132 

summarized as counts of 44 possible site patterns (nucleotide combinations), and the authors were able 133 

to integrate out the coalescent times in the gene trees for each site analytically (Andersen et al., 2014, 134 

sections 5 and 8.4). 135 

In this study we extend the implementation of Zhu and Yang (2012).  Like many previous studies 136 

such as Takahata et al. (1995), Wang and Hey (2010), and Lohse et al. (2011), we work under the 137 

assumption of complete linkage within a locus and free recombination between loci.  We note that 138 

both free recombination and complete linkage within a locus are extreme assumptions, and their 139 

impact on the inference is not yet well understood (but see Burgess and Yang, 2008; Zhu and Yang, 140 

2012).  We accommodate loci of two or three sequences of arbitrary configurations, including ‘11’ 141 

(two sequences from species 1), ‘112’ (two sequences from species 1 and one sequence from species 142 

2), and so on.  Extension to arbitrary loci (with two or three sequences per locus) improves the power 143 

of the likelihood ratio test of gene flow and makes it possible to estimate the migration rates, which 144 

are unidentifiable with ‘123’ loci alone (Zhu and Yang, 2012).  We focus on migration between 145 

species 1 and 2, and include species 3 as an outgroup to improve the power of the analysis.  As nicely 146 
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discussed by Lohse et al. (2011), the outgroup may be informative about the gene tree topology as 147 

well as the branch lengths and about the ancestral nucleotide states in the common ancestor of species 148 

1 and 2.  Inclusion of the outgroup may also make the inference more robust to mutation rate variation 149 

among loci (Yang, 2002).  We remove the symmetry assumption of the model, so that the inference 150 

can be conducted under a more realistic model.  We develop an empirical Bayes approach to 151 

calculating the posterior probabilities of gene tree topologies at individual loci, which may be 152 

informative about whether the locus has been transferred between species due to gene flow.  We 153 

conduct a simulation study to examine the false positive rate and power of the LRT of gene flow as 154 

well as the bias and variance of maximum likelihood estimates of model parameters.  We use the 155 

genome sequences of Drosophila melanogaster, D. simulans, and D. yakuba to construct multi-locus 156 

datasets and apply our new method to infer the pattern and rate of migration between those fruit-fly 157 

species. 158 

 159 

THEORY AND METHODS 160 

Model and Data 161 

The terms species and population are used interchangeably in this paper.  The species tree is ((1, 2), 162 

3), with 4 and 5 to be the ancestral species (Fig. 1a).  The two divergence events on the species tree 163 

define three time epochs: E1: (0, 1), E2: (1, 0) and E3: (0, ) (Fig. 1a).  We consider two models.  164 

M0 (no gene flow) assumes no gene flow and is the multispecies coalescent model for three species 165 

(Takahata et al., 1995; Yang, 2002; Rannala and Yang, 2003).  Model M2 (gene flow) allows 166 

migration between species 1 and 2 (during time epoch E1), but not from or to species 3. 167 

There are nine parameters in the general IM model for three species, including two species 168 

divergence times (0 and 1), five effective population sizes (1, 2, 3, 4, 5), and two migration rates 169 

(M12 and M21).  Here 0 and 1 are scaled by the mutation rate and are measured by the expected 170 

number of mutations per site, and i = 4Ni (i = 1, …, 5) are the population size parameters for the 171 

five species, with Ni being the (effective) population size of species i and  the mutation rate per site 172 

per generation.  The migration rate is Mij = Njmij, where mij is the proportion of individuals in 173 

population j that are immigrants from population i.  We define parameters by referring to the real-174 

world process with time running forward (rather than the coalescent view with time running 175 

backward) so that Mij is the expected number of migrant individuals from populations i to j per 176 

generation.  The parameters under M2 (gene flow) are 2 = 0, 1, 1, 2, 3, 4, 5, M12, M21.  177 

Model 0 (no gene flow) is a special case of M2 with M12 = M21= 0, with parameters 0 = 0, 1, 1, 178 

2, 3, 4, 5.  Note that the symmetrical versions of M0 and M2 assume 1 = 2 and M12 = M21 (Zhu 179 

and Yang, 2012).   180 

The data consist of multiple neutral loci.  At each locus, two or three sequences are sampled, each 181 
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from any of the three species.  We focus mainly on the case of three sequences at a locus.  The case of 182 

two sequences is much simpler and will be described briefly.  Let the three sequences at a locus be a, 183 

b, and c.  Each sequence will also be labelled by the population it is sampled from.  For example, the 184 

initial state for a locus with data configuration ‘123’ (with one sequence from each of the three 185 

species) is recorded as 1a2b3c.  The Markov chain runs backwards in time, describing the change of 186 

states due to coalescent and migration.  For example a locus with initial state 1a2b3c may enter the 187 

state 2ab3c, which means that sequences a and b have coalesced so that only two sequences remain in 188 

the sample and the ancestor of sequences a and b is in population 2 while sequence c is in population 189 

3.  There are six gene tree shapes for three sequences: G1-G6 (Fig. 1b-g), depending on the time 190 

epochs during which the two coalescent events occur.  When we keep track of both the sequence IDs 191 

(a, b, c) and the population IDs (1, 2, 3), each gene tree shape may correspond to three distinct gene 192 

trees (Fig. 2).  For example, tree shape G6 corresponds to three gene trees: G6c: ((a, b), c); G6a: ((b, c), 193 

a); and G6b: ((c, a), b), where the subscript is the more distantly related sequence in the gene tree.  194 

However, depending on the initial data configuration, some of the gene trees may not be possible (for 195 

example, for a ‘123’ locus, only gene trees G3c, G5c, G6c, G6a, G6b are possible under M2), and 196 

furthermore some of the gene trees have the same probability distribution under the model (such as 197 

G6c, G6a, and G6b).  To avoid excessive notation we make a distinction between gene tree shapes and 198 

gene trees only if there is a risk of confusion.   199 

Likelihood Function for Three Sequences at a Locus 200 

We assume that the sequences at each locus are already aligned, with alignment gaps and ambiguity 201 

nucleotides removed.  We use the JC69 mutation model (Jukes and Cantor, 1969) to correct for 202 

multiple substitutions.  The different loci are assumed to have the same mutation rate, although 203 

relative rates for the loci can be incorporated in the likelihood calculation (if available, for example, 204 

through comparison with an outgroup species, Yang, 2002).  The sequence alignment at any locus i 205 

with three sequences can be summarized as the counts, Di = (n0, n1, n2, n3, n4), of sites with five 206 

different site patterns: xxx, xxy, yxx, xyx, and xyz, where x, y and z are any distinct nucleotides.  The 207 

probability of the data given the gene tree topology (G) and branch lengths (b0, b1) (Fig. 2), P(Di|G, 208 

b0, b1), is thus given by the multinomial distribution, with the probabilities of the five site patterns 209 

calculated efficiently under the JC69 model (Saitou, 1988; Yang, 1994).  Conveniently, P(Di|G, b0, b1) 210 

depends on the gene tree topology and branch lengths, but not on which time epoch each coalescent 211 

event occurs in (Yang, 2002; 2010). 212 

The probability of data at locus i is an average over the gene tree topologies and coalescent times 213 

 f(Di | ) = 
0 1

0 1
0 1 0 1 1 0( | , , ) ( , , | )d d

u u

i k kk l l
P D G b b f G t t t t   , (1) 214 

where the sum is over all possible gene trees for the locus, while the integrals are over the coalescent 215 

times t0 and t1, with the integral limits t0  (l0, u0) and t1  (l1, u1) given below.  Note that the branch 216 
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lengths b0 and b1 in the gene tree are simple linear functions of t0 and t1 (Figs. 1 and 2 and Table 1).  217 

The probability of the genealogy, f(Gk, t0, t1|), depends on the model (M0 or M2) and will be 218 

described in the next section.  For data configurations with three sequences, there are up to 6  3 = 18 219 

gene trees to average over.   220 

Finally, the log likelihood of the data at all L loci, D = Di, is a sum over the L loci 221 

 (; D) = 
1

log ( | )
L

i
i

f D


 . (2) 222 

Note that our model assumes that the n sites in the sequence at the locus share the same 223 

genealogical tree (topology and coalescent times).  This contrasts with the implementation of 224 

Andersen et al. (2014), which assumes that the different sites have independent histories.  225 

Implementation of Model M0 (No Gene Flow) 226 

We first discuss our ML implementation of model M0, which assumes no migration between any two 227 

populations.  The implementation of Yang (2002) considered ‘123’ loci only so that the model 228 

involve only four parameters: 0 = 0, 1, 4, 5.  Here we allow arbitrary loci of two or three 229 

sequences, with up to seven parameters in the model: 0 = 0, 1, 1, 2, 3, 4, 5.  Note that the 230 

population size parameter for a modern species (1, 2, or 3) exists in the model only if two or more 231 

sequences are sampled from that species at least at one locus. 232 

Consider a locus with three sequences.  In general, the probability density of the gene tree has the 233 

form  234 

 f(Gk, t0, t1) = 2 2rates e e
i j

T T
 

   , (3) 235 

where parameters i and j are for the populations in which the two coalescent events occur and the 236 

exponential term e–T is the probability that no coalescent event occurs in the rest of the gene tree, with 237 

T being the total per-lineage-pair coalescent waiting time of Yang (2014, p.336).  Note that the 238 

coalescent rate for a pair of sequences in a population with population size parameter  is 2/: for 239 

very small  t, the probability that the pair will coalesce during the time interval (t, t + t) is 2 t  . 240 

Take, for example, configuration ‘111’, with the initial state 1a1b1c.  The probability of data for 241 

the locus (Eq. 1) is an average over 6  3 gene trees.  For example, in the case of gene tree G1c: ((a, b), 242 

c), the probability density of the gene tree (with coalescent times) is  243 

 f(G1c, t0, t1) = 
6 2

1 01 1

1 1 1 1

2 2 2 2e e
t tT  

   
   ,    t0 > 0,  t1 > 0,  t0 + t1 < 1, (4) 244 

where 
1

2
  and 

1

2
  are the rates for the two coalescent events, both occurring in species 1.  Because of 245 

the symmetry of the ‘111’ locus, the density is the same for the three gene trees: G1c, G1a,  and G1b.  246 

The densities and rates for all data configurations and gene trees are summarized in Table S1.  Note 247 

that some gene trees are not possible for certain configurations of loci (e.g., gene trees G1c, G1a, and 248 

G1b for ‘112’ loci). 249 
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To compute the integrals of equation (1) numerically, we apply a linear transform.  Let x0 = 2
0i

t  250 

and x1 = 2
1j
t  be the coalescent times measured in generations, where s are for the populations in 251 

which the coalescent events occur.  Each integral in equation (1) then becomes  252 

 
' '

0 1 0 1
0 1

' ' 0 1
0 1 0 1

( , )
0 1 0 1 1 0 0 1 0 1 1 0( , )( | , , ) ( , , ) d d ( | , , ) ( , , ) d d

u u u u t t
i k k i k k x xl l l l

P D G b b f G t t t t P D G b b f G x x x x
    . (5) 253 

In several cases (gene tree shapes G1 and G4 for initial state ‘111’; G4 for ‘112’; and G1, G2 and G4 254 

for ‘333’), the integration region is a triangle (for instance, the region for G1 is given by t0 > 0, t1 > 0, 255 

t0 + t1 < 1; see Fig. 1).  As we calculate the 2-D integral of equation (5) by calculating two 1-D 256 

integrals using Gaussian quadrature (the so-called product rule), the integral region has to be a 257 

rectangle.  We thus apply a transform to achieve this.  For example, in the case of G1 for the initial 258 

state ‘111’, we use x0 = 
1

2
0 1( )t t  , x1 = 1

0 1

t
t t , so that t0 = 1

0 12 (1 )x x  , t1 = 1

0 12 x x .  The new limits 259 

are 0 < x0 < 
1

2
1  , 0 < x1 < 1, and the Jacobi of the transform is 0 1 1 1

0 1

( , )
0( , ) 2 2

t t
x x x 

  .  Then 260 

 
26 2

1 1 0 11 0 1 0 1 01 1

1 1

1 22 2
1 0 1 1 0 1 0 1 0 1 00 0 0 0

( | , , ) e d d ( | , , ) e d d
t t t x x x

i k i kP D G b b t t P D G b b x x x 
  

 

          , (6) 261 

where b0 = t0 and b1 = t1 in the integral on the left-hand side, and b0 = 1

0 12 (1 )x x   and b1 = 1

0 12 x x  in 262 

the integral on the right-hand side. 263 

The transforms from (t0, t1) to (x0, x1) are summarized in Table S2.  We use Gaussian quadrature 264 

to calculate the 2-D integrals of equations (5) or (6).  Except where stated otherwise, we used K = 16 265 

points in the quadrature.  See Yang (2010) for details.  It is necessary to apply scaling to avoid 266 

underflows as the probabilities of equation (1) may be too small to represent in the computer.   267 

The case of two sequences.  In the case of two sequences at a locus, the possible initial states are 268 

11, 12, 22, 13, 23, and 33, depending on which populations the two sequences are sampled from.  The 269 

simple gene tree has two branches, which have the same length t, with density f(t|) (Table 1).  For 270 

instance, with the initial state 11 (two sequences from species 1), f(t|) is a piecewise continuous 271 

function because the population size and thus the coalescent rate may differ in the three time epochs.  272 

The sequence data at the locus are summarized as di differences out of ni sites.  Then the probability 273 

of observing di differences at ni sites given that the two sequences separated time t ago is 274 

 f(di|t) =    8 3 8 33 3 31
4 4 4 4e e

i i id n dt t    . (7) 275 

The (unconditional) probability of observing the data at the locus is an average over the coalescent 276 

time  277 

 f(di|) = 
0

( | ) ( | ) dif t f d t t


 . (8) 278 

Gaussian quadrature is used to calculate the 1-D integral, with the transform x = 2
j
t  (Table 1).   279 
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Implementation of Model M2 (gene flow) 280 

Under model M2 (gene flow), the likelihood is given by equation (1) as before, and the probability of 281 

the data at each locus P(Di|Gk, b0, b1) remains the same.  However, the probability density for the gene 282 

trees, f(Gk, t0, t1), depends on the migration rates and differs from that under model M0.  Our aim in 283 

this section is thus to describe the gene-tree density.  We use a Markov chain to characterize the 284 

process of coalescent and migration when we trace the gene genealogy backwards in time.  In the 285 

general case, the states of the Markov chain will include both the population IDs and sequence IDs.  286 

Because of our assumption of no migration involving species 3, the coalescent process during time 287 

epochs E2 and E3 are essentially the standard single-population coalescent.  Thus, we focus on epoch 288 

E1.  While it is possible to use one Markov chain for all initial states, we use different Markov chains 289 

depending on the initial states to increase computational efficiency (Table 2).  The Markov chain 290 

characterization allows one to calculate the probability density for the gene tree topology and 291 

coalescent times, f(Gk, t0, t1), with the migration history integrated out analytically (Hobolth et al., 292 

2011; Zhu and Yang, 2012; Andersen et al., 2014).  We do not use the idea of Andersen et al. (2014) 293 

for lumping states in the Markov chain because it would add much complexity to the algorithm with 294 

no or little gain for the cases of two or three sequences per locus.  For the general migration case with 295 

three species, lumping actually increases the number of states from 12 to 15 for two sequences, and 296 

from 57 to 70 for three sequences (Andersen et al., 2014, table 2).  We note that for four or more 297 

sequences per locus, Andersen et al.’s algorithm may lead to considerable reduction of the state space. 298 

We illustrate the theory using gene tree G1c: ((a, b), c) and initial state s = ‘111’.  We take 299 

advantage of the symmetry of the initial state and consider a reduced Markov chain with eight states, 300 

dropping the sequence IDs: 111, 112, 122, 222, 11, 12, 22, 1|2 (Table 2).  Here the state ‘1|2’ means 301 

one sequence in either population 1 or 2.  When both coalescent events have occurred and there is 302 

only one sequence in the sample, there will be no need to keep track of the population ID, so that 303 

states 1 and 2 can be lumped into one artificial absorbing state (Andersen et al., 2014).  The rate 304 

matrix is given in Table 3.  For gene tree shape G1, we have f(G1c, t0, t1) = f(G1a, t0, t1) = f(G1b, t0, t1) = 305 

1
3

f(G1, t0, t1), with 306 

 
   
   

1 1 2 1 1 2

2 1 2 2 1 2

2 2 2 2 2 2
1 0 1 ,111 1 11,11 0 11,22 0 ,112 1 12,11 0 12,22 0

2 2 2 2 2 2
,122 1 12,11 0 12,22 0 ,222 1 22,11 0 22,22 0
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Note that the probability density function here has the interpretation that f(G1, t0, t1) t0t1, for very 308 

small  t0 and t1, is the probability that the gene tree topology is G1 (that is, t0 + t1 < 1),  that the first 309 

coalescent occurs during the time interval (t1, t1 + t1), and that the second coalescent occurs during 310 

the time interval (t1 + t0, t1 + t0 + t0) (see Fig. 1).  Equation (9) gives this probability as the sum of 311 

four terms.  The first term is for the case where the Markov chain is in state 111 right before t1, with 312 

probability ,111 1( )sP t ; the first coalescent occurs in species 1 during (t1, t1 + t1), with probability 313 
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1

2
13 t  , the factor 3 due to there being 3 possible pairs for coalescent with the state 111; and then the 314 

second coalescent occurs during (t1 + t0, t1 + t0 + t0) either in population 1, with probability 315 

 
1

2
11,11 0 0( )P t t  , or in population 2, with probability  

2

2
11,22 0 0( )P t t  .  Note that in this scenario, 316 

the first coalescence changes the state of the chain from 111 to 11.  Similarly the 2nd, 3rd, and 4th terms 317 

in equation (9) are for the cases where the state right before the first coalescent at time t1 is 112, 122, 318 

and 222, respectively, with the second coalescent occurring either in population 1 or in population 2. 319 

The densities for the other gene trees and for the other initial states are presented in Appendix A 320 

and summarized in Tables S3 and S4. 321 

This Markov chain characterization of the genealogical process of coalescent and migration also 322 

allows easy calculation of the probabilities of gene tree topologies, integrating over the coalescent 323 

times.  For example with the initial state ‘123’, the transition probability P123, 13|23(1) calculated from 324 

the Markov chain of Table 2 (case III) is the probability that sequences 1 and 2 have coalesced by 325 

time 1.  This then gives the probabilities for the five gene trees for the initial state ‘123’ as P(G3c) = 326 

P123, 13|23(1), P(G6c) = P(G6a) = P(G6b) =   5 0 12 ( )1
123,13|23 13 1 ( ) eP       , and P(G5c) = 1 – P(G3c) – 327 

3P(G6c) (Fig. 1).  Here 5 0 12 ( )e      is the probability that sequences 1 and 2 do not coalesce in epoch 328 

E2. 329 

In the case of two sequences at a locus, the likelihood calculation given the branch length t is 330 

given by equations (7) and (8).  The probability density of the genealogy f(t) under M2 (gene flow) is 331 

the same as under M0 for the initial states 13, 23, or 33 (Table 1).  For initial states s = 11, 12, or 22, 332 

the two sequences can coalesce in any of the three time intervals: (0, 1), (1, 0), and (0, ), so that 333 

the density is given as  334 
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 (10) 335 

where B2 = 11, 12, 22 is the set of states with two sequences.  The transition probability Ps, j(t) is 336 

calculated using a Markov chain with four states 11, 12, 22, and 1|2.  See Hobolth et al. (2011). 337 

 338 

Likelihood Ratio Test Comparing Models M0 (No Gene Flow) and M2 (gene flow) 339 

As M0 is a special case of M2, we use an LRT to compare them.  However, we note that the large-340 

sample 2 approximation is not valid and the null distribution (that is, the distribution of the test 341 

statistic 2 = 2[2 – 0] when the null hypothesis M0 is true) depends on the data configurations at 342 
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the loci.   343 

As discussed by Zhu and Yang (2012), if the data consist of loci of configuration 123 only, the 344 

symmetric version of model M2 has two more parameters than M0: 1 (=2) and M.  However, for 345 

two reasons, the large-sample 2
2  approximation to the test statistic is not valid.  First, the null 346 

hypothesis M0 corresponds to the alternative hypothesis M2 with M = 0, but this parameter value is at 347 

the boundary of the parameter space.  Second, when M = 0, parameter 1 (=2) in model M2 becomes 348 

unidentifiable.  As a result of the violations of the regularity conditions for the 2 approximation, the 349 

true null distribution is unknown.  Furthermore, analysis of data of configuration ‘123’ under M2 350 

leads to an unusual unidentifiability problem: two sets of 1 (=2) and M values always give the same 351 

log likelihood value.   352 

It is easy to see that this unidentifiability problem exists for the symmetric model if the data 353 

consist of a mixture of loci with configurations 12 and 123, or if the 12 and 123 loci are supplemented 354 

with an arbitrary mixture of loci of configurations 33, 13, 23, 333, 133, and 233, without any loci of 355 

configurations 11, 22, 112, 122, 111, 222, 113, and 223.  All such datasets will show the 356 

unidentifiability problem under M2 and the two violations of the regularity conditions for the 2
2  357 

asymptotics.  In this study, we follow Zhu and Yang (2012) and use 2
2  as the null distribution to 358 

conduct the test and consider the test to be significant if 2 > 5.99.  For data of a mixture of loci with 359 

configurations 11, 22, and 12, or of a mixture of 113, 223, and 123, parameter 1 (=2) is identifiable 360 

in both models M0 and M2.  While we still have the problem with the parameter value M = 0 at the 361 

boundary, the problem is an instance of case 5 in Self and Liang (1987).  As a result, the null 362 

distribution is known to be the 50:50 mixture of 0 and 2
1 , with the 5% critical value to be 2.71.  The 363 

critical values for different mixtures of two initial states under the symmetric model are given in 364 

supplementary Table S5. 365 

A similar unidentifiability problem exists under the asymmetrical model for certain combinations 366 

of loci.  Let U1 =  11, 111, 112, 113 and U2 = 22, 122, 222, 223.  If a dataset consists of at least 367 

one of the states in U1 and one of the states in U2, then M2 is identifiable.  In this case, M2 has two 368 

more free parameters (M12 and M21) than M0 and a 50:50 mixture of 0 and 2
2  is the null distribution, 369 

with the significance value 2 = 4.61.  If a dataset consists of at least one state in U1 but none in U2 370 

or at least one state in U2 but none in U1, the model is unidentifiable.  In this case the null distribution 371 

is unknown and we use 2
3  to conduct the test, with critical value 7.82.  If a dataset contains none of 372 

the states in either U1 or U2, we use 2
4  to conduct the test, with the critical value 9.49, since M0 and 373 

M2 differ by four parameters.   The critical values for the likelihood ratio test under the asymmetric 374 

model for different mixtures of loci are given in Table S6.   375 
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Posterior probabilities of gene tree topologies 376 

When there is gene flow, it may be of interest to know which loci are most likely to have been 377 

transferred between species, and to further examine whether the transferred genes share a particular 378 

function or are located in the same chromosomal region.  Our formulation of the IM model does not 379 

allow us to address this question in a straightforward manner.  However, we can use an Empirical 380 

Bayes approach to calculate the posterior probabilities of the 18 gene tree topologies for each locus, 381 

which may be informative about whether the locus is involved in cross-species gene flow.  For 382 

example, for a ‘123’ locus, the possible gene trees are G3c, G5c, G6c, G6a, and G6b, with G3c being 383 

possible only if the locus is transferred between species 1 and 2 (Fig. 1).  Similarly for a ‘112’ locus, 384 

gene tree shape G1 is possible only with gene flow.  We note that loci of certain configurations, such 385 

as ‘113’ or ‘223’, may not provide such information about gene flow. 386 

The probability of data at a locus, f(Di | ), is a sum over the 18 gene trees (equation 1).  The 387 

posterior probabilities of the gene trees can be calculated by rescaling those 18 terms so that they sum 388 

to 1.   389 
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. (11) 390 

We replace the parameters () by their MLEs ˆ( ) , and the method is known as Empirical Bayes 391 

(EB).  The EB procedure does not account for sampling errors in the MLEs, which may be a concern 392 

if the dataset is small and the MLEs involve considerable sampling errors.  This is the same EB 393 

procedure as used in reconstructing ancestral sequences in molecular phylogenetics (Yang et al., 394 

1995) and in detecting positively selected sites in a protein-coding gene (Nielsen and Yang, 1998). 395 

We conducted a small simulation to examine the reliability of the calculation using equation (11).  396 

We simulated datasets using the parameter values: 0 = 0.0243, 1 = 0.0136, 4 = 0.0400, 5 = 0.0106, 397 

1 = 0.0052, 2 = 0.0127, M12 = 0 and M21 = 0.0183, which are the MLEs under M2 from the 398 

Drosophila dataset D1 (auto), to be described and analyzed later (Tables 4 and 9).  We simulated two 399 

replicate datasets, each of the same size and configurations as the real data.  The results are very 400 

similar between the two datasets so we discuss only those for the first dataset.  The MLEs from the 401 

simulated dataset are 0̂  = 0.0242, 1̂  = 0.0137, 4̂  = 0.0402, 5̂  = 0.0104, 1̂  = 0.0058, 2̂  = 402 

0.0126, 12M̂  = 0.0018 and 21M̂  = 0.0196, very close to the true values.  The calculated posterior 403 

probabilities for gene tree topologies for the ‘123’ loci (Fig. 3a) are accurate in the sense that a 404 

posterior probability of 90% is for a correct gene tree about 90% of the time (Fig. 3b).  However, the 405 

power may not be very high.  While the posterior for gene trees G6a and G6b may reach high values, 406 

that for G6c is seldom very high (Fig. 3c).  It may be hard to distinguish among gene trees G3c, G5c, 407 

and G6c.  Lastly, approximately equal proportions of loci are inferred to have gene trees G6c, G6a and 408 
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G6b (Fig. 3a), and they are also close to the expected proportions.  Overall the results indicate a well-409 

behaved method. 410 

Program Implementation, Validation, and Availability 411 

While the general theory of the gene-tree distribution under the Markov chain characterization of the 412 

genealogical process under the IM model is straightforward (Zhu and Yang, 2012; Andersen et al., 413 

2014), development of a computer program that can analyze tens of thousands of loci with an 414 

arbitrary mixture of loci of different configurations is challenging.  Note that under both models M0 415 

(no gene flow) and M2 (gene flow), the number of possible gene trees, the probability density of each 416 

gene tree and its coalescent times, and the integration limits for the integrals over the coalescent times 417 

all depend on the data configuration at the locus.  This dependence makes the programming effort 418 

rather tedious and error-prone.  Thus we decided to tabulate the necessary results, in Tables S1 and S2 419 

for M0 and similarly in Tables S3 and S4 for M2.   420 

We conducted extensive tests to validate our implementation.  The MCCOAL program, which is 421 

part of the BPP package (Yang and Rannala, 2010; Zhang et al., 2011), was used to simulate sequence 422 

data under models M0 and M2 for different data configurations and parameter values.  We ensured 423 

consistency of the MLEs: when the same model is used to generate the data and to analyze them, the 424 

MLEs should converge to the true parameter values when the size of the dataset (the number of loci) 425 

increases.  We also confirmed that the likelihood stabilizes when the number of points in the Gaussian 426 

quadrature is increased.  We simulated 106 (true) gene trees under M2 to confirm that the observed 427 

frequencies of gene tree topologies match their probabilities calculated from the Markov chain 428 

characterization. 429 

Both models M0 and M2 are implemented in the program 3S.  We identified two bottlenecks in 430 

calculating the likelihood and improved performance in both areas.  First, for most initial states, the 431 

transition probability matrix P(t) needs to be calculated numerically, involving an expensive matrix 432 

exponential.  We use the GNU Scientific Library (GSL) (Galassi et al., 2013) to optimize this step.  433 

Second, the likelihood calculation is proportional to the number of loci in the data, as it is dominated 434 

by the computation of the probability of data at each locus, f(Di|Θ).  We take advantage of the 435 

independence among loci and use OpenMP to parallelize the computation (Dagum and Menon, 1998). 436 

While both optimizations are optional, they offer significant speed-ups on genome-scale datasets (Fig. 437 

S1).  The program, with instructions on how to compile and run it with and without GSL and 438 

OpenMP, is available at http://abacus.gene.ucl.ac.uk/software/3s.html. 439 

Drosophila genomic datasets 440 

We compiled multi-locus datasets for three Drosophila species, D. melanogaster (M), D. simulans (S) 441 

and D. yakuba (Y).  We used Flybase FB2016_01 (Attrill et al., 2016) genome releases of D. 442 

melanogaster (r6.09, January 2016), D. simulans (r2.01, Hu et al., 2013) and D. yakuba (r1.05, 443 

January 2016), as well as the assembly of D. simulans strain M252 (Palmieri et al., 2014).  We treated 444 
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the two D. simulans genomes (r2.01 from North American and M252 from Madagascar) as two 445 

random samples from the same species.   Five datasets of MSSY loci were constructed (Table 4): D1 446 

(auto) for autosomes 2 and 3, D2 (noncoding) for intergenic regions and introns from chromosomes 2 447 

and 3, D3 (chrX) for the X chromosome, D4 (exons complete) and D5 (exons split).  D4 (exons 448 

complete) was compiled using non-overlapping complete exons on chromosomes 2 and 3.  When 449 

exons were overlapping, only the longest was kept.  For all datasets except D4 (exons complete), 450 

sequences were split into chunks between 100 and 500bp that were separated by at least 2kb.  These 451 

criteria were from Wang and Hey (2010), based on previous estimates of recombination rates for 452 

Drosophila (Hey and Nielsen, 2004).  To construct each of datasets D1-D4, we extracted the loci from 453 

the D. melanogaster genome as a starting point and then ran NCBI BLAST (Camacho et al., 2009) 454 

with default settings to find matching sequences in the other genomes. We discarded short matches 455 

(<40% of the query sequence), and removed loci where the two longest matches differed in length by 456 

less than 10% to avoid paralogues. The remaining loci were aligned using MAFFT, using default 457 

settings (Katoh and Standley, 2013).  We reduced each of the MSSY loci to either MSY or SSY by 458 

randomly removing either the D. melanogaster or one of the D. simulans sequences.  Dataset D5 459 

(exons split) was constructed by splitting the alignments of D4 (exons complete) into loci of between 460 

100 and 500bp and removing chunks that did not fulfill the 2kb-separation criterion.  Thus all loci in 461 

D5 are also in D4, but the alignments of the same loci in D5 may be shorter.  Some loci in D4 (374 of 462 

them) were longer than 2600bp, and were split into more than one locus in D5.  Finally, we added the 463 

378 MMY loci from Hutter et al. (2007) to all datasets except D2 (chrX) after updating their 464 

coordinates to the current D. melanogaster release and confirming that they do not overlap with the 465 

MSSY loci we compiled. 466 

Note that D2 (noncoding) includes both intergenic regions and introns: these were found to 467 

produce very similar estimates in a preliminary analysis and were thus merged into one dataset.  D1 468 

(auto) and D3 (chrX) include both noncoding regions and exons.  The loci in D2 (noncoding), D4 469 

(exons complete), and D5 (exons split) may not be included in D1 (auto).   470 

The five datasets were analyzed using the program 3S under models M0 and M2 to estimate 471 

parameters and to test for gene flow.  Fitting the two models to each dataset took about 20 minutes on 472 

a single core and ~1 minute using 32 cores on a Sun Fire X4600M2 server (with 32 Opteron AMD 473 

cores at 2.7GHz).  We also calculated the posterior probabilities of gene tree topologies under M2 to 474 

identify the gene loci that are most likely to have been transferred across species barriers during 475 

introgression (Eq. 11).   476 

RESULTS 477 

Computer Simulation to Examine the Statistical Properties of the new model 478 

We conducted computer simulations to examine the false positive rate and the power of the LRT 479 

comparing models M0 (no gene flow) and M2 (gene flow) to test for migration between species 1 and 480 
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2.  We also examined the biases and variances of MLEs of parameters under M2.  Our simulation 481 

design largely follows that of Zhu and Yang (2012).   482 

To examine the false positive rate of the test, we simulated replicate datasets under the 483 

symmetrical version of M0 and analyzed them under both M0 and M2, assuming symmetry (Table 5).  484 

We used four sets of parameter values (Zhu and Yang, 2012: table 1).  The first two sets are based 485 

roughly on parameter estimates from the hominoids (Burgess and Yang, 2008) and the mangroves 486 

(Zhou et al., 2007).  Sets 3 and 4 have larger parameter values and also different values for the three 487 

s.  The number of loci was fixed at L = 10, 100, 1000, and 15,000, with each locus having 500 sites.  488 

Gene trees with branch lengths (coalescent times) were generated from the multispecies coalescent 489 

model (Rannala and Yang, 2003) using the program MCCOAL, which is part of the BPP pacakge 490 

(Rannala and Yang, 2003; Yang and Rannala, 2010).  Given the gene tree, the sequences were 491 

allowed to evolve along the branches of the tree, under the JC69 mutation model (Jukes and Cantor, 492 

1969).  The resulting sequences at the tips of the tree constituted the data.  Each replicate dataset thus 493 

consisted of L sequence alignments, with 500 base pairs at each locus.  We considered three kinds of 494 

data: (a) all loci of configuration 123, (b) a mixture of loci of configurations 11 and 12 in equal 495 

proportions, and (c) a mixture of loci of configurations 113 and 123 in equal proportions.  The number 496 

of replicates was 1000.   497 

Overall, the use of the 2
2  distribution for data of configuration (a) 123 made the test 498 

conservative, as the false positive rate was always <1%, while an error rate of 5% was allowed (Table 499 

5).  For the ‘pairs’ data (configuration b, 11&12), we observed false positive rates of up to10% for 500 

parameter sets 2 and 3.  The analysis seemed to suffer from a lack of information when only two 501 

sequences were available at each locus.  In theory the false positive rate should converge to 5% when 502 

the number of loci increases, so it appears that more loci are needed for the asymptotics to be reliable 503 

for the ‘pairs’ data than for the ‘triplet’ data (c: 113&123).  Adding an outgroup sequence increased 504 

the information content in the data, reducing the false positive rate to below 5%. 505 

We examined the power of the test by simulating sequence alignments under the symmetrical 506 

version of M2 (gene flow).  We used parameter values of Set 1 (hominoid) and Set 2 (mangroves), 507 

with M12 = M21 = 1 (Table 6).  The test has virtually no power with L = 10 loci.  With L = 100 or 508 

1000, there are large performance differences between the two sets of parameter values.  This is 509 

because the sequences are far more divergent and thus more informative for the mangroves set than 510 

for the hominoid set.  Power is quite high with 1000 loci, when three sequences are used at each 511 

locus.  Power is similar for the ‘123’ data and for the ‘113&123’ data.  There is dramatic difference in 512 

power between the ‘pairs’ data (b, 11&12) and the ‘triplet’ data (c, 113&123).  The use of the 513 

outgroup species improves the power of the test dramatically.  This is consistent with Lohse et al. 514 

(2011), who suggested that triplet samples provide qualitatively new information about historical 515 

parameters in the joint distribution of topologies and branch lengths.   516 
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Table 7 lists the means and standard deviations of the MLEs of parameters under model M2 for 517 

the same data analyzed in Table 6.  Datasets with ‘123’ loci only suffer from the problem of 518 

unidentifiability and do not allow the estimation of the migration rate.  Inclusion of the ‘113’ loci 519 

allows the model to estimate 1 (=2) and M and the unidentifiability problem disappears, leading to 520 

better parameter estimation.  Furthermore the ‘triplet’ data provided much better parameter estimates 521 

than the ‘pair’ data. 522 

We also simulated data under the general (asymmetrical) model M2 (gene flow) to examine the 523 

estimation of migration rates.  Given that the estimation was poor for the ‘pair’ data even under the 524 

symmetrical model (Table 7) and that the asymmetrical model involves even more parameters, we 525 

focus on the ‘triplet’ data only, with three sequences per locus.  We used the mangrove set of 526 

parameters, with the migration rates set at M12 = 0.1 and M21 = 1 migrant individuals per generation.  527 

We explored two different data configurations, with each dataset consisting of (a) ‘223’ and ‘123’ loci 528 

in equal proportions, and (b) ‘113’, ‘223’, and ‘123’ loci in equal proportions (Table 8).  The results 529 

suggest that 100 loci may be too few to obtain reliable parameter estimates.  In particular, the lack of 530 

polymorphism data for species 1 in the 223&123 configuration led to large fluctuations in the 531 

estimates of 5, 1 and M21.  Even with 1000 loci, we encountered several datasets in which the MLEs 532 

of parameters hit the boundary set in the program (with M12 = M21 = 0), or the MLEs imply a star tree 533 

(with 0  1 and 5  0 or ).  With 15000 loci, the estimates are close to the true values.  Estimates 534 

of migration rates are seen to involve a positive bias, but the bias is small with 15000 loci.  To fit the 535 

asymmetrical IM model, it appears important to include thousands of loci, and to include population 536 

data for both species 1 and 2 (such as ‘113’ and ‘223’ loci), as well as the ‘123’ loci.   537 

 538 

Analysis of Drosophila genomic datasets 539 

For each of the five datasets (Table 4), we performed three runs of 3S and used the results from the 540 

run with the highest log likelihood.  Integration over coalescent times in the gene trees used Gaussian 541 

quadrature with K =16 points.  We used both the symmetrical and asymmetrical versions of models 542 

M0 and M2, but here we focus on the asymmetrical models as they fit the data much better (Table 9).  543 

We describe some general features of the results before discussing results specific to individual 544 

datasets.  In every dataset, the LRT comparing M0 and M2 is significant.  Furthermore, the parameter 545 

estimates under M2 suggest no migration from D. melanogaster to D. simulans, and about 0.016 to 546 

0.044 immigrants per generation from D. simulans to D. melanogaster.  The consistency among the 547 

datasets suggests that this pattern of unidirectional migration may be real.  Estimates of  and  548 

parameters have very small standard errors because of the large size of the datasets.  Parameter 549 

estimates are nearly identical between datasets D1 (auto) and D2 (noncoding), and between D4 (exons 550 

complete) and D5 (exons split), suggesting that with such large genomic datasets, how extensively the 551 

genomes were sampled to compile the datasets did not matter much.  Note that the autosomal dataset 552 
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D1 (auto) is dominated by noncoding DNA, even though different noncoding loci may be included in 553 

D1 and D2, and that loci in D5 (exons split) are a subset of those in D4 (exons complete).  While 554 

model M0 did not fit the data as well as M2, it produced stable and reasonable estimates of  and  555 

parameters, which were also similar to estimates from M2.  (The exon datasets D4 and D5 are 556 

exceptions to this pattern, to be discussed later.)  For example, in datasets D1 (auto) and D2 557 

(noncoding), both M0 and M2 estimates suggest that S (0.013) is more than twice as large as M 558 

(0.005-0.006), consistent with previous studies which suggest that D. simulans has a larger effective 559 

population size than D. melanogaster (e.g., Langley et al., 2012; Wang and Hey, 2010).  Also from 560 

datasets D1 (auto) and D2 (noncoding) we obtained MS̂ = 0.011 and MS̂  = 0.013-0.014 under M0, 561 

and MS̂  = 0.012-0.014 and MS̂  = 0.011-0.012 under M2 (Table 9).  The slightly smaller estimates of 562 

MS and larger estimates of M under M0 than under M2 may be expected because a more recent 563 

divergence between D. melanogaster and D. simulans and a larger population size for D. 564 

melanogaster may help M0 (which does not allow gene flow) to explain the genetic variation 565 

introduced by immigrants from D. simulans.   566 

Dataset D3 (chrX) for the X chromosome showed very different patterns from the autosomal 567 

datasets D1 (auto) and D2 (noncoding), with a smaller estimate of S, and slightly larger estimates of 568 

the other  parameters.  The estimated migration rate MSM was much higher for the X than for the 569 

autosomes.  By the simple model of random mating and neutral evolution, and assuming the same 570 

mutation rate for the X and the autosomes, one would expect the effective population size for the X 571 

chromosome to be ¾ that for the autosome, so that s for X should be ¾ times as large as s for the 572 

autosomes, while the s and Ms should be identical.  The parameter estimates suggested that this 573 

simplistic model may not fit the data well.  However the estimates of M and MSM from D3 (chrX) 574 

were associated with large sampling errors.  Indeed D3 (chrX) does not include any MMY loci, so 575 

that the data contain only very weak information concerning M even though the model is identifiable.  576 

The correlation between estimates of M and MSM means that estimation of MSM may be affected as 577 

well.  We thus reran M2 under the constraint that M = ½S or M = S, obtaining estimates of MSM to 578 

be 0.016 and 0.008 (Table 9).  Thus there was no evidence for a large MSM for the X than for the 579 

autosomes.  The large changes to M and MSM caused virtually no change to the log likelihood or to 580 

estimates of other parameters, suggesting that the data are uninformative about M and MSM while the 581 

other parameters were well estimated.  We leave it to future investigations, perhaps by including some 582 

MMY or MMM loci with polymorphism for D. melanogaster, to generate more reliable parameter 583 

estimates for the X and to understand possible differences in the evolutionary process between the X 584 

chromosome and the autosomes. 585 

The two exon datasets, D4 (exons complete) and D5 (exons split), are exceptional to the general 586 

pattern of high similarity of parameter estimates between M0 and M2.  For those two datasets, 587 
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estimates of MS under M2 are much larger than those under M0.  However those M2 estimates are 588 

unreliable, because ML optimization under M2 converged to a star tree with MSY  MS and MS  0 589 

(Table 9).  We were unable to determine the reasons for this behavior.  We note that the same 590 

behavior was encountered in a few simulated datasets, as mentioned earlier, and that the problem did 591 

not occur for dataset D1 (auto), which includes both coding and non-coding loci.  The estimates of M 592 

and S from D4 (exons complete) and D5 (exons split) were smaller than those from D1 (auto) or D2 593 

(noncoding), which can be explained by the reduced neutral mutation rate in the exons due to 594 

selective constraint on nonsynonymous mutations.  Again, the estimates suggest no migration from D. 595 

melanogaster to D. simulans, but the migration rate from D. simulans to D. melanogaster is much 596 

higher than for the autosome.  We note that estimates of  and  parameters under M0 from those 597 

exon datasets were similar to the M0 estimates from D1 (auto) and D2 (non-coding), and that the 598 

estimates of MSY were very similar between M0 and M2 for the same dataset.  Thus we reran the M2 599 

analysis of the two exon datasets, with MSY = 0.020 and MS = 0.013 fixed, to estimate the other 600 

parameters.  The results appear much more reasonable (Table 9).  Both datasets D4 and D5 suggested 601 

no migration from D. melanogaster to D. simulans, but the estimates of MSM, at ~0.02 immigrants 602 

from D. simulans to D. melanogaster per generation, were very similar to those from D1 (auto) and 603 

D2 (noncoding).   604 

To examine the robustness of our estimates of migration rates and to explore the impact of the 605 

correlation between population sizes and migration rates, we re-analyzed the datasets under M2 (gene 606 

flow) assuming asymmetrical migration rates (with MMS  MSM) but symmetrical population sizes (M 607 

= S) (Table S7).  Again the LRT is significant in every dataset, and parameter estimates suggested 608 

unidirectional migration, with MSM̂  = 0 in every dataset.  However, estimates of MSM were much 609 

larger than those of Table 9 in every dataset except for D3 (chrX), which has been discussed above.  610 

For example, SMM̂  = 0.036-0.041 from D1 (auto) and D2 (noncoding) under the constraint M = S 611 

(Table S7), in comparison with 0.016-0.018 without the constraint (Table 9).  We note that, except for 612 

M and MSM, the parameter estimates were virtually identical with and without the constraint M = S 613 

(compare Tables S7 and 9).  There are far more SSY than MMY loci in those datasets (Table 4), so 614 

that the estimates of M = S, at 0.012 (Table S7), were dominated by the D. simulans polymorphism 615 

data, and were too large for D. melanogaster.  This has lead to overestimates of MSM, apparently 616 

because a large MSM is more compatible with the (unrealistically assumed) large M.  Thus the 617 

assumption M = S has caused serious biases in the estimation of migration rates, highlighting the 618 

importance of the asymmetrical model.  Note that the data contain strong evidence against the 619 

assumption M = S; for example, relaxing the assumption improves the log likelihood by 66-82 units 620 

in datasets D1 (auto) and D2 (noncoding).  D3 (chrX) does not include any MMY loci.  As a result, 621 

M is unidentifiable under M0 (so that the log likelihood is the same with and without the constraint 622 
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M = S), while under M2, M is identifiable but very poorly estimated (so that the log likelihoods are 623 

distinct but extremely similar with and without the constraint) (Tables 9  and S7). 624 

We used equation (11) to calculate the posterior probabilities for gene trees for the MSY loci in 625 

the five datasets (Table 4).  Here we discuss the results for D5 (exons split) (Fig. 4), and those for D1 626 

(auto) and D3 (chrX) are presented in Figs. S2 and S3.  At the MLEs under M2 (Table 9, with MSY = 627 

0.020 and MS = 0.013 fixed), the expected gene tree probabilities for any MSY locus are P(G3c) = 628 

0.1324, P(G5c) = 0.7368, and P(G6c) = P(G6a) = P(G6b) = 0.0436, with the gene tree-species tree 629 

mismatch probability P(G6a) + P(G6b) = 0.0872.  Most loci have gene tree G5c (Fig. 4), because the 630 

migration rate is low, so that G3c is uncommon and because the outgroup species is quite distant so 631 

that there is not much gene tree-species tree discordance.  A small proportion of loci very likely have 632 

the gene tree G3c, and are likely to have been transferred across species (from D. simulans to D. 633 

melanogaster since MMS  0).  The top 41 loci, with P(G3c) > 95%, are listed in Table S8.  More than 634 

half of those loci were also inferred to have P(G3c) > 95% in the analysis of dataset D4 (exons 635 

complete) (Table S8), suggesting that this inference was not very sensitive to the different filtering 636 

procedures applied to compile the datasets. 637 

An intriguing feature in Fig. 4 (and also in Figs. S2 and S3 for datasets D1 and D3) is that many 638 

more loci seem to support gene tree G6c than G6a or G6b, while the model predicts equal proportions 639 

for those three gene trees.  This is in contrast to the simulated dataset, in which the three gene trees 640 

are inferred to occur with similar proportions, as expected under the model (Fig. 3A).  The reasons for 641 

this pattern are unknown, but are likely to be some kind of model violation.   642 

To explore the potential of the IM model for species tree estimation under the multispecies 643 

coalescent with migration, we applied model M2 to dataset D1 (auto), assuming alternative species 644 

trees for M, S, and Y.  The MLEs and log likelihood values are shown in Table 10.  The ((MS)Y) tree 645 

has a much greater log likelihood value than the two alternative trees (by about 20,000 units).  Indeed, 646 

both alternative trees converge to the star tree with 0 = 1.  Migration is detected only in the direction 647 

of SM when the assumed tree is ((MS)Y).  Note that our model assumes migration between the two 648 

ingroup species only.  In theory a stratified bootstrap resampling procedure can be used to assess the 649 

significance of the ML species tree, sampling loci and then sampling sites for each sampled locus.  650 

This is not pursued here since there does not seem to be any uncertainty about the species phylogeny 651 

in this case (Russo et al., 1995; Obbard et al., 2012). 652 

 653 

DISCUSSION 654 

Utilities and limitations of our implementation 655 

In this paper, we have extended our previous implementation of the IM model (Zhu and Yang, 2012) 656 

in several important ways.  First, we have relaxed the symmetry assumption, so that the test of gene 657 
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flow and estimation of migration rates and population size parameters can be conducted under more 658 

realistic models.  For the Drosophila datasets, our analyses suggest that gene flow is indeed 659 

asymmetrical, the population sizes of D. melanogaster and D. simulans are very different, and 660 

accounting for such asymmetries in the model is important to accurate estimation of the migration 661 

rates.  Second, we have extended the implementation so that a locus can have 2 or 3 sequences of 662 

arbitrary configurations.  This removes the unidentifiability problem that we encountered when ‘123’ 663 

loci alone were used, making it possible to estimate the migration rates.  It also improves the power of 664 

the LRT of gene flow because the null distribution becomes known.  The extension to arbitrary loci 665 

also paves the way for implementing more complex models of migration.   666 

We envisage that a major future use of the IM model is to infer species phylogenies under the 667 

multispecies coalescent model with migration, accommodating two major factors that thwart species 668 

tree estimation, especially for species formed during radiative speciations: incomplete lineage sorting 669 

(ILS) and gene flow (Mallet et al., 2016).  Heuristic methods based on the model that treat estimated 670 

gene tree topologies as observed data are being developed (Wen et al., 2016), but full likelihood 671 

methods have the advantage of accommodating the different sources of uncertainties appropriately.  672 

However the functionality of 3S in this regard is limited.  The assumption of gene flow between sister 673 

species only may be too restrictive and gene flow between non-sister species needs to be allowed as 674 

well (Mallet et al., 2016).  Furthermore, our implementation is restricted to three species, with two or 675 

three sequences per locus.  This limitation is mainly due to our use of numerical integration (Gaussian 676 

quadrature) to integrate over the coalescent times, with the dimension of the integrals to be one less 677 

than the number of sequences at the locus.  With four or more sequences per locus, this calculation 678 

may not be feasible.  Furthermore, the number of states in the Markov chain used to characterize the 679 

genealogical process also increases explosively with the increase of the number of sequences per 680 

locus (Andersen et al., 2014).  We suggest that to analyze genomic datasets involving more than three 681 

species and more than three sequences per locus, a subsampling procedure may be useful, similarly to 682 

our analysis of the Drosophila datasets (see also Wang and Hey, 2010).  Suppose there are s > 3 683 

species.  We specify a ‘master’ species tree including all s species and use it to define the parameters: 684 

the (s – 1) species divergence times (s) and up to (2s – 1) population size parameters (s).  At every 685 

locus, we sample three sequences, which may be from different species, so that the data 686 

configurations may be 123, 114, 255, etc.  The species tree for the sequences of any particular locus 687 

can be constructed from the master species tree by pruning off branches for species not sampled in the 688 

data at the locus.  The theory developed in Zhu and Yang (2012) and in this paper will then be 689 

applicable with the only complication that the coalescent rate (the population size) and the migration 690 

rate may change along the same branch on the species subtree at the speciation events in the master 691 

species tree.  Such rate changes are relatively straightforward to accommodate.  This strategy involves 692 

filtering of data but the information loss may not be very serious for such large genomic datasets.  693 

Note that given the data, this strategy calculates the likelihood correctly. 694 
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In the future, we also hope to implement models of nonhomogeneous migration rates over time.  695 

Gene flow may be common at the early stage of species formation and decrease until the two 696 

populations achieve complete isolation.  A simple model may assume a constant migration rate M 697 

since species divergence until a time point T (0 < T < 1) when gene flow ceases.  In this model of 698 

isolation with initial migration, both the migration rate M and the time point T will be parameters to 699 

be estimated from the sequence data (Wilkinson-Herbots, 2012).  The same Markov chain 700 

characterization as used here can be used to derive the density of gene trees by breaking the time 701 

epoch E1 into two segments: E1a: 0 < t < T and E1b: T < t < 1.  Alternatively, one may use a 702 

deterministic mathematical function such as an exponential decay to describe the changing migration 703 

rate over time.  The initial migration rate and the exponential decay rate will be parameters to be 704 

estimated.  If reproductive isolation builds up gradually after species split, such nonhomogeneous 705 

migration models may be more realistic than the usual IM model with a constant migration rate after 706 

species divergence.   707 

Similarly, introgression or hybridisation may be modelled in the same framework (Twyford and 708 

Ennos, 2011).  Recent introgression or contamination may be modelled by assuming that a proportion 709 

of individuals sampled from species 1 are in fact from species 2.  Introgression can then be tested 710 

using a likelihood ratio test.  As the model naturally accommodates ancestral polymorphism and 711 

incomplete lineage sorting (ILS), the test will distinguish introgression from ILS.  Note that 712 

introgression affects all loci of the introgressed individual, while with ILS, caused by the coalescent 713 

process, the different genomic loci have independent histories. 714 

Asymmetrical Migration in Drosophila fruit flies 715 

Wang and Hey (2010: Table 7) compiled and analyzed a Drosophila dataset similar to our dataset D1 716 

(auto), consisting of 30,323 autosomal loci but including only two sequences for each locus, of 717 

configurations SS, MS, and MM.  Under the asymmetrical model, their estimates of population size 718 

parameters are M = 0.0055 and S = 0.01352, which are close to our estimates from D1 (auto).  The 719 

ancestral population size MS estimated by Wang and Hey ranges from 0.007 to 0.010, whereas our 720 

estimates are larger, at MS = 0.011 and MSY = 0.040.  The M-S divergence time parameter is MS = 721 

0.017 by Wang and Hey and 0.0136 in our analysis.  A strong negative correlation between MS and 722 

MS is expected in such analyses (Yang, 2002).  Wang and Hey (2010) estimated the migration rate (in 723 

our notation) to be MMS = NSmMS = 0 from D. melanogaster to D. simulans and MSM = NMmSM = 724 

4.846  0.00552/4 = 0.0067 from simulans to melanogaster.  Our estimates under M2 are MMS = 0 as 725 

well and MSM = 0.0183, which is much larger.  726 

The data of Wang and Hey (2010) were also analyzed by Lohse et al. (2011, Table 1), who 727 

compared parameter estimates from two datasets which have either two or three sequences per locus 728 

for the same set of loci.  The authors found that the estimate of the migration rate from the ‘triplet’ 729 

data was nearly twice as large as that for the ‘pair’ data.  This is consistent with our finding.   730 
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We note that our datasets are based on updated genome sequences, relative to the data analyzed 731 

by Wang and Hey (2010) and Lohse et al. (2011).  Also different filters were applied and different 732 

loci were included in those datasets.  Furthermore, Wang and Hey (2010) removed loci at which the 733 

pairwise sequence distances indicated gene tree-species tree conflict.  We did not apply this filtering 734 

because such loci are informative about the gene tree distribution and about the parameters in our 735 

analysis of loci of three sequences.  Lohse et al. (2011) removed highly variable loci and highly 736 

variable sites so that the data could be analyzed under the infinite-sites model.  Given the multiple 737 

differences among the datasets, we conclude that the estimates obtained from those studies are largely 738 

consistent. 739 

Different from Wang and Hey (2010), we also compiled and analyzed a dataset for the X 740 

chromosome (D3 chrX) as well as two exon datasets: D4 (exons complete) and D5 (exons split).  The 741 

use of multiple datasets, even though some of them are overlapping, allows us to confirm the 742 

robustness of our analyses, as processes such as migration are expected to have genome-wide effects, 743 

and to discover similarities and differences in the evolutionary process among different parts of the 744 

genome.  Indeed all five datasets we analyzed support a model of unidirectional gene flow, from D. 745 

simulans to D. melanogaster, at the rate of ~0.02 migrant individuals per generation.  We included the 746 

two exon datasets even though we do not expect exons to be evolving neutrally.  Note that the 747 

multispecies coalescent model implemented in 3S assumes neutral evolution of the gene sequences, 748 

such that mutations in the sequences do not affect the genealogical process or the gene tree 749 

distribution.  Nevertheless, most proteins appear to perform the same conserved function in closely 750 

related species and their coding genes are under similar purifying selection in the different species.  751 

The main effect of the selective constraint may then be a reduction of the neutral mutation rate.  752 

Species-specific natural selection such as positive selection would be more problematic but loci 753 

undergoing positive selection or responsible for between-species incompatibilities are expected to be 754 

rare.  Similar points have been made by Ebersberger et al. (2007;  see also Yang, 2015) in their 755 

analysis of hominoid genomic sequence data. 756 
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APPENDIX A.   931 

DISTRIBUTION OF GENE TREES FOR THREE SEQUENCES UNDER M2 (GENE FLOW) 932 

Case I: Initial states 111 and 222 933 

With the initial state s = 111 or 222, all three sequences at the locus are from the same species (1 or 934 

2).  Due to the symmetry, the densities of the three gene trees of the same shape (such as G1c, G1a, and 935 

G1b) are identical.  There is thus no need to keep track of the sequence IDs, even though the likelihood 936 

averages over all 18 gene trees (Table S1).  Thus we consider a Markov chain with 8 states: 111, 112, 937 

122, 222, 11, 12, 22, 1|2, with ‘1|2’ to be an artificial state formed by merging states 1 and 2.  The rate 938 

matrix is given in Table 3.  The density for gene tree shape G1 is given in equation (9).  By a similar 939 

argument we obtain the densities for tree shapes G2-G6, as follows. 940 
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 (12) 943 

where S2 and S3 are the sets of states with two and three sequences, respectively, that can be reached 944 

by the initial state (Table 2).  Again each density for a tree shape should be divided by 3 to give the 945 

density for the gene tree: e.g., f(G2a, t0, t1) = f(G2, t0, t1)/3. 946 

 947 

Case II: Initial states 112 and 122 948 

For initial state s = 112 or 122, the likelihood calculation at each locus averages over all 18 gene trees 949 

(Table S1).  This is the only case in this study where it is necessary to keep track of both the sequence 950 

IDs and the population IDs in our Markov chain characterization of the process of coalescent with 951 

migration.  The initial states are thus 1a1b2c or 1a2b2c.  However, for states of three sequences, we 952 

always arrange the sequence IDs in the order a, b, and c to simplify the notation and thus the 953 

subscripts are dropped.  Thus 1a1b1c, 1a1b2c and 1a2b2c are written as 111, 112 and 122, respectively.  954 

There are 21 states in the chain: 111, 112, 121, 122, 211, 212, 221, 222, 1bc1a, 1ca1b, 1ab1c, 1bc2a, 1ca2b, 955 

1ab2c, 1a2bc, 1b2ca, 1c2ab, 2bc2a, 2ca2b, 2ab2c, and 1|2.  The states of two sequences have the subscripts to 956 
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indicate the sequence IDs.  For example, 1bc2a means that sequences b and c have coalesced and their 957 

ancestor is in population 1 while sequence a is in population 2. 958 

For gene tree G1c, with 0 < t0 + t1 < 1, we have 959 
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The densities for gene trees G1b and G1a are similar. 961 
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  963 

For gene tree G2, we have t1 < 1 ,  t0 < 0 – 1, and  964 
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For gene tree G3, with t1 < 1 < 0 < t0, we have 968 
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 (16) 971 

For gene trees G4, G5, and G6, the probability density does not depend on the sequence IDs. 972 
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where k = c, a, and b. 974 

Case III: Initial states 113, 123, and 223 975 

For initial state s = 113, 123, or 223, only three gene tree shapes are possible: G3, G5, and G6  (Table 976 

S1).  For tree shapes G3 and G5, the only gene tree possible is G3c or G5c: ((a, b), c), while for the tree 977 

shape G6, the three gene trees G6c: ((a, b), c); G6a: ((b, c), a); and G6b: ((c, a), b) have the same prior 978 

density.  Thus there is no need to trace the sequence IDs.  There are four states in the chain: 113, 123, 979 

223, 13|23, with the rate matrix given as follows. 980 
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For tree shapes G3 and G5, only one gene tree is possible, so that 982 
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For tree shape G6, the three gene trees have the same density. 984 
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where k = c, a, and b.   986 

Case IV: Initial states 133, 233, and 333 987 

For initial state s = 133, 233, or 333, there is no need to trace the sequence IDs.  We first discuss the 988 

initial state 333.  The genealogical process is the single-population coalescent, with different 989 

population size parameters: 3 for t < 0 or 4 for t > 0.  There is no need to distinguish among G1, G2, 990 

and G4, or between G3 and G5, so we consider only G1 and G3, but with the range of the coalescent 991 

times modified accordingly.  There are thus three tree shapes: G1, G3, and G6.  For each one, we sum 992 

over three gene trees.  Thus with initial state s = 333, we have 993 
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Similarly, for initial state s = 133 or 233, we consider two tree shapes G3 and G6. 995 
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FIGURE LEGENDS 999 

 1000 

FIGURE 1.  (a) Species tree illustrating parameters in model M2 (gene flow) for three species (1, 2, 1001 

and 3) and (b)-(g) possible gene tree shapes for a locus with three sequences (a, b, and c).  With 1002 

certain initial states (data configurations at the locus), we have to keep track of the sequence IDs (a, b, 1003 

and c) as well as the population IDs, so that each gene tree shape may correspond to three distinct 1004 

gene trees.  For example, with the data configuration (initial state) 1a2b3c, the tree shape G6 represents 1005 

three distinct gene trees: G6c: ((a, b), c); G6a: ((b, c), a); and G6b: ((c, a), b).   1006 

 1007 

 1008 

FIGURE 2.  The three gene trees with branch lengths for three sequences a, b, and c.  Branch lengths b0 1009 

and b1 are simple linear functions of coalescent times t0 and t1 in the gene trees of Fig. 1.  For 1010 

example, for the tree G1 of Fig. 1, b0 = t0 and b1 = t1, while for G2, b0 = t0 + 1 – t1 and b1 = t1. 1011 

 1012 

 1013 

FIGURE 3.  Posterior probabilities of the six possible gene trees (G3c, G5c, G6c, G6a, and G6b) for the 1014 

‘123’ loci in a dataset simulated using the MLEs of parameters for the Drosophila dataset D1 (auto).   1015 

 1016 

 1017 

FIGURE 4.  Posterior probabilities of gene trees for the MSY loci for dataset D5 (exons split).  The red 1018 

lines for gene tree G3c indicated loci that are likely to have been transferred across species, with 1019 

P(G3c) > 95%. 1020 
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TABLE 1.  Summary of the density for coalescent time for two sequences under M0 (no gene flow) 
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TABLE 2.  Markov chains and their states for characterizing the genealogical process of epoch E1 in 

model M2 (gene flow) 

Case Initial states States in chain Calculation of P(t) 

 Loci with 3 sequences   

I 111, 222 

 

111, 112, 122, 222, 11, 12, 22, 1|2 

8 states 

Numerical 

II 112, 122 111, 112, 121, 122, 211, 212, 221, 

222, 1bc1a, 1ca1b, 1ab1c, 1bc2a, 1ca2b, 

1ab2c, 1a2bc, 1b2ca, 1c2ab, 2bc2a, 2ca2b, 

2ab2c, 1|2 

21 states 

Numerical 

III 113, 123, 223 113, 123, 223, 13|23 Numerical 

IV 133, 233, 333 133, 233, 13, 23, 33, 3 Analytical 

    

 Loci with 2 sequences   

V 11, 12, 22 11, 12, 22, 1|2 Numerical 

VI 13, 23, 33 13, 23, 33, 3 Analytical 

Note.  In case II (with initial states 112 or 122), it is necessary to keep track of both the population 

ID (1, 2, 3) and the sequence ID (a, b, c), so that state 1ab2c means two lineages in the sample, with the 

common ancestor of a and b in population 1, and sequence c in population 2.   
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TABLE 3.  Rate matrix Q for the Markov chain for initial states 111 and 222 under model M2 

 111 112 122 222 11 12 22 1|2 

111 . 3  4M21/1   3  2/1    

112 4M12/2 . 2  4M21/1   2/2   

122  2  4M12/2 . 4M21/1  2/1   

222   3  4M12/2 .   3  2/2  

11     . 2  4M21/1  2/1 

12     4M12/2 . 4M21/1  

22      2  4M12/2 . 2/2 

1|2        . 

Note.  We define parameters using the real-world process (with time running forward), so that the 

migration rate Mij = Njmij is the expected number of migrant individuals from populations i to j per 

generation (in the real world) and mij is the proportion of individuals in population j that are 

immigrants from population i.  The Markov chain is then used to describe the process of coalescent 

with migration, with time running backwards.  For example Q111, 112 is the rate for the transition from 

state 111 to state 112, which in the real world means one of the three sequences in population 1 is an 

immigrant from population 2, which has the rate 3m21 per generation.  Since time is measured by the 

mutational distance and one time unit is the expected time to accumulate one mutation per site (that is, 

one time unit is 1/ generations), the rate per time unit is Q111, 112 = 3m21  1/ = 3  4N1m21/(4N1) 

=3  4M21/1, as in the table.  Given the rate matrix Q = Qij, the transition probability matrix over 

time t is given as P(t) = Pij(t) = eQt.  This is the same calculation as in the Markov chain models for 

nucleotide substitution such as Jukes and Cantor (Jukes and Cantor, 1969). 

 

 

TABLE 4.  Five Drosophila datasets analyzed in this paper 

Dataset #MMY loci #MSY loci #SSY loci Total

D1 auto 378 19,224 9,425 29,027

D2 noncoding 378 14,498 7,211 22,087

D3 chrX 0 4,381 2,105 6,486

D4 exons complete 378 27,200 13,500 41,078

D5 exons split 378 10,979 5,342 16,699
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TABLE 5.  False positive rate, percentage of zeros, and 95% quantile of the null distribution of the 
LRT statistic (2) comparing the symmetrical versions of models M0 (no gene flow) and M2 (gene 

flow) 

Data L = 10 100 1000 15,000 

Set 1 (hominoid): 4 = 5 = 12 = 0.005, 0 = 0.006, 1 = 0.004 

(a) 123 0.000 0.829 0.034 0.001 0.641 2.217 0.005 0.528 2.708 0.004 0.506 2.443 

(b) 11&12 0.003 0.851 0.578 0.019 0.680 1.528 0.045 0.504 2.542 0.084 0.479 3.492 

(c) 113&123 0.002 0.848 0.307 0.027 0.674 2.073 0.037 0.576 2.161 0.035 0.507 2.329 

Set 2 (mangroves): 4 = 5 = 12 = 0.01, 0 = 0.02, 1 = 0.01  

(a) 123 0.001 0.883 0.616 0.006 0.798 1.330 0.009 0.709 2.060 0.004 0.345 1.772  

(b) 11&12 0.009 0.881 0.454 0.020 0.741 1.542 0.100 0.439 3.872 0.078 0.570 3.481  

(c) 113&123 0.010 0.906 0.418 0.035 0.791 1.983 0.031 0.712 2.013 0.039 0.722 2.136 

Set 3: 4 = 12 = 0.02, 5 = 0.03, 0 = 0.06, 1 = 0.04  

(a) 123 0.000 0.957 0.000 0.002 0.904 0.501 0.001 0.896 0.424 0.006 0.884 0.975 

(b) 11&12 0.007 0.864 0.796 0.032 0.727 1.979 0.035 0.713 1.814 0.009 0.839 0.422 

(c) 113&123 0.003 0.945 0.017 0.008 0.902 0.535 0.007 0.895 0.589 0.008 0.910 0.198 

Set 4: 4 = 12 = 0.02, 5 = 0.01, 0 = 0.02, 1 = 0.01 

(a) 123 0.000 0.854 1.137 0.003 0.782 1.469 0.001 0.717 0.841 0.002 0.685 2.003 

(b) 11&12 0.008 0.823 0.479 0.032 0.757 1.707 0.047 0.625 2.470 0.049 0.656 2.687 

(c) 113&123 0.013 0.823 1.056 0.040 0.775 2.069 0.034 0.719 1.782 0.030 0.666 2.136 

Note.  In each cell, the three numbers are the false positive rate, the proportion of replicates in 
which the test statistic is 2 = 0, and the estimated 95% critical value.  The critical value used for the 

test is 2
2,5%  = 5.99 for (a) configuration 123, and is 2.71 for (b) 11&12 and (c) 113&123.   

 
 

TABLE 6.  Power of the LRT comparing the symmetrical versions of models M0 (no gene flow) and 
M2 (gene flow) 

Data L = 10 100 1000 15,000 

Set 1 (hominoid): 4 = 5 = 12 = 0.005, 0 = 0.006, 1 = 0.004, M =1  
(a) 123 0.6% 5.3% 81.6% 100% 

(b) 11&12 4.6% 7.0% 16.1% 65.7% 
(c) 113&123 3.3 % 17.9% 88.3% 100% 

Set 2 (mangroves): 4 = 5 = 12 = 0.01, 0 = 0.02, 1 = 0.01, M =1 
(a) 123 3.0% 52.1% 100% 100% 

(b) 11&12 8.0% 27.3% 32.0% 89.3% 

(c) 113&123 13.8% 69.3% 100% 100% 

Note.— The critical value used is 5.99 for (a) 123, and is 2.71 for (b) 11&12 and (c) 113&123.   
 

 



Table 7.  Means and SDs of MLEs from datasets simulated under the symmetrical model M2 (gene flow)  

Data (a) 11&12 (b) 113&123 

 4 5 0 1 12 M 4 5 0 1 12 M 

Set 1 (hominoid): 4 = 5 = 12 = 0.005, 0 = 0.006, 1 = 0.004, M = 1       

Truth 5 5 6 4 5 1 5 5 6 4 5 1 

L = 100 6.7 ± 4.1 33.7 ± 191.0 6.7 ± 3.0 3.4 ± 2.3 9.3 ± 64.0 1.4 ± 1.7 4.9 ± 1.0 10.8 ± 90.2 6.0 ± 0.4 3.6 ± 1.9 6.6 ± 8.1 1.3 ± 1.4 

L = 1000 5.5 ± 2.5 20.0 ± 152.5 7.4 ± 3.6 3.4 ± 1.9 6.9 ± 56.9 1.1 ± 0.7 5.0 ± 0.3 4.7 ± 2.0 6.0 ± 0.1 4.0 ± 1.2 5.1 ± 0.6 1.1 ± 0.6 

L = 15000 5.1 ± 1.0 14.1 ± 98.3 7.4 ± 4.1 3.5 ± 1.3 5.0 ± 0.4 0.9 ± 0.2 5.0 ± 0.1 5.0 ± 0.6 6.0 ± 0.0 4.0 ± 0.3 5.0 ± 0.1 1.0 ± 0.1 

Set 2 (mangroves): 4 = 5 = 12 = 0.01, 0 = 0.02, 1 = 0.01, M = 1       

Truth 10 10 20 10 10 1 10 10 20 10 10 1 

L = 100 13.1 ± 7.5 17.8 ± 87.2 18.6 ± 7.5 8.8 ± 5.0 10.9 ± 7.3 1.5 ± 1.7 9.9 ± 1.9 9.6 ± 3.9 20.1 ± 0.9 9.9 ± 4.2 14.0 ± 70.0 1.4 ± 1.4 

L = 1000 10.9 ± 4.3 13.4 ± 64.5 18.6 ± 7.7 8.6 ± 4.0 10.0 ± 1.7 1.1 ± 0.5 10.0 ± 0.6 9.9 ± 1.2 20.0 ± 0.3 10.0 ± 0.2 10.1 ± 0.6 1.1 ± 0.4 

L = 15000 10.1 ± 2.2 16.9 ± 103.4 20.8 ± 7.8 9.5 ± 2.0 10.0 ± 0.2 1.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.3 20.0 ± 0.1 10.0 ± 0.3 10.0 ± 0.1 1.0 ± 0.1 

 Note.— Estimates of s and s are multiplied by 1000.  For L = 100 or 1000, some estimates are very large () in certain datasets, causing the mean and SD 

to be very large.  See table 5 for the power of the LRT from the same data. 
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TABLE 8.  Means and SDs of MLEs from datasets simulated under the asymmetrical IM model M2 (gene flow) 

 Parameters (true values in parentheses) 

Data 4 (10) 5 (10) 0 (20) 1 (10) 1 (5) 2 (10) M12 (0.1) M21 (1) 

 (a) 223&123  

L = 100 9.9 ± 2.0   16.8 ± 63.1 20.1 ± 0.9 10.4 ± 5.0 9.7 ± 19.3 9.4 ± 5.9 0.2 ± 0.5 1.2 ± 0.8

L = 1000 10.0 ± 0.6 12.6 ± 38.9 20.0 ± 0.3 10.0 ± 4.9 9.5 ± 22.0 9.6 ± 1.6 0.2 ± 0.2 1.6 ± 2.6

L = 15000 10.0 ± 0.2 9.7 ± 1.2 20.0 ± 0.1 10.3 ± 2.9 5.4 ± 3.5 10.0 ± 0.4 0.1 ± 0.0 1.1 ± 0.7

          (b) 113&223&123  
L = 99 9.8 ± 2.0 10.9 ± 26.9 20.1 ± 1.0 10.2 ± 5.0 7.5 ± 5.8 9.3 ± 6.1 0.4 ± 1.0 1.4 ± 1.5
L = 999 10.0 ± 0.6 11.8 ± 37.6 20.0 ± 0.3 10.1 ± 4.7 5.4 ± 1.3 9.5 ± 2.1 0.2 ± 0.2 1.0 ± 0.3
L = 15000 10.0 ± 0.1 9.7 ± 1.3 20.0 ± 0.1 10.1 ± 2.8 5.0 ± 0.3 9.9 ± 0.5 0.1 ± 0.1 1.0 ± 0.1

 Note.— Estimates of s and s are multiplied by 1000.  For L ≤ 1000, several datasets produced large estimates of 5 at the upper bound set by the program.  
The means and SDs were calculated by excluding those estimates. 
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TABLE 9.  MLEs and standard errors from the five Drosophila datasets of Table 4 

Data & model MSY MS MSY MS M S MMS MSM  2

D1 auto  
    M0 24.6 ± 0.1 11.3 ± 0.1 39.4 ± 0.3 13.3 ± 0.2 6.0 ± 0.4 12.8 ± 0.2 4,763,806.0
    M2 24.3 ± 0.1 13.6 ± 0.2 40.0 ± 0.3 10.6 ± 0.3 5.2 ± 0.6 12.7 ± 0.2 0.0 18.3 ± 3.1 4,763,452.5 707.0
D2 noncoding  
    M0 24.5 ± 0.1 10.8 ± 0.1 41.6 ± 0.4 13.9 ± 0.2 6.0 ± 0.4 13.1 ± 0.2 3,326,330.8
    M2 24.3 ± 0.1 12.6 ± 0.2 42.1 ± 0.4 12.0 ± 0.2 5.3 ± 0.4 13.0 ± 0.2 0.0 16.2 ± 2.5 3,326,145.1 371.2
D3 chrX  
    M0 28.0 ± 0.2 12.3 ± 0.2 41.1 ± 0.6 15.3 ± 0.4 NA 8.2 ± 0.2 1,027,233.4
    M2 27.8 ± 0.2 14.2 ± 0.3 41.6 ± 0.6 13.0 ± 0.5 20.9 ± 9.4 8.3 ± 0.2 0.0 40.2 ± 16.9 1,027,161.6 143.5
    M2 (M = S/2) 27.8 ± 0.2 14.2 ± 0.3 41.6 ± 0.6 13.0 ± 0.5 4.1 ± NA 8.3 ± 0.2 0.0 8.0 ± 1.1 1,027,161.7 143.5
    M2 (M = S) 27.8 ± 0.2 14.2 ± 0.3 41.6 ± 0.6 13.0 ± 0.5 8.3 ± 0.2 0.0 15.9 ± NA 1,027,161.7 143.5
D4 exons complete  
    M0 20.2 ± 0.1 10.9 ± 0.1 33.7 ± 0.2 9.9 ± 0.1 5.9 ± 0.4 10.7 ± 0.1 7,853,901.6
    M2 18.3 ± 0.1 18.3 ± 0.1 38.2 ± 0.2 0.0 ± 0.0 4.5 ± 0.5 10.7 ± 0.1 0.0 43.6 ± 4.0 7,853,313.71175.8
    M2 (MSY = 0.020, MS = 0.013) 20 13 34.3 ± 0.2 7.4 ± 0.0 5.1 ± NA 10.6 ± 0.1 0.0 20.7 ± NA 7,853,425.1 952.9
D5 exons split (subset of D4)  
    M0 19.6 ± 0.1 10.9 ± 0.1 38.9 ± 0.3 9.4 ± 0.2 5.9 ± 0.4 10.2 ± 0.2 2,139,639.5
    M2 18.0 ± 0.1 18.0 ± 0.1 42.6 ± 0.4 0.0 ± 0.0 4.2 ± 0.3 10.2 ± 0.2 0.0 37.8 ± 2.9 2,139,182.0 915.1
    M2 (MSY = 0.020, MS = 0.013) 20 13 38.5 ± 0.3 7.4 ± 0.4 4.7 ± 0.4 10.1 ± 0.2 0.0 20.4 ± 3.3 2,139,414.4 450.2
Note. Estimates of , , and M are multiplied by 1000.  See Table 4 for information about the datasets. 

 

TABLE 10.  MLEs and log likelihood values under M2 assuming different species trees for dataset D1 (auto) of Table 4 

Species tree MSY 1 MSY 5 M S Y M12 M21  

((MS)Y) 24.3 ± 0.1 13.6 ± 0.2 (MS) 40.0 ± 0.3 10.6 ± 0.3 (MS) 5.2 ± 0.6 12.7 ± 0.2 NA 0.0 (MMS) 18.3 ± 3.1 (MSM) 4,763,452.5
((MY)S) 10.7 ± 0.1 10.7 ± 1.0 (MY) 53.5 ± 0.3  (MY) 5.7 ± 0.4  8.2 ± 0.1 0.0 (MMY) 0.0 (MYM) 4,780,884.0
((SY)M) 11.4 ± 0.1 11.4 ± 0.1 (SY) 52.8 ± 0.3  (SY) 11.3 ± 0.1  4.2 ± 0.3 0.0 (MSY) 0.0 (MYS) 4,783,156.2
Note. Estimates of , , and M are multiplied by 1000.  Estimates of 5 and S hit the upper bound set in the program for trees ((MY)S) and ((SY)M). 
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