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Abstract

I present a framework for analyzing decision making under imper-

fect understanding of correlation structures and causal relations. A

decision maker (DM) faces an objective long-run probability distrib-

ution p over several variables (including the action taken by previous

DMs). He is characterized by a subjective causal model, represented

by a directed acyclic graph over the set of variable labels. The DM

attempts to fit this model to p, resulting in a subjective belief that

distorts p by factorizing it according to the graph via the standard

Bayesian-network formula. As a result of this belief distortion, the

DM’s evaluation of actions can vary with their long-run frequencies.

Accordingly, I define a "personal equilibrium" notion of individual

behavior. The framework enables simple graphical representations of

causal-attribution errors (such as coarseness or reverse causation), and

provides tools for checking rationality properties of the DM’s behavior.

I demonstrate the framework’s scope of applications with examples

covering diverse areas, from demand for education to public policy.
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1 Introduction

The rational-expectations postulate entails that agents in an economic model

perfectly understand its equilibrium statistical regularities - in particular, the

structure of correlations among variables. In recent years, economists have

become increasingly interested in equilibrium models that relax this extreme

assumption. This paper proposes an approach to modeling decision makers

(DMs) with an imperfect understanding of equilibrium correlations, based

on the idea that such flaws arise from an attempt to fit a misspecified causal

model to the equilibrium distribution.

Consider a DM whose vNM utility function u is defined over a collection

of variables x = (x1, ..., xn), where x1 is the DM’s action. Imagine that before

choosing how to act, the DM gets access to a "historical database" consisting

of (infinitely) many joint observations of the relevant variables - including

the actions taken by previous DMs facing the same decision problem. The

empirical distribution p over x in the database obeys the textbook chain rule:

p(x) ≡ p(x1)p(x2 | x1)p(x3 | x1, x2) · · · p(xn | x1, ..., xn−1) (1)

To represent a DM who might misperceive the correlation structure of

long-run distributions, I propose an extension of the chain rule. The DM

is characterized by a directed acyclic graph (DAG) R over the set of nodes

{1, ..., n}.1 The DM’s subjective belief distorts every objective long-run dis-
tribution p by "factorizing it according to R", via the formula

pR(x) =

n∏
i=1

p(xi | xR(i)) (2)

where R(i) denotes the set of direct parents of the node i in the DAG, and

xR(i) is the projection of x on R(i). For instance, if R : 1→ 2→ 3← 4, then

pR(x) = p(x1)p(x4)p(x2 | x1)p(x3 | x2, x4).
A DAG R and the set of distributions representable by (2) define what is

1A directed graph is defined by a set of nodes and a set of directed links between nodes.
The graph is acyclic if it does not contain any directed path from a node to itself.
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known as a Bayesian network. This concept was introduced by statisticians

as a representation of conditional-independence assumptions, and has become

ubiquitous in Artificial Intelligence as a platform for effi cient probabilistic-

inference algorithms (see Cowell et al. (1999) and Koski and Noble (2009)

for textbooks). In the present context, the DAG R is the DM’s "type", and

(2) describes how this type distorts every objective distribution p into the

subjective belief pR. When R is fully connected, it reduces (2) to a standard

chain rule, thus representing a DM with rational expectations. At the other

extreme, when R is empty, it represents a DM who cannot perceive any

correlations that might actually exist: pR(x) = p(x1) · · · p(xn).

Pearl (2009) advocated the view of DAGs as causal structures that un-

derlie observed statistical regularities: the link j → i means that xj is an

immediate cause of xi. Sloman (2009) presented psychological evidence that

people use intuitive causal models to perceive uncertain environments, and

employed DAGs to represent such models. The causal interpretation is con-

sistent with the directedness and acyclicity properties of R: a causal chain

from xi to xj should preclude a causal chain in the opposite direction. It also

gives content to the factorization formula (2): to predict xi conditional on

its causes, we only need to know the realization of its immediate causes.

Following Pearl and Sloman, I interpret R primarily as a subjective causal

model, such that pR is the outcome of the DM’s attempt to fit his (possibly

misspecified) causal model to "historical data". The causal model is entirely

non-parametric: it only posits the existence of certain causal links. The

DM extracts the correlation between xi and xR(i) (for each i = 1, ..., n) from

the "historical database" represented by p. He focuses on these particular

correlations because these are the ones that are required to quantify his causal

model. The following example illustrates the behavioral implications of this

idea.

An example: The Dieter’s Dilemma

A DM who wishes to improve his health considers a diet that involves ab-

staining from a food he likes. In reality, the DM’s choice and his health are

statistically independent, yet they are potentially correlated with the level

of some chemical in the DM’s blood. The latter variable is payoff-irrelevant.
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Therefore, a DM with rational expectations would choose not to diet.

Let a, h, c denote the DM’s action (i.e., dieting decision), state of health

and chemical level. Since a and h are independent, the objective long-run

distribution p can be written as p(a, h, c) = p(a)p(h)p(c | a, h). Thus, p

is consistent with a "true DAG" R∗ : a → c ← h - i.e., a causal model

that posits a and h as independent causes of c.2 This is "as if" consistency:

although R∗ may well describe an actual causal mechanism that underlies

p, as modelers we are free to regard R∗ as a mere representation of purely

statistical independence between a and h.

Assume that our DM’s subjective DAG is R : a → c → h - i.e., he

inverts the causal link between the chemical level and his health, relative to

the true DAG R∗. The DM’s attempt to fit his causal model to the long-run

distribution p generates the subjective belief pR(a, h, c) = p(a)p(c | a)p(h | c).
Guided by this belief, the DM will choose a to maximize∑

h

pR(h | a)u(a, h) =
∑
h

∑
c

p(c | a)p(h | c)u(a, h) (3)

Now impose additional structure on the true process: the chemical level is

normal when the DM is healthy or when he diets; otherwise, it is abnormally

high. Consequently, as long as not all historical DMs chose to diet, c and h

will exhibit non-degenerate correlation in the database, and therefore pR(h |
a) will be a non-constant function of a. Thus, although in reality a and h

are independent, the DM’s estimated causal model leads him to perceive an

indirect causal effect of a on h. The reason is that although the DM correctly

perceives the steady-state correlation between c and h, he mistakes it for a

direct causal effect of c on h, which (according to R) implies an indirect

causal effect of a on h.

Furthermore, the magnitude of this perceived effect is sensitive to the fre-

quency of dieting in the database. To see why, note that the DM’s subjective

causal model postulates that a and h are independent conditional on c (as

2In diagrams, I will often name nodes by the variables’intuitive labels (rather than by
the indices 1, ...n). Although this practice involves some abuse of notation, it facilitates
reading the graphs.
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evident from (3)). However, this is false: if we knew that the chemical level

is normal, learning whether the DM is dieting would affect our prediction

of his state of health. It follows that the term p(h | c) in (3) is sensitive to
the marginal of p over a. In particular, a lower long-run frequency of dieting

strengthens the estimated correlation between h and c, and hence the DM’s

subjective evaluation of dieting.

We are thus led to think of the DM’s steady-state behavior as an equilib-

rium concept: the long-run distribution p is in equilibrium if it only assigns

positive probability to actions a that maximize the expectation of u(a, h) with

respect to pR(h | a). In Section 3.1, I show that when the direct disutility

from dieting is not too large, the DM’s equilibrium probability of dieting is

positive. For a range of parameter values, the unique equilibrium is mixed - a

genuine equilibrium effect that is impossible under standard expected-utility

maximization.3

I present the equilibrium model of individual choice in Section 2. For

expositional simplicity, I assume that the DM cannot condition his action on

any signal (Appendix C relaxes this assumption). An objective steady-state

distribution p is a "personal equilibrium" if whenever an action x1 is played

with positive probability, it maximizes the expectation of u with respect to

the conditional distribution pR(x2, ..., xn | x1). A conventional "trembling

hand" criterion handles zero-probability events.4

The integration of the Bayesian-network factorization formula (2) into an

equilibrium model of choice constitutes the paper’s first main contribution.

It provides a framework for analyzing the behavior of a DM who forms his

beliefs by fitting a subjective causal model to objective distributions. Be-

cause graphical causal models are entirely non-parametric, they are applica-

3The idea that the DM’s long-run behavior may affect his evaluation of actions when
he misperceives correlation structures has precedents in the literature (see Sargent (2001)
and Esponda (2008)). To my knowledge, this paper offers the first general articulation of
this idea.

4The term "personal equilibrium" was introduced by Kőszegi and Rabin (2006) and
Kőszegi (2010) in the context of decision making with reference-dependent preferences,
when the reference point is a function of the DM’s expectation of his own choice.
Geanakopolos et al. (1989) study a model in which the DM’s payoff is a direct func-
tion of his prior belief, and this can lead to equilibrium effects in individual choice.
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ble to any static decision problem. The framework thus provides a "general

recipe" for transforming a standard rational-expectations model into an equi-

librium model with non-rational expectations: substitute pR(x2, ..., xn | x1)
for p(x2, ..., xn | x1) in the definition of individual best-replying, where p is
the true equilibrium distribution.

The paper’s other major contributions can be summarized as follows.

Capturing errors of causal/statistical reasoning

Section 3 and Appendix C present applications of personal equilibrium to

various domains. Each example is characterized by a "true DAG" R∗; the

DM’s DAG R is obtained by performing a basic operation on R∗ - removing,

inverting or reorienting links. Different operations capture different errors of

causal attribution - link inversion captures "reverse causation", link removal

captures "coarseness", etc. In specific contexts, these errors translate to well-

known statistical fallacies. E.g., Section 3.2 studies an example of parental

investment in education. The parent’s DAG distorts R∗ by removing the

links flowing from a node that represents the child’s "latent ability" into

nodes that represent his school and labor-market outcomes. This removal

of links captures the fallacy of ignoring a confounding variable. In (po-

tentially multiple) personal equilibria, the parent over-invests in education.

As the examples show, the Bayesian-network framework offers a language

for describing errors of causal attribution and for analyzing their behavioral

implications.

General characterizations of choice behavior

The framework is more than a language; it also provides tools for checking

general rationality properties of personal equilibrium. Section 4.1 states a

necessary and suffi cient condition for the possibility of equilibrium effects, in

terms of the structural relation between R and R∗. This condition is easy to

operationalize, thanks to a basic concept from the Bayesian-networks liter-

ature called d-separation (explained in Appendix B). Section 4.2 presents a

necessary and suffi cient condition onR for the DM’s behavior to be consistent

with rational expectations in all environments that share the same restriction

on the subset of payoff-relevant variables. Results of this kind are valuable
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because they illuminate the robustness of an economic model’s predictions to

departures from full-fledged rational expectations. Finally, Section 4.3 shows

that two subjective DAGs never dominate one another in terms of objective

expected payoff, unless exactly one of them is fully connected.

Bayesian networks as a unifying framework

This paper offers a fresh look at the growing literature on equilibrium mod-

els with non-rational expectations. Osborne and Rubinstein (1998) studied

games with players who misperceive the consequences of their actions, due

to naive extrapolation from small samples. Eyster and Rabin (2005) as-

sumed that Bayesian-game players underestimate the correlation between

opponents’actions and signals. Madarasz (2012) modeled players who suf-

fer the "curse of knowledge". In Esponda (2008) and Esponda and Pouzo

(2014a), agents neglect the counterfactual effect of their actions on the distri-

bution of payoffconsequences. Piccione and Rubinstein (2003), Jehiel (2005),

Jehiel and Koessler (2008), Mullainathan et al. (2008), Eyster and Piccione

(2013) and Schwartzstein (2014) studied models in which agents’beliefs are

measurable with respect to a coarse representation of the set of contingencies

(by omitting variables from their subjective model or by clumping contingen-

cies into "analogy classes").5 Section 5 shows that some of these concepts can

be reformulated as special cases of the present framework (defined by suitable

R∗ and R), or as refinements and extensions thereof. Bayesian networks thus

offer a unifying framework, highlighting the thread of flawed causal reasoning

that runs through equilibrium models with non-rational expectations.6

2 The Modeling Framework

Let X = X1 × · · · ×Xn be a finite set of states, where n ≥ 2. I refer to each

xi as a variable, and N = {1, ..., n} is the set of variable labels. For every
M ⊆ N and x ∈ X, denote xM = (xk)k∈M . The set X1 represents the set

5Similar elements of "coarse reasoning" appeared in macroeconomics under the title
"restricted perceptions equilibrium" (Evans and Honkapohja (2001), Woodford (2013)).

6Graphical probabilistic models were introduced into economics in other contexts: to
facilitate computation of Nash equilibria (Kearns et al. (2001), Koller and Milch (2003)),
or to discuss causality in econometric models (White and Chalak (2009)).
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of actions that are available to a decision maker (DM). Accordingly, I will

often use the notation X1 = A, x1 = a, x = (a, y), y = (x2, ..., xn). Note

that the DM’s action is part of the description of a state. The DM is entirely

uninformed of y when he acts (Appendix C relaxes this assumption).

2.1 Beliefs

Let p ∈ ∆(X) be an objective probability distribution over states. To capture

limited understanding of the correlation structure of p, I introduce a new

primitive. A directed acyclic graph (DAG) is a pair (N,R), where N is the

set of nodes and R is the set of directed links. To describe a link from j to i, I

use the notations jRi and j → i interchangeably. Let R(i) = {j ∈ N | jRi}
denote the set of "parents" of the node i. E.g., in the DAG 1 → 3 ← 2,

R(1) = R(2) = ∅ and R(3) = {1, 2}. In what follows, I identify the DAG
with R.

The DM is characterized by a "subjective DAG" R. For any objective

distribution p, the DM’s subjective belief over X is pR, given by the factor-

ization formula (2).7 Thus, R is a short-hand for a mapping that assigns a

subjective belief to every objective distribution. It is instructive to compare

this to the traditional notion of subjective priors. Under the latter approach,

the DM has a fixed belief that is independent of the objective distribution p.

In contrast, according to (2), the DM’s subjective belief changes systemati-

cally with p.

We will say that p is consistent with a DAG R if pR(x) ≡ p(x). If p is

consistent with R, it is necessarily consistent with every DAG that adds links

to R. For any three disjoint subsets B,C,D ⊂ N , the notation xB ⊥R xC |
xD means that xB and xC are independent conditional on xD, for every p that

is consistent with R. Appendix B presents a basic tool from the Bayesian-

networks literature, called d-separation, which characterizes the conditional-

independence properties satisfied by all distributions that are consistent with

a given DAG. Thus, a DAG can be viewed as a representation of a list of

7The formula contains potentially ill-defined terms, because it is possible that
p(xR(i)) = 0 for some i and x. This does not pose any diffi culty for us, because we can
exclude zero-probability realizations of x when performing expected-utility calculations.
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conditional-independence properties. For example, the DAG 1 → 3 ← 2

represents the property x2 ⊥ x1, while the DAG 1 → 3 → 2 represents the

property x2 ⊥ x1 | x3. (Not every consistent list of conditional-independence
properties has a DAG representation.)

The DM’s subjective distribution over y conditional on a is defined as

usual,

pR(y | a) =
pR(a, y)

pR(a)
=

pR(a, y)∑
y′ pR(a, y′)

(4)

as long as pR(a) > 0.

The interpretation of R

I regard the DM’s DAG R as a subjective causal model : for every i, R(i)

represents the collection of variables that the DM perceives as immediate

causes of xi (alternative interpretations are discussed in Section 6). The

subjective belief pR is the outcome of the DM’s attempt to fit his causal model

to long-run data generated by p. The DM does not have any preconception

regarding the sign or magnitude of causal relations - he infers those from

the data; his causal model merely postulates causal links and their direction.

The causal interpretation justifies the inclusion of the DM’s action in the

description of a state - the DM’s subjective model establishes causal relations

among all variables, including the action.

The following image makes the causal interpretation more concrete. The

DM has access to a rich "historical database" consisting of many observations

of joint realizations of a and y, independently drawn from p. He poses a

sequence of n questions to the database, where question i is: "What is the

distribution over xi conditional on xR(i)?" The DM poses these particular

questions because he looks for the correlations that are required to complete

the specification of his causal model. The data does not "speak for itself";

extracting correlations from it requires an effort, which the DM exerts only

if it serves the identification of his model. In particular, he does not look

for additional correlations that could test whether his model is misspecified.

The DM forms his belief by taking the product of the measured conditional

distributions p(xi | xR(i)), thus quantifying his causal model.
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Equivalent DAGs

A given p can be consistent with multiple DAGs, even when they do not

add links to one another. For instance, the DAGs 1 → 2 and 2 → 1

are both consistent with rational expectations, due to the basic identity

p(x1, x2) ≡ p(x1)p(x2 | x1) ≡ p(x2)p(x1 | x2). This suggests a natural

equivalence relation: two DAGs are equivalent if they represent the same

mapping from objective distributions to subjective beliefs.

Definition 1 Two DAGs R and Q are equivalent if pR(x) ≡ pQ(x) for

every p ∈ ∆(X).

Thus, two different causal models can be indistinguishable in terms of the

statistical regularities they are consistent with. In particular, a DAG that

involves intuitive causal relations can be equivalent to a DAG that makes

little sense as a causal model (e.g., it postulates that the DM’s action is

caused by his final payoff).

The following characterization of equivalent DAGs will be useful in the

sequel. it relies on two definitions. First, let R̃ be the undirected version,

or skeleton of R - that is, iR̃j if and only if iRj or jRi. Second, define the

v-structure of a DAG R to be the set of all ordered triples of nodes (i, j, k)

such that iRk, jRk, i /Rj and j /Ri (that is, R contains links from i and j into

k, yet i and j are not linked to each other).

Proposition 1 (Verma and Pearl (1991)) Two DAGs R and Q are equiv-
alent if and only if they have the same skeleton and the same v-structure.

To illustrate this result, all fully connected DAGs have the same skeleton

and a vacuous v-structure; hence they are all equivalent (indeed, they all

induce rational expectations because they reduce (2) to a textbook chain

rule). In contrast, the DAGs 1 → 2 → 3 and 1 → 2 ← 3 are not equivalent

because they have identical skeletons but different v-structures (vacuous in

the former case, and consisting of the triple (1, 3, 2) in the latter).
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True and subjective DAGs

I will often restrict the domain of possible objective distributions p to be

those that are consistent with some DAG R∗. In this case, I will simply

say that the "true DAG" is R∗. Such domain restrictions arise naturally

when reality has an underlying causal structure. A fully connected DAG

corresponds to an unrestricted domain of objective distributions.

In the applications, the DM’s subjective DAG R will be obtained from R∗

via one of the following simple operations: inverting, removing, reorienting

or adding links. These operations intuitively correspond to basic errors of

causal attribution. We saw that inverting a link captures reverse causation.8

Let us briefly discuss the others:

(i) Removing a link captures coarseness. For example, if R∗ : 1 → 3 ← 2

and R : 1→ 3 2, then R captures a coarse perception of the causes of x3:

in reality, x3 is a function of both x1 and x2, yet R acknowledges only x1.

Thus, while in reality p(x) = p(x1)p(x2)p(x3 | x1, x2), the DM’s subjective
belief is pR(x) = p(x1)p(x2)p(x3 | x1).

(ii) Changing the origin of a link captures misattribution. For instance, if

R∗ : 1 3 ← 2 and R : 1 → 3 2, then R errs by attributing x3 to the

wrong cause (x1 instead of x2). Compare this example to the one used to

illustrate coarseness: the same R can capture different errors, depending on

its exact relation to R∗.

(iii)Adding a link captures spurious direct causation - i.e., the DM postulates

a direct causal relation that does not exist in reality. However, recall that if p

is consistent with R∗ then it is also consistent with any DAG that adds links

to R∗. It follows that incorrect subjective beliefs that arise from spurious

direct causation are outside the framework’s scope.9

Throughout the paper, I will assume that R∗(1) = R(1) = ∅ - i.e. the

8Because inversion and reorientation seem to capture distinct errors, I consider them
"primitive", even though they can be decomposed into addition and removal of links.

9The operations need not preserve equivalence between DAGs. Let N = {1, 2, 3} and
omit the link 2 → 3 from two linear orderings that contain it - one in which 1 → 2
and another in which 3 → 1. The resulting DAGs are not equivalent: 2 ← 1 → 3 and
2→ 1← 3.
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node that represents the DM’s action is ancestral in both true and subjective

DAGs. This restriction is unnecessary: a DAG in which 1 is ancestral can be

equivalent to a DAG in which it is not. Nevertheless, I will adhere to it for

several reasons. First, it fits the causal interpretation: arguably, the DM’s

action cannot be caused by something he is not informed of. Second, the

restriction simplifies the expression for (4):

pR(x2, ..., xn | x1) =

n∏
i=2

p(xi | xR(i))

Finally, the restriction suggests a natural definition of endogenous variables:

xi is endogenous according to R if i is a descendant of 1 (i.e., if there is a

directed path from 1 to i).

2.2 Decisions

Let us turn to decision making under the DAG representation of subjective

beliefs. Our DM is an expected utility maximizer, with a vNM utility func-

tion u : X → R. Recall that p represents a long-run joint distribution over all
variables. We will require the DM’s long-run behavior (given by the marginal

of p over a) to be optimal with respect to his pR(y | a) (i.e., the perceived

stochastic mapping from a to y). The belief distortion inherent in pR allows

pR(y | a) to vary with (p(a))a, which means that the marginal long-run dis-

tribution over actions can influence the DM’s evaluation of each course of

action. Therefore, we are led to define individual choice as an equilibrium

notion.

To motivate the definition of equilibrium, suppose the above-mentioned

"historical database" is created by a long sequence of short-lived agents facing

the decision problem. The distribution p represents the historical joint dis-

tribution over the agents’actions and all other variables. Each agent forms a

subjective (possibly distorted) view of historical data given by pR, and takes

an action that maximizes his expected payoff according to this subjective

view. Equilibrium will correspond to a steady state of this dynamic.

As usual, equilibrium will require the DM to optimize with respect to his
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subjective belief. It would be conventional to treat (p(a))a as the object of

the definition and take (p(y | a))a,y (i.e., the true stochastic mapping from

a to y) as given. Instead, I will treat the entire joint distribution p as the

object of the formal definition. This is a contrivance that simplifies notation

(in applications, I will fix (p(y | a))a,y and find (p(a))a).

The need for an equilibrium definition requires us to consider off-equilibrium

actions. I address this concern with a conventional "trembling hand" crite-

rion. We say that p′ is a perturbation of p if p′(y | a) ≡ p(y | a) and the

marginal of p′ on A has full support. A perturbation fixes every aspect of

p except the DM’s behavior, such that every action is played with positive

probability.

Definition 2 (Personal equilibrium) Fix an arbitrary DAG R. A dis-

tribution p ∈ ∆(X) with full support on A is an ε-perturbed personal
equilibrium if

a ∈ arg max
a′

∑
y

pR(y | a′)u(a′, y)

whenever p(a) > ε. A distribution p∗ ∈ ∆(X) is a personal equilibrium if

there exists a sequence pk → p∗ of perturbations of p∗, as well as a sequence

εk → 0, such that pk is an εk-perturbed personal equilibrium for every k.

The concept of ε-perturbed personal equilibrium allows the DM to exper-

iment with (subjectively) sub-optimal actions with probability ε at most. To

use the historical-database metaphor, in order for its empirical distribution p

to be an ε-perturbed equilibrium, it must be the case that if the frequency of

an action in the database is greater than ε, then the DM finds it subjectively

optimal with respect to pR. Personal equilibrium simply takes the ε → 0

limit.

Proposition 2 Fix an arbitrary DAG R. For every (p(y | a))a,y, there exists

(p(a))a such that p = ((p(a)a, (p(y | a))a,y) is a personal equilibrium.

As we shall see in Section 3, "pure" personal equilibria (where the mar-

ginal of p over a is degenerate) need not exist. Note that if we restrict the
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domain of possible objective distributions to those that are consistent with

a true DAG R∗, then all personal equilibria are consistent with this DAG.

3 Illustrations

This section analyzes personal equilibria for various specifications of true and

subjective DAGs R and R∗. In each example, R is obtained from R∗ by one

of the basic operations discussed in Section 2. Each sub-section presents the

material in a different concrete economic context, thus illustrating the frame-

work’s scope of applications. The analyses follow a two-step "recipe". First,

I provide a basic characterization of the DM’s personal-equilibrium behavior,

involving a formula for pR(y | a) that is based entirely on the structure of R.

Certain properties of this characterization can be gleaned from this formula

(aided by knowledge of the true DAG R∗ and the payoff-relevant variables).

These properties hold under any parameterization of the true process that

is consistent with R∗. In the second step, I impose parametric assumptions

on u and p(y | a) that fit the economic scenario, and use them to obtain

closed-form expressions for the conditional-probability terms in the formula

for pR(y | a). This enables me to complete the characterization of personal

equilibria.10

3.1 Reversing Causation: Health and Lifestyle Choices

In this section I formally develop the example of the Dieter’s Dilemma, de-

scribed in the Introduction. The three variables, a, h, c, represent the DM’s

nutritional choice, health outcome and chemical level. The DM is uninformed

of c and h at the time he chooses a. The variables a and h are statistically

independent, yet c is potentially correlated with both. Thus, every possible

objective distribution p can be written as p(a, h, c) = p(a)p(h)p(c | a, h) -

i.e., the true DAG is R∗ : a→ c← h . If the DM had rational expectations,

10Throughout this section, the trembling-hand criterion in the definition of personal
equilibrium merely ensures that equilibria are well-defined, but the equilibria do not rely
on the selection of the sequence of perturbations. Trembles play a more interesting role
in the example analyzed in Appendix C.
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he would choose a to maximize∑
h

∑
c

p(h)p(c | a, h)u(a, h, c)

Suppose that the DM’s subjective DAG is R : a → c → h, such that

pR(a, h, c) = p(a)p(c | a)p(h | c). Thus, relative to the true DAG R∗, R

inverts the direction of the causal link between health and the chemical level.

If p is a personal equilibrium, then for every a′ for which p(a′) > 0,

a′ ∈ arg max
a

∑
h

∑
c

p(c | a)p(h | c)u(a, h, c)

According to the true DAG R∗, h is not necessarily independent of a condi-

tional on c. The conditional probability p(h | c) implicitly involves summing
over the DM’s actions, where the weights are affected by the marginal of p

over a; if (p(a))a were to change, so could p(h | c), and so could the DM’s
subjectively optimal action. Thus, the equilibrium aspect of the DM’s choice

is not redundant.

The following concrete example is approximated by this description. Ob-

servational studies revealed that low levels of Vitamin D are associated with

certain adverse health conditions. The common practice of prescribing Vita-

min D pills is justified by the interpretation of this observed correlation as a

causal effect of Vitamin D deficiency on health outcomes. Clinical tests that

directly tested for this effect came later. In a systematic literature review

(which has admittedly generated controversy), Autier et al. (2014) argued

that these studies showed no effect for many of the measured health indica-

tors, and suggested that a leading explanation for the null effect is reverse

causation.11

The argument that a popularly held belief exhibits reverse causation can

11The debate over SSRI anti-depressants has similar contours - see
http://www.webmd.com/depression/features/serotonin for a popular description.
In both cases, the true causal mechanism is not known to medical researchers. To the
extent that drug intake and health are statistically independent, this regularity is merely
consistent with the reverse—causation explanation. However, this consistency is all we
need to assume for the present exercise.
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be found in other contexts. Harris (1998) claimed that psychologists’ten-

dency to attribute children’s personality traits to their parents’ behavior

may be a reverse-causation fallacy (e.g., children with a mild disposition may

cause parents to behave mildly). In macroeconomics, theories of the "Phillips

Curve" sometimes differ in the direction of causation between inflation and

unemployment that they posit. Debates over the causal interpretation of the

correlation between GDP growth and income inequality or public debt are

another case in point.

For the rest of this sub-section, I impose additional structure. All vari-

ables take values in {0, 1}. The DM’s payoff is purely a function of a and
h: u(a, h) = h − κa. The interpretation is that a = 1 represents an action

referred to as "dieting" (taking a food supplement, abstaining from a favorite

type of food, etc.) the cost of which is κ, and h = 1 represents a good health

outcome. Let c = 0 represent a normal chemical level. The true stochastic

process is as follows: the probability of h = 1 is 1
2
, independently of a. The

value of c is a deterministic function of a and h, given by c = (1− a)(1− h).

Thus, the chemical level is abnormal if and only if the DM’s health state

is poor and he does not diet. Under rational expectations, the DM would

choose a = 0 with certainty.

Let us now characterize personal equilibria under the DM’s subjective

DAG R. Denote p(a = 0) = β. We have specified p(h, c | a); hence it

remains to find β. Before stating the result, let us calculate a few relevant

conditional probabilities: p(c = 0 | a = 1) = 1, p(c = 0 | a = 0) = 1
2
,

p(h = 1 | c = 1) = 0 and

p(h = 1 | c = 0) =
1
2
· 1

1
2
· 1 + 1

2
· (1− β)

=
1

2− β

The fact that β appears in the last expression demonstrates our earlier

observation that it is not true that h ⊥R∗ a | c. The intuition is simple. If we
learn that the DM is not dieting (a = 0), we can predict perfectly negative

correlation between c and h. In contrast, if we learn that the DM is dieting

(a = 1), health is equally likely to be good or bad, independently of the

chemical level. The lower the long-run frequency of dieting, the stronger the
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estimated (negative) correlation between health and the chemical level. The

example thus exhibits "strategic substitutability", in the sense that a higher

steady-state frequency of dieting leads to a smaller perceived effect of c on

h, and this in turn weakens the DM’s tendency to diet.

Proposition 3 Given the specification of R, u and (p(h, c | a))a,h,c in this

sub-section, there is a unique personal equilibrium, in which

β =


0 if κ ≤ 1

4

2− 1
2κ

if κ ∈ (1
4
, 1
2
)

1 if κ ≥ 1
2

Proof. (Proofs of later results appear in Appendix A.) The DM’s evaluation
of a = 0 given β is

pR(h = 1 | a = 0) =

p(c = 0 | a = 0)p(h = 1 | c = 0) + p(c = 1 | a = 0)p(h = 1 | c = 1) =
1

2
· 1

2− β +
1

2
· 0

The DM’s evaluation of a = 1 given β is

pR(h = 1 | a = 1)− κ =

p(c = 0 | a = 1) · p(h = 1 | c = 0) + p(c = 1 | a = 1) · p(h = 1 | c = 1)]− κ =

1 · 1

2− β + 0 · 0− κ

Note that when the DM evaluates an action, he takes β as given, as required

by the notion of personal equilibrium. In ε-perturbed personal equilibrium,

β > ε (β < 1 − ε) only if a = 0 (1) attains the highest evaluation. Taking

the ε→ 0 limit gives the result.12

Thus, although dieting is unambiguously sub-optimal under rational ex-

pectations, it is played with positive probability in personal equilibrium given
12The trembling-hand aspect of the equilibrium concept is a mere formal nicety in all

the examples of this section. Therefore, I will skip the step that examines ε-perturbed
equilibrium in proofs of later results in this section.
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the DM’s subjective DAG, as long as it is not too costly. The intuition is as

follows. Suppose the DM plays a = 0 in a putative equilibrium. Then, he

learns a perfectly negative correlation between c and h. He correctly grasps

the effect of his own action on the chemical level. And since he misperceives

the correlation between c and h as a causal effect of the former on the latter,

he erroneously concludes that the normal chemical level attained thanks to

dieting will lead to good health. This is not the usual logic of self-confirming

expectations (Fudenberg and Levine (1993)): the DM’s reasoning does not

rest on off-equilibrium beliefs, but on incorrect causal inference from statis-

tical regularities on the equilibrium path.

The possibility of a "mixed" unique equilibrium demonstrates that indi-

vidual choice in this model is fundamentally an equilibrium notion; such an

effect would be impossible under conventional expected-utility maximization.

3.2 Coarseness I: Demand for Education

In this sub-section I present an example in which the DM’s subjective DAG

commits a "coarseness" error of ignoring an exogenous confounding variable.

The example is couched in terms of demand for education. The DM is a

parent who chooses how much to invest in his child’s education (I use a

female pronoun for the child). There are four variables, denoted a, θ, s, w,

representing the parent’s investment, the child’s innate ability, her school

performance and her labor-market outcome (measured by her wage). The

parent is uninformed of θ, s and w at the time of choice. The true DAG R∗

is
a → s ← θ

↘ ↓
w

(5)

Note that θ is an exogenous "confounder": it causes variation in both s and

w. The parent’s utility u is purely a function of a and w. Therefore, if the

parent had rational expectations, he would choose a to maximize∑
θ

p(θ)
∑
s

p(s | a, θ)
∑
w

p(w | θ, s)u(a, w)
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Now suppose the parent’s subjective DAG removes the links of θ in R∗.

Because θ is payoff-irrelevant, we can equivalently assume that R omits it

altogether - i.e., R : a → s → w. One interpretation is that the parent

neglects θ because it is unobservable. In personal equilibrium, the parent

will choose a to maximize∑
s

p(s | a)
∑
w

p(w | s)u(a, w)

This expression can be elaborated into

∑
s

(∑
θ

p(θ)p(s | a, θ)
)∑

w

(∑
θ′

p(θ′ | s)p(w | θ′, s)
)
u(a, w)

Thus, the parent’s objective function involves two implicit summations over

the latent variable. The term p(θ′ | s) is sensitive to (p(a))a - e.g., if the

child performs well at school despite low parental investment, then she prob-

ably has high ability. It follows that individual choice in this example is

fundamentally an equilibrium notion.

In the rest of this sub-section I impose additional structure. Assume a

can take any value in [0, 1], whereas all other variables have two possible

realizations: high (denoted 1) or low (denoted 0).13 Let u(a, w) = w − κ(a),

where κ is a twice-differentiable, increasing and weakly convex cost function,

with κ′(0) = 0, and κ′(1) ≥ 1. Finally, assume p(s = 1 | a, θ) = aθ and

p(w = 1 | θ, s) = θβs, where β1 > β0. Thus, high ability is necessary for

both school and labor-market success; conditional on high ability, success

at school increases the probability of a high wage. Denote p(θ = 1) = δ >

0. If the parent had rational expectations, he would choose a to maximize

δ[aβ1 + (1 − a)β0] − κ(a). The optimal action a∗ would be given by the

first-order condition, κ′(a∗) = δ[β1 − β0]. The following result characterizes
personal equilibria under the parent’s subjective DAG.

13Although the formal analysis so far has assumed finite action sets, the extension to a
continuum of actions is straightforward.
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Proposition 4 Given the specification of R, u and (p(θ, s, w | a))a,θ,s,w in

this sub-section, every personal equilibrium has the following structure: the

parent assigns probability one to some action a∗∗ that solves the equation

κ′(a∗∗) = δ

[
β1 − β0 ·

δ(1− a∗∗)
δ(1− a∗∗) + 1− δ

]
(6)

If κ′ is either weakly convex or weakly concave, a∗∗ is unique.

According to Equation (6), the parent over-invests relative to the rational-

expectations benchmark. The reason is that he interprets the positive corre-

lation between s and w as a pure causal effect of s on w, whereas in reality

the correlation is partly due to the confounder θ. This generates an upward

bias in the parent’s perceived marginal benefit from education (given by the

R.H.S), thus leading him to over-invest.

In addition, the perceived marginal benefit is a function of the equilibrium

investment a∗∗. The reason is that while the parent’s subjective DAG pos-

tulates that w ⊥R a | s, the true DAG violates this property; as a result, the
perceived causal effect of s on w is sensitive to the parent’s equilibrium behav-

ior. In particular, higher long-run investment raises the perceived marginal

benefit of education. To see why, note that success at school implies high la-

tent ability, and the two jointly imply high expected wage. In contrast, poor

school performance is a strong indicator of low ability only when parental

investment is high. Therefore, the measured gap E(w | s = 1)−E(w | s = 0)

increases with long-run investment. This "strategic complementarity" effect

can lead to multiple personal equilibria, depending on how the curvature of

κ′ behaves.14

Comment: Direct measurement of a− w correlation
In this example, the DM ends up mispredicting the effect of education on

wages - i.e., pR(w | a) 6= p(w | a) for some a, w (likewise in the Dieter’s

Dilemma, pR(h | a) 6= p(h | a) for some a, h). This begs the question: if the

14The multiplicative form of p(s | a, θ) and p(w | θ, s) magnifies the strategic comple-
mentarity effect, but it is not necessary for it. A similar effect would appear under an
additive specification of these conditional probabilities, for suffi ciently high values of a.
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DM’s payoff is purely a function of a and w, why does he not test directly

for the effect of a on w?

There are several possible answers. First, my modeling approach retains

the traditional separation between figuring out the feasible set and choosing

from it. Our DM first attempts to fully specify his causal model in order

to understand what is feasible. Only then does he proceed to the choice

stage (much as an econometrician estimates a given model, independently

of the particular decision problem that will be subsequently faced). Second,

processing data carries an implicit cost, and our DM is willing to incur it

only if he thinks it might change his beliefs. If the DM puts suffi cient faith

in his causal model, he will not find it worthwhile to test for a−w correlation.
Furthermore, this test may simply be infeasible at the time of choice. For

example, in the context of the Dieter’s Dilemma, it is realistic to assume that

direct evidence regarding the effect of nutrition on a target health variable

becomes available long after the accumulation of observational data regarding

the correlation between the chemical level and health.

3.3 Coarseness II: Public Policy

The previous sub-section examined a DM who ignores the causal effects of an

exogenous confounding variable. Now I turn to a DM who misunderstands

the role of an endogenous variable in the causal chain from his action to

some target variable. Failure to account for endogeneity is a common target

of economists’criticism of public policy. When a government evaluates tax

or tariff reforms, it may take certain consumption or investment quantities as

given, whereas in fact they are endogenous variables that respond to changes

in policy. Likewise, when a higher-education regulator considers changing

the minimal accreditation requirement of some degree, he may neglect the

possible effect on the composition of the applicant pool, and therefore on

graduates’ultimate quality.

In macroeconomics, neglect of the response of private-sector expectations

to policy changes was a primary object of the Lucas Critique (Lucas (1976)).

Sargent (2001) modeled a central bank that commits this "sin": it evaluates
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policy according to a classical Phillips curve that ignores private-sector ex-

pectations (thus implicitly holding them fixed), whereas the true process is

given by a Phillips curve that incorporates rational private-sector expecta-

tions. The simple example analyzed in this sub-section is based on Sargent’s

model: it distills its underlying causal misperception, using a different para-

meterization that generates new insights.

Formally, there are four variables, a, y, e, z, where a represents the gov-

ernment’s policy; y and z represent two different "macro" variables; and e

represents the private sector’s expectation of y. Assume that u is purely a

function of y and z. The true DAG R∗ is

a → y → z

↘ ↗
e

(7)

If the government had rational expectations, it would choose a to maximize∑
y

∑
e

p(y | a)p(e | a)
∑
z

p(z | y, e)u(y, z)

Now suppose that the government’s subjective DAG R differs from R∗ by

removing at least one of the two links of e (or by eliminating this node and

its links altogether). In personal equilibrium, if p(a) > 0, then a maximizes∑
y

p(y | a)
∑
z

p(z | y)u(y, z) (8)

=
∑
y

p(y | a)
∑
z

(∑
a′

∑
e

p(a′ | y)p(e | a′)p(z | y, e)
)
u(y, z)

The government’s failure to fully account for the causal channel that passes

through e means that when it calculates p(z | y), it effectively sums over a

and e, weighted according to the government’s long-run behavior.

Let us impose additional structure. The variables a and y take values in

{0, 1}; p(y = 1 | a) = aβ, where β > 0 is a parameter that captures the

government’s ability to control y. The private sector has rational expecta-

22



tions, such that for every a, e = E(y | a) = aβ with probability one. The

variable z is a deterministic function of y and e, given by z = y + δe, where

δ 6= 0. Finally, u(y, z) = z−κy, where κ > 0 is the government’s rate of sub-

stitution between the two macro variables. If the government had rational

expectations, it would choose a = 1 whenever κ < 1 + δ.

The parameter δ captures a distinction that turns out to be important

for our analysis. When δ > 0, private-sector expectations have a reinforcing

effect. For example, a = 1 represents an intervention that is meant to pre-

vent currency depreciation; y is the direct effect of this action. Private-sector

expectations respond to this intervention and boost demand for the currency,

creating a "multiplier effect". Conversely, when δ < 0, private-sector expec-

tations have a countervailing effect. For instance, a = 1 represents monetary

expansion; y represents inflation and z represents real output. As in Sargent

(2001), the government is averse to inflation, but regards it as a possible

means for increasing real output via a Phillips effect; in reality, this effect

exists only to the extent that inflation is not anticipated by the private sector.

Proposition 5 Given the specification of R, u and (p(y, e, z | a))a,y,e,z in this

sub-section, the set of personal equilibria is as follows. Denote p(a = 1) = α.

(i) When κ ≤ 1, there is an equilibrium in which α = 1. (ii) When κ ≥ 1+βδ,

there is an equilibrium in which α = 0. (iii) When κ is between 1 and 1+βδ,

there is an equilibrium with

α =
βδ + 1− κ

βδ + β(1− κ)

There exist no other equilibria.

Thus, as expected, the government’s neglect of a reinforcing (countervail-

ing) effect biases its behavior toward a = 0 (a = 1). A less obvious qualitative

difference concerns equilibrium multiplicity: when δ > 0 there is a unique

personal equilibrium, whereas multiple equilibria are possible under δ < 0.

The intuition is as follows. The government’s causal model implies that the

distribution over z is independent of its action conditional on y. This is
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correct under y = 1, a realization that can only occur if the government has

played a = 1. However, it is incorrect under the realization y = 0. This leads

the government to form a biased estimate of E(z | a = 0). According to the

true model, a = 0 implies z = 0 with certainty, whereas

ER(z | a = 0) = E(z | y = 0) = p(a = 1 | y = 0) · βδ (9)

The bias is positive (negative) when private-sector expectations have a rein-

forcing (countervailing) effect.

Imagine that α goes up. Since p(a = 1 | y = 0) increases with α, the

bias given by (9) becomes more severe. When δ > 0, this means that the

government’s overvaluation of a = 0 worsens; hence its perceived incentive

to play a = 1 weakens. Thus, when private-sector expectations have a re-

inforcing effect, the model exhibits strategic substitutability: the pressure to

play a = 1 decreases with the long-run frequency of this action. This in

turn implies equilibrium uniqueness. In contrast, the case of δ < 0 generates

"strategic complementarity"; hence the possibility of multiple equilibria.

Another noteworthy feature is that while the parameter β plays no role

in the rational-expectations case, it matters for personal equilibrium given

the government’s subjective DAG. The reason is that a change in β affects

the government’s biased estimate of E(z | y = 0).

4 General Analysis

In this section I characterize rationality properties of personal equilibrium,

using elementary tools from the Bayesian-networks literature. Results are

stated in terms of structural features of true and subjective DAGs, involving

no parametric restrictions on u and p(y | a). For expositional ease, I present

the simplest versions of the results. In Sections 4.1 and 4.2, I use x1 (rather

than a) to denote the DM’s action. I employ two graph-theoretic definitions.

A subset M ⊆ N is a clique in R if iR̃j for every distinct i, j ∈M . A clique
M is ancestral if R(i) ⊂M for every i ∈M .
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4.1 Consequentialist Rationality

In the illustrations, individual optimization under a misspecified subjective

DAG led to genuine equilibrium effects (mixed unique equilibrium, multiple

equilibria). Equilibrium effects would not arise if the DM’s perception of

the mapping from actions to consequences were invariant to long-run action

frequencies. I refer to such invariance as "consequentialist| rationality".

Definition 3 A DAG R is consequentialistically rational with respect to
a true DAG R∗ if the following holds for every pair of objective distributions

p, q that are consistent with R∗: if p(x2, ..., xn | x1) = q(x2, ..., xn | x1) for
every x, then pR(x2, ..., xn | x1) = qR(x2, ..., xn | x1) for every x.

Consequentialistic rationality requires that if we modify an objective dis-

tribution p that is consistent with R∗ only by changing its marginal over x1 -

without changing the stochastic mapping from x1 to x2, ..., xn - then the DM’s

perception of this mapping should remain unchanged as well. When R is con-

sequentialistically rational with respect to R∗, we can rewrite the definition of

personal equilibrium as a maximization problem, because pR(x2, ..., xn | x1)
is invariant to (p(x1))x1 . When consequentialist| rationality is violated, in-
dividual behavior will exhibit equilibrium effects for some specifications of

p, u. Clearly, any DAG is consequentialistically rational with respect to itself.

From now on, I will take it for granted that R 6= R∗.

Proposition 6 The subjective DAG R is consequentialistically rational with

respect to R∗ if and only if for every i > 1, 1 /∈ R(i) implies xi ⊥R∗ x1 | xR(i).

Thus, a necessary and suffi cient condition for consequentialist| rationality
is the following: whenever R fails to include the DM’s action as an immediate

cause of some other variable xi, it must be the case that for every distribution

that is consistent with R∗, xi is independent of x1 conditional on xR(i). The

proof consists of simply writing down the explicit formula for pR(x2, ..., xn |
x1) and checking its individual terms. When R∗ is fully connected - i.e.,
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when the domain of p is unrestricted - the condition for consequentialist|
rationality becomes 1 ∈ R(i) for every i > 1.

To illustrate this result, recall the Dieter’s Dilemma, where true and

subjective DAGs were R∗ : 1 → 3 ← 2 and R : 1 → 3 → 2 (using variable

indices rather than intuitive labels). Since 1 ∈ R(3) and 1 /∈ R(2) = {3},
Proposition 6 implies that we only need to check whether x2 ⊥R∗ x1 | x3. As
observed in Section 3.1, this property does not hold; hence consequentialist|
rationality is violated.

Alternatively, for the same R∗ : 1→ 3← 2, suppose the DM’s subjective

DAG is R : 1 → 3 2. This DM is "fully coarse/cursed" in the sense of

Eyster and Rabin (2005) and Jehiel and Koessler (2008): he fails to perceive

the effect of the exogenous state x2 on the final consequence x3. The DM

will choose x1 to maximize∑
x2,x3

pR(x2, x3 | x1)u(x1, x2, x3) =
∑
x2

∑
x3

p(x2)p(x3 | x1)u(x1, x2, x3)

If the DM had rational expectations, p(x3 | x1) would be replaced with
p(x3 | x1, x2) in this expression. To see why consequentialist| rationality
holds, note that R(2) = ∅ and R(3) = {1}; by Proposition 6 we only need
to check that x2 ⊥R∗ x1, which clearly holds.
When R and R∗ are large, checking the conditional-independence con-

ditions of Proposition 6 can be a daunting task. However, it is greatly fa-

cilitated by a Bayesian-networks tool called d-separation, which provides a

linear-time algorithm for checking whether a conditional independence prop-

erty is satisfied by all the distributions that are consistent with a given DAG.

Appendix B presents the tool and illustrates its applicability in the present

context.

4.2 Behavioral Rationality

Consequentialistic rationality is a weak rationality requirement, which allows

the DM to choose an objectively sub-optimal action. In this sub-section I

look for a structural property of the DM’s subjective DAG that will ensure
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fully rational behavior in terms of objective payoffs. I impose no restriction

on the set of possible objective distributions - i.e., the true DAG R∗ is fully

connected. Instead, I restrict the set of possible utility functions: there exists

a strict subset M ⊂ N , 1 ∈ M , such that u is purely a function of xM (i.e.,

it is constant in xN−M). All the examples in Section 3 had this feature.

Definition 4 A DAG R is behaviorally rational if in every personal equi-
librium p, p(x1) > 0 implies x1 ∈ arg maxx′1

∑
x−1

p(x−1 | x′1)u(x′1, x−1).

As a first step toward characterizing behavioral rationality, I examine the

following question: when is the DM’s subjective marginal distribution over

some collection of variables guaranteed to be unbiased, despite his misspec-

ified subjective DAG? By definition, if R is not fully connected, then there

exists an objective p such that pR 6= p. However, pR may agree with p on

some projections. The next result characterizes which ones.

Proposition 7 (Spiegler (2015)) Let R be a DAG and let S ⊂ N . Then,

pR(xS) ≡ p(xS) for every p if and only if S is an ancestral clique in some

DAG in the equivalence class of R.

For instance, let n = 3 and R : 1 → 2 ← 3. Then, pR(x2) is biased

for some p, because the node 2 is not ancestral in R (and no other DAG

is equivalent to R, by Proposition 1). In contrast, when R : 1 → 2 → 3,

pR(x3) coincides with p(x3) because 3 is ancestral in the equivalent DAG

R′ : 3 → 2 → 1. In both examples, pR(x1, x3) does not coincide with

p(x1, x3) for every p, because the nodes 1 and 3 are not linked and therefore

cannot form a clique (let alone an ancestral one) in any equivalent DAG.

Proposition 8 The DM is behaviorally rational if and only if M is an an-

cestral clique in some DAG in the equivalence class of R.
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Thus, when all payoff-relevant variables are causally linked and have no

other cause (according to some DAG in the equivalence class of the DM’s sub-

jective DAG), the DM is behaviorally rational. Otherwise, there are specifica-

tions of p, u for which his behavior is inconsistent with rational expectations.

Application: When can coarseness lead to sub-optimal behavior?

The modeling framework enables us to formulate the following question:

When does a specific error of causal attribution (captured by a basic op-

eration on the true DAG) violate behavioral rationality? The following is an

example of such an exercise. LetM = {1, n}. Recall that the true DAG R∗ is

fully connected, and assume that n is a terminal node in R∗ (i.e., n /∈ R∗(i)
for all i < n). The interpretation is that the variable xn is an ultimate

consequence, such that the DM’s payoff depends only on his action and the

ultimate consequence. Now suppose that the DM’s subjective DAG R differs

from R∗ only by omitting a single link.

Proposition 9 Suppose that the DM’s subjective DAG R departs from the

true, fully connected DAG R∗ by omitting one link i → j. Then, the DM is

behaviorally rational if and only if j = n and i 6= 1.

Thus, even if the DM neglects the direct causal effect of some intermediate

variable xi (i 6= 1, n) on the ultimate consequence xn, he is behaviorally

rational. In any other case, there are specifications of p(x2, ..., xn | x1) and u
for which the DM’s error will have payoff implications.

To illustrate this result, let N = {1, 2, 3}. When R : 1→ 3← 2 (omitting

the link 1→ 2 from R∗), the DM regards x1 and x2 as independent causes of

x3; if, however, x2 is in fact a deterministic function of x1, the DM may err

by "double-counting" the effect of x1 on x3. When R : 1→ 2→ 3 (omitting

the link 1→ 3 from R∗), the DM regards x3 as independent of x1 conditional

on x2; if, however, x2 is in fact an independent variable, the DM will fail to

perceive any effect of x1 on x3. Finally, when R : 2 ← 1 → 3 (omitting the

link 2→ 3 from R∗), the DM correctly estimates the total causal effect of x1
on x3, even though he fails to realize that it consists of direct and indirect

effects (the latter runs through x2).
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4.3 PayoffRanking of DAGs

A more complete subjective DAG represents a more thorough understanding

of correlation structures; hence it intuitively captures "more rational" expec-

tations. Does this mean that it will always lead to better objective perfor-

mance? The following example shows the answer to be negative. Let n = 4,

and suppose R is fully connected and contains the links 1 → 2 → 3 → 4.

Suppose further that u is purely a function of x1 and x4. Obtain the DAG R′

by removing the link 2→ 3 from R. By Proposition 9, R′ is not behaviorally

rational - i.e., it is weakly dominated by R in terms of expected performance.

Now obtain R′′ by removing the link 2→ 4 from R′. It is easy to verify that

R
′′
is equivalent to a DAG in which {1, 4} is an ancestral clique. By Proposi-

tion 8, a DM whose subjective DAG is R′′ performs exactly like a DM whose

subjective DAG is R. Thus, removing a link from the DM’s subjective DAG

can result in better performance for some u, p.15

I now examine the question with some generality. I return to the notation

x1 = a, x−1 = y. For expositional simplicity, suppose that 1 is an isolated

node in all relevant true and subjective DAGs. This guarantees consequen-

tialist rationality.

Definition 5 Let R,R′ be two DAGs in which the node that corresponds to
the DM’s action is isolated. We say that R is more rational than R′ if for
every p, u, a, a′, the pair of inequalities∑

y

pR(y)u(a, y) >
∑
y

pR(y)u(a′, y)∑
y

pR′(y)u(a′, y) >
∑
y

pR′(y)u(a, y)

implies ∑
y

p(y)u(a, y) >
∑
y

p(y)u(a′, y)

15Eyster and Piccione (2013) made an observation in the same spirit, in the context of
their model of competitive asset markets in which traders hold diversely coarse theories.
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That is, if R ranks a above a′ and R′ ranks a′ over a, then the rational-

expectations payoffranking of the two actions necessarily sides withR. When

R is fully connected and R′ is not, the property holds trivially. The following

result shows that this is the only case in which two DAGs can be unambigu-

ously ranked in terms of their expected performance.

Proposition 10 Let R,R′ be two DAGs that are not fully connected (and
in which the node that corresponds to the DM’s action is isolated). Then,

neither DAG is more rational than the other.

The proof of this result is a simple application of Farkas’Lemma. Dom-

ination implies a linear relation between pR and pR′ , which can only mean

that R and R′ are equivalent.

5 Variations and Relation to Other Concepts

I begin the section with two extensions of the modeling framework.

A "Mixed" DAG representation

Define the DM by a probability distribution λ over DAGs, such that his sub-

jective belief is given by the following extension of the DAG representation:

pλ(x) =
∑
R

λ(R)pR(x) (10)

This representation captures magnitudes of belief errors. When λ mixes

between the true DAG R∗ and some other DAG R, the magnitude of the

DM’s error increases with λ(R). An example of a mixed representation is

"partial cursedness" (Eyster and Rabin (2005)).

Definition 5 is extendible to mixed DAG representations. Let λ∗ be a

distribution that assigns probability one to fully connected DAGs. Consider

two distributions λ, λ′ that do not assign probability one to fully connected

DAGs, and satisfy λ = αλ∗ + (1 − α)λ′, where α ∈ (0, 1). It is easy to see

that λ is more rational than λ′. Thus, mixed DAG representations enable us

to rank some types according to their performance.
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DAG heterogeneity

The motivation for personal equilibrium was that the DM confronts a "his-

torical database" that includes actions taken by other DMs who faced the

decision problem. Now relax the assumption that all DMs in this population

share the same subjective causal model. Let β(R) denote the fraction of

DMs whose subjective DAG is R, and let p(a | R) be the probability that

they play the action a. Then, p(a) =
∑

R β(R)p(a | R), while p(y | a) is

the same for all DM types. The extended definition of personal equilibrium

requires that for every R for which β(R) > 0, if p(a | R) > 0 then a max-

imizes
∑

y pR(y | a)u(a, y). This extension has interesting implications for

the Dieter’s Dilemma. Assume that a fraction of the DM population holds

the correct causal model d → c ← h. This lowers the overall probability of

dieting, thus strengthening the empirical c−h correlation. As a result, DMs
with the incorrect DAG will have a stronger tendency to diet.

Let us now turn to the relation between the Bayesian-network framework

and existing equilibrium models with non-rational expectations. Most of this

literature proceeded by postulating game-theoretic solution concepts that

capture different aspects of limited understanding of correlations. I briefly

discuss the relation between some of these concepts (as defined for static

games) and the Bayesian-network formalism. For expositional simplicity, I

consider two-player games and examine the behavior of one player, to whom

I refer as the DM. Throughout the discussion, θ represents a state of Nature

that is known by the opponent, and z denotes the game’s outcome (induced

by the two players’actions).

Analogy-based expectations

This concept was introduced by Jehiel (2005) in the context of extensive-form

games with complete information, and was later adapted to static Bayesian

games by Jehiel and Koessler (2008). The latter can be translated into the

Bayesian-networks language, as the following example illustrates. The true

DAG R∗ is a→ z ← θ → e, where e represents the "analogy class" to which

θ belongs. For a DM with rational expectations, e is irrelevant and can be

omitted from his subjective model altogether. The DM’s subjective DAG R
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is a→ z ← e← θ - i.e., R differs from R∗ only by changing the origin of the

link that goes into z, from θ to e. Thus, the DM interprets the opponent’s

equilibrium behavior as if it were a measurable function of the analogy class,

rather than the actual state of Nature. To use the terms of Section 2, R

exhibits a "misattribution error" relative to R∗. The definition of Analogy-

Based Expectations Equilibrium (ABEE) requires the DM’s action to be

subjectively optimal with respect to pR. Thus, we can reduce individual best-

replying under ABEE in static Bayesian games to subjective optimization

under the misspecified DAG R.16

Naive behavioral equilibrium

Esponda (2008) introduced a solution concept called "naive behavioral equi-

librium", which can be described as a refinement of personal equilibrium for

a suitable specification of R and R∗. Let R∗ be

a → z ← θ

↘ ↓
f

(11)

where f is a "learning feedback" variable.17 The DM’s utility can be written

as a function of a, z, θ. The DM’s subjective DAG R differs from R∗ by

removing the link θ → z. Like personal equilibrium in the present framework,

naive behavioral equilibrium requires the DM’s action to be subjectively

optimal with respect to pR. However, it goes further by requiring pR(f) =

p(f) - i.e., the subjective marginal distribution over the feedback variable

should be unbiased. Because f is not an ancestral node in any DAG in

the equivalence class of R, Proposition 7 implies that Esponda’s additional

requirement is not vacuous. If there exists no personal equilibrium p for

which pR(f) ≡ p(f), the set of naive behavioral equilibria will be empty. In

fact, if we substitute z = s and f = w, then (11) is none other than the

16Esyter and Piccione’s (2013) formalism can be similarly translated. Suppose that u
is purely a function of xM , M ⊂ N . The DM’s subjective DAG omits some of the nodes
outside M . This DAG corresponds to Eyster and Piccione’s notion of an incomplete
theory. The DM in their model best-replies to the subjective belief pR.
17Esponda (2008) employs multiple feedback variables. My simplification does not vio-

late the spirit of Esponda’s approach.
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true DAG of Section 3.2; under the parameterization of that example, naive

behavioral equilibrium fails to exist.

For other parametrizations, Esponda’s additional requirement is satis-

fied and naive behavioral equilibrium coincides with personal equilibrium.

Esponda (2008) presents a monopsony example based on Samuelson and

Bazerman (1985), where an uninformed buyer makes a take-it-or-leave-it of-

fer to an informed seller. This example can be translated as follows: a, θ,

z and f represent the buyer’s offer, the seller’s valuation, the final alloca-

tion and the buyer’s gross payoff from it (f = 0 when there is no trade, and

f = θ+b when trade occurs, where b is a constant). The buyer fails to realize

that the probability of trade is affected by the seller’s valuation. Personal

equilibrium in this example has the feature that pR(f) is unbiased; hence it

coincides with naive behavioral equilibrium.18

Naive behavioral equilibrium is a concept in the tradition of self-confirming

equilibrium (Fudenberg and Levine (1993)). In the present context, self-

confirming equilibrium would require the DM to play a best-reply to a sub-

jective belief q that satisfies q(f) = p(f) - that is, the only restriction on

the DM’s subjective belief is that it is consistent with the feedback. The

present framework takes a different approach to modeling feedback: rather

than adding explicit feedback variables, it implicitly assumes that the DM’s

feedback consists of the correlations that identify his causal model.

Partial cursedness

Suppose the true DAG is R∗ : a → z ← θ. Let R differ from R∗ only

by removing the link from θ into z. The DM is characterized by a mixed

DAG representation (10) that assigns weight χ to R and weight 1−χ to R∗.
This DM is "partially cursed" in the sense of Eyster and Rabin (2005); the

parameter χ captures the extent to which the DM neglects the relationship

between his opponent’s action and information. The discussion at the end of

Section 4.3 implies that DMs with different values of χ can be unambiguously

ordered in terms of their objective payoff performance: a DM with a lower χ

is "more rational".
18Esponda and Pouzo (2014a) study an electoral model, in which individual voters’

behavior can be translated into an informed-DM variation on the current specification.
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S (K ) equilibrium

Osborne and Rubinstein (1998) presented a solution concept in which each

player postulates a direct mapping from his action to the game’s payoff-

relevant outcome, without forming an explicit belief regarding additional

variables. The player estimates this mapping by sampling each action K

times against the opponents’distribution, and selecting the action that per-

forms best in his sample. The player’s misperception can be described in

terms of the Bayesian-network formalism. For instance, suppose that the

true DAG R∗ is given by (11) and that u is purely a function of f . The DM’s

subjective DAG is R : a → f . In our model, the DM’s behavior would be

consistent with rational expectations. However, this is because he perfectly

learns p(f | a), whereas in Osborne and Rubinstein (1998), he uses a finite

sample to estimate it and naively neglects the sampling error.

The organizing principle behind most concepts in this literature is that

the DM’s beliefs are statistically correct with respect to partial feedback

about specific marginal or conditional probabilities; different concepts assume

different types of feedback. The Bayesian-network formalism systematizes

and generalizes this principle, via the requirement that the DM correctly

estimates the conditional distributions that identify his causal model.

Thus, the Bayesian-network representation of non-rational expectations

can be viewed as a unifying framework. What is the value of this unification?

First, it deepens our understanding of the relation between concepts. Second,

as the Dieter’s Dilemma taught us, the framework accommodates novel belief

distortions that previous concepts did not address: despite having an infinite

amount of data, the dieter ends up believing in a correlation that does not

exist in reality.19 Third, the framework provides new tools for analyzing

implications of existing concepts: the analysis in Section 4.2 enables us to

see the reason that naive behavioral equilibrium may fail to exist, and the

analysis in Section 4.3 implies that DMs with different analogy partitions as

in Jehiel and Koessler (2008) cannot be ranked in terms of performance. As

19Most existing concepts capture underestimation of correlations due to coarseness. The
S(K) model generates spurious correlations, due to neglect of sampling error in small
samples.
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we will see in the concluding section, the framework has additional potential

benefits in multi-agent models.

6 Concluding Remarks

The modeling framework developed in this paper enables us to analyze be-

havioral implications of systematic errors in statistical and causal reasoning -

mistaking correlation for causation, ignoring confounding variables, etc. Sta-

tistics teachers invest considerable effort to "cure" students of such fallacies.

Indeed, one motivation behind the Bayesian-network literature has been to

systematize correct causal reasoning. Instead, this paper employed the tool

descriptively, to capture the very errors statisticians warn us against.

Throughout this paper, I interpreted the DM’s subjective DAG as an

explicit causal model. I now discuss several alternative interpretations.

Objective data limitations. Certain DAGs can be interpreted as representa-

tions of objective feedback limitations that are faced by the DM as he tries to

learn p. Imagine that the DM only manages to learn the marginals of p over

some collections of variables, and that he wishes to extend these marginals

to a fully specified distribution over X. A result by Hajek et al. (1992)

implies that when R(i) is a clique for every i ∈ N , there exists S ⊂ 2N such

that pR is the maximal-entropy extension of the known marginals of p over

xS, S ∈ S. Moreover, S is the set of maximal cliques in R. In this sense,
the DAG representation (2) can be justified as the outcome of systematic

extrapolation from limited data. In Spiegler (2015), I further develop the

limited-feedback foundation for the DAG representation, by considering a

more "behaviorally motivated" method of extrapolation.

Limited ability to perceive statistical patterns. In Section 2, I used a "Q&A

story" to illustrate the causal interpretation of R. However, the questions

can be interpreted differently, as an attempt to find statistical patterns in

the data. The DM is unable to grasp the multivariate distribution p in its

totality, and poses a sequence of partial queries that examine slices of p.

The DM behaves as if he has an explicit subjective causal model, but the
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essence of this bounded rationality is that he fails to ask the right questions

about p. The DAG R captures the questions that he can think of. For

instance, in the example of Section 3.2, observable variables are realized in

fixed chronological order: parental investment comes first, then the school

outcome is realized, followed by the wage. It is therefore natural for the

parent to pose questions that track this chronological order: What is the

likelihood of school success as a function of parental investment? How do

wages vary with school performance? These are the very questions that

identify the parent’s subjective DAG.20

Bayesian learning with misspecified priors. Esponda and Pouzo (2014b - EP

henceforth) proposed a game-theoretic framework, where each player is char-

acterized by a "subjective model" - a set of stochastic mappings from his

action a to a primitive set of payoff-relevant consequences y (for simplicity,

assume players are uninformed). EP’s definition of equilibrium requires the

player’s subjective distribution over y to be the closest (in the set implied by

his subjective model) to the true equilibrium distribution; distance is mea-

sured by a weighted Kullback-Leibler divergence. EP justify this concept as

the steady state of a process of Bayesian learning by forward-looking agents,

extending classical results on Bayesian learning with misspecified priors (Berk

(1966)). Personal equilibrium in the present paper can be viewed as an EP

equilibrium in single-player games, where the player’s subjective model is the

set of all conditional probabilities (pR(y | a))a,y that are consistent with the

DAG R.21

Although this paper has focused entirely on individual choice, the Bayesian-

network representation allows us to capture interactive situations in which

different agents view the same interaction through the prisms of different

subjective causal models. Existing notions of non-rational-expectations equi-

librium are typically presented as distinct solution concepts in some class of

games. The current framework reduces the element of non-rational expec-

20Esponda and Vespa (2014) interpret a pivotal-voting experiment in this spirit.
21Relatedly, there is a strand in the literature that views boundedly rational agents as

"time-series econometricians" who work with a misspecified model (e.g., Bray (1982), Cho,
Sargent and Williams (2002), Rabin and Vayanos (2010)).
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tations to individual agents’ types (their subjective DAGs) within a single

modeling framework. This reduction has several potential advantages. First,

it enables us to analyze interactions among agents who commit different

kinds of errors. Second, a model in which agents are characterized by dis-

tinct DAGs exhibits "structured belief heterogeneity", because agents’beliefs

are different deterministic transformations of the same objective distribution

(e.g., when the latter is consistent with the empty DAG, all agents have

correct beliefs). Third, since the DAG representation is not tied to a partic-

ular economic model, it can be incorporated into diverse classes of models

(games, competitive markets). Finally, it provides a language for studying

"high-order" reasoning about boundedly rational expectations. By incorpo-

rating one agent’s DAG as a variable in another agent’s causal model, we

can express statements such as "player i does not understand the correlation

between player j’s understanding of correlations and his information". This

element is beyond the reach of current approaches, and I plan to explore it

in future research.

Appendix A: Proofs
Proposition 2
Fix (p(y | a))a,y. For a fixed ε ∈ (0, 1), let Qε be the set of distributions

q ∈ ∆(A) such that q(a) ≥ ε for every a. Denote p = (q, (p(y | a))a,y), and

define pR accordingly. Define

BR(p) = arg max
q∈Qε

∑
a

q(a)
∑
y

pR(y | a)u(a, y)

If q is an ε-perturbed personal equilibrium, then q ∈ BR(q). Because pR(y |
a) is continuous in q, BR is continuous as well. Also, the target function in

the definition of BR is linear in q; hence BR(p) is a convex set. Since the

set Qε is compact and convex, BR has a fixed point, by Kakutani’s theorem.

Therefore, an ε-perturbed personal equilibrium exists for any ε > 0. By

standard arguments, there is a convergent sequence of ε-perturbed personal

equilibria.
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Proposition 4
The parent’s objective function is

∑
s=0,1 p(s | a)p(w = 1 | s)− κ(a). By our

assumptions on p, θ = 0 implies that s = w = 0 with certainty, whereas θ = 1

implies that s = 1 with probability a. Let µ denote the parent’s probability

measure over actions a. This implies the following conditional probabilities:

p(s = 1 | a) = δa, p(w = 1 | s = 1) = β1, and

p(w = 1 | s = 0) =
δβ0

∫
a′ dµ(a′)(1− a′)

1− δ + δ
∫
a′ dµ(a′)(1− a′) = γβ0

The derivative of the parent’s objective function is δ(β1 − γβ0)− κ′(a). The

first term, which represents the parent’s perceived marginal benefit from

education, lies in (0, 1). The parent takes it as given when choosing a. The

second term is continuous and strictly increasing, with κ′(0) = 0 and κ′(1) >

1. Therefore, there is a unique best-reply a∗∗, which means that µ assigns

probability one to a∗∗. In equilibrium, a∗∗ solves the first-order condition

κ′(a∗∗) = δ(β1 − γβ0), where

γ =
δ(1− a∗∗)

1− δ + δ(1− a∗∗) (12)

This gives the equation (6). Observe that κ′(a∗∗) is continuous in a∗∗, with

κ′(0) = 0, κ′(1) ≥ 1, whereas δ(β1 − γβ0) is a strictly convex and increasing
function of a∗∗, which attains values strictly between 0 and 1. Therefore, the

two functions must cross at least once, such that (6) has a solution. When

κ′ is either weakly convex or weakly concave, the two functions cross exactly

once, such that the solution is unique.

Proposition 5
Denote p(a = 1) = α. To calculate personal equilibria, we need to compute

the conditional probabilities that appear in (8). All of them were defined

up-front, except p(a | y), which is given by p(a = 1 | y = 1) = 1 and

p(a = 0 | y = 0) =
1− α

α(1− β) + 1− α = γ

Fix α. The government’s evaluation of each action a is
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∑
y

p(y | a)[E(z | y)− κy]

To calculate this expression for each a, let us first derive E(z | y). Consider

the case of y = 1 first. Because p(a = 1 | y = 1) = 1,

E(z | y = 1) =
∑
e

p(e | a = 1)(1 + δe) = 1 + δβ

Now consider the case of y = 0:

E(z | y = 0) = γ · 0 + (1− γ) ·
∑
e

p(e | a = 1) · δe = (1− γ)δβ

Recall that p(y = 1 | a) = βa. Then, the government’s evaluation of a = 0 is

(1− γ)δβ, and its evaluation of a = 1 is

β · [1 + δβ − κ] + (1− β) · (1− γ)δβ

By the definition of personal equilibrium, α > 0 (α < 0) only if the govern-

ment’s evaluation of a = 1 is weakly above its evaluation of a = 0. Plugging

the expressions for these evaluations and the definition of γ, we obtain the

result.

Proposition 6
The conditional probability pR(x2, ..., xn | x1) can be written as

p(x1) ·
n∏
i=2

p(xi | xR(i))

∑
x′2,...,x

′
n

p(x1) ·
n∏
i=2

p(x′i | xR(i)∩{1}, x′R(i)−{1})

and the term p(x1) cancels out. Recall that we are considering a modification

of p that changes the marginal of p on x1, while leaving p(x2, ..., xn | x1)
intact for all x. We need to check whether the term p(x′i | xR(i)∩{1}, x′R(i)−{1})
is affected, for i = 2, ..., n. If 1 ∈ R(i), the term is clearly unchanged. In
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contrast, when 1 /∈ R(i), the term can be written as

p(x′i | x′R(i)) =
∑
x
′′
1

p(x′′1)p(x
′
i | x′′1, x′R(i))

The term p(x′i | x′′1, x′R(i)) is unaffected by the modification of p. If it is not
constant in x′′1, we can find a modification of p(x

′
1) for some values of x

′
1

such that the expression for pR(x2, ..., xn | x1) will change. In contrast, if
the probability is constant in x′′1 (i.e., p(x

′
i | x′′1, x′R(i)) = p(x′i | x′R(i)), the

expression for pR(x2, ..., xn | x1) is necessarily unchanged.

Proposition 8
By assumption, 1 is an ancestral node in R. By Proposition 7, pR(x1) ≡ p(x1)

for every p. We can write pR(xM−{1} | x1) = pR(xM)/pR(x1). Therefore,

pR(xM−{1} | x1) ≡ p(xM−{1} | x1) if and only if pR(xM) ≡ p(xM). By

Proposition 7, the latter holds if and only if M is an ancestral clique in a

DAG in the equivalence class of R. If pR(xM) ≡ p(xM), the definition of

behavioral rationality is trivially satisfied. If pR(xM) 6= p(xM) for some p

and x, then we can easily construct u such that the DM will strictly prefer

an action that is objectively sub-optimal.

Proposition 9
(i) If i = 1 and j = n, then 1 /Rn; hence {1, n} cannot be a clique (let alone
an ancestral one) in any DAG in the equivalence class of R.

(ii) If i, j 6= n, then iRn, jRn and yet i and j are not linked. By Proposition

1, these properties must hold in any DAG in the equivalence class of R, which

means that {1, n} cannot be an ancestral clique in any such DAG.
(iii) If j = n and i 6= 1, then R is a perfect DAG - i.e., R(k) is a clique for

every k ∈ N . It is well-known that every clique in a perfect DAG is ancestral
in some DAG in its equivalence class (see Spiegler (2015) for details). Note

that R(n)∪ {n} is a clique because the only link that was removed from the

original fully connected DAG was i → n. Therefore, {1, n} is an ancestral
clique in some DAG in the equivalence class of R.

The result follows from (i)− (iii), by Proposition 8.
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Proposition 10
If R and R′ are equivalent, the claim holds trivially. Now assume there

exist non-equivalent R,R′ that are not fully connected, such that R is more

rational than R′. Fix p and denote q = (pR(y))y, r = (pR′(y))y. Both q and

r are probability vectors of length n − 1. I use pi, qi, ri to denote the i-th

component of the (n−1) vectors p, q, r. Define the (n−1)-vector z as follows:

for each y, zy = u(a, y)− u(a′, y). Consider the (n− 1)× 3 matrix

D =

r1 −q1 −p1
...

...
...

rn−1 −qn−1 −pn−1

Let b = (−ε,−ε,−ε) be a vector in R3, where ε > 0 is arbitrarily small. The

assumption that R is more rational than R′ thus implies that there exists

no z that satisfies the inequality Dz > bT . By Farkas’s Lemma, this means

that there is a vector a > 0 in R3, such that there DTa = 0 (and since

a > 0, baT < 0). Thus, ri = a2

a1
qi + a3

a1
pi for every i = 1, ..., n − 1. Since∑n−1

i=1 r
i =

∑n−1
i=1 q

i =
∑n−1

i=1 p
i = 1 by assumption, a1 = a2 + a3, such that

the claim holds with α = a3/(a2 + a3).

We have thus established that for any p, we can find α ∈ (0, 1) such that

pR = αp + (1 − α)pR′ . In particular, for any p that is consistent with R,

pR = p and so the equation reduces to pR = pR′ . Likewise, for any p that

is consistent with R′, pR′ = p and again we obtain pR = pR′ . It follows

that the sets of distributions that are consistent with R and R′ are identical,

contradicting the assumption that R and R′ are not equivalent.

Appendix B: d-Separation
In this appendix I present the concept of d-separation, which is useful for

applying the characterization of consequentialist| rationality in Section 4.1.
A path in a DAG R is a sequence of directly connected nodes in R, ignoring

the links’directions.

Definition 6 (Blocking a path) A subset D ⊂ N blocks a path in R if

either of the following two conditions holds: (1) the path contains a segment
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of the form i → m → j or i ← m → j such that m ∈ D; (2) the path

contains a segment of the form i → m ← j such that neither m nor any of

its descendants are in D.

To illustrate this definition, consider the DAG R : 1→ 2← 3→ 4. The

path between nodes 1 and 4 is blocked by {3} - either because it contains
the segment 2← 3→ 4 (thus satisfying condition (1)) or because it contains

the segment 1→ 2← 3 (thus satisfying condition (2), as the node 2 has no

descendants and 2 /∈ {3}). However, the path between 1 and 4 is not blocked

by {2}, because it does not contain a segment of the form i → 2 → j or

i ← 2 → j, and the only segment of the form i → m ← j that it contains

satisfies m = 2.

Definition 7 (d-separation) Let B,C,D be disjoint subsets of N . We say

that B and C are d-separated by D (in a DAG R) if D blocks every path

between any node in B and any node in C.

Proposition 11 (Verma and Pearl (1990)) Let B,C,D be disjoint sub-

sets of N . Then, xB ⊥R xC | xD if and only if B and C are d-separated by

D in R.

Thus, d-separation provides a convenient rule for checking whether a con-

ditional independence property is satisfied by all the distributions that are

consistent with a DAG. Moreover, the rule is computationally simple: Geiger

et al. (1990) presented a linear-time algorithm for checking d-separation.

Armed with this result, I illustrate Proposition 6, using two specifications

from Section 3.

Ignoring a confounder (Section 3.2). The true DAG R∗ is given by (5), and

R : a → s → w. Because a /∈ R(w) = {s}, Proposition 6 requires us to
check whether w ⊥R∗ a | s. To see why this condition fails, observe that
a → s ← θ → w is a path in R∗ that connects a and w. This path is

not blocked by s (as we saw in the example that illustrated blocking), and

therefore a and w are not d-separated by s.
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Ignoring an endogenous effect (Section 3.3). The true DAG R∗ is given by

(7) and R : a → y → z. Since a ∈ R(y) and a /∈ R(z) = {y}, we only need
to check that z ⊥R∗ a | y - i.e., that a and z are d-separated by y in R∗. This
condition is violated, because R∗ contains the path a→ e→ z, which is not

blocked by y. It follows that consequentialist| rationality is violated.

Appendix C: The Case of an Informed DM
In this appendix I extend the decision model to the case in which the DM re-

ceives a signal x0 ∈ X0 prior to making his decision. Thus, x = (x0, x1, ..., xn).

I use the notations x0 and t interchangeably, and often write x = (t, a, y).

All DAGs are now defined over N = {0, 1, 2..., n}, such that

pR(x) =
n∏
i=0

p(xi | xR(i))

Assume that in all DAGs, whether true or subjective, the DM’s signal is the

sole direct cause of his action - i.e., R(1) = R∗(1) = {0}.
The extension of the definition of personal equilibrium is straightforward.

Let p have full support on T . We say that p′ is a perturbation of p if p′(t) ≡
p(t), p′(y | t, a) ≡ p(y | t, a), and p′ has full support on T × A.

Definition 8 A distribution p ∈ ∆(X) with full support on T × A is an

ε-perturbed personal equilibrium if

a ∈ arg max
a′

∑
y

pR(y | t, a′)u(t, a′, y)

for every t, a for which p(a | t) > ε. A distribution p∗ ∈ ∆(X) with full

support on T is a personal equilibrium if there exists a sequence pk → p∗

of perturbations of p∗, as well as a sequence εk → 0, such for every k, pk is

an εk-perturbed personal equilibrium.

As in the basic model of Section 2, the object of the definition of per-

sonal equilibrium is the entire joint distribution p. An alternative approach
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would fix p(t) and p(y | t, a) and regard p(a | t) as the definition’s object.
However, this would give an impression of an extensive-game-like chain of

causation from t to y via a, an impression that would be misleading in many

applications.

The existence result given by Proposition 2 extends to this case.

An example: Illusion of control

As in Section 3.2, consider a parent who makes a decision regarding his

child’s education. There are three variables, denoted a, s, v, representing the

parent’s investment decision, the child’s school performance, and the parent’s

valuation of success at school. The parent is informed of v before making

his choice. The true DAG R∗ : a ← v → s. Thus, s is independent of a

conditional on v. One story behind the causal link v → s is that the parent’s

values are imbued in the child and affect her attitude to learning. If the

parent had rational expectations, he would choose a to maximize
∑

s p(s |
v)u(v, a, s).

Now suppose that the parent’s subjective DAG is R : v → a→ s. Thus,

R departs from R∗ by changing the origin of the link that goes into s. This

link reorientation captures a misattribution error often referred to as "illusion

of control" (Langer (1975)): in reality, s is caused by the exogenous variable

v, yet the parent attributes s to his own action. As in Section 3.2, the

parent’s error is that he mishandles a confounding variable. The difference

is that while in the previous example the parent neglected the confounder

altogether, here he is aware of it (indeed, he conditions his action on it),

yet he fails to perceive its role as a confounder. The parent interprets any

correlation between a and s as a causal effect of a on s, whereas in reality

the correlation is due to the confounder. In personal equilibrium, whenever

p(a′ | v) > 0,

a′ ∈ arg max
a

∑
s

p(s | a)u(v, a, s) =
∑
v

p(v | a)
∑
s

p(s | v)u(v, a, s) (13)

As the term p(v | a) indicates, the equilibrium aspect of individual behavior

is fundamental in this example.
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Let us add structure to the example. All variables take values in {0, 1}.
Assume p(v = 1) = β and p(s = 1 | v) = v, where β ∈ (0, 1). Finally, let

u(v, a, s) = vs− κa, where κ ∈ (0, 1) is a constant. Thus, the child succeeds

at school if and only if her family thinks it is important. The action a = 1 is

a useless investment in the child’s education, and κ is its cost. If the parent

had rational expectations, he would choose a = 0 for every v, because the

costly action does not affect the child’s school performance. The following

result characterizes personal equilibria under the parent’s subjective DAG.

Proposition 12 There are multiple personal equilibria. In one equilibrium,
p(a = 1 | v) = 0 for all v. In another, p(a = 1 | v) = v. Finally, if κ > 1−β,
there is a third equilibrium, in which

p(a = 1 | v) = v · β + κ− 1

βκ

Proof. When the parent’s information is v = 0, playing a = 0 is optimal

regardless of his beliefs. Therefore, in any personal equilibrium, p(a = 1 | v =

0) = 0. Let us try to sustain p(a = 1 | v = 1) = 0 in equilibrium. Because

the action a = 1 is never taken in this putative equilibrium, we need to check

whether there is a sequence of ε-perturbed personal equilibria that converges

to p. For every ε > 0, define pε(a = 1 | v) = ε for all v, pε(v) ≡ p(v) and

pε(s | v) ≡ p(s | v). Then, pε(s = 1 | a = 0) ≡ pε(s = 1 | a = 1); hence

playing a = 0 is subjective optimal, which is consistent with the definition

of ε-perturbed personal equilibrium.

Now, let us try to sustain personal equilibria in which p(a = 1 | v = 1) =

σ > 0. Then, p(v = 1 | a = 1) = 1 and

p(v = 1 | a = 0) =
β(1− σ)

1− β + β(1− σ)
=
β − βσ
1− βσ

It follows that when the parent’s information is v = 1, his evaluation of a = 1

is 1 − κ, whereas his evaluation of a = 0 is (β − βσ)/(1 − βσ). Therefore,

σ > 0 if and only if 1 − κ ≥ (β − βσ)/(1 − βσ). This inequality is binding

if σ ∈ (0, 1). Since κ < 1, the inequality holds for σ = 1. If κ > 1 − β, the
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inequality can hold bindingly with σ = (β + κ− 1)/βκ.

This result demonstrates several effects. At the substantive level, it is

possible to sustain a sub-optimal equilibrium, in which parents make a use-

less investment in their children’s education if and only if they care about

school performance. Thanks to the positive correlation between v and s, this

behavioral pattern is consistent: the parent mistakenly attributes success at

school to the investment; and since only high-valuation parents make the

investment, a and s will be positively correlated. The parents’ erroneous

causal interpretation of this correlation aligns it with their incentives. At

the methodological level, Proposition 12 highlights the role of "trembles"

in sustaining personal equilibria: the rational-expectations outcome is sus-

tainable because the parent’s off-equilibrium experimentation is uncorrelated

with his information, in which case he is not led to attribute variations in

school performance to variations in investment.

Consequentialist rationality

Let us extend the notion of consequentialist| rationality to the case of an
informed DM.

Definition 9 A DAG R is consequentialistically rational with respect
to the true DAG R∗ if for every pair of distributions p, q that are consistent

with R∗, if p(t) = q(t) and p(y | t, a) = q(y | t, a) for every t, a, y, then

pR(y | t, a) = qR(y | t, a) for every t, a, y.

Proposition 13 The subjective DAG R is consequentialistically rational with

respect to the true DAG R∗ if and only if:

1. For every i > 1, if 1 /∈ R(i), then xi ⊥R∗ x1 | xR(i)∪{0}.
2. For every i > 1, if 0 /∈ R(i), then xi ⊥R∗ x0 | xR(i)∪{1}.
3. If R(0) 6= ∅, then x1 ⊥R∗ xR(0) | x0.

Proof. Recall that t = x0, a = x1, y = (x2, ..., xn). By assumption, R(1) =

R∗(1) = {0}. Hence, by the asymmetry of R and R∗, 1 /∈ R(0), R∗(0). We
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can thus write pR(y | a, t) = pR(x2, ..., xn | x0, x1) as

n∏
i=0

p(xi | xR(i))

∑
x′2,...,x

′
n

p(x0 | x′R(0)) · p(x1 | x0) ·
n∏
i=2

p(x′i | xR(i)∩{0,1}, x′R(i)−{0,1})

=

∏
i 6=1

p(xi | xR(i))

∑
x′2,...,x

′
n

p(x0 | x′R(0)) ·
n∏
i=2

p(x′i | xR(i)∩{0,1}, x′R(i)−{0,1})
(14)

Recall that we are considering modifications of p that change p(x1 | x0)
for some x0, x1, while leaving the marginal of p on x0 and the conditional

distributions p(x2, ..., xn | x0, x1) intact. Both p and its modification are

required to be consistent with R∗. Let us now examine each of the terms in

(14). If all terms are invariant to any eligible modification of p, so will be

(14) itself; otherwise, there is an eligible modification of p that changes (14).

(i) For any xR(0), x0, the term p(x0 | xR(0)) can be written as follows:

p(x0 | xR(0)) =
p(x0)

∑
x′1
p(x′1 | x0)p(xR(0) | x′1, x0)∑

x′0
p(x′0)

∑
x′1
p(x′1 | x′0)p(xR(0) | x′1, x′0)

The term p(x0) is by definition invariant to the modification of p. As to

p(xR(0) | x′1, x0), we saw that R(0) ⊆ {2, ..., n}. By definition, p(x2, ..., xn |
x1, x0) is invariant to the modification of p. Since

p(xR(0) | x1, x0) =
∑

x{2,...,n}−R(0)

p(x2, ..., xn | x1, x0)

It follows that p(xR(0) | x′1, x0) is invariant to the modification of p. Suppose
that p(xR(0) | x′1, x0) is not constant in x1. Then, we can find a distribution p
that is consistent with R∗ and an eligible modification of p that will change

p(x0 | xR(0)). In particular, let all variables xi, i /∈ R(0), be independently

distributed under p. The only term in (14) that will change as a result of
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the modification of p is p(x0 | xR(0)), and therefore (14) will change, too. In
contrast, if p(xR(0) | x′1, x0) is constant in x1, then p(x0 | xR(0)) is invariant
to any eligible modification of p.

(ii) For any i > 0 and any xi, xR(i), if 1 /∈ R(i) and 0 ∈ R(i), then the term

p(xi | xR(i)) can be written as follows

p(xi | xR(i)) =
∑
x1

p(x1 | xR(i))p(xi | x1, xR(i))

=
∑
x1

(
p(x0)p(x1 | x0)p(xB | x1, x0)∑
x′1
p(x0)p(x′1 | x0)p(xB | x′1, x0)

)
p(xi | x1, x0, xB)

where B = R(i) − {0}. By definition, the terms p(x0), p(xB | x1, x0) and
p(xi | x1, x0, xB) are invariant to the modification of p. Suppose that p(xi |
x1, x0, xB) is not constant in x1. Then, we can find a distribution p that is

consistent with R∗ and an eligible modification of p that will change p(xi |
xR(i)). In particular, let all variables xj, j > 0, j 6= i, be independently

distributed under p. The only term in (14) that will change as a result of

the modification of p is p(xi | xR(i)), and therefore (14) will change, too. In
contrast, if p(xi | x1, x0, xB) is constant in x1, then p(xi | xR(i)) is invariant
to any eligible modification of p.

(iii) For any i > 0 and any xi, xR(i), if 0 /∈ R(i) and 1 ∈ R(i), then the term

p(xi | xR(i)) can be written as follows

p(xi | xR(i)) =
∑
x0

(
p(x0)p(x1 | x0)p(xC | x1, x0)∑
x′0
p(x′0)p(x1 | x′0)p(xC | x1, x′0)

)
p(xi | x1, x0, xC)

where C = R(i) − {1}. By definition, the terms p(x0), p(xC | x1, x0) and
p(xi | x1, x0, xC) are invariant to the modification of p. Using essentially the

same argument as in (ii), we can show that if p(xi | x1, x0, xC) is constant

in x0, then p(xi | xR(i)) is invariant to any eligible modification of p; and if
p(xi | x1, x0, xC) is not constant in x0, we can find a distribution p that is

consistent with R∗ and an eligible modification of p that will change p(xi |
xR(i)).
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(iv) For any i > 0 and any xi, xR(i), if 1, 0 /∈ R(i), then the term p(xi | xR(i))
can be written as follows

p(xi | xR(i)) = p(x0 | xR(i))p(x1 | x0, xR(i))p(xi | x1, x0, xR(i))

where

p(x0 | xR(i)) =

∑
x′1
p(x0)p(x

′
1 | x0)p(xR(i) | x′1, x0)∑

x′0

∑
x′1
p(x′0)p(x

′
1 | x′0)p(xR(i) | x′1, x′0)

p(x1 | x0, xR(i)) =
p(x0)p(x1 | x0)p(xR(i) | x1, x0)∑
x′1
p(x0)p(x′1 | x0)p(xR(i) | x′1, x0)

By definition, the terms p(x0), p(xR(i) | x1, x0) and p(xi | x1, x0, xR(i)) are
invariant to the modification of p. Using essentially the same argument as in

(ii), we can show that if p(xi | x1, x0, xR(i)) is constant in x1, x0, then p(xi |
xR(i)) is invariant to any eligible modification of p; and if p(xi | x1, x0, xR(i))
is not constant in x1, x0, we can find a distribution p that is consistent with

R∗ and an eligible modification of p that will change p(xi | xR(i)).

The first condition in Proposition 13 is a minor variation on the condition

for consequentialist| rationality in the uninformed-DM case. The second is

an analogous condition for the new variable x0. The third condition is that

under the true DAG, the DM’s action is independent of the signal’s immediate

(subjective) causes conditional on the signal. Let us illustrate this result

using two specifications.

Cursedness. The true DAG R∗ is a← ta ← θ → tb → b, where θ represents a

state of Nature, ta and tb represents the signals obtained by the DM and his

opponent, and a and b represent their actions. The subjective DAG R differs

from R∗ by changing the origin of the link that goes into b, from tb to ta. This

specification captures a "fully cursed", partially informed DM, as in Eyster

and Rabin (2005). Condition (1) in Proposition 13 holds because the node ta
blocks any path in R∗ between the node a and any other node. Condition (2)

holds vacuously because ta is the sole cause of b under R. Finally, Condition

(3) holds because a ⊥R∗ θ | ta. Therefore, consequentialist| rationality holds.
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Illusion of control. The true DAG is R∗ : a ← v → s, while the subjective

DAG is R : v → a → s. Since v /∈ R(s) = {a}, the second condition for
consequentialist| rationality requires that s ⊥R∗ v | a, which is clearly false.
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