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When deciding whether or not to bring an umbrella to work, your confidence will be influenced by the
sky outside the window (direct evidence) as well as by, for example, whether or not people walking in
the street have their own umbrella (indirect or contingent evidence). These 2 distinct aspects of decision
confidence have not yet been assessed independently within the same framework. Here we study the
relative contributions of stimulus-specific and social-contingent information on confidence formation.
Dyads of participants made visual perceptual decisions, first individually and then together by sharing
their wagers in their decisions. We independently manipulated the sensory evidence and the social
consensus available to participants and found that both type of evidence contributed to wagers. Consistent
with previous work, the amount people were prepared to wager covaried with the strength of sensory
evidence. However, social agreements and disagreement affected wagers in opposite directions and
asymmetrically. These different contributions of sensory and social evidence to wager were linearly
additive. Moreover, average metacognitive sensitivity—namely the association between wagers and
accuracy— between interacting dyad members positively correlated with dyadic performance and dyadic
benefit above average individual performance. Our results provide a general framework that accounts for
how both social context and direct sensory evidence contribute to decision confidence.
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Traditionally, psychology has treated confidence as a subjective,
private element of our cognition in the study of choices (Gigerenzer,
Hoffrage, & Kleinbolting, 1991; Peirce & Jastrow, 1884; Vickers,
1979). However, confidence is also an essential component of our
social life. We recognize confidence in others and value it. We gain
or lose confidence by interacting with others. These observations
suggest that our sense of confidence is not constructed exclusively
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from internal states but is also sensitive to social context. Moreover,
our subjective sense of confidence—stated verbally or otherwise—
also contributes to important social functions such as joint decision
making (Bahrami et al., 2010, 2012b; Frith, 2012) and advice taking
(Mannes, Soll, & Larrick, 2014) by allowing us to share information
about our uncertainty in state(s) of the world around us. In this paper,
we investigate these bidirectional impacts of decision confidence and
social interaction on one another.

Perceptual and Social Sources of Confidence

We feel more confident of our choices when they are based on
convincing evidence in comparison with when we have to depend on
ambiguous information. Numerous works that studied choice confi-
dence in the context of perceptual (Fleming & Lau, 2014; Peirce &
Jastrow, 1884) and value-based (De Martino, Fleming, Garrett, &
Dolan, 2013; Lebreton, Abitbol, Daunizeau, & Pessiglione, 2015)
decision making conceived of decision evidence entirely as informa-
tion directly pertinent to the immediate choice. A number of elegant
computational models have been developed that relate various char-
acteristics of such information, such as signal strength (Kepecs &
Mainen, 2012; Ko & Lau, 2012; Pouget, Drugowitsch, & Kepecs,
2016), noise distribution (Budescu, Erev, & Wallsten, 1997), and
effector uncertainty (Fleming et al., 2015; Ma & Jazayeri, 2014) to
decision confidence (Smith & Vickers, 1988).

But the quality of immediate evidence is not our only source of
confidence. We recruit a host of contextual evidence when judging
the probability that we have made a correct decision. For example,
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longer deliberation time reduces confidence even when the quality
of evidence is kept constant (Kiani, Corthell, & Shadlen, 2014).
Even irrelevant but corollary external information consistent with
our choice also increases our confidence. For example, knowing
that Parma (but not Venice) has a football club in the Serie A (the
Italian national football league) increases people’s confidence in
choosing Parma over Venice as the city with larger population
(Gigerenzer et al., 1991).

Perhaps the most common example of such confidence boost from
ancillary information happens when we realize that others agree with
us. In these cases the cue to higher probability of accurate judgment
lies in our assumptions about what we believe the others’ agreeing
opinions indicate. Statistically, coinciding independent samples (e.g.,
others’ opinions) decrease our uncertainty about the statistical prop-
erties of the phenomenon under investigation. Decreased uncertainty,
in turn, can contribute to increased confidence (see next section for
further unpacking of this concept).

In addition, social consensus has enormous heuristic value beyond
higher accuracy. When in agreement with others, we share responsi-
bility for the choices we make (Harvey & Fischer, 1997) which, in
turn, may help us justify our choices and even reduce error costs such
as regrets (Nicolle, Bach, Frith, & Dolan, 2011). Moreover, confir-
mation from others could relieve us of the need to gather extra
information through direct experience drastically reducing the costs of
decision making. Seeking consensus could also help us learn from
social signals in the absence of actual veridical feedback about the
accuracy of our choices (Bahrami et al., 2012a).

In summary, both perceptual and social information can change our
uncertainty about the states of the external world. Thus, circumstantial
social information (e.g., confirmation vs. opposition from others) and
directly relevant evidence (e.g., sensory stimulus strength in a per-
ceptual choice) should both contribute to subjective confidence. How-
ever, their relative contributions to decision confidence have not been
directly compared. Earlier theoretical and empirical works on forecast
aggregation (Clemen, 1989; Morris, 1974) have proposed numerous
possible schemes for how advice from multiple opinions (i.e., social
information) should be aggregated. As if coming from a parallel
reality, a rich body of research in system neuroscience on optimal cue
combination has offered very similar solutions for how neuronal
populations that code different modalities of sensory information
should combine their information in multisensory perception. Applied
to the context of our study, the question critical to both of these
approaches is whether the two sources of information, that is, percep-
tual and social information are combined linearly to give rise to
collective choice and confidence or not. Here, we empirically and
directly tested this hypothesis. We asked how much the confirmation
of another person increases our confidence in comparison with the
increase in confidence attributable to sensory stimulus strength that
raises our performance from chance to a prespecified threshold level.

Individual Differences in Metacognition and Collective
Decision Making

In numerous perceptual as well as cognitive decisions as widely
divergent as sports refereeing and medical diagnosis, the accuracy
achieved by integrating different opinions can exceed the accuracy of
each individual opinion, a phenomenon referred to as the “two-heads-
better-than-one” effect (Koriat, 2012) or the “wisdom of the crowd”
(WOC) (Lorenz, Rauhut, Schweitzer, & Helbing, 2011; Mannes et al.,

2014). Early empirical records of this phenomenon date back to the
beginning of the last century (Galton, 1907) and numerous theo-
retical attempts have been made to understand its basis (Bovens &
Hartmann, 2004; Condorcet, 1785; Nitzan & Paroush, 1985). The
intuition behind the earlier accounts was that any observation is a
mixture of information combining the state of the environment
(signal) with random noise (error). Assuming that observers are
independent in their judgments and not consistently biased toward
a preferred belief/decision, pooling observations from different
observers together should average out the uncorrelated noise and
thus enhance the signal. This notion of the “wisdom of the crowd”
is inspired by the concept of repeated measurements in statistics
(Armstrong, 2001; Surowiecki, 2004). The same holds true even
within one observer: better estimates are obtained when the same
person gets a chance to combine information over repeated obser-
vations (Green & Swets, 1966) or repeated judgments (Rauhut &
Lorenz, 2011; Vul & Pashler, 2008). However, some have con-
tended that in many such real-world interactive decisions, agents
go beyond simply aggregating their independent samples and also
communicate some measure of uncertainty about their observation
(Bahrami et al., 2010; Brennan & Enns, 2015). The mental pro-
cesses involved in estimating the uncertainty in our choices are
classified under the more general umbrella-term metacognition
(Flavell, 1976).

A distinction has been made between implicit metacognition,
defined as those automatic processes of uncertainty monitoring
(Bach & Dolan, 2012) and explicit metacognition, defined as a
conscious and effortful process that may be a distinctively human
ability evolved for social coordination and cooperative behavior
(Frith, 2012). This latter view holds that explicit metacognition
provides humans with the unique ability of sharing and discussing
their own beliefs, perceptions, and intentions, leading to a shared
view of the world where fruitful group interactions are facilitated
(Friston & Frith, 2015). Indeed, people vary greatly in their ca-
pacity to explicitly estimate the uncertainty in their choices (Flem-
ing, Weil, Nagy, Dolan, & Rees, 2010). Moreover these interin-
dividual differences are stable across visual perceptual tasks (Song
et al., 2011) but vary across cognitive domains such as perception
and memory (Baird, Smallwood, Gorgolewski, & Margulies,
2013).

Many recent studies of metacognition have employed signal
detection theory and analysis of behavior in the so-called “type 11
decisions (Galvin, Podd, Drga, & Whitmore, 2003; Macmillan &
Creelman, 2005) where agents comment on their (often) earlier
“type I decisions. First-order choices (or “type I”’) are decisions
about characteristics of a physical stimulus (e.g., presence/absence
of a signal among noise or categorization of some sensory feature).
Second-order (or “type II”’) choices are decisions about “type I”
decisions that, among other things, may indicate the agent’s level
of uncertainty in the accuracy of their Type I decision. For exam-
ple, confidence ratings (Peirce & Jastrow, 1884), perceptual
awareness scale (Overgaard & Sandberg, 2012), and postdecision
wagering (Persaud, McLeod, & Cowey, 2007) are forms of type II
decisions. The term metacognitive sensitivity has been used to refer
to the covariation between reported uncertainty and Type I choice
accuracy. For example, for an observer with high metacognitive
sensitivity, a decision made with high confidence is more likely to
be correct than another decision made with low confidence. Sev-
eral measures have been developed in the literature to characterize
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such metacognitive sensitivity. Some of them, for example, meta-
d', make specific assumptions about the underlying process gen-
erating the confidence judgments while others, like the type II
Agoes do not (for a detailed description of metacognitive metrics
see Fleming & Lau, 2014). Sensitivity of first and second-order
decisions are often correlated (Koriat, 2012), meaning that mea-
surement of the sensitivity of the two types of decision can be
confounded by each other. However, new empirical methods have
been devised to segregate the two (Fleming & Lau, 2014; Song et
al., 2011) and measure them independently.

These metacognitive measures of uncertainty have recently been
introduced to models of collaborative decision making (Bahrami et
al., 2010; Migdal, Raczaszek-Leonardi, Denkiewicz, & Plewczyn-
ski, 2012; Sorkin, Hays, & West, 2001). This new approach
followed from recent observations that collective benefits of co-
operation can exceed what is expected from the purely statistical
advantage of vote aggregation (Bahrami et al., 2010; Allison A.
Brennan & Enns, 2015). Inspired by the computational principles
of optimal cue integration (Knill & Pouget, 2004), Bahrami and
colleagues (2010) proposed a Weighted Confidence Sharing
(WCS) model for joint decision making. The model posited that, to
arrive at a joint decision, interacting agents shared their Type I
decisions weighted by their type II decisions which, in this case
was their respective confidences. The dyad would then compare
these confidence-weighted decisions that support opposite choice
alternatives and opt for the choice supported by the higher confi-
dence. This conceptually simple model correctly predicted that
joint perceptual decision making would go beyond vote counting
but fall short of idealistic Bayesian cue combination which had
previously been demonstrated in multisensory perception (Ernst &
Banks, 2002).

Even though the WCS model employed the concept of sharing
confidence, its predictions for dyadic sensitivity only incorporated
each individual’s Type I sensitivity. This was because WCS made
the simplifying assumption that participants had a good grasp of
their internal uncertainty and could accurately communicate it via
confidence sharing (Bahrami et al., 2010). In other words, WCS
assumed that interacting individuals’ metacognitive sensitivities
are both good and similar to each other. Since then, empirical
evidence for interindividual differences in metacognitive sensitiv-
ity (Baird et al., 2013; Fleming et al., 2010; Song et al., 2011) has
demonstrated that this assumption was too optimistic. Here we
address the question arising from this demonstration: whether, and
to what extent, collective decision making depends on interacting
individuals’ metacognitive sensitivity. Importantly, to isolate the
pure role of metacognitive sensitivity, we were mindful of the
frequently observed close association between Type I and type II
sensitivity (Barrett, Dienes, & Seth, 2013; Green & Swets, 1966;
Kunimoto, Miller, & Pashler, 2001; Maniscalco & Lau, 2012) in
our experimental design. We employed a novel, interactive adap-
tive staircase design to dissociate metacognitive sensitivity from
first order sensitivity.

What Combination Rule Best Captured
Confidence Aggregation?

Moreover, as we noted above, the WCS model only predicted
the sensitivity of the Type I joint decision making and whether
jointly made Type I choices would lead to benefit or loss. The

model’s description of the dyadic decision process is abstract and
does not provide any clues about psychological mechanisms in-
volved in the confidence of the joint decisions. Critically, it re-
mains agnostic about how interaction and individual confidence
sharing may shape the uncertainty associated with the joint deci-
sion itself. For example, would the average of individual confi-
dences give a good approximation of the joint confidence? Would
it matter for the dyadic confidence if individuals agreed or dis-
agreed with one another? These issues relate directly to the pre-
vious section on perceptual and social sources of confidence. To
address this question, here we provide a detailed description of the
dynamics of dyadic interaction using a novel visualization method.
A 2-dimensional Opinion Space is constructed in which each
participant’s individual Type I and II decisions are portrayed by a
spatial representation along one of the two axes. Locations in this
2-D space correspond to all possible interactive situations. The
outcome of the interaction, that is, dyadic Type I and II decisions,
are then represented as vectors originating from each location (i.e.,
interactive situation). Visualization of the vector trajectories on
this space helps us understand the dynamics of dyadic interactions.

Method

Participants

All participants (n = 32; all male; mean age = 24; SD = 7)
were recruited using the UCL Division of Psychology and Lan-
guage Sciences’ database of registered volunteers. The choice of
recruiting only male participants was motivated by evidence sug-
gesting task-irrelevant sex-stereotypical behavior in mixed-sex
dyads and represent common practice in this literature (Buchan,
Croson, & Solnick, 2008; Diaconescu et al., 2014; Mahmoodi et
al., 2015). Participants came from diverse educational back-
grounds and different ethnicities; all of them lived in the U.K. at
the time of the study. Participants were paid 7.5£/hour plus pos-
sible extra money in case of good performance. Members of each
dyad knew each other. The study received ethical approval from
the local ethics committee, and written informed consent was
obtained from all participants.

Display Parameters and Response Mode

The experiment was implemented in MATLAB version
7.6.0.324 (R2008a) (http://www.mathworks.co.uk/) using the Co-
gentv.1.29 toolbox (http://www.vislab.ucl.ac.uk/cogent.php). Par-
ticipants sat at right angles to each other, each facing their own
LCD Dell monitor (diagonal length = 50 cm, resolution = 800 X
600; Figure 1B). The two monitors were connected to the same
Dell Precision 390 (Intel core2 Extreme processor) computer using
an output splitter that provided both monitors with the same
outputs. Viewing distance was ~59 cm.

Within each session of the experiment, one participant re-
sponded using the keyboard, the other using the mouse. Both
participants used their right hand to respond. Each participant in a
dyad viewed only half of the screen, with the other half occluded
by a piece of thick black cardboard (Figure 1B). The participant
using the keyboard viewed the right half of the display; the
participant using the mouse viewed the left half of the other
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Figure 1. Experimental paradigm. (A) After stimuli were presented on

each trial, participants were asked to respond individually through postde-
cision wagering (PDW) and were not allowed to talk (Postdecision wa-
gering panel). Each participant could wager up to one pound on one of two
possible intervals. Then, personal decisions were declared and a joint
decision was required. Participants could wager together up to one pound
on the group’s choice and were now allowed to verbally communicate
(Verbal communication panel). Finally, feedback on performance and
relative earnings were given. (B) Experimental set up: one participant used
keyboard response mode and the other mouse response mode. They
swapped position and device half way through the experiment. (C) Typical
ROC curve constructed from 5-points confidence scale (fictional data). x
axis: probability of expressing confidence i after incorrect decisions. y axis:
probability of expressing confidence i after correct decisions. The area
under the curve (Agoe = dark gray + light gray area) represents meta-
cognitive sensitivity. See the online article for the color version of this
figure.

display. Halfway through the experiment (i.e., after 128 trials),
participants swapped their positions and response devices.

Stimuli

Six vertically oriented Gabor patches (Figure 1A) (spatial fre-
quency = 1.5 cycles deg ', contrast = .2) were presented for 85
ms equally spaced around an imaginary circle (radius: 8°), fol-
lowed by a blank display lasting 1000 ms and then another set of
gratings for 85 ms (Figure 1A). An oddball of higher contrast, the
target, was constructed by adding an additional contrast computed
by a modified 2-down-1-up staircase function (Levitt, 1971; Song
etal., 2011) to one of the gratings in one of the intervals. The exact
locations of the 6 gratings presented in each interval were jittered
between 0 and pi/10 arcdegrees on every trial to avoid retinal
adaptation. The onset of each interval was jittered between 0 and
500 ms on every trial.

Task and Staircase

We used a 2-alternative forced-choice (2-AFC) design: partici-
pants had to indicate the interval in which the target grating was
displayed. Metacognitive sensitivity was probed while maintaining
constant accuracy. Metacognitive sensitivity and accuracy are
closely correlated and if we allow both to vary independently, it is
impossible to disentangle the contribution of metacognitive sensi-
tivity to collective decision making from that of accuracy (Koriat,
2012). To maintain constant accuracy levels, we used a 2-down-
1-up staircase procedure to modify the contrast of the target
relative to the other nontarget gratings which converged at 70.7%
accuracy (Fleming, Huijgen, & Dolan, 2012; Fleming et al., 2010;
Levitt, 1971; Song et al., 2011). An important modification was
introduced to the algorithm that enhanced the stability of the
staircase (Treutwein, 1995) by adaptively reducing the step size at
every reversal of direction of decision accuracy (i.e., from error to
correct and vice versa) until the minimum step size of 1% lumi-
nance contrast was reached. This adaptive adjustment of step size
helps stabilize the staircase: as the staircase goes on, step size is
adaptively reduced to achieve appropriate precision for threshold
measurement, tuning the staircase to each participant’s sensitivity
landscape.

Experimental Conditions and Procedure

Three conditions were employed and randomly shuffled across
the experiment (Figure 2A). In the Standard condition (Figure 2A,
left panel), the oddball appeared in the same location and interval
on each trial for both participants. Target contrast was indepen-
dently computed for each participant by the staircase procedure on
the basis of the participant’s previous history of correct/incorrect
responses in the preceding Standard trials. In this condition, par-
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Interval 1 Interval 2 Interval 1 Interval 2
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Figure 2. (A) The three conditions employed in the experiment. In
Standard trials the oddball target appeared in the same location and interval
for the two participants. In conflict trials the oddball appeared in random
locations but opposite intervals for the two participants. In Null trials the
oddball was indistinguishable from the distractors. (B) Average distribu-
tions of individual and dyadic wager size across the three conditions.
Wager size is defined as absolute wager rank and ranges from 1 (minimum
wager level) and 5 (maximum wager level). Error bars represent SEM. See
the online article for the color version of this figure.
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ticipants received trial-by-trial feedback about accuracy. There
were 156 Standard trials. In the Conflict trials, the oddball ap-
peared in different locations and intervals on each trial for the two
subjects (Figure 2A, middle panel). In the Null trials, there was no
target at all: the target additional contrast was zero (Figure 2A,
right panel). In the Conflict and Null trials, feedback was not
provided. There were 50 Conflict and 50 Null trials. Note that (a)
target stimulus contrast was at threshold and (b) agreement and
disagreement were likely to happen in any of the 3 conditions and
(c) whether or not feedback was going to be provided would only
be revealed at the end of each trial after all individual and joint
decisions had been made. These factors ensured that the partici-
pants remained naive about the conditions throughout the experi-
ment.

The experiment started with a practice block of 16 trials with a
fixed target contrast arbitrarily set (well above threshold) at 20%.
The main experiment consisted of 2 runs of 8 blocks with 16 trials
each. In every trial, participants first made a private decision about
the interval the target appeared in. Type II responses were elicited
through postdecision wagering (PDW) (Persaud et al., 2007):
participants could wager up to one pound in steps of £0.20 on one
out of two possible intervals depending on their level of confi-
dence (Figure 1A, “Post-decision wagering” box, color code rep-
resents participant). Using forced choice design meant that wager-
ing zero was not allowed. During this individual wagering,
participants could not see their partner’s choice and were in-
structed not to communicate any information about their response.
After each participant placed his wager, the computer displayed
both participants’ decisions and wagers on the screens (Figure 1A)
and a joint decision was prompted. At this stage participants made
a joint decision and placed a joint wager of up to one pound on
their dyadic choice (not shown in the figure). We defined dyadic
deliberation time as the interval from the presentation of the
prompt asking for joint decision until the joint decision was
declared. The joint decision was communicated to the computer
(“confirmed”) by the participant using the keyboard on odd trials
and by the participant using the mouse on even trials. Color codes
were used to denote the participant using the keyboard (in blue)
and mouse (in yellow). Joint decision was elicited by the same
color code to indicate which participant was assigned to input the
joint decision (Figure 1A). During the collective part, participants
could openly discuss their choice and wager (“Verbal Communi-
cation” box). Joint wagers were elicited on every trial. In Standard
trials, once the joint response was announced, the computer dis-
played feedback indicating each participants’ earnings and the
accuracy of the individual and joint decisions (Figure 1A). Earn-
ings were calculated by adding up the outcomes of the individual
and joint wagers. In case of correct decisions the amount of money
was positive while in case of incorrect decisions it was negative.
For example, suppose that a participant placed 20p on the second
interval for the individual decision and agreed to place 80p on first
interval for the group decision. Now, if the correct choice turned
out to be the first interval, then the participant’s total earnings
would be (—20)+80 = 60p. In Conflict and Null trials, feedback
was not given and the message ‘Go for the next trial” appeared
instead. The choice of providing feedback only on Standard trials
was motivated by the fact that in Null trials accuracy, and hence
feedback, could not be defined. Similarly, on Conflict trials, dy-
adic accuracy could not be defined and providing conflicting

feedback for individual choices would give away the experimental
manipulation. At the end of the experiment, five trials were ran-
domly selected from each run and participants received 50% of
their earnings from these trials. The experimenter was always
present in the room to make sure instructions were followed.
Wagers (ranging from 0.2£ to 1£) were analyzed and plotted as
wager rank (from 1 to 5) (Figure 2B and Figure 3) to simplify the
notation and computation of type II ROC curves. This linear
transformation does not affect our data analysis. We refer to
absolute wager rank as wager size and to signed wager rank simply
as signed wager, where the sign represents the interval chosen.

ROC Curves

We assessed participants’ metacognitive sensitivity using the
type II receiver operating characteristic (ROC) curve (Macmillan
& Creelman, 2005; Song et al., 2011). Although other measures of
metacognitive abilities, such as meta d' are sometimes preferred,
we opted for the parameter-free type II Apo because it makes
fewer assumptions regarding the underlying generative process for
confidence (Fleming & Lau, 2014) and it has been widely used in
the literature (Baird et al., 2013; Fleming et al., 2010; Song et al.,
2011).

Following signal detection theory, we defined the area under the
ROC curve (Agpe) as our objective measure of metacognitive
sensitivity. The 5-point wager-scale was used as an indirect mea-
sure of confidence (Seth, 2008). Specifically, for every wager level
i, probabilities p(ilcorrect) and p(ilincorrect) were first calculated
(Kornbrot, 2006; Song et al., 2011), transformed into cumulative
probabilities, and plotted against each other anchored at [0,0] and
[1,1] (Figure 1C). We calculated the area under the curve by
following the method provided by Fleming and Lau (2014) which
corrects for Type I confounds. All the analyses were performed
using MATLAB (Mathworks).

Aggregate and Trial-Level Models

We tested our hypotheses both at the participant level with
ANOVAs (with participant as the unit of analysis) as well as at the
trial-level using multilevel models. The use of a multilevel mod-
eling in the trial-level analysis was motivated by the fact that
observations of participants within dyads are more likely to be
clustered together than observations across dyads. In addition, this
approach has several other advantages over ANOVA and tradi-
tional multiple linear regressions. (Clark, 1973; Forster & Masson,
2008; Gelman & Hill, 2007). We implemented multilevel models
using the MATLAB fitlme function (Mathworks) and REML
method. In each case, we started by implementing the simplest
possible regression model and progressively increased its com-
plexity by adding predictor variables and interaction terms. Within
each analysis, models were compared by computing the AIC
criterion that estimates whether the improvement of fit is enough
to justify the added complexity.

Wagering in Opinion Space

To better understand the psychological mechanisms of joint
decision making, and specifically, to see how interaction and
sharing of individual wagers could shape the uncertainty associ-
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ated with the joint decision, here we introduced a new visualization
method. We envisioned the dyadic interaction as movements on a
two-dimensional space. Each point on this space corresponds to an
interactive situation that the dyad might encounter in a given trial.
The x coordinate of such point corresponds to the more confident
participant’s individual wager on a given trial. The y coordinate
corresponds to the less confident participant’s choice and wager
relative to the first participant: positive (upper half) indicates that
the less confident partner’s choice agreed with the more confident
partner. Vice versa negative (lower quadrant) indicates disagree-
ment. The triangular area between the diagonals and the y axis
(Figure 4, shaded area) indicates the space of possible interactive
situations.

In any trial, participants may start from a given point on this
space (i.e., during the private wagering phase). Via interaction they
make a joint decision and wager. This final outcome of the trial can
also be represented as a point on this space. Because the dyadic
choice and wager are the same for both participants, these points
will all line on the agreement diagonal (i.e., 45 degree line in the
upper part). Thus, each interaction could be represented by a
vector, originating from the coordinates defining private opinions
(i.e., choices and wagers) and terminating at some point along the
agreement diagonal. We summarize all such interaction vectors cor-
responding to the same initial point by averaging the coordinates of
their termination. The resulting vector (after a linear scaling to avoid
clutter) gives an indication of the dyadic strategy. By repeating the
same procedure for all possible pairs of private opinions, we chart a
vector field that visualizes the dyadic strategy. Our 2-D space consists
of a 5x10 “opinion grid” corresponding to the 5 X 10 possible
combinations of private opinions (i.e., choices and wagers). Because
of the symmetry of our data, trials from the two intervals are collapsed
together. To determine the interaction vector for each node of the
opinion grid, we took all trials in which private opinion pair corre-
sponded to that node and averaged the differences between the dyadic
and private wagers. For example let’s say we want to compute the
wager change vector for the node (5, —1) (Figure 4B). We select all
trials in which one of the participants reported a wager size of 5 (i.e.,
maximum wager on either of the intervals) and the other participant
disagreed with a wager size of 1 (lowest wager on the other interval).
Now we calculate the average dyadic wager on this subset of trials
relative to the most confident participant (i.e., positive indicates dy-
adic wager agrees with most confident wager, negative indicates
dyadic wager disagrees with most confident participant) and call this
real number k. The x and y components of a wager change vector are
defined as: x* = k — (5) and y’ = k — (—1). Linear rescaling was
applied so to fit all arrows to the size of the grid according to the
quiver MATLAB function.

This simple measure represents both the direction and magni-
tude of wager change as a consequence of interaction. The main
descriptive strength of this visualization is that we can apply the
same procedure to nominal dyads that, in each trial, take the same
private wagers—namely same x and y—but follow a specific
strategy (e.g., averaging individual wagers) to reach a dyadic
choice—namely k—and compare the resulting nominal Opinion
Spaces to our empirically obtained one. The comparison (see
Results) provides an immediate and intuitive understanding of the
dyadic strategy employed. We compare the empirical dyads with
five different strategies for wager aggregation: (a) Averaging:
signed private wagers are averaged together. In case of disagree-

ment ties the minimum wager on a random interval is made; (b)
Maximum Confidence Slating: The interval and wager of the more
confident person are taken as dyadic interval and wager. In case of
disagreement ties, one of the two participants’ intervals is taken
randomly; (c) Maximizing (Supplementary material): the interval
chosen by the more confident participant is taken as dyadic inter-
val and the maximum wager possible (i.e., 5) is taken as wager
size. In case of disagreement ties, one of the two participants’
intervals is taken randomly; (d) Summing: signed wagers are
added up together and bounded by the maximum wager available
(i.e., 5). In case of disagreement ties the minimum wager on a
random interval is made (c) Coin Flip (Supplementary material):
one of the two participants’ interval and wager is taken at random
as dyadic interval and wager.

Control Measures

After the experiment each participant was tested with two brief
computer-based tasks that assessed individual economic personal
traits like risk and loss aversion that could have confounded our
PDW measures. Neither our Risk-Aversion nor Loss-Aversion
index correlated with any of the variables of interest; both indi-
vidual and dyadic levels were considered (see Supplementary
material for details). Relevant personality traits were also assessed
for each participant using two online questionnaires (see Supple-
mentary material for further details and results).

Results

Frequency of Agreement in Different Conditions

Manipulation of perceptual evidence affected the frequency of
agreements significantly across the three conditions (one-way
ANOVA F(2,30) = 50.9, p < .001, n = .64). Agreements were
most frequent in the Standard trials (~60%), significantly more
frequent than in Null trials (~50%), #(15) = 4.86, p < .001, d =
1.69, which in turn contained significantly more agreements than
Conflict trials (~40%), t(15) = 4.47, p < .001, d = 1.44.

Visual Signal Drives Individual Confidence

At the participant level, mean individual wager size differed
across conditions (Standard trials = 2.82, Conflict = 2.88, Null =
2.26, F(2,62) = 77.81, p < .01, 0 = .09) (Figure 2B left panel,
Figure 3A and 3B). Post hoc comparisons showed that individual
wager size for Standard and Conflict trials did not differ signifi-
cantly but were both significantly greater than Null trials (paired ¢
test; both #(31) > 8.8, both p < .001, d > 0.7). Figures S3-S8
show the distribution of wager sizes for each participant and dyad
across the three conditions. These results serve as reassuring sanity
check by confirming that individuals’ confidence behavior did
follow and reflect the availability of perceptual information in the
Standard and Conflict trials compared with Null trials where no
visual signal had been presented to the participants.

Perceptual and Social Sources of Confidence

To address our first theoretical question and quantify the
contribution of social and perceptual information to dyadic
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Figure 3. In all panels, “Individual overall” refers to measures taken during the first part of each trial, when
individuals made private decisions. The term overall refers to the fact that trials were not split according to social
consensus. “Dyadic dis/agree” refers to measures taken in the second part of each trial by both individuals
jointly. These measures are split and presented according to consensus. (A) Relationship between changes in
wager size and accuracy at the individual (middle bars) and dyadic level (left and right bars) in Standard trials.
After interaction, wagers increase or decrease according to social consensus. The magnitude of the change
reflects the magnitude of change in the expected correct response rates. (B) Same data as in panel A left, but for
Conflict and Null trials. Average wager size across Conflict and Null conditions, different decision types
(individual vs. dyadic) and divided by consensus. As in panel A, individual wagers are represented by the middle
bar, whereas dyadic wagers are represented by the left and right bars and divided by consensus. (C) Social versus
perceptual effect on dyadic wager size (left) and wager change from baseline (right).
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uncertainty, we asked how the perceptual manipulation and the
emerging consensus influenced dyadic wagers. We will first
present the results from multilevel model analysis and report
the results both for standardized and unstandardized variables.
After reporting each significant effect using the multilevel
analysis, we will report the equivalent finding using the more
conventional ANOVAs in which participant is the unit of anal-
ysis (effect sizes are reported as Generalized Eta Squared [n3];
Bakeman, 2005). This slightly redundant approach allowed us
to communicate the findings more intuitively and to make sure

the results did not arise from some particular artifact of the
method being used.

Linear mixed effect modeling results. To understand the
factors influencing dyadic wagers, we employed a multilevel linear
regression with trials as data points; importantly we defined indi-
vidual trials as grouped within participants themselves grouped
within dyads. We tested several models to predict dyadic wager
size (DV). The winning model according to the AIC criterion
(Akaike, 1974) had five predictors and 10 fixed coefficients (Table
S1a). Main fixed-effect predictors were consensus (coded categor-
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Figure 4. Dyadic Opinion Space. (A) Dynamics of opinions aggregation can be understood by conceiving the
dyad as moving along the two-dimensional space whose axes represent each subject’s confidence or postdeci-
sional wagering on any 2AFC task. x axis represents wager size of the most confident participant. y axis
represents wager of the less confident participant relatively to the first participant. Bottom and upper halves
represent disagreement and agreement situations respectively. Diagonals represent situations where both subjects
placed the same bet on the same (perfect agreement) or opposite intervals (perfect disagreement). The shaded
area represents portion of the space where interaction takes place. (B) Each vector‘s components on the grid
represent wager change along the scale for each participant. Direction and magnitude represent wager change
(Awager), defined as the signed difference between the average dyadic wager and individual wagers for a
particular interactive situation. (C) Empirical vector field averaged across dyads. (D) Vector fields computed on
nominal dyads obtained by predetermined algorithms applied to the empirical individual wagers. On each trial
and for each dyad a nominal dyad’s response is obtained by computing the wager that the algorithm specifying
that nominal dyad would have responded had it been in the situation defined by that trial’s individual private
wagers. In particular, bounded Summing always sums the two initial individual wagers to obtain the dyadic one.
Maximize puts the maximum wager on the alternative supported by the most confident participant. Averaging
always averages the two initial wagers to obtain the dyadic wager. Maximum Confidence Slating selects on each
trial the wager and choice of the more confident participant and chooses randomly when wagers are equal. Notice
the similarity between the bounded Summing algorithm and the empirical dyad. See the online article for the
color version of this figure.
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ically as O for disagreement and 1 for agreement), condition (coded
categorically as O for Null, 1 for Standard, and 2 for Conflict), and
absolute individual wager size (assumed to be continuous, ranging
from 1 to 5). Their reciprocal interactions were also added to the
model as fixed-effects terms. At the dyadic level, a random term
was defined only for the intercept. At the subject level random-
effects were defined for intercept, for each main predictor and for
two interaction terms, namely agreement”condition and agree-
ment“individual wager. The random-effect interaction between
individual wager and condition was not included because it did not
significantly improve the fit of the model, x*(19) = 22.51, p > 2.
The resulting model was significantly better than a model without
random effects and multilevel structure as tested by a Likelihood
Ratio Test, x?(37) = 2544.5, p < .001.

We predicted that both private wagers and social information
(e.g., consensus) should affect dyadic wagers. Indeed beta coeffi-
cients (see SM Table Sla for complete table) showed that dyadic
wager was positively predicted by both individual wager size (§ =
0.40, SE = 0.04, Byq = 0.36, SE,, = 0.03, p < .001) and by
agreement compared to disagreement (B = 1.27, SE = 0.18,
Boa = 1, SEyq = 0.06, p < .001). Moreover both Standard (B =
0.58, SE = 0.10, Byq = 0.21, SE 4, = 0.05, p < .001) and Conflict
(B = 0.60, SE = 0.11, B,q = 0.18, SE,4 = 0.05, p < .001)
conditions predicted larger dyadic wager size compared to Null
condition.

ANOVA results. We combined the data from 32 individuals
and 16 dyads into a unified analysis by taking the average dyadic
wagers input (“confirmed”) by each individual separately and
construct a 2-way repeated-measures ANOVA (3 conditions: Stan-
dard, Conflict, Null X 3 decision types: individual, dyadic agree,
dyadic disagree) with mean absolute wager size as the dependent
variable. We found a main effect of condition, F(2, 62) = 62.68,
p < .001, n3 = .07, main effect of decision type, F(2, 62) =
110.14, p < .001, m3 = .32, and a significant interaction between
the two, F(4, 124) = 6.34, p < .001, n3 = .01 (Figure 3A, left
panel and Figure 3B). Planned comparisons confirmed that dyadic
wagers were indeed higher for agreement trials compared to dis-
agreement trials, #(31) = 14.26, p < .001, d = 1.69 and to
individual private wagers, #(31) = 9.94, p < .001, d = 1.29;
dyadic wagers in disagreement in turn were significantly smaller
than individual wagers, #(31) = —3.5, p = .001, d = 0.38. Within
agreement trials, average dyadic wager size in Standard trials was
significantly greater than in Conflict trials, #(31) = 4.81, p < .01,
d = 0.38; wager size in Conflict trials was, in turn, significantly
greater than in Null trials, #(31) = 2.75, p < .01, d = 0.29. Within
disagreement trials on the contrary no difference was found be-
tween Standard and Conflict trials but these conditions showed
greater wagers than Null trials, #(31) > 5.1, p < .001, d > .55.

Testing the Predictions of the Optimal Cue
Combination Theory

Optimal cue combination (Knill & Pouget, 2004) would predict
(see Introduction) that under the Null condition in which the
perceptual cues are less reliable or simply nonexisting, dyads
should rely more heavily (compared to Standard condition) on
social cues such as consensus.

Linear mixed effect modeling results. The Standard condi-
tion did not interact with consensus (3 = —0.01, SE = 0.09,

Bya = —0.006, SE 4, = 0.06, p > .9), meaning that the difference
in dyadic wager between agreement and disagreement trials was
equal in Standard and Null trial. The Conflict condition, on the
contrary, interacted negatively with consensus (3 = —0.2, SE =
0.10, Byq = —0.12, SE 4 = 0.06, p = .04): compared with Null
trials the consensus effect (the difference in dyadic wager between
agreement and disagreement trials) was reduced in this condition.

Moreover, trial-by-trial private wager size interacted negatively
with both Standard (B = —0.08, SE = 0.02, B,q = —0.07, SEq =
0.02, p < .001) and Conflict (3 = —0.10, SE = 0.02,
Bga = —0.09, SE,q = 0.02, p < .001) conditions in predicting
dyadic wager size. This means that the positive relation between
individual wager size and dyadic wager size observed in Null trials
was reduced in the other two conditions. In the absence of a
perceptual evidence (i.e., a Null trial), dyadic wagers followed the
initial individual opinions closely and contrary to predictions of
optimal cue combination, social interaction did not add much
variance, whereas when the stimulus was presented, social inter-
action contributed more significantly to dyadic wagers, making it
more difficult to predict the dyadic wager size from individual
wagers size only. Note that in Figure 3C, social interaction was
operationalized by agreement versus disagreement whereas here
social interaction is inferred from the trial-by-trial predictive rela-
tionship between individual and dyadic wagers. Individual wager
size and consensus interacted positively (3 = 0.13, SE = 0.05,
Bya = 0.12, SE, = 0.05, p = .01). Compared with disagreement
trials, the regression factor relating individual and dyadic wager
sizes became more positive under agreement. This finding is
indicative of a change in dyadic wagering strategy that depended
on the social situation (i.e., agreement vs. disagreement). We will
come back to this point further below (see Opinion Space in
empirical and nominal dyads).

ANOVA results. To disentangle the role of social information
from stimulus strength at the participant level, we studied within-
condition wagers across decision types. By comparing agreement
and disagreement trials in Standard and Null conditions we were
able to disentangle the social and perceptual components of wager
change (Figure 3C). In particular, differences in wager size be-
tween agreement and disagreement (the social effect) were com-
pared when stimulus was present (Standard) versus when stimulus
was absent (Null). A 2-way repeated measures ANOVA (2 con-
sensus levels: agree vs. disagree X 2 stimulus levels: present
(Standard trials) vs. absent (Null trials)) showed significant effects
both for consensus, F(1, 31) = 248.91, p < .001, ng = .45, and
stimulus factors, F(1, 31) = 107.88, p < .001, & = .11, but,
critically, no interaction. The same was true when the ANOVA
had as dependent variable wager change from baseline (i.e., the
respective individual wager corresponding to each dyadic decision
type) instead of wager size. The results did not show any interac-
tion between the social and the perceptual factors (p > .22; Figure
3C, right panel). Moreover, whereas the consensus effect (Agree
vs. Disagree) was maintained, F(31) = 24891, p < .001, n3 =
.60, the effect of stimulus presence (Standard vs. Null) was now
absent (p > .5) indicating that wager change due to interaction
(i.e., difference between the private and dydic wager) was not
affected by stimulus presence.

Taken together, the multilevel modeling and ANOVA results
showed that social interaction per se did not modulate the uncer-
tainty about stimulus strength, but contributed to dyadic wager by
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providing some extra piece of independent evidence (i.e., agree-
ment or disagreement). The dyadic wagers reflected both the social
and the perceptual evidence additively and linearly. The consensus
effect (i.e., the difference between agreement and disagreement
trials) was the same for Standard and Null trials. These findings
did not seem to confirm the prediction drawn from Optimal Cue
Combination.

Did dyadic deliberation time impact the joint interaction?
Another question that only the trial-by-trial analysis could address
is whether dyadic deliberation time (see Methods) impacted the
dyadic wagers. We expanded our model to include a main regres-
sor for dyadic deliberation time (Table S1b). A negative significant
effect for deliberation time in predicting the dyadic wager was
obtained only from standardized data (3 = —0.01, SE = 0.007,
Baa = —0.08, SE,4 = 0.008, p < .001). It suggests that lower
deliberation times are associated with greater dyadic wagers. The
only interaction effect that survived the likelihood ratio test was
that deliberation time interacted negatively with individual wager
size (B = —0.008, SE = 0.002, By = —0.03, SE,q = 0.009, p <
.001). This is plausible because highest dyadic wagers are made
when dyad members are confident and they reach a joint decision
quickly.

Wager Changes Reflect Expected Accuracy Rates

As shown in Figure 3, in all conditions consensus increased
wager size to a significantly greater extent than disagreement
reduced it, 1(31) > 2.52, p < .02, d > 0.77. We tested whether this
pattern of dyadic wagering parallels a similar statistical regularity
in the choice accuracy. If so, then agreements and disagreements
should differently predict the success of dyadic perceptual judg-
ments. In Standard trials, we compared dyadic accuracy condi-
tioned on agreement versus disagreement with the overall individ-
ual accuracy. This way, we directly tested whether the observed
boost in wager size attributable to agreement was indeed coupled
with a similar boost in the dyadic accuracy. We restricted our
analysis to Standard trials because these are the only trials where
dyadic accuracy can be defined meaningfully. A “promise of
consensus” measure was defined as the difference between aver-
age dyadic wager size (or accuracy) in agreement trials and aver-
age individual wager size (or accuracy). Similarly a “warning of
disagreement” was defined as the difference between average
individual wager size (or accuracy) and the average dyadic wager
size (or accuracy) in disagreement trials (Figure 3A). Paralleling
the earlier findings on wager size, the promise of consensus for
accuracy was significantly greater than the warning of disagree-
ment, #(31) = 4.33, p < .001, d = 1.13 (Figure 3A, right). In
addition, the difference between the promise of consensus and the
warning of disagreement was calculated for wager and accuracy
measures. These two differences were positively correlated across
dyads, 7(30) = .34, p = .05, suggesting that wager changes after
interactions reflected the expected changes in correct response
rate. Importantly, such positive relationship observed between
wagers and accuracy was present only after social interaction took
place. The same analysis on private correct response rates showed
that such a close match did not exist at the individual level, #(30) =
.20, p = .25. Here the warning of disagreement was significantly
greater than the promise of consensus, #(31) = 4.30, p < .001,d =
0.96. Interaction thus led to a better wager-accuracy recalibration.

The same result was shown when specifying the nested structure of
our data (subjects within dyads) in a simple multilevel regression
with subjects as data points (Table S3). In it we chose as our
dependent variable the difference between promise of consensus
and warning of disagreement for accuracy (DV) and tested
whether one could predict this by observing differences between
promise of consensus and warning of disagreement for wagers
(IV). Once more trials were grouped within participants who in
turn were grouped within dyads. Random intercepts were defined
for dyads and for participants. Their reciprocal relation was mar-
ginally significant (3 = 0.04, SE = 0.02, B,y = 0.34, SE 4 =
0.17, p = .05), thus supporting the results obtained by the simple
Pearson’s correlation. Moreover, metacognitive sensitivity com-
puted on dyadic choices and wagers was greater than the less
metacognitive participants within each dyad, #(15) = 2.62, p <
.02, d = 0.79, but no different from the more metacognitive ones
(p > 4), suggesting that metacognitive accuracy at the dyadic
level did not suffer a collective loss.

Social Influence Analysis

Because a decision and a wager were elicited both before and
after social interaction took place on every trial, we were able
to investigate the impact of social interaction on dyadic wager
directly by looking at the distance between individual and
dyadic wager (Awager). In particular, we were interested in
looking at which factors better predicted the more influential
individual within each dyad on a given trial.

On Standard trials, because of the staircase procedure, partici-
pants agree correctly on .7 X .7 = 49% of trials and incorrectly on
.3 X'.3 = 9% of trials. So they should have learnt that when they
agree, they should trust their judgment. When they disagree on the
contrary, they would be correct only 50% of the time if there were
to flip a coin between the two of them. But as it can be seen in
Figure 3A, right panel, dyadic choices in disagreement are far
better than chance, #31) = 8.32, p < .001 rejecting the coin
flipping as a strategy. Thus, participants are not just randomly
choosing between their two judgments. What cue are they follow-
ing? At the moment of the dyadic choice, when accuracy has not
been yet revealed, only choices, current wager sizes and past
outcomes are available. Although past accuracy is equal because of
the staircase procedure, participants might have learnt who has
collected more money so far, which would correspond closely to
their own and their partner’s metacognitive sensitivity (see Meta-
cognition and Collective Decision-making). On the other hand,
they may follow a much simpler strategy of favoring the partner
with higher wager in that trial. In fact, recent works (Mahmoodi et
al., 2015) suggest that even when a conspicuous accuracy gap
separates the partners, they still insist on following the simpler
strategy of choosing the maximum wager. We thus wanted to see
whether individuals’ wager size or their metacognitive sensitivity
better predicted the influence they exerted on the final dyadic
choice and wager. We reasoned that the smaller the distance
between the dyadic wager and the individual wager the higher that
individual’s influence on the collective final decision. We defined
influence (/) by:

I=10— IAwagerl (1)

where Awager = wager,,., — wager,,,;, represents the distance
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between dyadic and individual wager in a given trial. Given this
formulation, / = 10 would correspond to maximum influence (the
individual completely dominated joint wager); conversely, I = 0
would indicate minimum influence that is, the individual’s maxi-
mum wager on a choice alternative was completely reversed in the
dyadic stage. Notice how this measure is tied to the specific scale
used and to the private initial wager. For example minimum
influence can be achieved only when starting from a wager size of
5. One could think about more sophisticated indexes that measure
influence relatively to the starting point (that thus are independent
from scale and initial wager size). The downside of more sophis-
ticated measure is that they are harder to interpret.

A multilevel regression was employed (Table S4a) with depen-
dent variable: influence (), predictors: individual wager size,
cumulative earnings, condition, and their reciprocal interactions.
Trials were grouped within participants and participants within
dyads; random intercepts were defined at both levels. The results
showed that the only factor determining influence was wager size
(B =0.26, SE = 0.03, Byq = 0.18, SE 4, = 0.02, p < .001) but not
earnings that were negatively related with influence (3 = —0.002,
SE = 0.001, By = —0.05, SEy = 0.02, p < .02) (Table S4a).
Moreover, the effect changed according to conditions. Compared
with Null trials, there was a significant positive interaction be-
tween absolute individual wager size and Standard trials (f =
0.20, SE = 0.04, Byq = 0.14, SE, = 0.02, p < .001) and a
marginal negative interaction with Conflict trials (3 = —0.08,
SE = 0.05, Byq = —0.06, SE 4 = 0.03, p = .07). This suggests
that the positive relation between individual wager size and influ-
ence was the strongest in Standard, the weakest in Conflict trials,
with Null trials lying in between. These findings show that the
more influential partner within a dyad was not necessarily the one
who was more metacognitively sensitive (i.e., the one with greater
Aroc), but the one who, so to speak, shouted louder and wagered
higher.

It could be the case however that although individual wager size
was immediately available to participants, learning who earned
more or who was the more metacognitively sensitive partner might
have required more time and sampling. The strength of the trial-
by-trial analysis is that we could test this hypothesis by including
time as a regressor in our model. We added trial number as an extra
predictor and looked at its interaction terms with earnings and
individual wager size (Table S4b). No positive interaction was
found between earnings and time, failing to support the hypothesis
that participant learned about metacognitive sensitivity over time.
Instead, the influence of the partner with more earnings (hence
more metacognitively sensitive) diminished as a function of time
(B = —1.8e-5, SE = 8.49¢-6, Byq = —0.02, SE,y = 0.01, p <
.05). If anything, more metacognitive partners lost influence with
time.

Opinion Space in Empirical and Nominal Dyads

To visualize the dynamics of opinions integration we looked at
the changes in postdecisional wagering on a 2-dimensional Opin-
ion Space, described in the Methods. The results are shown in
Figure 4C (Figure S11 shows the plot per each dyad). Point of
strongest agreement, namely (5, 5) works as attraction point of the
Opinion Space where vectors seemed to converge to. The magni-
tude of the wager change was maximal along the disagreement

diagonal with vectors pointing centrally. Conversely, the vector
magnitudes were smallest along the agreement diagonal with vec-
tors pointing externally. These opposite patterns suggested that the
dyadic wagering strategy might have changed depending on social
context (agreement or disagreement). Indeed, when we compare
the empirical findings (Figure 4D) to nominal dyads following
some plausible dyadic decision making strategies such as Maxi-
mum Confidence Slating (Koriat, 2012), and Averaging (Clemen
& Winkler, 1999)—depicted in the top and middle panel of Figure
4D—neither one captures the variability in the empirical data.
When in disagreement participants tended to average their wagers
by moving toward each other on the scale. On agreement trials, on
the contrary, dyads followed a maximizing strategy as they went
for the maximum wager level. However, we found that an even
simpler strategy, namely simple bounded Summing of signed
wagers (Figure 4D, bottom-right panel) captures the empirical
findings with remarkable concordance. According to this strategy,
dyads aggregate individual wagers simply by adding private wa-
gers bounded of course by the maximum wager size.

To go beyond the qualitative description of the visualization and
compare the empirical dyads to the nominal ones arising from each
strategy, we compared them on first and second order perfor-
mance. Specifically we compared the empirical and nominal in
terms of proportions of accurate responses and total earnings.
Although no difference was found for accuracy (p > .9), empirical
and nominal dyads faired very differently in terms of earnings for
the participants, which directly relates to second-order accuracy
(see “Metacognition and Collective Decision-making” below). To
compare the similarity of empirical dyads’ strategy with nominal
dyads, we computed the difference between empirical earnings and
the earnings that participants could have gained had they adopted
each nominal strategy (see Figure 5). Positive difference would
indicate that dyads performed better than a given strategy would
have earned them and vice versa. Across dyads, a one-way
ANOVA showed significant differences between the four different
strategies, F(3, 45) = 75.05, p < .001, n4 = .63. Planned com-
parisons showed that both the Averaging and Maximum Confi-
dence Slating strategies significantly underperformed compared to
the empirical dyads (both #(15) > 4.43, both p < .001). On the

earnings difference

W
o

n
o
SUM - nominal eamings

40 60 80 100

empirical earnings

—_
o

o

Empirical - Nominal

o
o

-20

AVG MCS MAX SUM

Figure 5. Difference between Empirical and Nominal dyads’ earnings.
Positive bars mean that the strategy underperformed empirical dyads and
negative bars mean that the strategy outperformed empirical dyads. Inset:
Correlation between empirical and nominal earnings as predicted by the
SUM strategy. Data points correspond to each dyad. A strong positive
correlation, r(14) = .88, p < .001, demonstrates that the SUM strategy is
likely to have been used by the majority of dyads.
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contrary the wager Maximizing strategy (see Methods) signifi-
cantly outperformed empirical dyads, #(15) = —4.31, p < .001,
whereas the Summing strategy came closest to the empirical
earnings (p > .5). This result clearly supports the view that the
Summing strategy is the closest description to what we observed
empirically. A strong positive correlation, r(14) = .88, p < .001,
between nominal and empirical earnings (Figure 5, inset) suggests
that Summing was an adequate descriptor for the majority of dyads
and was not an artifact of averaging over dyads.

Importantly, participants did not choose to benefit from the
remarkably simple and financially effective strategy of opting for
the maximum wager for all dyadic decisions. We will come back
to this point in the Discussion.

Metacognition and Collective Decision Making

As expected from the experimental design, performance accu-
racy converged to 71% (Figure 6A, S9A) and showed very little
variance across participants (M = 0.72, SD = 0.03). Most impor-
tantly, accuracy did not show any significant correlation neither
with contrast threshold nor Az (both p > .1; Pearson r < .3).
Our method was therefore successful at dissociating metacognitive
sensitivity from performance accuracy. No matter how well or
badly calibrated our participants were, the use of the staircase
ensured that all of them experienced an almost identical number of
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Figure 6. (A) Individual A (circles) and accuracy (squares) values are

plotted for each subject. Manipulation of performance with staircase
method made different individuals converge around 71% of accuracy.
Metacognitive sensitivity was not affected as can be seen by the wide range
of Agoc values. The same plot but arranged by dyads is shown in Figure
S9A. (B) Correlation between mean dyadic metacognitive sensitivity (com-
puted as Agoc) and achieved collective benefit (difference between dyadic
accuracy and average participants’ accuracy), 7(14) = 0.59; p = .01. The
black solid line indicates the boundary of collective benefit and collective
loss. Points above the line indicate dyads reaching collective benefit. Points
below the line indicate collective loss.

error and correct outcomes. This means that the participants in
each dyad could not draw any judgments about one another’s
decision reliability by simply counting their errors. In addition to
the above, a negative correlation was found between participants’
Agoc and contrast threshold, (30) = —0.38; p = .02, as well as
a significant positive correlation between participant’s Az and
total earnings, r(30) = .36; p = .04. It is important to note that
participants were never able to compare their own visual stimulus
with that of their partner and were not given any explicit informa-
tion about each other’s cumulative earnings.

One of our main hypotheses concerned the relation between
participants’ metacognitive sensitivity and their success in collec-
tive decision making. For each dyad, we calculated the dyadic
metacognitive sensitivity by averaging dyad members’ Agoe. To
assess collective benefit, we calculated the difference between
dyadic accuracy in all Standard trials and the average accuracy of
individuals working as a dyad. Note that the staircase procedure
did not apply to the dyadic decisions and therefore dyadic accuracy
was not bound to converge to any predefined level. Dyadic meta-
cognitive sensitivity was significantly correlated with collective
benefit (r(14) = .59; p = .01; Figure 6B, S9B). Dyads formed by
individuals who were more able to reliably communicate internal
uncertainty were indeed better able to utilize collaboration and
enhance dyadic performance.

Discussion

Numerous previous studies that addressed interactive decision
making and opinion aggregation (Bahrami et al., 2010; Kerr &
Tindale, 2004; Sorkin et al., 2001) principally focused on the
factors that affect collective choice accuracy. The uncertainty and
confidence (Pouget et al., 2016) associated with those collective
choices has been much less studied. To address this question we
tested human dyads making individual and joint perceptual deci-
sions in a visual search for contrast oddball task. Perceptual
information (i.e., luminance contrast) was either provided at
threshold level titrated for each individual (Standard and Conflict
trials) or not at all (Null trials). Social context (agreement vs.
disagreement) arose from combinations of individual choices.
Confidence judgments (using postdecision wagering) before and
after social interactive choice took place was compared under
combinations of perceptual and social contexts (see Figures 1 & 2).

We pursued three main theoretical motivations. First, combining
the previous works in social psychology of expert forecast aggrega-
tion (Clemen, 1989) with the more recent findings in neurobiological
basis of optimal cue combination (Trommershiduser, Kording, &
Landy, 2011), we asked whether interacting human agents adjust the
contribution of perceptual and social information to their joint uncer-
tainty dynamically when making joint decision and confidence. Sec-
ond, we asked what confidence combination rule could best describe
how interacting agents combine their confidences to arrive at joint
confidence. The predictions from several plausible theoretical propo-
sitions (averaging [Clemen & Winkler, 1999], maximum confidence
slating [Bang et al., 2014; Koriat, 2012], maximizing, and bounded
summing) were drawn and compared to the data. Finally, we ques-
tioned a key assumption of some recent previous works on joint
decision making (Bahrami et al., 2010; Koriat, 2012; Sorkin et al.,
2001) assuming that interacting agents have similar metacognitive
sensitivity and can communicate subjective probabilities equally ac-
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curately. In what follows, we unpack how the reported data informs
each theoretical issue.

Testing the Predictions of Forecast Aggregation and
Cue Combination Theories

The principal problem addressed in the field of forecast aggre-
gation (Clemen, 1989; Silver, 2012; Tetlock & Gardner, 2015) is
to find effective way(s) to combine subjective probability esti-
mates (e.g., 5 year survival rate of a given cancer treatment) from
different sources (e.g., two oncologists). Joint perceptual decision
making is a natural candidate for solutions proposed by forecast
aggregation. Optimal cue integration theory (Knill & Pouget,
2004; Ma, Beck, Latham, & Pouget, 2006; Seilheimer, Rosenberg,
& Angelaki, 2014) is the much more recent adaptation of the exact
same forecast aggregation problem to system neuroscience. Un-
surprisingly, forecast aggregation based on opinion reliability
(Morris, 1974) and optimal cue combination (Knill & Pouget,
2004) make similar predictions and prescriptions for how the
dyads should combine social and perceptual information. One
prediction confirmed by our data was the close correspondence
found between changes in wager size and expected accuracy
conditioned on consensus (i.e., agreement vs. disagreement). Com-
pared with overall individual accuracy, agreement boosted dyadic
accuracy and wager much more than disagreement reduced them.
The covariation between confidence and individual accuracy is a
well-documented (Fleming & Lau, 2014) but controversial (Krug,
2007; Roediger, Wixted, & Desoto, 2012) phenomenon. Many of
these previous works argued for a relationship between private,
internal perceptual decision variable(s) and subjective probability
of accurate choice (Aitchison, Bang, Bahrami, & Latham, 2015;
Meyniel, Schlunegger, & Dehaene, 2015; Pleskac & Busemeyer,
2010). To our knowledge, this is the first report of covariation
between confidence and accuracy at joint level. The pattern of
results observed here suggested that dyads had a remarkable im-
plicit grasp of the underlying correlation structure between indi-
vidual choices and their implication for joint accuracy. Dyadic
wagers matched the probability of dyadic success. As such, dyadic
wagering behavior demonstrated the participants’ deep under-
standing of the statistics of the social interaction.

Another prediction of forecast aggregation and cue combination
theories is that the contribution of each source of information to
the joint decision and confidence should depend on the source’s
reliability. If perceptual information is weak or nonexisting (e.g.,
Null trials) then consensus should make a bigger impact on con-
tribution on joint confidence. The prediction drawn from this idea
is a statistical interaction in Figure 3C and 3D: the difference
between joint confidences under agreement versus disagreement
should be larger under Null versus Standard condition. However,
the data did not support this prediction. The impacts of perceptual
and social factors on wager size were linearly separable. Both the
ANOVA and LME analyses showed that the consensus effect—
namely the difference between the increase in confidence attrib-
utable to agreement and the decrease in confidence attributable to
disagreement—has the same magnitude irrespective of the
strength of physical evidence provided (i.e., stimulus present in
Standard and stimulus absent in Null). The lack of interaction in
the ANOVA analysis could not be attributed to averaging over
trials since the same result was obtained using trial-by-trial anal-

ysis. We will come back to how the observed linear separability
could be of help to infer the dyadic strategy for combining indi-
vidual confidences.

A different counterintuitive prediction of the forecast aggrega-
tion and cue combination theories relates to the difference between
Conflict and Standard trials conditioned on agreement. The con-
sensus effect (i.e., the difference between joint confidences under
agreement vs. disagreement) was significantly smaller for Conflict
compared with Null and Standard conditions. Importantly, private
wager sizes in Standard and Conflict conditions were indistin-
guishable (Figure 2B). But upon agreement, dyadic wagers were
higher in Standard versus Conflict conditions. This finding is
important because the participants did not know about the possi-
bility of conflicting perceptual information. Consequently, they
had no reason to entertain the possibility that an agreement may be
a “misguided” one arising from one person having made an indi-
vidual mistake. Nonetheless, and remarkably so, dyadic confi-
dences arising from such misguided agreement in Conflict trials
were more modest compared to dyadic confidences arising from
true agreements in Standard trials.

This intriguing finding is consistent with forecast aggregation/
cue combination if we note that true and misguided agreement
trials (in Standard and Conflict conditions, respectively) pooled
together different proportions of correct and incorrect individual
choices. In a misguided agreement, one of the two agents has made
a mistake. Consequently, in Conflict agreement trials, exactly half
of the individual decisions were correct. On the contrary, true
agreement emerged in about ~58% of the total number of Stan-
dard trials which comprised of ~49% when both individuals were
correct (.7 X .7) in addition to ~9% when they were both incorrect
(.3 X .3). Thus the proportion of correct individual decisions in
true agreements was 49/58 = 84%, much higher than 50% ob-
served in Conflict agreement trials. Combining this fact with the
much replicated confidence-accuracy correlation follows that the
mistaken partner of a misguided agreement should have contrib-
uted a lower wager to the joint decision (see Figure 4). This could
be attributable to changes of mind (Resulaj, Kiani, Wolpert, &
Shadlen, 2009), some postdecisional evidence accumulation pro-
cess (Pleskac & Busemeyer, 2010; Yeung & Summerfield, 2014),
or simply the awareness of weak higher likelihood of error due to
unconvincing perceptual evidence. Although changes of mind are
often observed under speed pressure, postdecision processes might
have contributed to final wagers in Conflict trials here too.
Reliability-based forecast aggregation (as well as optimal cue
combination) would then require a lower joint confidence under
misguided agreement in Conflict condition.

What Combination Rule Best Captured
Confidence Aggregation?

Several previous works have proposed and empirically tested
various joint decision rules for how human agents combine choices
across individuals (Bahrami et al., 2010; Bang et al., 2014; Koriat,
2012; Migdal et al., 2012; Sorkin et al., 2001). But what combi-
nation rule could best describe how interacting agents aggregate
confidences? Our experimental paradigm and data allowed us to
explicitly write down several distinct and plausible confidence
aggregation strategies and apply each one to the data from indi-
viduals and draw parameter-free predictions about the dyadic
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choice and confidence. Some of these plausible strategies were
inspired by previous research. We tested averaging (Clemen,
1989), maximum confidence slating (Bang et al., 2014; Koriat,
2012), maximizing, and bounded summing. Interestingly, all of
these strategies were equally capable of accounting for dyadic
choice and even produce the holy grail of joint decision making,
the two-heads-better-than-one effect. However, they made very
different predictions for joint confidence. Qualitative (see Figure
4) and quantitative (see Figure 5) comparison with the 4 strategies
predictions to the empirical data showed that dyadic behavior was
best described by the algebraic sum of signed wagers bounded by
the maximum wager. Importantly, the same analysis showed that
dyads would have earned significantly more if they followed a
cognitively much simpler, less nuanced strategy of simply betting
the maximum wager on every dyadic choice (irrespective the state
of individual confidences). Dyad did not follow this very simple
and beneficial strategy. Although maximizing earnings, dyadic
wagers based on this strategy would be devoid of any metacogni-
tion and bear no information about the likelihood of correct dyadic
response (Figure S12). The dyads seemed to have traded off
financial gain in return for better interpersonal sharing of subjec-
tive information and matching their joint confidence to probability
of correct choice. Future research would be needed to see whether
this trade-off between monetary reward and richness of commu-
nication can be taken to imply that communication is of inherently
value.

Interestingly, the linear independence of social and perceptual
factors’ contribution to joint confidence (see Figure 3C) is also
inconsistent with pure application of the bounded summing strat-
egy. Whereas optimal cue combination would have predicted a
stronger consensus effect under Null (vs. Standard) condition, the
bounded Summing strategy would entail the opposite: larger
change in wagering after agreement versus disagreements for
Standard compared to Null trials. This prediction arises because
individual are more likely to wager higher under the Standard
condition (see Figure 2B, left panel). To directly compare the
predictions of the bounded summing strategy for the data showing
linear separability of social and perceptual factors (i.e., Figure 3C),
we performed the same ANOV As that was done for empirical data
but this time for the nominal dyadic data arising from application
of the bounded Summing strategy to the individual wagers (Figure
S13). The results showed that if dyads were employing this strat-
egy purely, a highly significant interaction between social and
perceptual factors would be expected, F(1, 31) = 34.16, p < .001,
m& > 0.03, in the opposite direction to that predicted by the
optimal cue integration. This shows that empirical dyads are un-
likely to have adopted a pure bounded Summing strategy to
aggregate their judgments.

The lack of interaction in either direction could, of course, be
real or a type II error. In the Null trials, the effect predicted by
optimal cue combination theory may have been too weak to be
observed since both participants did not receive perceptual evi-
dence. Thus, even if they wanted to rely on their partners (as
normative models would suggest), their partners could not offer
anything but weak and unreliable evidence themselves." However,
the fact that linear mixed-effects analysis—with its higher pow-
er—-confirmed the same result offered some encouragement that
type II errors might be unlikely. These results call for future
research on confidence aggregation and using more sophisticated

models than those proposed and tested here. For example, dyadic
behavior might be better described by mixture of both optimal-cue
combination and bounded summing. Differences between these
two models must yet be better understood.

Interindividual Differences in Metacognition and
Collective Decision Making

Pervious works in collective decision making based on sharing
confidence (Bahrami et al., 2010; Migdal et al., 2012) assumed
that interacting agents have a good grasp on their internal uncer-
tainty and can reliably communicate the probability that their
choice is correct. Here we revisited this assumption and showed
that variations in interindividual differences in human metacogni-
tive ability (Fleming et al., 2012, 2010; Song et al., 2011) make a
significant impact on collective decisions. Moreover, those previ-
ous works (Bahrami et al., 2010; Koriat, 2012; Migdal et al., 2012;
Sorkin et al., 2001) invariably focused on how the collective’s
choice, that is to say first-order performance sensitivity can be
predicted from first-order sensitivity of the individuals making up
the collective. However, previous work on metacognitive sensitiv-
ity has repeatedly shown correlations between first- and second-
order sensitivity (Koriat, 2012; Kruger & Dunning, 1999; Song et
al., 2011). Consequently, whether second-order metacognitive sen-
sitivity (e.g., as measured here by type II Apoc) predicts success
in interactive decision making was not previously known. The dual
staircase paradigm we employed here served two purposes: first, it
allowed us to assess individuals’ second-order, metacognitive sen-
sitivity unconfounded by first order performance. Second, it also
ensure that individuals could not arbitrate their disagreements
based on the number of errors each made, leaving them only with
the option to truly consult their shared metacognitive information
to resolve the disagreement.

We showed that average dyadic metacognitive sensitivity did
indeed predict collective benefit and performance. These results
confirm that the previous assumption of uniformly similar meta-
cognition (Bahrami et al., 2010; Koriat, 2012; Migdal et al., 2012;
Sorkin et al., 2001) was too optimistic. The results are consistent
with a more recent finding that investigated the dyad members’
attitude toward competence gaps between themselves and their
partner (Mahmoodi et al., 2015). Interacting agents behaved as if
they were equally competent even when ample objective evidence
for the opposite conclusion was presented to them. In retrospect, it
seems ironic that the theoretical assumptions made (some of them
by the authors of the current paper) to understand collective
decision making and the implicit bias held by the participants
engaged in those studies were similar.

The use of the staircase ensured that across participants, there
was no correlation between choice accuracy and metacognition.
However, one may correctly argue that this relationship is still
maintained within each participant. A given participant is more
likely to be right in trials he wagered high versus low. Having to
go through a staircase would not break down the trial-by-trial

"In retrospect, this issue could have been addressed if we had another
condition with one participant receiving the Null and the other receiving
the Standard stimulus. Such condition would be comparable with cases of
multisensory capture (Alais & Burr, 2004) where the more reliable source
of information completely takes over the less reliable.
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relationship between confidence and accuracy. We completely
concur with this notion. In fact, metacognitive sensitivity as mea-
sured here is an attempt to capture that trial-by-trial association.
Furthermore, we take this idea one step further to suggest that the
trial-by-trial association between accuracy and confidence is at the
heart of the two-heads-better-than-one effect, which thus depends
on metacognition. The linear mixed-effects analysis showed that
the individuals who turned out to be more influential for the final
dyadic choice on each trial were also those who wagered higher,
irrespectively of their first-order accuracy. People do not have
direct access to their partner’s internal uncertainty but only to the
reported one (confidence or wagers). Because wager judgments
tracked the trial-by-trial variability in first order accuracy, dyads
were able to recognize the individual with the highest chances of
being correct on a given trial by following the choice with highest
wager. This would yield perfect results if wager was perfectly
correlated with accuracy. However, people vary in their ability to
track their probability of being correct. Thus the strategy of fol-
lowing the highest wager would backfire if the association be-
tween confidence and accuracy is weak, that is, in participants with
low metacognitive sensitivity. This is exactly what our results
show: average metacognitive sensitivity of dyads was correlated
with collective benefit.

Is Collective Benefit a Purely Statistical Artifact?

It is possible that the collective benefit accrued by our dyads
here is an entirely statistical artifact (Mannes et al., 2014). Our
findings could in principle be attributable not to any social inter-
action per se but to the fact that for each dyadic decision, partic-
ipants received an extra piece of independent information (i.e.,
partner’s opinion) whose structure of error (noise) was uncorre-
lated with their own estimate. Putting together samples drawn from
uncorrelated noisy distributions improves one’s estimate of the
true value of a random variable by averaging out the noise as long
as the independent estimates bracket the true value (Armstrong,
2001; Surowiecki, 2004; Yaniv & Choshen-Hillel, 2012). How-
ever, there is ample evidence against the simple statistical impact
of multiple sampling as a sufficient explanation of collective
benefit in interactive joint decision-making. For instance (Bahrami
et al., 2010) Experiment 4 and (Bahrami et al., 2012a) Experiment
3 found that dyads can outperform individuals only if communi-
cation is allowed (A. A. Brennan & Enns, 2013). If participants do
not communicate their confidence estimates or if such communi-
cation happens without verbal interaction, then receiving an extra
decision (sample) from a partner will not be sufficient for robust
collective benefit to emerge. The correlation demonstrated in Fig-
ure 6 indicates that putting together the independent choices de-
coupled from their respective wagers would wipe out collective
benefit. Thus, our results converge with previous evidence to argue
that a purely statistical superposition of samples could lead to the
sort of collective benefit demonstrated here.

Several measures were taken to ensure that our results were not
affected by possible confounding impacts of monetary wagering
(see Supplementary material). Separate measurements were taken
to assess loss (De Martino, Camerer, & Adolphs, 2010) and risk
aversion (Holt & Laury, 2002) in each participant to test whether
these two biases affected the wagering behavior. No correlations
were found between participants’ risk- and loss-aversion and in-

dividual and group measures of interest (including performance,
threshold, metacognitive sensitivity and earnings) showing that
these biases were unlikely to have influenced our experiment.

Conclusions

We disentangled the effects of sensory evidence and social
information on confidence formation as measured by postdeci-
sional wagering. Social information has no perceptual value per se
but offers a useful and computationally inexpensive heuristic. We
showed that positive (agreement) and negative (disagreement)
social information affected wager size in opposite directions and
these two effects were correlated with proportional changes in
joint accuracy. We also showed that collective benefit in a dyad
was related to second-order ability of the participants, even though
variability in first order sensitivity was kept constant. Thus a
bidirectional effect was shown where social interaction modulated
wagering and individual metacognitive sensitivity predicted col-
lective success. A bounded Summing strategy reliably, although
not perfectly, predicted empirical opinions aggregation. These
results point out that metacognitive abilities like confidence cali-
bration play an important role in human cooperation and interac-
tion.
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