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Abstract 

While epigenetic processes have been linked to aging and disease in other systems, it is not yet 

known whether they relate to reproductive aging. Recently, we developed a highly accurate 

epigenetic biomarker of age (known as epigenetic clock) which is based on DNA methylation 

levels. Here we carry out an epigenetic clock analysis of blood, saliva, and buccal epithelium using 

data from four large studies: Women's Health Initiative (n=1,864), InCHIANTI (n=200), PEG 

(n=256), and the United Kingdom Medical Research Council National Survey of Health and 

Development (NSHD) (n=790). We find that increased epigenetic age acceleration in blood is 

significantly associated with earlier menopause (P=0.00091), bilateral oophorectomy (P=0.0034), 

and a longer time since menopause (P=0.017). Conversely, buccal epithelium and saliva do not 

relate to age at menopause, however lower epigenetic age is exhibited in women who undergo 

menopausal hormone therapy (P=0.00078). Using genetic data we find evidence of co-heritability 

between age at menopause and epigenetic age acceleration in blood. Using Mendelian 

randomization analysis we find that two SNPs that are highly associated with age at menopause 

exhibit a significant association with epigenetic age acceleration. Overall, our Mendelian 

randomization approach and other lines of evidence suggest that menopause accelerates epigenetic 

aging of blood, but mechanistic studies will be needed to further dissect cause-and-effect 

relationships. 

Significance Statement 

Within an evolutionary framework, aging and reproduction are intrinsically linked. While both 

laboratory and epidemiological studies have observed associations between the timing of 

reproductive senescence and longevity, it is not yet known whether differences in the age of 

menopause are reflected in biomarkers of aging. Using our recently developed biomarker of aging, 
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the “epigenetic clock”, we examined whether age at menopause is associated with epigenetic age 

of blood, saliva, and buccal epithelium. This is the first definitive study to show an association 

between age of menopause and biological aging (measured using the epigenetic clock). Our results 

also indicate menopause may accelerate the epigenetic aging process in blood and that age at 

menopause and epigenetic age acceleration share a common genetic signature. 

 

INTRODUCTION 

Reproductive senescence, concluding in menopause, is a feature of all female mammals(1), 

yet humans are unique in that they experience exceptionally long post-reproductive lifespans. 

Within human populations, the timing of menopause onset has been linked to susceptibility for 

age-related morbidity and mortality outcomes(1). For instance, observational studies have 

uncovered associations between a woman’s age at menopause and her subsequent risk of mortality. 

Results based on 12,134 Dutch women showed that for every one year increase in the age of 

menopause, age-adjusted mortality rate was decreased by 2%(2).  

While social/behavioral and developmental factors, such as smoking, lifetime 

socioeconomic circumstances , infant growth, breastfeeding, and childhood cognitive ability have 

been shown to influence reproductive aging, age at menopause is also considered to be highly 

heritable, with estimates from twin and sibling studies ranging from about 0.40-0.70(3-10). A 

recent large-scale genome-wide association study identified 44 genomic loci with common 

variants that significantly related to age at menopause(11), while a case-control study comparing 

centenarian women to those with average lifespans, found that individuals from families with a 

history of longevity also tend to exhibit delayed reproductive aging (12).  
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While these and other studies suggest that there might be a relationship between age at 

menopause and the biological aging rate, it has been difficult to test this hypothesis due to the 

dearth of molecular biomarkers of aging. Several recent articles describe epigenetic biomarkers of 

aging based on methylation levels(13-16), drawing upon the fact that chronological age has a 

profound effect on DNA methylation (DNAm) levels (17-26). While previous articles describe 

epigenetic age measures that only apply to a single tissue (saliva (13 ) or blood (14)), our recently 

developed "epigenetic clock" method (based on 353 CpGs) applies to every human tissue and cell 

type that contain DNA, with the exception of sperm(15). Age acceleration effects can be estimated 

by contrasting DNAm age with an individual’s chronological age. For instance, a woman whose 

blood has a higher DNAm age than expected based upon her chronological age, can be said to 

exhibit positive age acceleration—or can be thought of as aging faster than expected. Age 

acceleration has also been shown to have a strong genetic basis—with heritability estimates of 

40% for older subjects(15, 27). While the epigenetic clock has been shown to relate to a number 

of aging-related outcomes (27-30), it is not yet known whether it relates to reproductive aging. 

Using data from four large observational studies—Women's Health Initiative (WHI), 

InCHIANTI, PEG, and NSHD—we examine the association between epigenetic age and: age at 

menopause, bilateral oophorectomy, and the use of menopausal hormone therapies (MHT). Given 

the strong heritability of both age at menopause and epigenetic age, we also estimate the genetic 

correlation between age at menopause and epigenetic aging, and carry out a Mendelian 

randomization analysis, to examine causality, using the top two SNPs shown previously to be 

strongly associated with age at menopause(31).  

RESULTS  

Age acceleration of blood versus age at menopause 
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In our primary analysis, we consider only women whose menopause occurred after age 30. 

As shown in Table 1, based on result from Pearson correlations in each of our three blood datasets 

(WHI, InCHIANTI, and PEG), meta-analysis showed that age at menopause was significantly 

associated with epigenetic age acceleration (p=0.00091). Similar meta-analytic p-values were 

obtained in our secondary analysis, which excluded women with surgical menopause (p=0.0083), 

and in our tertiary analysis, which used all women regardless of age or type (natural/surgical) of 

menopause (p=0.0061). Pearson correlation results from individual studies and stratifying by 

race/ethnicity can be found in Figure S1. 

Multivariate linear models linking age acceleration with age at menopause 

 Using blood methylation data from WHI, InCHIANTI, and PEG we conducted multivariate 

regression for women who experienced menopause after age 30, and combined results using meta-

analysis to determine whether covariates accounted for the association between epigenetic age 

acceleration and age at menopause (Table 2). Models were adjusted for age, race/ethnicity (in 

WHI and PEG), smoking status, age at menarche, and MHT use. Additionally, models run using 

PEG data, were also adjusted for Parkinson’s disease (PD). In order to retain the moderate number 

of women with missing data on MHT use in PEG, those who were missing were coded as “never”, 

and a dummy variable for missing was added to the model. After adjusting for possible 

confounders we find that higher epigenetic age acceleration is associated with a younger age at 

menopause (Meta-p=8.32×10-4).  

Time since Menopause 

 To examine whether menopause may be contributing to accelerated aging, we tested the 

association between epigenetic aging and time since menopause, using multivariate models that 
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adjust for race/ethnicity (WHI and PEG), and smoking (Table S2). Results showed that the 

variable "time since menopause" was associated with AgeAccel (=0.038, P=0.007) in the WHI 

and in our meta-analysis (AgeAccel P=0.017). 

Surgical menopause is associated with epigenetic age acceleration 

The menopause of a substantial number of women was due to bilateral oophorectomy (i.e. 

n=127 women in WHI-white, 112 in WHI-black, 50 women in WHI-Hispanic, and 48 women in 

PEG). We evaluated the effect of surgical menopause on epigenetic age acceleration among 

women whose bilateral oophorectomy took place before age 50 (Figure 1). The association was 

highly consistent across the blood data sets (Figure 1) which led to a significant meta-analysis P-

value for all 3 measures of age acceleration: AgeAccel (Stouffer's Z=3.2. p=0.0014).  

Genetic correlation and Mendelian randomization between epigenetic age acceleration and age 

at menopause 

Using the WHI data (n=1,940), we conducted a bivariate REML analysis to examine the 

overlap in genetic variants that accounted for the heritability of both age at menopause and 

epigenetic age acceleration. As shown in Table 3, the 10,769,392 autosomal SNPs or INDEL 

markers included in the analysis accounted for about 38% of the variance in age at menopause and 

65% of the variance in AgeAccel. The genetic correlation (or pleiotropy) between AgeAccel and 

age of menopause was marginally significant with rG=-0.256 (one-sided P=0.054).  

Although we clearly demonstrate that age at menopause relates to epigenetic age 

acceleration, our cross sectional data make it difficult to dissect causal relationships. Mendelian 

randomization (reviewed in (32))—the random assortment of genes from parents to offspring that 

occurs during gamete formation and conception—provides one method for assessing the causal 
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nature of associations. Here we test the hypothesis that menopause leads to an acceleration of 

epigenetic aging by leveraging the two most highly significant SNPs from a genome-wide 

association study for age at menopause (rs11668344 Replication P-value= 2.65×10−18, rs16991615 

Replication P-value= 7.90×10−21). If menopause accelerates epigenetic aging then one would 

expect these two SNPs to also relate to epigenetic age acceleration, which is what was found 

(Table 4) for rs11668344 (P=0.031). Additionally, the directionality of the associations is 

consistent with the causal model (SNPage at menopauseage acceleration), i.e. the minor allele 

is associated with earlier age at menopause and higher epigenetic age acceleration. On the other 

hand, rs16991615 was not associated with epigenetic age acceleration (P=0.763).  

Analysis of buccal epithelium and saliva 

We are not aware of any biological reason that suggests that blood tissue stands out when 

it comes to studying menopausal effects. Several previous data sets demonstrate that the epigenetic 

clock method also applies to buccal epithelium (35). As a result, we also examined epigenetic age 

measured in 790 buccal epithelium samples from National Survey of Health and Development 

(NSHD) from the United Kingdom Medical Research Council.  

Unlike results in blood, MHT is associated with a significantly lower epigenetic age 

acceleration of buccal epithelium (p=0.00078, Figure 2A); whereas age at natural or surgical 

menopause does not correlate with epigenetic age acceleration across the n=419 postmenopausal 

buccal samples (Figure 2B and 2D, respectively); and no significant association was found 

between age acceleration and menopausal status at age 53—n=419 post- versus 371 pre-

menopausal samples (Figure 2C).  
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 We also analyzed saliva samples from 113 women from the PEG study of whom 16 had 

undergone surgical menopause. Similar to buccal epithelium, age at menopause and time since 

menopause were not associated with epigenetic age acceleration in saliva which might reflect the 

low sample size. However, surgical menopause was associated with increased AgeAccel of saliva 

(P=0.0079, Figure 3). 

DISCUSSION 

To the best of our knowledge, this is the first study that shows a) that the epigenetic age of 

blood has a negative correlation with age at menopause, b) that surgical menopause is associated 

with an increased epigenetic age of blood and saliva, c) that menopausal hormone therapy is 

inversely associated with epigenetic age acceleration of buccal epithelium, and d) that a SNP which 

relate to age at menopause also relates to epigenetic age acceleration. While our study 

demonstrates that postmenopausal women with a late onset of menopause are epigenetically 

younger than women with an early onset of menopause, it is challenging to dissect cause and effect 

relationships. In the following, we discuss several causal scenarios that could explain the reported 

findings (Fig. S2). 

The first causal model (age at menopause  Biological Age  Epigenetic age 

acceleration) assumes that both "age at menopause" and "epigenetic age acceleration" are indicator 

variables of a latent variable, which can be thought of as true biological age. There is evidence that 

risk factors for heart disease, which arguably accelerate biological age, are likely to contribute to 

an earlier age of menopause, rather than the commonly held notion that early menopause is a risk 

factor for heart disease(33). Consistent with evolutionary theories of aging, genetic predisposition 

to later menopause may coincide with an innate protection against early mortality(34). In this 

study, we observe a suggestive genetic correlation between age at menopause and epigenetic age 
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acceleration, which may suggest that increased age at menopause is genetically linked to decreased 

epigenetic age acceleration. This advocates for a common genetic etiology and is consistent with 

both variables being indirect measures of biological age—genetic variants which influence 

biological aging may therefore lead to both slower reproductive aging and lower epigenetic age.  

Another causal model assumes that menopause leads to an increase of epigenetic age. This 

model is supported by the following lines of evidence. First, we find that longer time since 

menopause (irrespective of age at menopause) is associated with increased epigenetic age 

acceleration. Second, bilateral oophorectomy is associated with increased epigenetic age 

acceleration in both blood and saliva. This finding is congruent with a growing body of evidence 

suggesting that the premature loss of ovarian function caused by bilateral oophorectomy performed 

before natural menopause contributes to increased susceptibility to premature death, 

cardiovascular disease, dementia, parkinsonism, osteoporosis and bone fractures(35). This is also 

consistent with findings showing that transplantation of young ovaries in old mice significantly 

increases lifespan(36). Third, our study demonstrated that MHT, which arguably counters some of 

the effects of menopause, is associated with a decreased epigenetic age acceleration of buccal 

epithelium (but not of blood). Fourth, our Mendelian randomization analysis provided evidence of 

a causal pathway in which menopause accelerates epigenetic aging in blood—one of the most 

significant SNPs (rs11668344) for age of menopause also relates to epigenetic age acceleration in 

blood. Although we acknowledge that each of the above mentioned arguments in support of the 

causal model has pitfalls, in aggregate our results strongly support the causal model: Menopause 

 Epigenetic age acceleration. 

In moving forward, it will be important to examine longitudinal change in epigenetic age 

of blood before and after women transition from pre- to post-menopausal status. Additionally, it 
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will be important to examine how long it takes accelerated epigenetic aging effects to become 

apparent following surgical menopause or whether they were apparent before. For instance, if 

accelerated aging is triggered by menopause, then one would expect age acceleration to increase 

as a function of time since bilateral oophorectomy. However, if the condition that led to a surgical 

removal of both ovaries (e.g. fibroids, menstrual disorders, endometriosis) is driving age 

acceleration, one would not see a linear increase in epigenetic age acceleration over time. The 

reason for bilateral oophorectomy was available from the NSHD sample. Overall, most women 

underwent bilateral oophorectomy due to reported fibroids, menstrual disorders, endometriosis (or 

some combination of these) in both groups (Table S3). Similar prevalence estimates apply to the 

blood data from PEG. 

While our study detected an association between epigenetic age in blood and age at 

menopause, similar associations were not found for epigenetic age estimates from buccal 

epithelium. One potential explanation is that aging measures in the various tissues are capturing 

different phenomena. While we find a robust correlation between AgeAccel in blood and saliva 

(r=0.70) (Figure S2), when comparing the measures of AgeAccel in women with data from both 

blood and buccal epithelium, we find that the correlation is relatively weak (r=0.20) (Figure S3). 

At first sight, the low correlation of age acceleration between tissues is surprising. However, we 

interpret it as follows. The epigenetic clock is a strong predictor of age in multiple tissue when 

comparing across individuals. However, that does not mean that it will be correlated across tissues 

when comparing within-person differences. Stress factors and other perturbations act largely in a 

tissue specific manner (37). For that reason, one may not expect all tissue within an individual to 

age at the same rate, thus potentially accounting for the low/moderate correlation between 

epigenetic age acceleration in blood and buccal epithelium.  
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To the best of our knowledge, our study is the first to demonstrate that reproductive age, 

bilateral oophorectomy, and MHT relate to measures of epigenetic age acceleration—but the 

reported associations are specific to either blood, buccal epithelium, or saliva. Future studies are 

warranted for examining these effects in other tissues. Since epigenetic age captures aspects of 

biological age (27-30), our study strongly suggests that the hormonal changes that accompany 

menopause accelerate biological aging in women. 

METHODS 

Data set 1: WHI Sample Description (blood) 

Participants were part of a subsample from the Women's Health Initiative (WHI), who were 

enrolled in an integrative genomics study with a primary aim of identifying novel genomic 

determinants of CHD. This sample included women ages 50-79, with an overrepresentation of 

racial/ethnic minorities. The WHI is a national study that began in 1993 which enrolled 

postmenopausal women. Women who were ineligible to participate in the trials or who chose not 

to be randomized were invited to participate in the observational arm of the study. The integrative 

genomics subsample employed a case-control sampling design. All cases and controls were 

required to have already undergone genome wide genotyping at baseline as well as profiling of 

seven cardiovascular biomarkers, as dictated by the aims of other ancillary WHI studies. 

 As shown in Table S1, the mean age at baseline for the 1,864 women in the WHI sample 

was 65.31 years (s.d.=7.1). AgeAccel ranged from -22.6 to 42.9, with a mean of 0.08 and a standard 

deviation of 5.3, while age at menopause ranged from age 25 to age 60, with a mean of 47.43 

(s.d.=6.9). Overall, approximately half of our sample was non-Hispanic white (47.1%), one-third 

(32.2%) were African American, and about 20% were Hispanic. The majority of our sample 
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reported never smoking (53.4%), whereas 36.4% reported past smoking history, and about 10% 

reported they were current smokers at the time of blood draw. 

 At baseline, the majority of women did not have a history of any MHT use (61.1%), while 

approximately 21% were past users and 18% were current users. Of those who had a history of 

MHT, 17% were past users of unopposed estrogen, 12% were current users of unopposed estrogen, 

6% were past users of estrogen plus progestin, and 5.5% were current users of estrogen plus 

progestin. Additionally, the majority of users were on MHT for less than five years (55%), while 

16.7% took MHT for 5-9 years, about 10% took MHT for 10-14 years, and 18% took MHT for 15 

or more years.  

Data set 2: InCHIANTI Sample Description (blood) 

The Invecchiare nel Chianti (InCHIANTI) Study is a population-based prospective cohort 

study of residents ages 30 or older from two areas in the Chianti region of Tuscany, Italy. Sampling 

and data collection procedures have been described elsewhere (38). Briefly, participants were 

enrolled between 1998-2000 and were examined at three-year intervals. Overall 1,326 participants 

donated a blood sample at baseline (1998-2000), of which 784 also donated a blood sample at the 

9-year follow-up (2007-2009). DNA methylation was assayed using the Illumina Infinium 

HumanMethylation450 platform for participants with sufficient DNA at both baseline and Year 9 

visits (n=499). Our study focused only on women (n=200). Ages for the 200 women in 

InCHIANTI ranged from 50 to 91, with a mean age of 70.64 years (Table S1), whereas baseline 

AgeAccel ranged from -12.9 to 12.05, with a mean of 0. Age at menopause ranged from age 26 to 

age 60, with a mean of 49.1. Overall, approximately 75.5% of the women from InCHIANTI were 

never smokers, 12.0% were former smoker, and about 12.5% were current smokers. Women with 
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no history of any MHT use made up 88.5% of the InCHIANTI sample. Finally, women from 

InCHIANTI averaged approximately 1.82 pregnancies over their lifetimes.  

Data set 3: Women from the PEG cohort (blood and saliva) 

We used two types of tissues from the Parkinson's disease, Environment, and Genes (PEG) 

study cohort: blood and saliva. The PEG study is a large population-based case-control study of 

Parkinson's disease of rural and township residents of California's central valley(39). Our blood 

data come from subjects from wave 1 (PEG1). Parkinson's disease status did not confound the 

relationship in blood because it was not associated with age at menopause, however we adjusted 

for it in multivariate analyses. The 256 women in PEG ranged in age from 35 to 91 years, with a 

mean age of 67.9 years (Table S1). Only 3 participants self-identified as non-Hispanic black, while 

23 self-identified as Hispanic. Average age at menopause was 46.4 years. Overall, approximately 

4% of the women from PEG were current smokers at the time of blood draw, and 38% were former 

smoker. Women with any history (current or former) of any MHT use made up 71% of the sample, 

and on average women in PEG reported having 3.4 pregnancies over their lifetimes. 

The saliva methylation data were collected at a later time point than the blood data. For 

about half of the women, we had both blood and saliva methylation data but epigenetic age 

acceleration of blood tissue was not correlated with age acceleration in saliva. 

Data set 4. NSHD (buccal epithelium) 

These buccal samples stem from a subsample of 790 women participants in a British birth 

cohort, the United Kingdom Medical Research Council National Survey of Health and 

Development (NSHD) as described in (40). The women were all aged 53 years at the time of 

sample collection in 1999. At that time, 419 women were post-menopausal and 371 women were 
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pre-menopausal. MHT status was coded as "yes" only if MHT started before the age of sample 

collection (i.e. 53). Our results regarding the relationship between "age at menopause" and 

epigenetic age acceleration were largely unchanged after excluding women who experienced 

surgical menopause. 

All women gave written informed consent for their samples to be used in genetic studies 

of health, and the Central Manchester Research Ethics Committee approved the use of these 

samples for epigenetic studies of health in 2012. Women were selected from those who provided 

a buccal and blood sample at age 53 years in 1999, who had not previously developed any cancer, 

and who had complete information on epidemiological variables of interest. Smoking status did 

not confound the reported relationships because smoking was not significantly associated with our 

measure of epigenetic age acceleration.  

DNA methylation data 

All DNA methylation data sets used the Illumina Infinium 450K platform. The Illumina 

BeadChips measures bisulfite-conversion-based, single-CpG resolution DNA methylation levels 

at 485577 different CpG sites in the human genome. These data were generated by following the 

standard protocol of Illumina methylation assays, which quantifies methylation levels by the β 

value using the ratio of intensities between methylated and un-methylated alleles. Specifically, the 

β value is calculated from the intensity of the methylated (M corresponding to signal A) and un-

methylated (U corresponding to signal B) alleles, as the ratio of fluorescent signals β = 

Max(M,0)/[Max(M,0)+Max(U,0)+100]. Thus, β values range from 0 (completely un-methylated) 

to 1 (completely methylated). For our blood data sets (WHI, PEG) we used background corrected 

beta values. Consistent with the original publication, buccal samples were normalized using the 

BMIQ method (41). The correlation between DNAm age and chronological age is highly robust 
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with respect to different normalization methods because a) the epigenetic clock implements a 

custom normalization methods and b) it was constructed using training data that were normalized 

in different ways. 

Epigenetic age acceleration 

We used the DNAm age based biomarker of aging from (15) because a) its accurate measurement 

of age across tissues is unprecedented (and it applies to both blood and buccal epithelium), b) it is 

prognostic for all-cause mortality (27, 28), c) it correlates with measures of cognitive and physical 

fitness in the elderly (27, 42), and d) it has been found useful for studying aging effects in Down 

syndrome(43), Parkinson's disease (44), neuropathological variables (42); obesity(37), and HIV 

infection(45). DNAm age was defined using the 353 CpGs and coefficient values reported in (15). 

These CpGs and coefficient values were chosen in independent data using the elastic net penalized 

regression model to regress age on CpGs, resulting in a DNAm age measures defined as predicted 

age, in years. 

Our measure of age acceleration (AgeAccel), which applies to all sources of DNA, was defined as 

residual resulting from a linear model that regressed DNAm age on chronological age.. Thus, a 

positive value for AgeAccel indicates that the observed DNAm age is higher than expected. 

AgeAccel has only a weak correlation with blood cell counts(45).  

Genome-wide SNP data from the WHI 

Genotyping was performed for all participants on Affymetrix 6.0, Illumina HumanOmni1-

Quad v1.0, or Illumina HumanOmniExpressExome-8v1.0. Imputation was performed using 

MaCH with haplotypes phased in Beagle or Minimac(46, 47). The reference panel for imputation 

was based on the 1000 Genome haplotypes (released in June 2011). The quality of imputed 
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markers was assessed by MaCH R2 > 0.3. Additional quality control filters that were employed 

included Hardy-Weinberg Equilibrium P-values <10-3 and minor allele frequency (MAF) >0.01. 

Finally, to account for population structure, principal component analysis (PCA) was performed 

to generate sample eigenvectors, the first two of which were included as covariates in all GCTA 

analysis.  

We related the two highly significant SNPs from the recent large-scale meta-analysis of 

age at menopause(31) to age acceleration using the WHI data. Association analysis was conducted 

in the two subsets of individuals stratified by platform. All women were of European ancestry, 

identified by multidimensional scaling analysis in PLINK. We combined the results into a single 

estimate by fixed-effects models weighted by inverse variance, as implemented in R metafor. For 

association analysis, we regressed each of the three age acceleration trait values on expected 

genotype dosage, adjusted for the first two principal components when necessary.  

Ethics 

This study was reviewed by institutional review board from UCLA (IRB#13-000671 and 

IRB#14-000061). Informed consent was obtained from all subjects. 

Availability of data 

The WHI and inCHIANTI data are available through NHLBI 

(https://biolincc.nhlbi.nih.gov/studies/bhs/). The PEG data are available from Gene Expression 

Omnibus (GSE72775).  

Software Code Availability 

https://biolincc.nhlbi.nih.gov/studies/bhs/
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We used the online version of the epigenetic clock software, which is freely available from 

the following webpage: https://dnamage.genetics.ucla.edu/. R source code is publicly available 

(from Additional file 20 in Horvath (2013) Genome Biology, PMID: 24138928). 
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FIGURE LEGENDS 

 

Figure 1: Epigenetic age acceleration versus surgical menopause status. The x-axis of each 

plot reports surgical menopause status before age 50, i.e. "yes" denotes the group of women with 

surgical menopause before age 50 whereas "no" corresponds to the group of women who did not 

undergo bilateral oophorectomy at any age before blood draw. The bar plots report mean values 

of AgeAccel, one standard error, and the p-value from a Student T test. The six panels correspond 

to (A) WHI (white), (B) WHI (black), (C) WHI (Hispanic), (D) InCHIANTI, and (E) PEG samples, 

and (F) all samples combined. A meta-analysis based on Stouffer's Z method indicates that 

AgeAccel is significantly positively associated with surgical menopause status (p=0.0018).  

Figure 2: Epigenetic age analysis of buccal samples from NSHD. The measure of age 

acceleration was defined as the difference between DNAm age and the mean DNAm age in this 

birth cohort. The scatter plots also report Pearson correlation coefficients and corresponding p-

values, while the bar plot report one standard error and the p-value from a non-parametric group 

comparison test (Kruskal Wallis). Epigenetic age acceleration (y-axis) is associated with (A) MHT 

(P=0.00078), but not with (B) age at menopause, (C) menopausal status, or (D) surgical 

menopause.  

Figure 3: Epigenetic age analysis of saliva samples from PEG. The measure of age acceleration 

in saliva was defined in the same way as blood. The scatter plots report Pearson correlation 

coefficients and corresponding p-values, while the bar plot report one standard error and the p-

value from a non-parametric group comparison test (Kruskal Wallis). There is a strong correlation 

between epigenetic age (y-axis) and chronological age (A). While the correlation between 

epigenetic age acceleration and age at menopause in saliva (B) is about twice that of the association 

in blood, the finding is not significant. However, we do observe an association between epigenetic 

age acceleration and (C) surgical menopause (P=0.0079).  
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TABLES  

 

 

Table 1. Unadjusted Meta-analysis of AgeAccel in Blood versus Age at Menopause  

 Meta-Analysis Z statistics (P-values) 

Measure Removed age at 

menopause<=30 

Removed surgical 

menopause 

All 

AgeAccel 3.3 (p=0.00091) 2.6 (p=0.0083) 2.7 (p=0.0061) 

Meta-analysis based on Pearson correlations between age at menopause and AgeAccel in each 

sample. The first and second column correspond to analysis after excluding women who were 30 

or younger at the age of menopause and women with surgical menopause, respectively. The last 

column reports findings with no exclusions applied. 
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Table 2: Multivariate Meta-analysis of AgeAccel in Blood versus Age at Menopause 

  Beta Coefficient (P-value)  

  WHI InCHIANTI PEG Meta P-Value 

AgeAccel     

 Age at Menopause -0.063 (0.001) -0.012 (0.772) -0.060 (0.350) 8.32×10-4 

 Chronological Age 0.012 (0.530) -0.010 (0.825) -0.051 (0.305)  

 Non-Hispanic 

Black 

0.008 (0.980) 

-- 

-5.113 (0.201)  

 Hispanic -0.918 (0.008) -- -1.905 (0. 321)  

 Former Smoker -0.312 (0.234) 0.446 (0.648) -1.177 (0.238)  

 Current Smoker -0.189 (0.666) -0.870 (0.394) -1.378 (0.613)  

 MHT 0.041 (0.871) 0.940 (0.368) 2.864 (0.018)  

 Age at Menarche -0.055 (0.501) 0.280 (0.179) -0.020 (0.950)  

 PD Status -- -- 1.075 (0.282)  
We did not adjust for race/ethnicity in the models run for InCHIANTI, given that all participants are non-Hispanic 

white. For all models, women with age at menopause <30 years were excluded. 
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Table 3: GCTA Bivariate REML Results  

  

h2 of AgeAccel (SE) 0.651 (0.13) 

h2 of Age at Menopause (SE) 0.384 (0.14) 

rG (Pvalue) -0.256 (0.054) 

V(G) (SE) 18.71 (3.90) 

C(G) (SE) -4.70 (3.69) 

V(e) (SE) 10.03 (3.61) 

C(e) (SE) 1.69 (3.47) 

Vp (SE) 28.74 (0.93) 

Log likelihood -9017.31 

rG=Genetic correlation with age at menopause, V(G)=Genetic Variance; C(G)=Genetic 

Covariance with age at menopause; V(e)=Residual Variance; C(e)=Residual Covariance 

with age at menopause; h2= Heritability (Proportion of Variance explained by all SNPs) 
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Table 4: Mendelian Randomization 

CHR 

 

SNP 

 

bp 

 

Minor/Major  

Alleles 

with respect to minor allele P-value) 

AgeAccel  

19 rs11668344 55833664 G/A 0.506 (0.031) 

20 rs16991615 5948227 A/G 0.151 (0.763) 

 
 


