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Introduction

Successive governments have bemoaned the ‘long tail of underachievement’ in British
schools, and the clear implication of such a phrase is that achievement in Britain is skewed
towards the lower end. In fact, the distribution of achievement in British schools is almost
completely symmetrical, and what skew there is towards the higher end (would we call that
a long tail of overachievement?). While there is no evidence of a skewed distribution,
however, it is true that the range of achievement in Britain is wider than in almost any other
developed country. Our highest-performing students compare well to the best in any other
country, but we have many students who leave school or college without adequate capability
in mathematics.

Now the typical argument made by politicians is that this is unacceptable because the lack of
an adequately skilled workforce harms our industrial competitiveness, but this argument
simply doesn’t hold up, because as many studies have shown, there is no discernible
association between levels of academic achievement and industrial productivity.

Nevertheless, | believe we should be concerned about the levels of mathematical
achievement of school leavers in this country. The reason for this is that in my view too many
of our young people leave school without the mathematical capabilities they need in order to
exercise an acceptable degree of control over their own lives.

About a year ago, Paul Black and I published a review of approximately 250 studies, carried
out over the last ten years, into the effectiveness of formative assessment in raising standards
of achievement [1]. What we found was that increasing the use of formative assessment in
school classrooms does produce significant increases in students’ learning—enough to raise
levels of performance in mathematics amongst British students to fifth place in the
international ‘league tables’ of mathematical performance, behind only Japan, Singapore,
Taiwan and South Korea. Put another way, appropriate use of formative assessment would
raise the average achievement students by as much as 2 grades at GCSE.

But much more importantly, formative assessment has the power to change the distribution of
attainment. Good formative assessment appears to be disproportionately beneficial for lower
attainers, so that typically, an average improvement of two GCSE grades would actually be
an improvement of three grades for the weakest students, versus an improvement of one grade
for the strongest. Formative assessment therefore seems to be the most promising way to
reduce the unacceptably wide variation in attainment that currently exist in mathematics
classrooms in Britain.

Parts 2 and 3 of this article will appear in future issues of ‘Equals’ and will deal with giving
feedback to learners, the importance of sharing learning goals with students, and student self-
assessment. The main focus of this first part is with the use of questions to support learning.

What makes a good question?

Two items used in the Third International Mathematics and Science Study (TIMSS) are shown
in figure 1 below. Although apparently quite similar, the success rates on the two items were
very different. For example, in Israel, 88% of the students answered the first items correctly,
while only 46% answered the second correctly, with 39% choosing response (b). The reason for
this is that many students, in learning about fractions, develop the naive conception that the
largest fraction is the one with the smallest denominator, and the smallest fraction is the one
with the largest denominator. This approach leads to the correct answer for the first item,



but leads to an incorrect response to the second. In this sense, the first item is a much weaker
item than the second, because many students can get it right for the wrong reasons.

Item1 (success rate 88%)

Which fraction is the smallest?

a) 1 b) 2 o 1 d 1
6 3 3 2

Item 2 (success rate 46%)

Which fraction is the largest?

a) 4 b) 3 c) 5 d 7
5 4 8 10

Figure 1: two items from the Third International Mathematics and Science Study

This illustrates a very general principle in teachers’ classroom questioning. By asking
guestions of students, teachers try to establish whether students have understood what they
are meant to be learning, and if students answer the questions correctly, it is tempting to
assume that the students’ conceptions match those of the teacher. However, all that has
really been established is that the students’ conceptions fit, within the limitations of the
guestions. Unless the questions used are very rich, there will be a number of students who
manage to give all the right responses, while having very different conceptions from those
intended.

A particularly stark example of this is the following pair of simultaneous equations:
3a = 24
atb = 16

Many students find this difficult, often saying that it can’t be done. The teacher might
conclude that they need some more help with equations of this sort, but the most likely reason
for the difficulties with this item is not to with mathematical skills but with their beliefs.
If the students are encouraged to talk about their difficulty, they often say things like, “I
keep on getting b is 8, but it can’t be because a is”. The reason that many students have
developed such a belief is, of course, that before they were introduced to solving equations,
they were almost certainly practising substitution of numbers into algebraic formulas, where
each letter stood for a different number. Although the students will not have been taught
that each letter must stand for a different number, they have generalised implicit rules from
their previous experience (just as because we always show them triangles where the lowest
side is horizontal, they talk of “upside-down triangles™).

The important point here is that we would not have known about these unintended
conceptions if the second equation had been a + b = 17 instead of a + b = 16. Items that reveal
unintended conceptions—in other words that provide a “window into thinking”—are difficult
to generate, but they are crucially important if we are to improve the quality of students
mathematical learning.

Now some people have argued that these unintended conceptions are the result of poor
teaching. If only the teacher had phrased their explanation more carefully, had ensured
that no unintended features were learnt alongside the intended features, then these
misconceptions would not arise.

But this argument fails to acknowledge two important points. The first is that this kind of
over-generalisation is a fundamental feature of human thinking. When young children say
things like “I goed to the shop yesterday”, they are demonstrating a remarkable feat of
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generalisation. From the huge messiness of the language that they hear around them, they
have learnt that to create the past tense of a verb, one adds “ed”. In the same way, if one asks
young children what causes the wind, the most common answer is “trees”. They have not been
taught this, but have observed that trees are swaying when the wind is blowing and (like
many politicians) have inferred a causation from a correlation.

The second point is that even if we wanted to, we are unable to control the student’s
environment to the extent necessary for unintended conceptions not to arise. For example, it is
well known that many students believe that the result of multiplying 2.3 by 10 is 2.30. It is
highly unlikely that they have been taught this. Rather this belief arises as a result of
observing regularities in what they see around them. The result of multiplying whole-
numbers by 10 is just to add a zero, so why shouldn’t that work for all numbers? The only way
to prevent students from acquiring this ‘misconception’ would be to introduce decimals before
one introduces multiplying single-digit numbers by 10, which is clearly absurd. The important
point is that we must acknowledge that what students learn is not necessarily what the
teacher intended, and it is essential that teachers explore students’ thinking before assuming
that students have ‘understood’ something.

Now questions that give us this “window into thinking” are hard to find, but within any
school there will be good selection of rich questions in use—the trouble is that each teacher
will have her or his stock of good questions, but these questions don’t get shared within the
school, and are certainly not seen as central to good teaching.

In Britain, most teachers spend most of their lesson preparation time in marking books,
invariably doing so alone. In some other countries, the majority of lesson preparation time is
spent planning how new topics can be introduced, which contexts and examples will be used,
and so on. This is sometimes done individually or with groups of teachers working together. In
Japan, however, teachers spend a substantial proportion of their lesson preparation time
working together to devise questions to use in order to find out whether their teaching has
been successful.

Now in thinking up good questions, it is important not to allow the traditional concerns of
reliability and validity to determine what makes a good question. For example, many
teachers think that the following question, taken from the Chelsea Diagnostic Test for
Algebra, is ‘unfair’:

Simplify (if possible): 2a + 3b

This item is felt to be unfair because students ‘know’ that in answering test questions, you have
to do some work, so it must be possible to simplify this expression, otherwise the teacher
wouldn’t have asked the question. And | would agree that to use this item in a test or an
examination where the goal is to determine a student’s achievement would probably not be a
good idea. But to find out whether students understand algebra, it is a very good item indeed.
If in the context of classroom work, rather than a formal test or exam, a student can be tempted
to ‘simplify’ 2a + 3b then | want to know that, because it means that | haven’t managed to
develop in the student a real sense of what algebra is about.

Similar issues are raised by asking students which of the following two fractions is the
larger:

3 3
7 11
Now in some senses this is a ‘trick question’. There is no doubt that this is a very hard item,
with typically only around one 14-year old in six able to give the correct answer (compared
with around three-quarters of 14-year-olds being able to select correctly the larger of two

‘ordinary’ fractions). It may not, therefore, be a very good item to used in a test of students’
achievement. But as a teacher, | think it is very important for me to know if my students

think that £ is larger than 2. The fact that this item is seen as a ‘trick question’ shows how
deeply ingrained into our practice the summative function of assessment is.



A third example, that caused considerable disquiet amongst teachers when it was used in a
national test, is based on the following item, again taken from one of the Chelsea Diagnostic
Tests:

Which of the following statements is true;

(1) AB is longer than CD
(2) AB is shorter than CD
3) AB and CD are the same length
B
A

C |

Again, viewed in terms of formal tests and examinations, then this may be an unfair item, but
in terms of a teacher’s need to establish secure foundations for future learning, | would argue
that this is entirely appropriate.

Rich questioning, of the kind described above, provides teachers not just with evidence about
what their students can do, but also what the teacher needs to do next, in order to broaden or
deepen understanding.

Classroom questioning

There is also a substantial body of evidence about the most effective ways to use classroom
questions. In many schools in this country, teachers tend to use questions are a way of directing
the attention of the class, and keeping students ‘on task’, by scattering questions all around
the classroom. This probably does keep the majority of students ‘on their toes’ but makes only
a limited contribution to supporting learning. What is far less frequent in this country is to see
a teacher, in a whole-class lesson, have an extended exchange with a single student,
involving a second, third, fourth or even fifth follow-up question to the student’s initial
answer, but with such questions, the level of classroom dialogue can be built up to quite a
sophisticated level, with consequent positive effects on learning. Of course, changing one’s
questioning style is very difficult where students are used to a particular set of practices (and
may even regard asking supplementary questions as ‘unfair’). And it may even be that other
students see extended exchanges between the teacher and another student as a chance to relax
and go ‘off task’, but as soon as students understand that the teacher may well be asking them
what they have learned from a particular exchange between another student and the
teacher, their concentration is likely to be quite high!

How much time a teacher allows a student to respond before evaluating the response is also
important. It is well known that teachers do not allow students much time to answer questions,
and, if they don’t receive a response quickly, they will ‘help’ the student by providing a clue
or weakening the question in some way, or even moving on to another student. However, what
is not widely appreciated is that the amount of time between the student providing an answer
and the teacher’s evaluation of that answer is much more important. Of course, where the
guestion is a simple matter of factual recall, then allowing a student time to reflect and
expand upon the answer is unlikely to help much. But where the question requires thought,
then increasing the time between the end of the student’s answer and the teacher’s evaluation
from the average ‘wait-time’ of less than a second to three seconds, produces measurable
increases in learning (although increases beyond three seconds have little effect, and may
cause lessons to lose pace).

In fact, questions need not always come from the teacher. There is substantial evidence that
students’ learning is enhanced by getting them to generate their own questions. If instead of



writing an end-of-topic test herself, the teacher asks the students to write a test that tests
the work the class has been doing, the teacher can gather useful evidence about what the
students think they have been learning, which is often very different from what the teacher
thinks the class has been learning. This can be a particularly effective strategy with
disaffected older students, who often feel threatened by tests. Asking them to write a test for
the topic they have completed, and making clear that the teacher is going to mark the
guestion rather than the answers, can be a hugely liberating experience for many students.

Some researchers have gone even further, and shown that questions can limit classroom
discourse, since they tend to demand a simple answer. There is a substantial body of evidence
the classroom learning is enhanced considerably by shifting from asking questions to making
statements. For example, instead of asking “Are all squares rectangles”, which seems to
require a ‘simple’ yes/no answer, the level of classroom discourse (and student learning) is
improved considerably by framing the same question as a statement—"“All squares are
rectangles”, and asking students to discuss this in small groups before presenting a reasoned
conclusion to the class.

Conclusion

Over thirty years ago, David Ausubel argued that the most important factor influencing
learning is what the learner already knows, and that the job of the teacher was to ascertain
this and to teach accordingly. Since then it has become abundantly clear that students’ naive
conceptions are not random aberrations, but the result of sophisticated and creative attempts
by students to make sense of their experience. Within a normal mathematics classroom, there
is clearly not enough time for the teacher to treat each student as an individual, but the good
news is that the vast majority of the naive conceptions are quite commonly shared, and as long
as the teacher has a small battery of good questions it will be possible to elicit the most
significant of these misconceptions. If there teacher does then have any time to spend with
individual students, these can be targeted at those whose misconceptions are not commonly
shared. After all, teaching is interesting because students are so different, but it is only
possible because they are so similar.
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