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Abstract (250 words) 

 

Background Low-density lipoprotein cholesterol is causally related to coronary 

artery disease (CAD) and emerging evidence suggests that drugs that target LDL-C 

may also influence risk of type 2 diabetes (T2D). In contrast, the causal role of TG 

and HDL-C for CAD and T2D is less clear. We investigated the causal relationships 

of these three lipid fractions with CAD and T2D through Mendelian randomization 

(MR).  

 

Methods Summary estimates for associations of common single nucleotide 

polymorphisms (SNPs) with LDL-C, TG and HDL-C were obtained from the Global 

Lipid Genetics Consortium, and for the same SNPs with CAD and T2D from 

CARDIoGRAMplusC4D and DIAGRAM consortia, respectively.  We constructed 

genetic instruments for MR and applied them using three approaches: (i) conventional  

MR that does not account for pleiotropy; (ii) multivariate MR that adjusts for 

measured pleiotropic associations among the lipid fractions studied; (iii) MR analysis 

based on Egger regression (MR-Egger) that accounts for both measured and 

unmeasured pleiotropic associations of the genetic instruments. We used information 

on the proportion of variance of lipid trait explained and presence of pleiotropy to 

guide interpretation of causal estimates. We express all results as a genetically-

instrumented 1-standard deviation (SD) increase in exposure. 

 

Results Using a genetic instrument comprised of 130 SNPs that explained 7.4% of 

LDL-C variance, conventional MR in the absence of a pleiotropic instrument 

provided a causal estimate of (odds ratio; 95% confidence interval) (1.56; 1.38, 1.76) 

for CAD. For T2D, pleiotropy in the LDL-C genetic instrument was present and MR-

Egger identified a protective causal effect on risk of T2D (0.73; 0.58, 0.97). 

Using 110 SNPs explaining 2.6% of HDL-C variation, the HDL-C genetic instrument 

was pleiotropic for CAD and MR-Egger yielded a non-causal estimate (0.95; 0.78, 

1.14): however using all SNPs and/or limiting to non-pleiotropic SNPs showed a 

protective effect of HDL-C. For T2D, the HDL-C genetic instrument was non-

pleiotropic and conventional MR identified a protective effect of HDL-C for T2D 

(0.78; 0.62, 0.97).Using 120 SNPs explaining 5.1% of its variance, the TG genetic 

instrument was pleiotropic for both CAD and T2D. MR-Egger for both estimates 

identified a casual effect of TG on increased risk of CAD (1.55; 1.42, 1.69) and no 

effect on T2D (0.99; 0.70, 1.42). 

 

Conclusion The major lipid subfractions have divergent causal roles in CAD and 

T2D. LDL-C and TG robustly increase risk of CAD at a similar magnitude of effect 

whereas the protective role of HDL-C for CAD remains unclear.  Higher 

concentrations of both HDL-C and LDL-C are both protective of T2D. These 

associations can be used to gauge expected findings from therapeutic interventions on 

blood lipid concentrations. 
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Introduction 

 

Understanding the interplay of lipids and their impact on risk of type 2 diabetes (T2D) 

and coronary artery disease (CAD) is gaining widespread interest, and is of 

considerable public health importance. For example, low-density lipoprotein 

cholesterol (LDL-C) is well recognized as causally related to CAD1-3 and a causal role 

of triglycerides (TG) in CAD is gaining acceptance.4, 5 In contrast, the causal role of 

high-density lipoprotein cholesterol (HDL-C) in CAD remains in doubt.5-7 

 

Evidence is emerging that LDL-C reduction through statins results in a modest 

increase in risk of type 2 diabetes (T2D)8, 9 that is outweighed by the benefit of statins 

in protecting from CAD.  However, whether these effects on CAD and T2D are 

general properties of LDL-C (as opposed to effects of certain LDL-C pathways such 

as those mediated by HMG-coA reductase) remains unclear.10 In contrast, the causal 

role of TG and HDL-C in diabetes is less clear.11  

 

A better understanding of how lipids affects T2D and CAD is important in order to 

shed light on the causal relationships between these highly correlated traits. This 

would help our understanding of intervening on one exposure and the likely 

downstream consequences. Furthermore, characterizing the relationship of lipids with 

diabetes is critical to help inform on expected findings from ongoing drug 

development for lipid modification for cardiovascular disease.12, 13 

 

While observational studies can shed light on the relationships of risk factors with one 

another and disease, residual confounding and reverse causality limit causal inference. 

Mendelian randomization (MR) permits unbiased investigations into causal roles of 

exposures. However, when investigating complex and potentially related traits such as 

lipids and diabetes, problems can arise with lack of specificity of individual or 

multiple genetic instruments for the risk factor of interest (termed “pleiotropy”). Such 

pleiotropy can be vertical (i.e. due to down-stream consequences of the instrumented 

phenotype) or horizontal (due to associations of SNPs with other traits, proximal to 

the phenotype of interest). While vertical pleiotropy is not problematic in MR (merely 

reflecting the causal pathway from risk factor through to disease), horizontal 

pleiotropy, particularly unbalanced horizontal pleiotropy, may invalidate one of the 

key assumptions of MR, that the genetic variant(s) only affects the outcome through 

the exposure of interest.14 

 

Recent methodological advances in MR, including “multivariate”15 and “MR-

Egger”,16 provide routes to accounting for pleiotropy of genetic instruments. In 

multivariate MR, genetic associations of potential pleiotropic traits are incorporated 

into the model, thereby adjusting for them. However, this has the additional 

consequence of adjusting for both horizontal and vertical pleiotropy. For example, in 

the case of HDL-C and risk of CAD, adjusting for LDL-C and TG in a multivariate 

MR will genetically adjust not only for horizontal pleiotropy, but also for shared 
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pathways that are downstream of HDL-C that may be shared with LDL-C and TG; 

thereby adjusting for potential shared mediators. In contrast, MR-Egger corrects for 

unbalanced horizontal pleiotropy. Using the same example, MR-Egger for HDL-C 

and CAD would adjust for horizontal pleiotropy, while retaining shared pathways 

downstream of HDL-C that may causally result in CAD. 

 

In this paper, we use summary data from multiple GWAS of cardiometabolic traits to 

investigate the causal relationships between lipids, diabetes and CAD using three MR 

approaches: (i) conventional (2-stage) MR that does not account for pleiotropy, (ii) 

multivariate MR, that accounts for both horizontal and vertical pleiotropy, and (iii) 

MR-Egger, that adjusts for unbalanced horizontal pleiotropy. We addressed the 

question of the design of the genetic instrument by considering a range of possible 

instruments and identifying the minimum sub-set of SNPs within available SNPs 

which gave maximal exposure variance explained.   
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Methods 

Data sources 

We used summary-level data for lipids from the Global Lipids Genetics Consortium 

(GLGC),17 diabetes from the DIAbetes Genetics Replication And Meta-analysis 

(DIAGRAM), 18 and CAD from the Coronary ARtery DIsease Genome-wide 

Replication And Meta Analysis (CARDIoGRAM) plus The Coronary Artery Disease 

(C4D) Genetics, collectively known as CARDIoGRAMplusC4D consortium.19 Data 

were downloaded from their respective websites: GLGC: 

http://www.sph.umich.edu/csg/abecasis/public/lipids2013; GIANT consortium: 

https://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_dat

a_files; DIAGRAM consortium: http://diagram-consortium.org; and, 

CARDIoGRAMplusC4D consortium: http://www.cardiogramplusc4d.org. All 

datasets were limited to individuals of European ancestry. Beta coefficients and 

standard errors were obtained for the association of each SNP with all exposures and 

outcomes from these data sources. Where SNPs were not present in a data-set we used 

proxies (R2>0.9) as indicated in Supplementary Table X [on the way]. 

 

Selection of SNPs 

We used 185 lipid-associated SNPs identified by Willer et al,17 together with 65 SNPs 

identified by Talmud et al20  to generate a series of genetic instruments for each of the 

exposures: LDL-C, HDL-C and TG. This was conducted by first restricting the SNP-

set to those with pairwise R2<0.2 and then ordering the remaining SNPs by 

descending statistical significance of association with the corresponding lipid 

exposure and generating instruments comprising 1 to 200 SNPs. Thus for each 

exposure a series of up to 200 instruments (depending on the regression model) was 

created and taken forward to MR analysis. 

 

Handling of SNPs 

We matched SNPs across the data sources by aligning them to the same effect allele. 

Effect allele frequencies were checked for concordance. 

 

Causal framework 

We considered the causal effects of lipid traits on risk of diabetes and CAD. 

 

Mendelian randomization analyses 

We used three MR approaches. 

First, we used conventional 2-sample instrumental variable (IV) analyses, which does 

not make any allowance for pleiotropy. This was implemented as a linear regression, 

of outcome over exposure betas weighted by the inverse variance of the outcome beta. 

Critically the regression is forced to pass through the origin, and this equates to the 

method first proposed by Johnson.21Second, we conducted multivariate MR (MVMR) 

analyses, which statistically adjusts for pleiotropy with identified additional 

phenotypes.22 MVMR is an extension of the conventional weighted regression in 

which the betas for additional (pleiotropic) phenotypes are included as covariates. In 

http://www.sph.umich.edu/csg/abecasis/public/lipids2013
https://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
https://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
http://www.cardiogramplusc4d.org/
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this case we used all three lipid traits in the model (e.g. for the HDL-C instrument we 

included XXX???, thereby adjusting for, LDL-C and TG).  Third, we used the 

recently published technique of MR-Egger,16 which accounts for unbalanced 

horizontal pleiotropy. MR-Egger is a linear regression of estimated SNP effects (for 

the exposure-raising allele) on exposure against the corresponding estimates of the 

SNP on outcome, weighted by the inverse variance of the SNP on outcome effect 

estimates. This differs from conventional 2-sample Mendelian randomization in that 

the regression is not forced through the origin. Bowden et al16 show that this estimate 

is unaffected by unmeasured pleiotropy and, indeed, the presence of unmeasured 

pleiotropy can be inferred if the intercept term is non-zero.For MR-Egger, the 

standard error (SE) for each exposure-outcome estimate was obtained by 

bootstrapping the distributions of the SNP effect estimates for both exposure and 

outcome 100,000 times. Otherwise results were obtained from the lm() function in R.  

 

Selection of optimal number of SNPs in genetic instrument 

We quantified the proportion of variance (R2) of the exposure explained by a genetic 

instrument comprising n SNPs using the R package gtx(). We then made a similar 

estimate for an instrument with n+50 SNPs and presented this as a ratio. In parallel, 

we tested (by bootstrapping the summary statistics for the two models 5000 times) the 

null hypothesis that adding the (n+1)th SNP did not increase the value of R2, this was 

tested as a binomial probability ~B5000,0.5 To decide upon the optimal number of 

SNPs, (without prior reference to the MR results) we identified the point where the 

slope for the P-value (of no increase in R2) leveled out – and checked to see that this 

was the point where the ratio or R2/R2+50 plateaued. Two authors (JW and MVH) 

checked this independently and arose at a consensus as to the number of SNPs to 

include for each lipid. 

 

Selection of MR model to derive causal estimate 

Once we determined the optimal number of SNPs, we used the following decision-

tree to select the optimal model from which to derive the causal estimate: 

(i) if there was no evidence of unbalanced pleiotropy using the intercept 

derived from MR-Egger, we used the conventional (2-sample) IV as the 

causal estimate (as it retains maximal power and has fewest assumptions) 

(ii) if there was evidence of unbalanced pleiotropy, we used the causal 

estimate from MR-Egger 

(iii) in cases where there was discordance between conventional MR and MR-

Egger, we used MVMR to inform whether differences could arise from 

pathways shared between the three lipids traits 

 

For HDL-C, where the evidence based in CAD was less clear, we took the additional 

step of generating a “non-pleiotropic” instrument. This was conducted as per the steps 

above, but when addition of a SNP to the instrument generated unbalanced pleiotropy, 

as tested by the intercept of MR-Egger, we excluded the SNP from the model. This 

therefore forced only non-unbalanced-pleiotropic SNPs into the model. 
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We used an overly-conservative Bonferroni-adjusted P-value threshold to infer 

significance. As there were 6 tests (three lipid traits and two outcomes), our threshold 

for significance was 0.05/6=0.0083. 

 

 

The inSIDE assumption 

The assumption that the IV effect estimate is independent of the exposure effect 

estimate is an important assumption made during MR analysis (the so-called 

“inSIDE” rule.16 We tested the null hypothesis that the ratios of outcome to exposure 

effect estimates for the SNPs in an instrument were independent of the exposure 

effect estimates for the same SNPs.  
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Results 

 

The optimal number of SNPs for each of the lipid traits was 130 for LDL-C 

(explaining 7.4% of its variance), 130 for HDL-C (accounting for 2.6% of HDL-C 

variance) and 120 for TG (5.1% of TG variance) (Supplementary Figures 1-6). 

 

 

LDL-C 

All three MR models provided very strong evidence of a causal effect of LDL-C and 

risk of CAD. At 125 SNPs, there was no evidence for unbalanced pleiotropy, and the 

causal estimates ranged from OR 1.44 (95%CI: 1.33, 1.55) from MVMR to OR 1.52 

(95%CI: 1.42, 1.63) for MR-Egger per 1-SD genetically-instrumented increase in 

LDL-C (equivalent to 1.03 mmol/l) (Figure 1 and Supplementary Figure 1). 

 

For diabetes, there was evidence for pleiotropy as the number of SNPs in the 

instrument increased. At the optimal number of SNPs (n=130), in the presence of 

pleiotropy, MR-Egger provided a causal estimate of OR 0.73 (95%CI: 0.58, 0.97) per 

1-SD increase in LDL-C, which was consistent with IV estimates derived from 

conventional and MVMR approaches (Figure 1 and Supplementary Figure 2). 

 
 

HDL-C 

A genetically instrumented 1-SD increase in HDL-C (equivalent to 0.46 mmol/l) did 

not provide conclusive evidence of a causal relationship of HDL-C with risk of CAD. 

At 110 SNPs, there was evidence for unbalanced pleiotropy and the corresponding 

MR-Egger provided an estimate of OR 0.95 (95%CI: 0.78, 1.14) for CAD. This was 

at odds with the multivariate MR estimate (adjusted for LDL-C and TG) of 0.80 

(95%CI: 0.71, 0.91), suggesting that the unbalanced pleiotropy could arise from 

additional sources not fully accounted for by LDL-C and HDL-C (Figure 1 and 

Supplementary Figure 3A). Using all available SNPs (n=200), there was no 

unbalanced pleiotropy and all three MR approaches yielded an estimate indicative of 

a protective effect of HDL-C on CAD, with the estimate from MR-Egger being OR 

0.84 (95%CI: 0.71, 0.98). Pruning the genetic instrument to include only non-

pleiotropic SNPs, at 173 SNPs there was a similar proportion of variance of HDL-C 

explained as the “optimal instrument” (that included unbalanced pleiotropic SNPs), 

evidence for a causal association emerged using all three models with MR-Egger 

yielding an OR of 0.82 (95%CI: 0.70, 0.98) (Supplementary Figure 3A, 3B and 

Figure 2). 

 

For diabetes, at 110 SNPs there was no evidence for unbalanced pleiotropy of the 

genetic instrument. The two-sample MR provided a causal estimate of OR 0.78 

(95%CI: 0.62, 0.97), which was directionally consistent with both MVMR and MR-

Egger (although the 95%CI for both these models included the null) (Supplementary 

Figure 4). 
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TG 

 

At 120 SNPs, in the presence of pleiotropy, a genetically instrumented 1-SD increase 

in TG yielded a causal OR from MR-Egger of 1.55 (95%CI: 1.42, 1.69), which was of 

greater magnitude that the estimates derived from 2-sample or MVMR approaches. 

For diabetes, again there was presence of unbalanced pleiotropy and the MR-Egger 

estimate did not provide evidence of a causal effect of TG on risk of T2D (OR 0.99; 

95%CI: 0.70, 1.42) (Figure 1 and Supplementary Figures 5 and 6).  

 

Putting the pieces together: causal framework 

Using the above estimates, we illustrate the causal effects of lipids, diabetes and CAD 

under two models: a very conservative estimate (using only MR-Egger estimates) and 

an optimal approach that selected the MR model based on whether unbalanced 

pleiotropy was present (Figure 3). Using the most conservative effects from MR-

Egger at the optimal number of SNPs, we identified LDL-C to be unique among the 

lipid subfractions in raising risk of CAD and protecting against T2D in both the 

conservative and optimal approaches. In contrast, TG only affected CAD. Under the 

conservative approach, HDL-C had no effect on either CAD or T2D. In the optimal 

model, LDL-C and TG were unchanged, whereas a protective effect of HDL-C on 

risk of T2D emerged. 

 

inSIDE assumption 

We were unable to reject the null hypothesis of independence for any outcome 

exposure pair (Supplementary Table 1). Thereby, the “inSIDE” assumption was 

satisfied for all models tested. 
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Discussion 

 

We exploited data from multiple GWAS to conduct Mendelian randomization 

analyses in order to explore the causal relationships between lipids and risk of T2D 

and CAD. Our findings reveal a complex series of causal relationships that will help 

inform on potential downstream consequence of therapeutic modification of lipid 

levels. 

 

LDL-C and TG have robust causal effects on risk of CAD, however the evidence for 

HDL-C was far less convincing. Using the optimal instrument for HDL-C, there was 

evidence of unbalanced pleiotropy of the genetic instrument and the estimate derived 

from MR-Egger (the most conservative and reliable estimate in the presence of 

unbalanced pleiotropy) did not provide evidence for a causal effect. However, when 

we widened the net to include all 200 lipid-associated loci, the estimates from all 

three MR approaches converged on a potential causal role of HDL-C. This was 

bolstered by an alternative approach in which we excluded pleiotropic SNPs and 

again identified evidence for a causal effect of HDL-C on risk of CAD by all three 

approaches. While it is tempting to suggest that two out of three approaches yielded 

evidence for a causal effect for HDL-C, this should be tempered for the following 

reasons: (i) using all lipid-associated SNPs as an instrument for HDL-C could result 

in model over-fitting, meaning that the estimate is biased; and, (ii) selecting only non-

pleiotropic SNPs could introduce selection bias in the genetic instrument by focusing 

on a subset of SNPs that is not representative of any meaningful proxy of HDL-C. 

Therefore, the pragmatic interpretation is that HDL-C is unlikely to play a causal role 

in the aetiology of CAD, which is in keeping with prior MRs5, 6 and findings from 

recent studies of therapeutics targeting HDL-C.7, 23 

 

The association of TG with CAD recapitulates estimates derived from several prior 

MR and genetic studies.4, 5 Of note, the strength of evidence using the MR approach 

that is least prone to bias (MR-Egger) in this study provides a causal estimate of CAD 

for a 1-SD increase in TG that is similar in magnitude for an equivalent difference in 

LDL-C (both OR ~1.5 per 1-SD increment in either lipid subfraction). This suggests 

that clinical trials targeting TG should be expected to have as large magnitudes of 

effect as therapeutics that lower LDL-C, and should be prioritized. 

 

Both LDL-C and HDL-C had a protective effect on risk of T2D. This causal, yet 

protective, effect of LDL-C is worthy of further consideration. HMG-coA reductase 

inhibitors (statins) that reduce LDL-C and CAD risk are noted for their on-target 

effect of increased risk of diabetes,8, 9 which fits with our data. However, although the 

interpretation of our findings is that LDL-C “as a whole” is protective of diabetes, it 

does not necessarily mean that all LDL-C lowering drugs will increase risk of 

diabetes. For example, it is possible that specific druggable loci that alter LDL-C and 

CAD risk (such as therapeutics targeting PCSK9 and apolipoprotein B) will have no 

net effect on T2D, whereas drugs that result in raised HDL-C and lower LDL-C (such 
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as CETP inhibitors) may have a beneficial effect on diabetes, as has been reported in 

prior clinical trials.24, 25 Large-scale genetic and clinical investigations examining 

individual therapeutic targets are urgently needed to clarify the expected downstream 

consequences of intervening on specific therapeutic targets to gauge dysglycaemic 

associations.26 

 

This study has several advantages. First, we use the most up to date data available for 

lipids, providing the most comprehensive genetic instruments available. Second, we 

used different MR models, from the most conventional method to recently developed 

approaches, to facilitate interpretation of the stability of the causal estimate under 

different models. Third, use of MR-Egger allowed us to include all GWAS-identified 

lipid-related SNPs in the genetic instruments, irrespective of whether they are 

pleiotropic, which increases power. Fourth, using summary-level data from different 

sources represents an efficient study design to facilitate original investigations such as 

these without the cost or need for de novo pheno/genotyping. Fifth, the robust positive 

association of LDL-C with CAD seen in all three Mendelian randomization 

approaches replicates prior findings and validates our approach.  

 

Some limitations are also worthy of note. First, despite using all available GWAS 

data, it is possible that some associations were null due to lack of power, especially 

given that while MR-Egger is the least biased, it is also the least powered of the three 

MR approaches.27 This could account for the lack of association of HDL-C with T2D 

when using MR-Egger, an association that was present using the conventional MR 

approach that is permissible given the lack of unbalanced pleiotreopy. Second, MR-

Egger relies upon the “InSIDE rule”,16 which rests on the assumption that that the 

correlation between genetic associations with the exposure and the direct effect of the 

genetic variants on the outcome is zero. However, we show that none of the genetic 

models violates inSIDE rule. Third, associations could be diminished by treatment of 

individuals with lipid-lowering drugs, so-called “canalisation”.  

 

In conclusion, our comprehensive Mendelian randomization study identified distinct 

causal associations between the three major lipid subfraction and T2D and CAD.  

LDL-C and TG increase risk of CAD, and LDL-C and HDL-C are protective of 

diabetes. These findings help shed light on the underlying causal pathways, and may 

inform on expected downstream consequences of intervening on lipid traits.  



 13 

Acknowledgements 

 

 

Funding 

SEH is a BHF Professor and is funded by PG08/008, and by the National Institute for 

Health Research University College London Hospitals Biomedical Research 

Centre.  Please ask Jon for his current funding source 

 

 

Conflicts of Interest 

 

 

References 

1. Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, 

Darius H, Lewis BS, Ophuis TO, Jukema JW, De Ferrari GM, Ruzyllo W, De Lucca 

P, Im K, Bohula EA, Reist C, Wiviott SD, Tershakovec AM, Musliner TA, 

Braunwald E, Califf RM, Investigators I-I. Ezetimibe Added to Statin Therapy after 

Acute Coronary Syndromes. N Engl J Med 2015. 

2. Cholesterol Treatment Trialists C, Baigent C, Blackwell L, Emberson J, 

Holland LE, Reith C, Bhala N, Peto R, Barnes EH, Keech A, Simes J, Collins R. 

Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of 

data from 170,000 participants in 26 randomised trials. Lancet 2010;376(9753):1670-

81. 

3. Cholesterol Treatment Trialists C, Mihaylova B, Emberson J, Blackwell L, 

Keech A, Simes J, Barnes EH, Voysey M, Gray A, Collins R, Baigent C. The effects 

of lowering LDL cholesterol with statin therapy in people at low risk of vascular 

disease: meta-analysis of individual data from 27 randomised trials. Lancet 

2012;380(9841):581-90. 

4. Do R, Willer CJ, Schmidt EM, Sengupta S, Gao C, Peloso GM, Gustafsson S, 

Kanoni S, Ganna A, Chen J, Buchkovich ML, Mora S, Beckmann JS, Bragg-Gresham 

JL, Chang HY, Demirkan A, Den Hertog HM, Donnelly LA, Ehret GB, Esko T, 

Feitosa MF, Ferreira T, Fischer K, Fontanillas P, Fraser RM, Freitag DF, Gurdasani 

D, Heikkila K, Hypponen E, Isaacs A, Jackson AU, Johansson A, Johnson T, 

Kaakinen M, Kettunen J, Kleber ME, Li X, Luan J, Lyytikainen LP, Magnusson PK, 

Mangino M, Mihailov E, Montasser ME, Muller-Nurasyid M, Nolte IM, O'Connell 

JR, Palmer CD, Perola M, Petersen AK, Sanna S, Saxena R, Service SK, Shah S, 

Shungin D, Sidore C, Song C, Strawbridge RJ, Surakka I, Tanaka T, Teslovich TM, 

Thorleifsson G, Van den Herik EG, Voight BF, Volcik KA, Waite LL, Wong A, Wu 

Y, Zhang W, Absher D, Asiki G, Barroso I, Been LF, Bolton JL, Bonnycastle LL, 

Brambilla P, Burnett MS, Cesana G, Dimitriou M, Doney AS, Doring A, Elliott P, 

Epstein SE, Eyjolfsson GI, Gigante B, Goodarzi MO, Grallert H, Gravito ML, Groves 

CJ, Hallmans G, Hartikainen AL, Hayward C, Hernandez D, Hicks AA, Holm H, 

Hung YJ, Illig T, Jones MR, Kaleebu P, Kastelein JJ, Khaw KT, Kim E, Klopp N, 

Komulainen P, Kumari M, Langenberg C, Lehtimaki T, Lin SY, Lindstrom J, Loos 

RJ, Mach F, McArdle WL, Meisinger C, Mitchell BD, Muller G, Nagaraja R, Narisu 

N, Nieminen TV, Nsubuga RN, Olafsson I, Ong KK, Palotie A, Papamarkou T, 

Pomilla C, Pouta A, Rader DJ, Reilly MP, Ridker PM, Rivadeneira F, Rudan I, 

Ruokonen A, Samani N, Scharnagl H, Seeley J, Silander K, Stancakova A, Stirrups 



 14 

K, Swift AJ, Tiret L, Uitterlinden AG, van Pelt LJ, Vedantam S, Wainwright N, 

Wijmenga C, Wild SH, Willemsen G, Wilsgaard T, Wilson JF, Young EH, Zhao JH, 

Adair LS, Arveiler D, Assimes TL, Bandinelli S, Bennett F, Bochud M, Boehm BO, 

Boomsma DI, Borecki IB, Bornstein SR, Bovet P, Burnier M, Campbell H, 

Chakravarti A, Chambers JC, Chen YD, Collins FS, Cooper RS, Danesh J, Dedoussis 

G, de Faire U, Feranil AB, Ferrieres J, Ferrucci L, Freimer NB, Gieger C, Groop LC, 

Gudnason V, Gyllensten U, Hamsten A, Harris TB, Hingorani A, Hirschhorn JN, 

Hofman A, Hovingh GK, Hsiung CA, Humphries SE, Hunt SC, Hveem K, Iribarren 

C, Jarvelin MR, Jula A, Kahonen M, Kaprio J, Kesaniemi A, Kivimaki M, Kooner JS, 

Koudstaal PJ, Krauss RM, Kuh D, Kuusisto J, Kyvik KO, Laakso M, Lakka TA, Lind 

L, Lindgren CM, Martin NG, Marz W, McCarthy MI, McKenzie CA, Meneton P, 

Metspalu A, Moilanen L, Morris AD, Munroe PB, Njolstad I, Pedersen NL, Power C, 

Pramstaller PP, Price JF, Psaty BM, Quertermous T, Rauramaa R, Saleheen D, 

Salomaa V, Sanghera DK, Saramies J, Schwarz PE, Sheu WH, Shuldiner AR, 

Siegbahn A, Spector TD, Stefansson K, Strachan DP, Tayo BO, Tremoli E, 

Tuomilehto J, Uusitupa M, van Duijn CM, Vollenweider P, Wallentin L, Wareham 

NJ, Whitfield JB, Wolffenbuttel BH, Altshuler D, Ordovas JM, Boerwinkle E, Palmer 

CN, Thorsteinsdottir U, Chasman DI, Rotter JI, Franks PW, Ripatti S, Cupples LA, 

Sandhu MS, Rich SS, Boehnke M, Deloukas P, Mohlke KL, Ingelsson E, Abecasis 

GR, Daly MJ, Neale BM, Kathiresan S. Common variants associated with plasma 

triglycerides and risk for coronary artery disease. Nat Genet 2013;45(11):1345-52. 

5. Holmes MV, Asselbergs FW, Palmer TM, Drenos F, Lanktree MB, Nelson 

CP, Dale CE, Padmanabhan S, Finan C, Swerdlow DI, Tragante V, van Iperen EP, 

Sivapalaratnam S, Shah S, Elbers CC, Shah T, Engmann J, Giambartolomei C, White 

J, Zabaneh D, Sofat R, McLachlan S, on behalf of the Uc, Doevendans PA, Balmforth 

AJ, Hall AS, North KE, Almoguera B, Hoogeveen RC, Cushman M, Fornage M, 

Patel SR, Redline S, Siscovick DS, Tsai MY, Karczewski KJ, Hofker MH, 

Verschuren WM, Bots ML, van der Schouw YT, Melander O, Dominiczak AF, 

Morris R, Ben-Shlomo Y, Price J, Kumari M, Baumert J, Peters A, Thorand B, 

Koenig W, Gaunt TR, Humphries SE, Clarke R, Watkins H, Farrall M, Wilson JG, 

Rich SS, de Bakker PI, Lange LA, Davey Smith G, Reiner AP, Talmud PJ, Kivimaki 

M, Lawlor DA, Dudbridge F, Samani NJ, Keating BJ, Hingorani AD, Casas JP. 

Mendelian randomization of blood lipids for coronary heart disease. Eur Heart J 2014. 

6. Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, 

Jensen MK, Hindy G, Holm H, Ding EL, Johnson T, Schunkert H, Samani NJ, Clarke 

R, Hopewell JC, Thompson JF, Li M, Thorleifsson G, Newton-Cheh C, Musunuru K, 

Pirruccello JP, Saleheen D, Chen L, Stewart A, Schillert A, Thorsteinsdottir U, 

Thorgeirsson G, Anand S, Engert JC, Morgan T, Spertus J, Stoll M, Berger K, 

Martinelli N, Girelli D, McKeown PP, Patterson CC, Epstein SE, Devaney J, Burnett 

MS, Mooser V, Ripatti S, Surakka I, Nieminen MS, Sinisalo J, Lokki ML, Perola M, 

Havulinna A, de Faire U, Gigante B, Ingelsson E, Zeller T, Wild P, de Bakker PI, 

Klungel OH, Maitland-van der Zee AH, Peters BJ, de Boer A, Grobbee DE, 

Kamphuisen PW, Deneer VH, Elbers CC, Onland-Moret NC, Hofker MH, Wijmenga 

C, Verschuren WM, Boer JM, van der Schouw YT, Rasheed A, Frossard P, Demissie 

S, Willer C, Do R, Ordovas JM, Abecasis GR, Boehnke M, Mohlke KL, Daly MJ, 

Guiducci C, Burtt NP, Surti A, Gonzalez E, Purcell S, Gabriel S, Marrugat J, Peden J, 

Erdmann J, Diemert P, Willenborg C, Konig IR, Fischer M, Hengstenberg C, Ziegler 

A, Buysschaert I, Lambrechts D, Van de Werf F, Fox KA, El Mokhtari NE, Rubin D, 

Schrezenmeir J, Schreiber S, Schafer A, Danesh J, Blankenberg S, Roberts R, 

McPherson R, Watkins H, Hall AS, Overvad K, Rimm E, Boerwinkle E, Tybjaerg-



 15 

Hansen A, Cupples LA, Reilly MP, Melander O, Mannucci PM, Ardissino D, 

Siscovick D, Elosua R, Stefansson K, O'Donnell CJ, Salomaa V, Rader DJ, Peltonen 

L, Schwartz SM, Altshuler D, Kathiresan S. Plasma HDL cholesterol and risk of 

myocardial infarction: a mendelian randomisation study. Lancet 2012;380(9841):572-

80. 

7. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, 

Chaitman BR, Holme IM, Kallend D, Leiter LA, Leitersdorf E, McMurray JJ, Mundl 

H, Nicholls SJ, Shah PK, Tardif JC, Wright RS, dal OI. Effects of dalcetrapib in 

patients with a recent acute coronary syndrome. N Engl J Med 2012;367(22):2089-99. 

8. Preiss D, Seshasai SR, Welsh P, Murphy SA, Ho JE, Waters DD, DeMicco 

DA, Barter P, Cannon CP, Sabatine MS, Braunwald E, Kastelein JJ, de Lemos JA, 

Blazing MA, Pedersen TR, Tikkanen MJ, Sattar N, Ray KK. Risk of incident diabetes 

with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. 

JAMA 2011;305(24):2556-64. 

9. Swerdlow DI, Preiss D, Kuchenbaecker KB, Holmes MV, Engmann JE, Shah 

T, Sofat R, Stender S, Johnson PC, Scott RA, Leusink M, Verweij N, Sharp SJ, Guo 

Y, Giambartolomei C, Chung C, Peasey A, Amuzu A, Li K, Palmen J, Howard P, 

Cooper JA, Drenos F, Li YR, Lowe G, Gallacher J, Stewart MC, Tzoulaki I, 

Buxbaum SG, van der AD, Forouhi NG, Onland-Moret NC, van der Schouw YT, 

Schnabel RB, Hubacek JA, Kubinova R, Baceviciene M, Tamosiunas A, Pajak A, 

Topor-Madry R, Stepaniak U, Malyutina S, Baldassarre D, Sennblad B, Tremoli E, de 

Faire U, Veglia F, Ford I, Jukema JW, Westendorp RG, de Borst GJ, de Jong PA, 

Algra A, Spiering W, der Zee AH, Klungel OH, de Boer A, Doevendans PA, Eaton 

CB, Robinson JG, Duggan D, Diagram Consortium MCIC, Kjekshus J, Downs JR, 

Gotto AM, Keech AC, Marchioli R, Tognoni G, Sever PS, Poulter NR, Waters DD, 

Pedersen TR, Amarenco P, Nakamura H, McMurray JJ, Lewsey JD, Chasman DI, 

Ridker PM, Maggioni AP, Tavazzi L, Ray KK, Seshasai SR, Manson JE, Price JF, 

Whincup PH, Morris RW, Lawlor DA, Smith GD, Ben-Shlomo Y, Schreiner PJ, 

Fornage M, Siscovick DS, Cushman M, Kumari M, Wareham NJ, Verschuren WM, 

Redline S, Patel SR, Whittaker JC, Hamsten A, Delaney JA, Dale C, Gaunt TR, 

Wong A, Kuh D, Hardy R, Kathiresan S, Castillo BA, van der Harst P, Brunner EJ, 

Tybjaerg-Hansen A, Marmot MG, Krauss RM, Tsai M, Coresh J, Hoogeveen RC, 

Psaty BM, Lange LA, Hakonarson H, Dudbridge F, Humphries SE, Talmud PJ, 

Kivimaki M, Timpson NJ, Langenberg C, Asselbergs FW, Voevoda M, Bobak M, 

Pikhart H, Wilson JG, Reiner AP, Keating BJ, Hingorani AD, Sattar N. HMG-

coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from 

genetic analysis and randomised trials. Lancet 2014. 

10. Fall T, Xie W, Poon W, Yaghootkar H, Magi R, Consortium G, Knowles JW, 

Lyssenko V, Weedon M, Frayling TM, Ingelsson E. Using Genetic Variants to Assess 

the Relationship Between Circulating Lipids and Type 2 Diabetes. Diabetes 

2015;64(7):2676-84. 

11. Haase CL, Tybjaerg-Hansen A, Nordestgaard BG, Frikke-Schmidt R. High-

density lipoprotein cholesterol and risk of type 2 diabetes: a Mendelian randomization 

study. Diabetes 2015. 

12. Stein EA, Mellis S, Yancopoulos GD, Stahl N, Logan D, Smith WB, Lisbon 

E, Gutierrez M, Webb C, Wu R, Du Y, Kranz T, Gasparino E, Swergold GD. Effect 

of a monoclonal antibody to PCSK9 on LDL cholesterol. N Engl J Med 

2012;366(12):1108-18. 

13. Akdim F, Stroes ES, Sijbrands EJ, Tribble DL, Trip MD, Jukema JW, Flaim 

JD, Su J, Yu R, Baker BF, Wedel MK, Kastelein JJ. Efficacy and safety of 



 16 

mipomersen, an antisense inhibitor of apolipoprotein B, in hypercholesterolemic 

subjects receiving stable statin therapy. J Am Coll Cardiol 2010;55(15):1611-8. 

14. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian 

randomization: using genes as instruments for making causal inferences in 

epidemiology. Stat Med 2008;27(8):1133-63. 

15. Burgess S, Dudbridge F, Thompson SG. Re: "Multivariable Mendelian 

randomization: the use of pleiotropic genetic variants to estimate causal effects". Am 

J Epidemiol 2015;181(4):290-1. 

16. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid 

instruments: effect estimation and bias detection through Egger regression. Int J 

Epidemiol 2015;44(2):512-25. 

17. Global Lipids Genetics C, Willer CJ, Schmidt EM, Sengupta S, Peloso GM, 

Gustafsson S, Kanoni S, Ganna A, Chen J, Buchkovich ML, Mora S, Beckmann JS, 

Bragg-Gresham JL, Chang HY, Demirkan A, Den Hertog HM, Do R, Donnelly LA, 

Ehret GB, Esko T, Feitosa MF, Ferreira T, Fischer K, Fontanillas P, Fraser RM, 

Freitag DF, Gurdasani D, Heikkila K, Hypponen E, Isaacs A, Jackson AU, Johansson 

A, Johnson T, Kaakinen M, Kettunen J, Kleber ME, Li X, Luan J, Lyytikainen LP, 

Magnusson PK, Mangino M, Mihailov E, Montasser ME, Muller-Nurasyid M, Nolte 

IM, O'Connell JR, Palmer CD, Perola M, Petersen AK, Sanna S, Saxena R, Service 

SK, Shah S, Shungin D, Sidore C, Song C, Strawbridge RJ, Surakka I, Tanaka T, 

Teslovich TM, Thorleifsson G, Van den Herik EG, Voight BF, Volcik KA, Waite LL, 

Wong A, Wu Y, Zhang W, Absher D, Asiki G, Barroso I, Been LF, Bolton JL, 

Bonnycastle LL, Brambilla P, Burnett MS, Cesana G, Dimitriou M, Doney AS, 

Doring A, Elliott P, Epstein SE, Eyjolfsson GI, Gigante B, Goodarzi MO, Grallert H, 

Gravito ML, Groves CJ, Hallmans G, Hartikainen AL, Hayward C, Hernandez D, 

Hicks AA, Holm H, Hung YJ, Illig T, Jones MR, Kaleebu P, Kastelein JJ, Khaw KT, 

Kim E, Klopp N, Komulainen P, Kumari M, Langenberg C, Lehtimaki T, Lin SY, 

Lindstrom J, Loos RJ, Mach F, McArdle WL, Meisinger C, Mitchell BD, Muller G, 

Nagaraja R, Narisu N, Nieminen TV, Nsubuga RN, Olafsson I, Ong KK, Palotie A, 

Papamarkou T, Pomilla C, Pouta A, Rader DJ, Reilly MP, Ridker PM, Rivadeneira F, 

Rudan I, Ruokonen A, Samani N, Scharnagl H, Seeley J, Silander K, Stancakova A, 

Stirrups K, Swift AJ, Tiret L, Uitterlinden AG, van Pelt LJ, Vedantam S, Wainwright 

N, Wijmenga C, Wild SH, Willemsen G, Wilsgaard T, Wilson JF, Young EH, Zhao 

JH, Adair LS, Arveiler D, Assimes TL, Bandinelli S, Bennett F, Bochud M, Boehm 

BO, Boomsma DI, Borecki IB, Bornstein SR, Bovet P, Burnier M, Campbell H, 

Chakravarti A, Chambers JC, Chen YD, Collins FS, Cooper RS, Danesh J, Dedoussis 

G, de Faire U, Feranil AB, Ferrieres J, Ferrucci L, Freimer NB, Gieger C, Groop LC, 

Gudnason V, Gyllensten U, Hamsten A, Harris TB, Hingorani A, Hirschhorn JN, 

Hofman A, Hovingh GK, Hsiung CA, Humphries SE, Hunt SC, Hveem K, Iribarren 

C, Jarvelin MR, Jula A, Kahonen M, Kaprio J, Kesaniemi A, Kivimaki M, Kooner JS, 

Koudstaal PJ, Krauss RM, Kuh D, Kuusisto J, Kyvik KO, Laakso M, Lakka TA, Lind 

L, Lindgren CM, Martin NG, Marz W, McCarthy MI, McKenzie CA, Meneton P, 

Metspalu A, Moilanen L, Morris AD, Munroe PB, Njolstad I, Pedersen NL, Power C, 

Pramstaller PP, Price JF, Psaty BM, Quertermous T, Rauramaa R, Saleheen D, 

Salomaa V, Sanghera DK, Saramies J, Schwarz PE, Sheu WH, Shuldiner AR, 

Siegbahn A, Spector TD, Stefansson K, Strachan DP, Tayo BO, Tremoli E, 

Tuomilehto J, Uusitupa M, van Duijn CM, Vollenweider P, Wallentin L, Wareham 

NJ, Whitfield JB, Wolffenbuttel BH, Ordovas JM, Boerwinkle E, Palmer CN, 

Thorsteinsdottir U, Chasman DI, Rotter JI, Franks PW, Ripatti S, Cupples LA, 

Sandhu MS, Rich SS, Boehnke M, Deloukas P, Kathiresan S, Mohlke KL, Ingelsson 



 17 

E, Abecasis GR. Discovery and refinement of loci associated with lipid levels. Nat 

Genet 2013;45(11):1274-83. 

18. Morris AP, Voight BF, Teslovich TM, Ferreira T, Segre AV, Steinthorsdottir 

V, Strawbridge RJ, Khan H, Grallert H, Mahajan A, Prokopenko I, Kang HM, Dina 

C, Esko T, Fraser RM, Kanoni S, Kumar A, Lagou V, Langenberg C, Luan J, 

Lindgren CM, Muller-Nurasyid M, Pechlivanis S, Rayner NW, Scott LJ, Wiltshire S, 

Yengo L, Kinnunen L, Rossin EJ, Raychaudhuri S, Johnson AD, Dimas AS, Loos RJ, 

Vedantam S, Chen H, Florez JC, Fox C, Liu CT, Rybin D, Couper DJ, Kao WH, Li 

M, Cornelis MC, Kraft P, Sun Q, van Dam RM, Stringham HM, Chines PS, Fischer 

K, Fontanillas P, Holmen OL, Hunt SE, Jackson AU, Kong A, Lawrence R, Meyer J, 

Perry JR, Platou CG, Potter S, Rehnberg E, Robertson N, Sivapalaratnam S, 

Stancakova A, Stirrups K, Thorleifsson G, Tikkanen E, Wood AR, Almgren P, Atalay 

M, Benediktsson R, Bonnycastle LL, Burtt N, Carey J, Charpentier G, Crenshaw AT, 

Doney AS, Dorkhan M, Edkins S, Emilsson V, Eury E, Forsen T, Gertow K, Gigante 

B, Grant GB, Groves CJ, Guiducci C, Herder C, Hreidarsson AB, Hui J, James A, 

Jonsson A, Rathmann W, Klopp N, Kravic J, Krjutskov K, Langford C, Leander K, 

Lindholm E, Lobbens S, Mannisto S, Mirza G, Muhleisen TW, Musk B, Parkin M, 

Rallidis L, Saramies J, Sennblad B, Shah S, Sigurethsson G, Silveira A, Steinbach G, 

Thorand B, Trakalo J, Veglia F, Wennauer R, Winckler W, Zabaneh D, Campbell H, 

van Duijn C, Uitterlinden AG, Hofman A, Sijbrands E, Abecasis GR, Owen KR, 

Zeggini E, Trip MD, Forouhi NG, Syvanen AC, Eriksson JG, Peltonen L, Nothen 

MM, Balkau B, Palmer CN, Lyssenko V, Tuomi T, Isomaa B, Hunter DJ, Qi L, 

Wellcome Trust Case Control C, Meta-Analyses of G, Insulin-related traits 

Consortium I, Genetic Investigation of ATC, Asian Genetic Epidemiology Network-

Type 2 Diabetes C, South Asian Type 2 Diabetes C, Shuldiner AR, Roden M, Barroso 

I, Wilsgaard T, Beilby J, Hovingh K, Price JF, Wilson JF, Rauramaa R, Lakka TA, 

Lind L, Dedoussis G, Njolstad I, Pedersen NL, Khaw KT, Wareham NJ, Keinanen-

Kiukaanniemi SM, Saaristo TE, Korpi-Hyovalti E, Saltevo J, Laakso M, Kuusisto J, 

Metspalu A, Collins FS, Mohlke KL, Bergman RN, Tuomilehto J, Boehm BO, Gieger 

C, Hveem K, Cauchi S, Froguel P, Baldassarre D, Tremoli E, Humphries SE, 

Saleheen D, Danesh J, Ingelsson E, Ripatti S, Salomaa V, Erbel R, Jockel KH, 

Moebus S, Peters A, Illig T, de Faire U, Hamsten A, Morris AD, Donnelly PJ, 

Frayling TM, Hattersley AT, Boerwinkle E, Melander O, Kathiresan S, Nilsson PM, 

Deloukas P, Thorsteinsdottir U, Groop LC, Stefansson K, Hu F, Pankow JS, Dupuis J, 

Meigs JB, Altshuler D, Boehnke M, McCarthy MI, Replication DIG, Meta-analysis 

C. Large-scale association analysis provides insights into the genetic architecture and 

pathophysiology of type 2 diabetes. Nat Genet 2012;44(9):981-90. 

19. Consortium CAD, Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes 

TL, Thompson JR, Ingelsson E, Saleheen D, Erdmann J, Goldstein BA, Stirrups K, 

Konig IR, Cazier JB, Johansson A, Hall AS, Lee JY, Willer CJ, Chambers JC, Esko 

T, Folkersen L, Goel A, Grundberg E, Havulinna AS, Ho WK, Hopewell JC, Eriksson 

N, Kleber ME, Kristiansson K, Lundmark P, Lyytikainen LP, Rafelt S, Shungin D, 

Strawbridge RJ, Thorleifsson G, Tikkanen E, Van Zuydam N, Voight BF, Waite LL, 

Zhang W, Ziegler A, Absher D, Altshuler D, Balmforth AJ, Barroso I, Braund PS, 

Burgdorf C, Claudi-Boehm S, Cox D, Dimitriou M, Do R, Consortium D, Consortium 

C, Doney AS, El Mokhtari N, Eriksson P, Fischer K, Fontanillas P, Franco-Cereceda 

A, Gigante B, Groop L, Gustafsson S, Hager J, Hallmans G, Han BG, Hunt SE, Kang 

HM, Illig T, Kessler T, Knowles JW, Kolovou G, Kuusisto J, Langenberg C, 

Langford C, Leander K, Lokki ML, Lundmark A, McCarthy MI, Meisinger C, 

Melander O, Mihailov E, Maouche S, Morris AD, Muller-Nurasyid M, Mu TC, Nikus 



 18 

K, Peden JF, Rayner NW, Rasheed A, Rosinger S, Rubin D, Rumpf MP, Schafer A, 

Sivananthan M, Song C, Stewart AF, Tan ST, Thorgeirsson G, van der Schoot CE, 

Wagner PJ, Wellcome Trust Case Control C, Wells GA, Wild PS, Yang TP, Amouyel 

P, Arveiler D, Basart H, Boehnke M, Boerwinkle E, Brambilla P, Cambien F, 

Cupples AL, de Faire U, Dehghan A, Diemert P, Epstein SE, Evans A, Ferrario MM, 

Ferrieres J, Gauguier D, Go AS, Goodall AH, Gudnason V, Hazen SL, Holm H, 

Iribarren C, Jang Y, Kahonen M, Kee F, Kim HS, Klopp N, Koenig W, Kratzer W, 

Kuulasmaa K, Laakso M, Laaksonen R, Lee JY, Lind L, Ouwehand WH, Parish S, 

Park JE, Pedersen NL, Peters A, Quertermous T, Rader DJ, Salomaa V, Schadt E, 

Shah SH, Sinisalo J, Stark K, Stefansson K, Tregouet DA, Virtamo J, Wallentin L, 

Wareham N, Zimmermann ME, Nieminen MS, Hengstenberg C, Sandhu MS, 

Pastinen T, Syvanen AC, Hovingh GK, Dedoussis G, Franks PW, Lehtimaki T, 

Metspalu A, Zalloua PA, Siegbahn A, Schreiber S, Ripatti S, Blankenberg SS, Perola 

M, Clarke R, Boehm BO, O'Donnell C, Reilly MP, Marz W, Collins R, Kathiresan S, 

Hamsten A, Kooner JS, Thorsteinsdottir U, Danesh J, Palmer CN, Roberts R, Watkins 

H, Schunkert H, Samani NJ. Large-scale association analysis identifies new risk loci 

for coronary artery disease. Nat Genet 2013;45(1):25-33. 

20. Talmud PJ, Cooper JA, Morris RW, Dudbridge F, Shah T, Engmann J, Dale 

C, White J, McLachlan S, Zabaneh D, Wong A, Ong KK, Gaunt T, Holmes MV, 

Lawlor DA, Richards M, Hardy R, Kuh D, Wareham N, Langenberg C, Ben-Shlomo 

Y, Wannamethee SG, Strachan MW, Kumari M, Whittaker JC, Drenos F, Kivimaki 

M, Hingorani AD, Price JF, Humphries SE, Consortium U. Sixty-five common 

genetic variants and prediction of type 2 diabetes. Diabetes 2015;64(5):1830-40. 

21. Johnson T. Efficient Calculation for Multi-SNP Genetic Risk Scores. 

http://cran.r-project.org/web/packages/gtx/vignettes/ashg2012.pdf  presented 

at the American Society of Human Genetics Annual Meeting, San Francisco, 

November 6–10, 2012. 2012. 

22. Burgess S, Thompson SG. Multivariable Mendelian randomization: the use of 

pleiotropic genetic variants to estimate causal effects. Am J Epidemiol 

2015;181(4):251-60. 

23. Lilly to Discontinue Development of Evacetrapib for High-Risk 

Atherosclerotic Cardiovascular Disease 

https://investor.lilly.com/releasedetail.cfm?ReleaseID=936130. 2015. 

24. Siebel AL, Natoli AK, Yap FY, Carey AL, Reddy-Luthmoodoo M, Sviridov 

D, Weber CI, Meneses-Lorente G, Maugeais C, Forbes JM, Kingwell BA. Effects of 

high-density lipoprotein elevation with cholesteryl ester transfer protein inhibition on 

insulin secretion. Circ Res 2013;113(2):167-75. 

25. Barter PJ, Rye KA, Tardif JC, Waters DD, Boekholdt SM, Breazna A, 

Kastelein JJ. Effect of torcetrapib on glucose, insulin, and hemoglobin A1c in subjects 

in the Investigation of Lipid Level Management to Understand its Impact in 

Atherosclerotic Events (ILLUMINATE) trial. Circulation 2011;124(5):555-62. 

26. Bonnefond A, Yengo L, Le May C, Fumeron F, Marre M, Balkau B, 

Charpentier G, Franc S, Froguel P, Cariou B, group Ds. The loss-of-function PCSK9 

p.R46L genetic variant does not alter glucose homeostasis. Diabetologia 2015. 

27. White J, Sofat R, Hemani G, Shah T, Engmann J, Dale C, Shah S, Kruger F,  

ea. Plasma urate and coronary heart disease: Mendelian randomisation analysis. 

Lancet Diabetes & Endocrinology In Press. 

 

 

 

http://cran.r-project.org/web/packages/gtx/vignettes/ashg2012.pdf
https://investor.lilly.com/releasedetail.cfm?ReleaseID=936130


 19 

 

 



 20 

Figure 1.  Mendelian randomization associations of lipid traits with risk of coronary artery disease (CAD) and type 2 diabetes (T2D).  

 

 

 
 

See Methods for description of the three Mendelian randomization (MR) models. Multivariate MR includes adjustment for other lipid traits. 
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Figure 2. Relationship of HDL-C with CAD using different genetic instruments. 

 

 

 
 

Optimal = selection of model where slope for P-value of increase in R2 plateaus; 

Maximal = using all available SNPs; Pruned = selecting only SNPs to avoid 

generating an unbalanced pleiotropic instrument from MR-Egger
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Figure 3. Cross-hair plot of a 1-SD increase in lipids and risk of diabetes and 

coronary artery disease. 

 

 
 

  
All estimates derived from MR-Egger (most conservative approach) for left panel, 

and optimized according to presence of pleiotropy (on right panel). For the optimized 

approach, in the absence of pleiotropy the two-sample (conventional) MR estimate 

was used.   
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Supplementary Tables 

 

 

Supplementary Table 1. The correlation and (P value) for an association test 

between the IV estimates and exposure estimates for the SNPs in the chosen 

instruments. 

 

 CHD T2D 

LDL-C 0.082(0.365) 0.084(0.355) 

HDL-C -0.017(0.861) 0.028(0.773) 

TG -0.025(0.79) -0.057(0.54) 
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Supplementary Figures 

 

Supplementary Figure 1: LDL-C and CAD – plot to show proportion of variance of 

LDL-C explained, presence of unbalanced pleiotropy and causal estimates derived 

from three MR approaches. 

 

 
Blue-shading = presence of pleiotropy from MR-Egger. When pleiotropy is present, 

the most reliable causal estimate is from MR-Egger as conventional (2-sample) MR 

does not take into account unbalanced pleiotropy, and MVMR may not sufficiently 

remove the unbalanced nature of the pleiotropy. 
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Supplementary Figure 2: LDL-C and T2D – plot to show proportion of variance of 

LDL-C explained, presence of unbalanced pleiotropy and causal estimates derived 

from three MR approaches. 

 

 
Blue-shading = presence of pleiotropy from MR-Egger. When pleiotropy is present, 

the most reliable causal estimate is from MR-Egger as conventional (2-sample) MR 

does not take into account unbalanced pleiotropy, and MVMR may not sufficiently 

remove the unbalanced nature of the pleiotropy. 
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Supplementary Figure 3A: HDL-C and CAD (all SNPs) – plot to show proportion 

of variance of HDL-C explained, presence of unbalanced pleiotropy and causal 

estimates derived from three MR approaches. 

 

 
Blue-shading = presence of pleiotropy from MR-Egger. When pleiotropy is present, 

the most reliable causal estimate is from MR-Egger as conventional (2-sample) MR 

does not take into account unbalanced pleiotropy, and MVMR may not sufficiently 

remove the unbalanced nature of the pleiotropy. 
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Supplementary Figure 3B: HDL-C and CAD – (limited to non-pleiotropic SNPs 

hence no blue shading for unbalanced pleiotropy) - plot to show proportion of 

variance of HDL-C explained, presence of unbalanced pleiotropy and causal estimates 

derived from three MR approaches. 

 

 
Blue-shading = presence of pleiotropy from MR-Egger. When pleiotropy is present, 

the most reliable causal estimate is from MR-Egger as conventional (2-sample) MR 

does not take into account unbalanced pleiotropy, and MVMR may not sufficiently 

remove the unbalanced nature of the pleiotropy. 
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Supplementary Figure 4: HDL-C and T2D – plot to show proportion of variance of 

HDL-C explained, presence of unbalanced pleiotropy and causal estimates derived 

from three MR approaches. 

 

 
 

Blue-shading = presence of pleiotropy from MR-Egger. When pleiotropy is present, 

the most reliable causal estimate is from MR-Egger as conventional (2-sample) MR 

does not take into account unbalanced pleiotropy, and MVMR may not sufficiently 

remove the unbalanced nature of the pleiotropy. 
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Supplementary Figure 5: TG and CHD – plot to show proportion of variance of TG 

explained, presence of unbalanced pleiotropy and causal estimates derived from three 

MR approaches. 

 

 
 

Blue-shading = presence of pleiotropy from MR-Egger. When pleiotropy is present, 

the most reliable causal estimate is from MR-Egger as conventional (2-sample) MR 

does not take into account unbalanced pleiotropy, and MVMR may not sufficiently 

remove the unbalanced nature of the pleiotropy. 
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Supplementary Figure 6: TG and T2D -  – plot to show proportion of variance of 

TG explained, presence of unbalanced pleiotropy and causal estimates derived from 

three MR approaches. 

 

 
 

Blue-shading = presence of pleiotropy from MR-Egger. When pleiotropy is present, 

the most reliable causal estimate is from MR-Egger as conventional (2-sample) MR 

does not take into account unbalanced pleiotropy, and MVMR may not sufficiently 

remove the unbalanced nature of the pleiotropy. 

 

 

 


