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Abstract

This tutorial aims to provide an accessible introduction to particle filters,

and sequential Monte Carlo (SMC) more generally. These techniques allow

for Bayesian inference in complex dynamic state-space models and have

become increasingly popular over the last decades. The basic building blocks

of SMC – sequential importance sampling and resampling – are discussed

in detail with illustrative examples. A final example presents a particle

filter for estimating time-varying learning rates in a probabilistic category

learning task.
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Particle filters, and sequential Monte Carlo (SMC) techniques more gen-1

erally, are a class of simulation-based techniques which have become in-2

creasingly popular over the last decades to perform Bayesian inference in3

complex dynamic statistical models (e.g., Doucet, de Freitas, and Gordon,4

2001b; Doucet and Johansen, 2011). Particle filters are generally applied5
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to so-called filtering problems, where the objective is to estimate the latent6

states of a stochastic process on-line, such that, after each sequential obser-7

vation, the state giving rise to that observation is estimated. For instance,8

in a category learning task, we might want to infer how people use the9

features of objects to categorize them. Due to learning, we would expect10

their categorization strategy to change over time. Traditionally, a formal11

learning model such as ALCOVE (Kruschke, 1992) would be used for this12

purpose, which describes how feedback on their categorization decisions af-13

fects people’s momentary strategy. However, these models usually assume14

a deterministic updating process, which may be too restrictive. Ideally, we15

would like to estimate someone’s strategy – which we can view as the la-16

tent state of their decision process – from trial to trial whilst allowing for17

stochastic transitions between states. Estimating the current categoriza-18

tion strategy is a difficult task, however, as a single categorization decision19

at each point in time provides relatively little information about people’s20

complete categorization strategy, i.e. their potential categorizations of all21

possible stimuli. Assuming trial-to-trial changes to a state (strategy) are22

noisy but relatively small, we may however be able to gain some insight23

into the current state from all previous categorization decisions someone24

made. This filtering problem is generally not analytically tractable; ana-25

lytical results are only available for the restricted class of linear Gaussian26

state-space models. As particle filters are applicable to the much broader27

class of non-linear non-Gaussian state-space models, they open up interest-28

ing possibilities to study a broad range of dynamic processes in psychology.29

A graphical representation of a generic particle filter (see Section 4.3) is30

given in Figure 1. Particle filters operate on a set of randomly sampled values31

of a latent state or unknown parameter. The sampled values, generally32
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Figure 1: Schematic representation of a generic particle filter (after Doucet et al., 2001a).

Standing at time t, we have a set of weighted particles {φ(i)
0:t,W

(i)
t−1} representing the prior

distribution at t. Each particle φ
(i)
0:t is a multidimensional variable which represents the

whole path of the latent state from time 0 up to the current time point t, such that

each dimension represents the value of the state at a particular time point. The location

of the dots in the graph reflect φ
(i)
t , the value of the state at the current time point,

i.e. the dimension of each particle reflecting the current state. The size of each dot

reflects the weight W
(i)
t−1 (“prior at t”). In the reweight step, the weights are updated to

W
(i)
t partly as a function of p(yt|φ(i)

t ), the likelihood of observation yt according to each

sampled state value φ
(i)
t (solid line). The resulting set {φ(i)

0:t,W
(i)
t } of weighted particles

approximates the posterior distribution (“posterior at t”) of the latent state paths. The

resampling step duplicates values φ
(i)
0:t with high weights W

(i)
t , and eliminates those with

low weights, resulting in the set of uniformly weighted particles {φ̃(i)
0:t, W̃

(i)
t = 1/N} which

is approximately distributed according to the posterior (second “posterior at t”). In the

propagate step, values of states φ
(i)
t+1 at the next time point are sampled and added to each

particle to account for state transitions, forming a prior distribution for time t+ 1 (“prior

at t+1”). Thus, at each new time point, the particles grow in dimension because the whole

path of the latent state now incorporates the new time point as well. The particles are

then reweighted in response to the likelihood of the new observation yt+1 to approximate

the posterior distribution at t+ 1 (“posterior at t+1”), etc.
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referred to as “particles”, are propagated over time to track the posterior33

distribution of the state or parameter at each point in time. Each particle34

is assigned a weight in relation to its posterior probability. To increase their35

accuracy, SMC techniques resample useful particles from the set according to36

these weights. This resampling introduces interaction between the particles,37

and the term “interacting particle filters” was coined by Del Moral (1996),38

who showed how the method relates to techniques used in physics to analyse39

the movement of particles.40

Particle filters have successfully solved difficult problems in machine41

learning, such as allowing robots to simultaneously map their environment42

and localize their position within it (Montemerlo, Thrun, Koller, and Weg-43

breit, 2002), and the automated tracking of multiple objects in naturalistic44

videos (Isard and Blake, 1998; Nummiaro, Koller-Meier, and Gool, 2003).45

More recently, particle filters have also been proposed as models of human46

cognition, for instance how people learn to categorize objects (Sanborn, Grif-47

fiths, and Navarro, 2010), how they detect and predict changes (Brown and48

Steyvers, 2009) as well as make decisions (Yi, Steyvers, and Lee, 2009) in49

changing environments.50

The aim of this tutorial is to provide readers with an accessible introduc-51

tion to particle filters and SMC. We will discuss the foundations of SMC,52

sequential importance sampling and resampling, in detail, using simple ex-53

amples to highlight important aspects of these techniques. We start with a54

discussion of importance sampling, which is a Monte Carlo integration tech-55

nique which can be used to efficiently compute expected values of random56

variables, including expectations regarding the posterior probabilities of la-57

tent states or parameters. We will then move on to sequential importance58

sampling, an extension of importance sampling which allows for efficient59

4



computation in sequential inference problems. After introducing resampling60

as a means to overcome some problems in sequential importance sampling,61

we have all the ingredients to introduce a generic particle filter. After dis-62

cussing limitations and extensions of SMC, we will conclude with a more63

complex example involving the estimation of time-varying learning rates in64

a probabilistic category learning task.65

1. Importance sampling66

Importance Sampling (IS) is a Monte Carlo integration technique. It67

can be used to efficiently solve high-dimensional integration problems when68

analytical solutions are difficult or unobtainable. In statistics, it is often69

used to approximate expected values of random variables, which is what we70

will focus on here. If we have a sample of realizations of a random variable71

Y , we can estimate the expected value by computing a sample average. We72

do this when we have data from experiments, and it is also the idea behind73

basic Monte Carlo integration. Importance sampling is based on the same74

idea, but rather than sampling values from the true distribution of Y , values75

are sampled from a different distribution, called the importance distribution.76

Sampling from a different distribution can be useful to focus more directly77

on the estimation problem at hand, or if it is problematic to sample from78

the target distribution. To correct for the fact that the samples were drawn79

from the importance distribution and not the target distribution, weights80

are assigned to the sampled values which reflect the difference between the81

importance and target distribution. The final estimate is then a weighted82

average of the randomly sampled values.83

Suppose we wish to compute the expected value of an arbitrary function84
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f of a random variable Y which is distributed according to a probability85

distribution p:86

Ep[f(Y )] ,
∫
f(y)p(y) dy.87

This is just the usual definition of an expected value (we use Ep to denote88

an expectation of a random variable with distribution p, and the symbol89

, to denote ‘is defined as’). The function f depends on what we want to90

compute. For instance, choosing f(y) = y would result in computing the91

mean of Y , while choosing f(y) = (y−Ep[f(Y )])2 would result in computing92

the variance of Y . It is often not possible to find an analytical solution to93

the integral above, in which case we have to turn to some form of numerical94

approximation. A basic Monte Carlo approximation is to draw a number of95

independent samples from p and then compute a sample average from these96

random draws:97

Algorithm 1. Basic Monte Carlo integration for an expected value Ep[f(Y )]98

99

1. (Sample) For i = 1, . . . , N , sample y(i) ∼ p(y).100

2. (Estimate) Compute the sample average to obtain the Monte Carlo101

estimate EMC of the expected value:102

EMC ,
1

N

N∑
i=1

f(y(i)). (1)103

We let y(i) denote the i-th sampled value and for consistency in terminology,104

we will refer to these sampled values as “particles” from now on. By the105

law of large numbers, as the number N of particles approaches infinity, this106

estimate will converge almost surely1 to the true value (Robert and Casella,107

1Almost sure convergence means that the probability that the estimate is identical to
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2004). A limitation of this procedure is that we need to be able to sample108

particles according to the distribution p, which is not always possible or109

efficient. Importance sampling circumvents this limitation, allowing parti-110

cles to be drawn from an arbitrary “instrumental distribution” q. These111

particles are then weighted to correct for the fact they were drawn from q112

and not the target distribution p. Importance sampling relies on the simple113

algebraic identity a = a
b × b to derive the following importance sampling114

fundamental identity (Robert and Casella, 2004):115

Ep[f(Y )] =

∫
p(y)

q(y)
q(y)f(y) dy = Eq[w(Y )f(Y )],116

where we define the importance weight as w(y) = p(y)
q(y) . Thus, the expected117

value of f(Y ) under the target distribution p is identical to the expected118

value of the product w(Y )f(Y ) under the instrumental distribution q. The119

instrumental distribution can be chosen for ease of sampling, or to increase120

the efficiency of the estimate (as shown in the example below). The only121

restriction on q is that, in the range where f(y) 6= 0, q should have the same122

support as p (i.e. whenever p assigns non-zero probability to a value y, q123

should do so also, so q(y) > 0 whenever p(y) > 0). More compactly, we can124

state this requirement as: if f(y)p(y) 6= 0, then q(y) > 0. An IS estimate of125

the expected value of f(Y ) under p is thus obtained by generating a sample126

from q and computing a weighted average, as in the following algorithm:127

Algorithm 2. Importance sampling for an expected value Ep[f(Y )]128

1. (Sample) For i = 1, . . . , N , sample y(i) ∼ q(y).129

the true value approaches 1 as N approaches infinity, i.e., p(limN→∞
1
N

∑N
i=1 f(y(i)) =

Ep(f(Y ))) = 1.
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2. (Weight) For i = 1, . . . , N , compute the importance weight w(i) =130

p(y(i))

q(y(i))
.131

3. (Estimate) Compute a weighted average to obtain the IS estimate:132

EIS ,
1

N

N∑
i=1

w(i)f(y(i)). (2)133

As for basic Monte Carlo estimation, the law of large numbers assures that134

EIS convergences to Ep[f(Y )] as the number of particles approaches infinity135

(Robert and Casella, 2004).136

It should be stressed that IS is a Monte Carlo integration method, which137

can be used to approximate expected values of random variables. It is not138

a method to directly generate samples according to the target distribution.139

However, we can generate samples which are approximately distributed ac-140

cording to the target distribution by resampling particles with replacement141

from the set of particles, where we sample a particle y(i) with a probability142

proportional to the importance weight w(y(i)). This importance sampling143

resampling algorithm, which will be discussed in more detail later, can pro-144

vide an “empirical” approximation to the distribution p (in the sense that145

we use a finite random sample drawn from p to approximate p, just like a his-146

togram of observations from an experiment approximates the distribution of147

possible observations that could be made in that experiment). We can also148

use IS to compute any probability within the distribution p. For instance,149

if we want to compute the probability that the value of Y is between a and150

b, we can use IS with the indicator function f(y) = I(a ≥ y ≥ b), where151

the indicator function I equals 1 when its argument is true and 0 otherwise.152

We can do this as it is easy to show that the required probability equals the153

expected value of this indicator function: p(a ≥ Y ≥ b) = Ep[I(a ≥ y ≥ b)].154

In practice, the estimated probability is then simply the sum of the impor-155
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tance weights of the particles that lie between a and b. This is illustrated156

in Figure 2. A few remarks are in order. Firstly, while the estimated prob-157

abilities are unbiased, in practice, we can only estimate the probability if at158

least one particle falls within the interval. Secondly, given a set of particles,159

we can vary the bounds of the interval in between the particles and we will160

obtain the same estimates, because if two regions capture the same subset161

of particles, the sum of the weights of those particles will also be identical.162

Finally, to obtain a precise estimate of a probability, it is wise to tailor the163

importance distribution to sample solely in the required region, as will be164

shown in the following example.165

1.1. Example: computing the tail probability of the Ex-Gaussian distribution166

The ex-Gaussian distribution is a popular distribution to model response167

times (Van Zandt, 2000). The ex-Gaussian distribution is defined as the sum168

of an exponential and normal (Gaussian) distributed variable, and has three169

parameters: µ, σ, and τ , which are respectively the mean and standard170

deviation of the Gaussian variable, and the rate of the exponential variable.171

See Figure 3 for an example of an ex-Gaussian distribution.172

Suppose that for a certain person the distribution of completion times173

for a task approximately follows an ex-Gaussian distribution with param-174

eters µ = 0.4, σ = 0.1 and τ = 0.5, and that we want to know on how175

many trials that person would fail to complete the task within a time limit176

of 3 seconds. Looking at Figure 3, we can already see that the probability of177

non-completion is rather small. As the ex-Gaussian distribution is relatively178

easy to draw samples from, we can use basic Monte Carlo integration (Algo-179

rithm 1) to approximate this probability. With a sample size of N = 2000,180

this gave an estimate p(Y ≥ 3) ≈ 0.0040. Compared to the true value,181
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y(i)

w
(i)

Figure 2: Probability estimation with importance sampling. The locations of the black

bars represent particle values (y(i)) and the height of the black bars represents the corre-

sponding weights (w(i)). The broken and dotted lines represent two different estimates of

probabilities from these particles. The broken lines involve smaller regions which each in-

clude a single particle, while the dotted lines involve larger regions which include multiple

particles. Small changes to the bounds of the regions would leave the estimates unchanged

as long as the same particles fall within each region.
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Figure 3: Tail probability estimation for an ex-Gaussian distribution through importance

sampling with a shifted Exponential distribution. The solid line with an unshaded region

below it reflects the ex-Gaussian distribution. Overlaid and shaded grey is the shifted

Exponential distribution which is used as importance distribution.
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p(Y ≥ 3) = 0.0056, this estimate is too low by 28.93%. Basic Monte Carlo182

integration fails here because the exceedance probability p(Y ≥ 3) is rela-183

tively small and we therefore need many samples to obtain an estimate with184

adequate precision. Because the importance distribution can be tailored to185

the estimation problem at hand, IS can be much more efficient. To apply186

IS, we first formulate the desired result as the expected value187

p(Y ≥ 3) = Ep[I(y ≥ 3)].188

We then need to choose an importance distribution. Recall that the only189

requirement is that the instrumental distribution q has the same support as190

the target distribution p in the range where f(y) 6= 0. For this example, q191

need thus only be defined over the range [3;∞). In fact, choosing an impor-192

tance distribution which does not extend beyond this range is a good idea,193

because samples outside this range are wasteful as they will not affect the194

estimate. A reasonable choice is a shifted exponential distribution, shifted195

to the right to start at 3 rather than 0. With a sample of N = 2000 and196

matching τ = 0.5 to the same value as in the ex-Gaussian distribution, this197

gives the estimate p(Y ≥ 3) ≈ 0.0055, which deviates from the true value198

by only 2.63%. This is a representative example and shows the IS estima-199

tor is much better than the basic Monte Carlo estimator. While using an200

importance distribution defined over the range [3,∞), such as the shifted201

exponential, is a good way to increase the precision of the estimate, we must202

be careful when choosing the importance distribution. For example, a Nor-203

mal distribution truncated below at 3 with parameters µ = 3 and σ = 0.1,204

resulted in the estimate P (Y ≥ 3) ≈ 0.0036, which is too low by 35.55%205

and worse than the basic Monte Carlo estimate. The problem with this206

truncated Normal is that the parameter σ = 0.1 is set too low, resulting in a207
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distribution with a right tail which is too light compared to the ex-Gaussian208

distribution. Recall that the importance weights are given by the ratio p(y)
q(y) .209

If the instrumental distribution has lighter tails than the target distribution,210

there will be relatively few particles that fall in the tails, but for these rare211

particles, p(y) may be very large compared to q(y), leading to very large212

weights. In the extreme case, when one or a few importance weights are213

very large compared to the other weights, the estimate is effectively deter-214

mined by only one or a few particles, which is obviously bad. For example,215

in the most extreme estimate resulting from the truncated Normal, there216

was one particle with a weight of 88.4, while the next highest weight was217

0.6. For comparison, in the most extreme estimate from the shifted Expo-218

nential distribution, the largest and second-largest importance weights were219

both 0.02. Large variation in importance weights results in an estimator220

with a high variance. This can be clearly seen in Figure 4, which shows221

the variation in the estimates of the three estimators when applying them222

repeatedly for 1000 times. While the distribution of the estimates obtained223

for IS with a shifted exponential distribution is tightly clustered around the224

true value, both basic Monte Carlo integration and IS with the truncated225

Normal provide much more variable estimates. Note that these estimates226

are still unbiased, in the sense that on average, they are equal to the true227

value. However, the large variance of the estimates means that in practice,228

we are often quite far off the true value. The positive skew for the truncated229

Normal shows that IS with this importance distribution underestimates the230

probability most of the time, but in the rare cases that a particle falls in231

the right tail, the high weight assigned to that particle results in a large232

overestimation of the probability. Note that there is no problem with using233

a truncated Normal per se: increasing the parameter to σ = 1 results in a234
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Figure 4: Distribution of estimates of the tail probability for an Ex-Gaussian distribution

using basic Monte Carlo integration, importance sampling with a shifted exponential dis-

tribution, and importance sampling with a truncated Normal distribution. The dotted

lines show the true value of the tail probability. Each estimator used N = 2000 particles

and distributions were obtained by applying each estimator repeatedly for 1000 times.

heavier-tailed importance distribution which gives much better results.235

1.2. Efficiency236

As the previous example illustrates, some importance distributions are237

better than others. In the extreme case, a bad choice of importance dis-238

tribution can result in an estimator with an infinite variance. The optimal239

importance distribution q∗, in terms of minimizing the variance of the esti-240

mator, is241

q∗(y) =
|f(y)|p(y)∫
|f(y)|p(y) dy

(3)242

(Kahn and Marshall, 1953). For example, the optimal importance distri-243

bution in the previous example is a truncated ex-Gaussian. The optimal244

importance distribution is mainly of theoretical interest; to be able to use245

it, we would have to know the value of the integral
∫
|f(z)|p(z) dz, which is246

pretty much the quantity we want to estimate in the first place. Neverthe-247

less, we should aim to use an importance distribution which is as close to248
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this distribution as possible.249

A more practical way to reduce the variance of the estimator is to nor-250

malize the importance weights so they sum to 1 (Casella and Robert, 1998).251

Using normalized weights252

W (i) ,
w(i)∑N
j=1w

(j)
(4)253

results in the “self-normalised” IS estimator254

EISn ,
N∑
i=1

W (i)f(y(i)). (5)255

It should be noted that the estimator EISn is biased, but the bias is gen-256

erally small, diminishes as the number of particles increases, and is often257

offset by the gain in efficiency (the reduction in the variance of the estima-258

tor).2 Self-normalized weights are particularly useful in situations where the259

distribution p is only known up to a normalizing constant. For instance, we260

may be interested in the conditional distribution p(y|x) = p(x,y)∫
p(x,y) dy

, but al-261

though we can compute p(x, y), the marginal distribution p(x) =
∫
p(x, y) dy262

is intractable. In that case, we can still use importance sampling, as the263

normalizing constant cancels out in the computation of the self-normalized264

2One reason why the variance of the self-normalized IS estimate can be smaller is that

the expected value of each weight is

Eq[w(Y )] =

∫
p(y)

q(y)
q(y) dy =

∫
p(y) dy = 1,

and the expected value of the sum of the weights is thus N . In practice, the summed

importance weights will deviate from this value. Using self-normalizing weights ensures

that the sum of the weights is always equal to 1 (not N , but we have accounted for this

by removing the 1/N term in Equation 5), which removes one source of variance.
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weights3. So, when using self-normalized weights, the target distribution265

only has to be known up to the normalizing constant.266

2. Sequential importance sampling and online Bayesian inference267

We often need to infer unknown parameters of a statistical model se-268

quentially after each new observation comes in. Such online inference is269

crucial in a wide range of situations, including adaptive design of exper-270

iments (e.g., Amzal, Bois, Parent, and Robert, 2006; Myung, Cavagnaro,271

and Pitt, 2013) and real-time fault diagnosis in nuclear power plants. From272

a Bayesian viewpoint, this means we want to compute a sequence of poste-273

rior distributions p(θ|y1), p(θ|y1:2), . . . , p(θ|y1:t), where y1:t = (y1, y2, . . . , yt)274

denotes a sequence of observations, and θ a vector of parameters. To ap-275

proximate such a posterior distribution p(θ|y1:t) with importance sampling,276

we need an importance distribution qt(θ) to generate an importance sample277

of particles, and compute the importance weights278

w
(i)
t =

p(θ(i)|y1:t)

qt(θ(i))
.279

While we could generate a fresh importance sample at each point in time,280

this will usually increase the computational burden at each consecutive time281

point, as at each time we would have to browse the whole history of obser-282

vations to compute the importance weights. Moreover, when tracking an283

evolving latent state over time, we would also have to generate larger and284

3This is shown as

N∑
i=1

p(y(i)|x)
q(y(i))

f(y(i))∑N
j=1

p(y(i)|x)
q(y(i))

=

N∑
i=1

1
p(x)

p(x,y(i))

q(y(i))
f(y(i))

1
p(x)

∑N
j=1

p(x,y(i))

q(y(i))

=

N∑
j=1

p(x,y(i))

q(y(i))
f(y(i))∑N

j=1
p(x,y(i))

q(y(i))
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larger importance samples as, at each time point, we would have to sample285

the whole trajectory of the latent state thus far. For real-time applications,286

it is important to devise an algorithm with an approximately fixed computa-287

tional cost at each time point. Sequential importance sampling (SIS) serves288

this purpose. In addition, by using information from previous observations289

and samples, SIS can provide more efficient importance distributions than290

a straightforward application of IS.291

A key idea in SIS is to compute the importance weights incrementally,292

by multiplying the importance weight at the previous time t−1 by an incre-293

mental weight update a
(i)
t . It is always possible to formulate the importance294

weights in such a form by trivially rewriting the importance weights above295

as296

w
(i)
t =

p(θ(i)|y1:t)qt−1(θ(i))

p(θ(i)|y1:t−1)qt(θ(i))

p(θ(i)|y1:t−1)

qt−1(θ(i))
(6)297

= a
(i)
t w

(i)
t−1,298

299

where we define the incremental weight update as300

a
(i)
t ,

p(θ(i)|y1:t)

p(θ(i)|y1:t−1)
× qt−1(θ(i))

qt(θ(i))
. (7)301

This is of course not immediately helpful, as we still need to compute302

p(θ(i)|y1:t) and qt(θ
(i)) in full at each time point. However, there are some im-303

portant cases where we can simplify the incremental weight update further.304

In this section, we will focus on one such case, involving on-line inference of305

time-invariant parameters. This will help to illustrate the basics of SIS and306

its main shortcoming. We will see that while sequential importance sampling307

is computationally efficient, allowing one to approximate the distributions308

of interest sequentially without having to revisit all previous observations309

or completely redraw the whole importance sample, the performance of SIS310
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degrades over time because after a large number of iterations, all but one311

particle will have negligible weight. After introducing resampling as a way312

to overcome this problem of “weight degeneracy”, we then return to a second313

important application of SIS, namely the inference of latent states in state-314

space models. Combining SIS with resampling provides us with a recipe for315

a particle filter which is highly effective for these applications.316

2.1. Sequential importance sampling for time-invariant parameters317

We will now focus on the problem of computing a sequence of poste-318

rior distributions p(θ|y1:t), t = 1, . . . , T for a vector of unknown parameters319

θ. Assuming the observations are conditionally independent given the pa-320

rameters, we can express each of these posteriors through Bayes’ theorem321

as322

p(θ|y1:t) =
p(θ)

∏t
i=1 p(yi|θ)
p(y1:t)

.323

In this case, the left-hand ratio in (7) simplifies to324

p(θ(i)|y1:t)

p(θ(i)|y1:t−1)
= p(yt|θ(i))p(yt|y1:t−1)325

If we also use a single importance distribution qt(θ) = qt−1(θ) = q(θ) to ap-326

proximate each posterior, the right-hand ratio in (7) evaluates to qt−1(θ(i))

qt(θ(i))
=327

1, so that the incremental weight update is simply a
(i)
t = p(yt|θ(i))p(yt|y1:t−1).328

Using self-normalized importance weights, we can ignore the p(yt|y1:t−1)329

term, resulting in a simple importance sampling scheme where we sequen-330

tially update the weights of an initial importance sample in light of each331

new observation:332

Algorithm 3. SIS for time-invariant parameters333

1. (Initialize) For i = 1, . . . , N , sample θ(i) ∼ q(θ), and compute the334

normalized weights W
(i)
0 ∝ p(θ)

q(θ) with
∑N

j=1W
(i)
0 = 1.335
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2. For t = 1, . . . , t:336

(a) (Reweight) For i = 1, . . . , N , compute W
(i)
t ∝ p(yt|θ(i))W

(i)
t−1,337

with
∑N

i=1W
(i)
t = 1.338

(b) (Estimate) Compute the (self-normalized) SIS estimate339

ESISn
t =

N∑
i=1

W
(i)
t f(θ(i))340

2.1.1. Example: inferring the mean and variance of a Gaussian variable341

To illustrate how this algorithm works, we will apply it to sequentially342

infer the (posterior) mean and variance of a random variable. The observa-343

tions are assumed to be independent samples from a Gaussian distribution344

with unknown mean µ and variance σ2, so the parameters are θ = (µ, σ). As345

prior distributions, we will use a Gaussian distribution for µ (with a mean346

of 0 and a standard deviation of 10) and a uniform distribution for σ (in the347

range between 0 and 50). As these priors are easy to draw from, we use them348

also as importance distributions. We apply the algorithm to a total of 100349

observations from a Gaussian distribution with mean µ = 5 and standard350

deviation σ = 5, using an importance sample of size N = 200 (note that351

the sample size is kept low to enhance the clarity of the results; in real ap-352

plications a larger sample size would be recommended). Figure 5 shows the353

resulting estimates (posterior means) as well as the normalized importance354

weights for each particle. We can see that the estimated posterior mean355

of σ comes reasonably close to the true value as t increases. However, the356

estimated posterior mean of µ converges to a value which is further off the357

true value. The problem is that, as t increases, the weight of almost all the358

particles becomes negligible. In the end, the posterior mean is effectively359

estimated by a single particle θ(∗) = (µ(∗), σ(∗)). While this single particle360
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Figure 5: Online Bayesian inference of µ and σ of a Normal distribution. Solid white lines

represent the posterior mean after each sequential observation and broken white lines the

true values. Tiles in the background are centered around the particle values, such that

each edge lies halfway between a particle and the immediately adjacent particle. The shade

of each tile reflects the normalized weight of the corresponding particle. Initially, weights

are almost uniformly distributed over the particles, but in the end (at time t = 100) only

a single particle has non-negligible weight.
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is, in some sense, the best one in the set, it does not have to be close to361

the true values. In this run of the algorithm, σ(∗) was quite close to the362

true value, but µ(∗) was relatively far off from the true value. Indeed, there363

were other particles with values µ(i) which were closer to the true value.364

However, for these particles, σ(i) was further off the true value, such that365

taken together as a pair of parameter values, particle θ(∗) was better than366

any of the other ones. The problem that the weights of almost all particles367

approach 0 is referred to as weight degeneracy and a driving force behind it368

is that the importance distribution becomes less and less efficient over time.369

While the posterior distribution at first is close to the prior distribution370

that was used as importance distribution, as more observations come in,371

the posterior distribution becomes more and more peaked around the true372

parameter values. The prior distribution is then too dispersed compared to373

the posterior distribution and far from optimal as importance distribution.374

As illustrated in Figure 2, we can think of the set of particles as defining375

a random and irregularly-spaced grid and the SIS algorithm as approximat-376

ing posterior distributions by computing the posterior probability of each377

grid point. The algorithm becomes less and less efficient because after sam-378

pling the particles, the grid is fixed. To make the algorithm more efficient,379

we should adapt the grid points to each posterior distribution we want to380

approximate. This is precisely what SMC algorithms do by resampling from381

the particles (grid points), replicating particles with high and eliminating382

those with low posterior probability at t. Insofar as the posterior probability383

of particles at time t+1 is not wildly different from the posterior probability384

at time t, this will thus provide useful grid points for time t + 1. However,385

resampling provides exact replicates of useful particles, and using the same386

grid point multiple times does not increase the precision of the estimate.387
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After resampling, the particles are therefore “jittered” to rejuvenate the set,388

increasing the number of unique grid points and hence the precision of the389

approximation. Such jittering is natural for time-varying parameters. For390

instance, if instead of a fixed mean µ, we assume the mean µt changes from391

time to time according to a transition distribution p(µt|µt−1), we can use392

this transition distribution to generate samples of the current mean based on393

the samples of the previous mean. When the parameters are time-invariant,394

there is no immediately obvious way to “jitter” the particles after resam-395

pling. Some solutions have been proposed and we return to the problem396

of estimating static parameters with SMC in section 5.2. We will now first397

describe how resampling can be combined with (sequential) importance sam-398

pling, before turning to particle filters, which iterate sequential importance399

sampling and resampling steps to allow for flexible and efficient approxima-400

tions to posterior distributions of latent states in general state-space models.401

3. Resampling402

Due to the problem of weight degeneracy, after running an SIS algorithm403

for a large number of iterations (time points), all but one particle will have404

negligible weight. Clearly, this is not a good situation, as we effectively ap-405

proximate a distribution with a single particle. Moreover, this single particle406

does not even have to be in a region of high probability. A particle can have407

such a large relative weight that it will take very long for it to reduce, even408

though the target distribution has “moved on”. A useful measure to detect409

weight degeneracy is the effective sample size (Liu, 2001, p. 35-36), defined410

as411

Neff ,
1∑N

i=1(W (i))2
(8)412
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This measure varies between 1 (all but one particle have weight 0) and N413

(all particles have equal weight). Thus, the lower the effective sample size,414

the stronger the weight degeneracy.415

To counter the problem of weight degeneracy, SMC algorithms include416

a resampling step, in which particles are sampled with replacement from417

the set of all particles, with a probability that depends on the importance418

weights. The main idea is to replicate particles with large weights and419

eliminate those with small weights, as the latter have little effect on the420

estimates anyway. The simplest sampling scheme is multinomial sampling,421

which draws N samples from a multinomial distribution over the particle422

indices i = 1, . . . , N , with probabilities p(i) = W (i). After resampling,423

the weights are set to W (i) = 1/N , because, roughly put, we have already424

used the information in the weights to resample the set of particles. It is425

straightforward to show that resampling does not change the expected value426

of the estimator (5).427

In addition to countering weight degeneracy, a further benefit of resam-428

pling is that while the SIS samples themselves are not distributed according429

to the target distribution p (they are distributed according to the instru-430

mental distribution q and to approximate p we need to use the importance431

weights), the resampled values are (approximately) distributed according432

to p. A drawback of resampling is that it increases the variance of the es-433

timator. To reduce this effect of resampling, alternatives to multinomial434

resampling have been proposed with smaller variance.435

The idea behind residual resampling (Liu and Chen, 1998) is to use a436

deterministic approach as much as possible, and then use random resam-437

pling for the remainder. To preserve the expected value of the estimator,438

the expected number of replications of each particle i should be NW (i).439
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This is generally not an integer, and hence we can’t use these expectations440

directly to generate the desired number of replications. Residual resampling441

takes the integer part of each NW (i) term and replicates each particle de-442

terministically according to that number. The remaining particles are then443

generated through multinomial resampling from a distribution determined444

by the non-integer parts of each NW (i) term.445

Stratified resampling (Carpenter, Clifford, and Fearnhead, 1999) is an-446

other scheme which results in partly deterministic replication of particles.447

As the name suggests, it is based on the principles of stratified sampling used448

in survey research. Practically, the method consists of using the weights to449

form an “empirical” cumulative distribution over the particles. This distri-450

bution is then split into N equally sized strata, and a single draw is taken451

from each stratum.452

The most popular resampling scheme, systematic resampling (Kitagawa,453

1996), is based on the same intuition as stratified resampling, but reduces the454

Monte Carlo variance further by using a single random number, rather than455

a different random number, to draw from each stratum. Letting {θt,W (i)
t }456

represent the set of particles before resampling, and {θ̃(i)
t , W̃

(i)
t } the set457

of particles after resampling, systematic resampling can be summarized as458

follows:459

Algorithm 4. Systematic resampling460

1. Draw u ∼ Unif(0, 1/N).461

2. Define U i = (i− 1)/N + u, i = 1, . . . , N .462

3. For i = 1, . . . , N , find r such that
∑r−1

k=1W
(k) ≤ U i <

∑r
k=1W

(k)
t and463

set j(i) = r.464

4. For i = 1, . . . , N , set θ̃
(i)
t = θ

(j(i))
t and W̃

(i)
t = 1/N .465
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φ0 φ1 φ2 . . . φt . . .

Y1 Y2 Yt

Figure 6: Schematic representation of a state-space model. Each observation Yt at time

t depends only on the current state φt. Each consecutive state φt depends only on the

previous state φt−1.

Systematic resampling is simple to implement and generally performs very466

well in practice (Doucet and Johansen, 2011). However, in contrast to resid-467

ual and stratified resampling, it is not guaranteed to outperform multino-468

mial resampling (see Douc, Cappé, and Moulines, 2005, for this point and469

a thorough comparison of the theoretical properties of different resampling470

schemes).471

4. Particle filters: SMC for state-space models472

In filtering problems, we are interested in tracking the latent states φt of a473

stochastic process as each observation yt comes in. In a Bayesian framework,474

we do this by computing a sequence of posterior distributions p(φ1|y1), . . . ,475

p(φt|y1:t). These posterior distributions of the current state φt, given all the476

observations thus far, are also called filtering distributions.477

4.1. State-space models478

State-space models are an important class of models to describe time-479

series of observations. State-space models describe an observable time series480

y1:t through a time-series of latent or hidden states φ0:t. In state-space481

models, we make two important assumptions about the relation between482
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states and observations. A graphical representation of a state-space model483

in the form of a Bayesian network is given in Figure 6. Firstly, we assume484

that each observation yt depends solely on the current state φt, such that485

the observations are conditionally independent given the states φt:486

p(y1:T |φ0:T ) =

T∏
t=1

p(yt|φt),487

Secondly, we assume that the hidden states change over time according to a488

first-order Markov process, such that the current state depends only on the489

state at the immediately preceding time point:490

p(φ0:T ) = p(φ0)
T∏
t=1

p(φt|φt−1).491

Given these two assumptions, we can write the posterior distribution over492

the hidden states as493

p(φ0:T |y1:T ) =
p(φ0)

∏T
t=1 p(yt|φt)p(φt|φt−1)

p(y1:T )
.494

Moreover, we can compute the posteriors recursively as495

p(φ0:t|y1:t) =
p(yt|φt)p(φt|φt−1)

p(yt|y1:t−1)
p(φ0:t−1|y1:t−1) (9)496

where497

p(yt|y1:t−1) =

∫∫
p(yt|φt)p(φt|φt−1)p(φt−1|y1:t−1) dφt−1dφt498

Models with this structure are also known as hidden Markov models (e.g.,499

Visser, 2011).500

4.2. SIS for state-space models501

We can view the problem of estimating the hidden states φ0:t as esti-502

mating a vector of parameters θ which increases in dimension at each time503
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point t, such that, at time t, we estimate θ = φ0:t, and at time t+ 1 we add504

another dimension to the parameter vector to estimate θ = φ0:t+1. Using505

IS, we could draw a new importance sample {φ(i)
0:t} at each time t, but this506

would result in an increase in computational burden over time, which we507

would like to avoid in real-time applications. Using sequential importance508

sampling, we can incrementally build up the importance sample, starting at509

time t = 0 with a sample {φ(i)
0 }, then sampling values φ

(i)
1 at time 1 con-510

ditional on the sample at time 0, then adding sampled values φ
(i)
2 at time511

2 conditional on the sample at time 1, etc. Formally, this means we define512

the importance distribution at time t as513

qt(φ0:t) = qt(φt|φ0:t−1)qt−1(φ0:t−1). (10)514

Using this conditional importance distribution, and noting that qt−1(φ0:t) =515

qt−1(φ0:t−1), the right-hand ratio in (7) simplifies to qt−1(φ0:t)
qt(φ0:t)

= 1
qt(φt|φ0:t−1) .516

Combining this with Equation 9, we can write the incremental weight update517

as518

a
(i)
t =

p(yt|φ(i)
t )p(φ

(i)
t |φ

(i)
t−1)

p(yt|y1:t−1)qt(φ
(i)
t |φ

(i)
0:t−1)

.519

Using normalized importance weights, we can ignore the p(yt|y1:t−1) term,520

which is often difficult to compute. As when using SIS to sequentially es-521

timate time-invariant parameters, we now have an algorithm of (approxi-522

mately) constant computational cost. At each time t, we add a new dimen-523

sion to our particles by drawing values φ
(i)
t from a conditional importance524

distribution, and we update the weights without the need to revisit all the525

previous observations and hidden states.526

As usual, the choice of importance distribution qt(φt|φ0:t−1) should be527

carefully considered, as a poor choice can result in an estimator with high528
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variance. An equivalent formulation of the incremental weight update is529

a
(i)
t =

p(φ
(i)
t |yt, φ

(i)
t−1)p(yt|φ(i)

t−1)

p(yt|y1:t−1)qt(φ
(i)
t |φ

(i)
0:t−1)

,530

which is generally more involved to compute, but indicates that the op-531

timal importance distribution (in terms of minimizing the variance of the532

importance weights) is533

q∗t (φt|φ0:t−1) = p(φt|yt, φt−1).534

The optimal importance distribution is again mostly of theoretical interest,535

but when possible, an importance distribution should be used which matches536

it as closely as possible.537

Unfortunately, even when the optimal importance distribution can be538

used, SIS for state-space models will suffer from the same weight degeneracy539

problem we observed when estimating time-invariant parameters. Suppose540

that at time t, we have a “perfect” sample φ
(i)
0:t ∼ p(φ0:t|y1:t), i.e., the parti-541

cles are distributed according to the target distribution and the normalized542

importance weights are all W (i) = 1/N . Moving to the next time point, we543

can sample the new state φ
(i)
t+1 ∼ p(φt+1|yt+1, φ

(i)
t ), but without redrawing544

φ
(i)
0:t, the resulting particles φ

(i)
0:t+1 will not be distributed according to the545

current target distribution p(φ0:t+1|y1:t+1). Thus, in a sequential algorithm546

where we keep the values φ
(i)
0:t, it will not be possible to generate a perfect547

sample at time t+ 1. To do this, the samples φ
(i)
0:t would already have to be548

distributed according to p(φ0:t|y1:t+1), and not according to p(φ0:t|y1:t), the549

target distribution at time t. These two distributions are generally differ-550

ent, because the new observation yt+1 provides information about the likely551

values of φ0:t that was not available at the time of drawing φ
(i)
0:t. Hence,552
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repeated application of SIS necessarily introduces variability in the impor-553

tance weights, which builds up over time, increasing the variance of the554

estimator and ultimately resulting in weight degeneracy.555

4.3. A generic particle filter556

To counter weight degeneracy, SMC methods combine SIS with resam-557

pling, replicating particles with high weights and eliminating those with low558

weights. After resampling, the particles have uniform weights and are (ap-559

proximately) distributed according to the target distribution p(φ0:t|y1:t). At560

the next time point, a new dimension φt+1 is added to the particles by draw-561

ing from a conditional importance distribution qt+1(φ
(i)
t+1|φ

(i)
0:t). Resampling562

will have focussed the set {φ(i)
0:t} on useful “grid points” and while this set563

contains exact copies of particles, the values of the new dimension φ
(i)
t+1 will564

be jittered and hence provide an adapted and useful set of grid points to es-565

timate φt+1. As estimation of a current state φt is generally of more interest566

than estimating the whole path φ0:t, the fact that we now have a multidi-567

mensional grid where only the last dimension is adapted (as the dimensions568

reflecting earlier states contain exact replicates) is of little concern. If we569

are interested in estimating the whole path φ0:t, we would need to jitter the570

grid points on all dimensions. We return to this issue in Section 5.1.571

A generic particle filter (see Figure 1) to approximate a sequence of572

posterior distributions p(φ0:1|y1), p(φ0:2|y1:2), . . . , p(φ0:t|y1:t), proceeds as573

follows:574

Algorithm 5. A generic particle filter575

1. (Initialize) For i = 1, . . . , N , sample φ̃
(i)
0 ∼ q(φ0) and compute the576

normalized importance weights W̃
(i)
0 ∝ p(φ̃

(i)
0 )

q(φ̃
(i)
0 )

with
∑N

i=1 W̃
(i)
t = 1.577
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2. For t = 1, . . . , T :578

(a) (Propagate) For i = 1, . . . , N , sample φ
(i)
t ∼ qt(φt|φ̃(i)

0:t−1), and579

add this new dimension to the particles, setting φ
(i)
0:t = (φ̃

(i)
0:t−1, φ

(i)
t ).580

(b) (Reweight) For i = 1, . . . , N , compute normalized weights581

W
(i)
t ∝

p(yt|φ(i)
t )p(φ

(i)
t |φ

(i)
t−1)

qt(φ
(i)
t |φ

(i)
0:t−1)

W̃
(i)
t−1582

with
∑N

i=1W
(i)
t = 1.583

(c) (Estimate) Compute the required estimate584

EPFn
t =

N∑
i=1

f(φ
(i)
0:t)W

(i)
t .585

(d) (Resample) If Neff ≤ cN , resample {φ̃(i)
0:t} with replacement from586

{φ(i)
0:t} using the normalized weights W

(i)
t and set W̃

(i)
t = 1/N to587

obtain a set of equally weighted particles {φ̃(i
t , W̃

(i) = 1/N}; else588

set {φ̃(i)
0:t, W̃

(i)
t } = {φ(i)

0:t,W
(i)
t }.589

In this generic particle filter, we allow for optional resampling, whenever590

the effective sample size is smaller than or equal to a proportion c of the591

number of particles used N . While particle filters often set c = 1, so that592

resampling is done on every step, choosing a different value can be benefi-593

cial, as resampling introduces additional variance in the estimates. If the594

importance weights show little degeneracy, then this additional variance is595

unnecessary. Therefore, setting c = .5, which is another common value, we596

only resample when there is sufficient evidence for weight degeneracy.597

At each iteration, we effectively have two particle approximations, the598

set {φ(i)
0:t,W

(i)
t } before resampling, and the set {φ̃(i)

0:t, W̃
(i)} after resampling.599

While both provide unbiased estimates, the estimator before resampling600
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generally has lower variance. It should also be noted that this particle filter601

provides a weighted sample of state sequences φ
(i)
0:t = (φ

(i)
0 , φ

(i)
1 , . . . , φ

(i)
t ),602

approximating a posterior distribution over state sequences p(φ0:t|y1:t). The603

estimator EPFn
t is also defined over these sequences and not a single state604

φt. In filtering problems, we are generally only interested in estimating the605

current state, not the whole path φ0:t. As the posterior distribution over a606

single state is a marginal distribution of the joint posterior distribution over607

all states, we can write the required expected value as608

Ep[f(φt)] =

∫
f(φt)p(φt|y1:t) dφt609

=

∫∫
f(φt)p(φt, φ0:t−1|y1:t) dφtdφ0:t−1.610

611

This means that we can effectively ignore the previous states, and use the612

estimator613

EPFn =

n∑
i=1

W
(i)
t f(φ

(i)
t ).614

Several variants of this generic particle filter can be found in the litera-615

ture. In the bootstrap filter (Gordon, Salmond, and Smith, 1993), the state616

transition distribution is used as the conditional importance distribution, i.e.617

qt(φt|φ(i)
0:t−1) = p(φt|φt−1). This usually makes the propagate step simple to618

implement and also simplifies the reweighting step, as the weights can now619

be computed as W
(i)
t ∝ p(yt|φ(i)

t )W̃
(i)
t−1. The auxiliary particle filter, intro-620

duced in Pitt and Shephard (1999) and later improved by Carpenter et al.621

(1999), effectively switches the resampling and propagate steps, resulting in622

a larger number of distinct particles to approximate the target. The aux-623

iliary particle filter can be implemented as a variant of the generic particle624

filter by adapting the importance weights to incorporate information from625

the observation at the next time point; the subsequent resampling step is626
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then based on information from the next time point, and thus particles will627

be resampled which are likely to be useful for predicting this time point. For628

more information, see, e.g., Doucet and Johansen (2011) and Whiteley and629

Johansen (2011).630

Chopin (2004) shows how a general class of SMC algorithms, including631

the generic particle filter, satisfy a Central Limit Theorem, such that, as the632

number of particles approaches infinity, SMC estimates follow a Gaussian633

distribution centered around the true value. For other convergence results634

and proofs, see, e.g., Del Moral (2013), Douc and Moulines (2008), and635

Whiteley (2013).636

4.4. Example: A particle filter for a simple Gaussian process637

We will illustrate SIS with an example of a latent Gaussian process with638

noisy observations. Suppose there is a latent variable φ which moves in639

discrete time according to a random walk640

φt+1 = φt + ξt ξt ∼ N(0, σ2
ξ ), (11)641

where the initial distribution at t = 0 is given as642

φ0 ∼ N(µ0, σ
2
0). (12)643

The value of the latent variable can only be inferred from noisy observations644

Yt that depend on the latent process through645

Yt = φt + εt εt ∼ N(0, σ2
ε ). (13)646

This model is a relatively simple state-space model with647

p(yt|φt) = N(φt, σ
2
ε )648
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Figure 7: Example of the one-dimensional Gaussian latent process with µ0 = 10, σ2
0 = 2,

σ2
ξ = 1, and σ2

ε = 10. Dots show the observations yt and latent states φt. Lines show the

true posterior means and particle filter estimates of the posterior means.

and649

p(φt|φt−1) = N(φt−1, σ
2
ξ ).650

Figure 7 contains example data from this process.651

Suppose that the observations yt are made sequentially, and after each652

new observation, we wish to infer the value of the underlying latent variable653

φt. The distributions of interest are thus p(φ1|y1), p(φ2|y1:2), . . . , p(φt|y1:t).654

As the process is linear and Gaussian, the distributions can be computed655
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analytically by the Kalman filter (Kalman, 1960; Kalman and Bucy, 1961).656

However, approximating the posterior means by a particle filter will illus-657

trate some key features of the algorithm and the availability of analytical658

estimates offers a useful standard to evaluate its quality.659

We will use a bootstrap filter, using as conditional importance distribu-660

tions the transition distribution of the latent process, i.e. qt(φt|φ0:t−1) =661

p(φt|φt−1). The self-normalized weights are then easily computed as Wt ∝662

p(yt|φ(i)
t )W̃

(i)
t−1. We also set c = 1, so that we resample at each iteration,663

using systematic resampling. Figure 7 contains the resulting estimates EPFn
t664

of the posterior means as well as the analytical (true) values computed with665

a Kalman filter. As can be seen there, the estimates are very close to the666

analytical posterior means. For comparison, if we run the filter with c = 0667

(so that we never resample, turning it into a straightforward SIS algorithm),668

we see that while the estimates are quite good initially, at later time points,669

the deviation between the estimated and actual posterior means increases.670

Again, this is due to weight degeneracy, which is countered by the resam-671

pling step in the particle filter. The effect of resampling can be clearly seen672

in Figure 8, which depicts the variation in the estimates when the algorithms673

are applied repeatedly to the same data. While there clearly is an increase674

in the variance of SIS over time, the estimates of the bootstrap filter remain675

close to the analytical values. For comparison, we also plot the results of an676

SIS and particle filter algorithm with the optimal importance distribution677

qt(φt|φ0:t−1) = p(φt|yt, φt−1). The increase in efficiency due to the optimal678

importance distribution is clearly seen in the case of SIS. While still present,679

the difference between the two particle filters appears less marked.680

34



SIS (bootstrap) PF (bootstrap) SIS (optimal) PF (optimal)

5

10

15

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Time point (t)

φ t

Figure 8: A comparison of SIS (no resampling) and particle filters (with resampling) shows

that resampling clearly improves the accuracy of estimation. Each panel shows the true

posterior mean (solid line) and 95% interpercentile region of estimated posterior means

(shaded region) when applying the algorithms to the data of Figure 7. SIS (bootstrap)

is the bootstrap filter with c = 0 (no resampling), PF (bootstrap) is the bootstrap filter

with c = 1 (always resampling), and SIS (optimal) and PF (optimal) are similar to these

but use the optimal importance distribution. Each algorithm uses N = 500 particles and

the interpercentile regions were computed by running each algorithm on the same data

for 2000 replications.
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5. Further issues and extensions681

While particle filters generally work well to approximate the filtering682

distributions of latent states in general (non-linear and/or non-Gaussian)683

state-space models, the application of SMC beyond this domain requires684

further consideration. Here we briefly highlight some issues and solutions685

for using SMC to approximate the posterior distributions over whole state686

trajectories and time-invariant or static parameters. We end with a brief687

discussion of how to combine sampling with analytical integration in order688

to increase the efficiency of SMC.689

5.1. Sample impoverishment and particle smoothing690

Although resampling counters the problem of weight degeneracy, it in-691

troduces a new problem of “sample impoverishment”. By replicating and692

removing particles, resampling reduces the total number of unique values693

present in the set of particles. This is no major issue in filtering, where we694

are interested in estimating the current state φt. The particle values φ
(i)
t695

used for this are “jittered” in the propagate step, and estimation proceeds696

before resampling affects the number of unique values of this state in the set697

of particles. However, resampling does reduce the unique values of φ
(i)
0:t−1698

reflecting the states at earlier time points, and over time this problem be-699

comes more and more severe for the initial states. When the algorithm has700

run for a large number of time points, it can be the case that all the parti-701

cles have the same value for φ1. This sample impoverishment can severely702

affect the approximation of the so called smoothing distributions p(φt|y1:T ),703

1 ≤ t ≤ T .704

To provide better approximations of smoothing distributions, several705

alternatives to basic SMC have been proposed. A simple procedure is to use706
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a fixed lag approximation (Kitagawa and Sato, 2001). This approach relies707

on the exponential forgetting properties of many state-space models, such708

that709

p(φ0:t|y1:T ) ≈ p(φ0:t|y1:(t+∆)) (14)710

for a certain integer 0 < ∆ < T − t; that is, observations after time t + ∆711

provide no additional information about φ0:t. If this is the case, we do not712

need to update the estimates of φ0:t after time t+∆. For the SMC algorithm,713

that means we do not need to update (e.g., resample) the particle values φ
(i)
0:t714

then. Generally, we do not know ∆, and hence have to choose a value D715

which may be smaller or larger than ∆. If D > ∆, we have not reduced the716

degeneracy problem as much as we could. If D < ∆, then p(φ0:t|y1:(t+D)) is717

a poor approximation of p(φ0:t|y1:T ).718

A better, but computationally more expensive option is to store the par-719

ticle approximations of the filtering distributions (i.e., the particle values720

φ
(i)
t and weights W

(i)
t approximating p(φt|y1:t)) and then reweight these us-721

ing information from observations y(t+1):T to obtain an approximation of722

p(φt|y1:T ). Particle variants of the Forward Filtering Backwards Smoothing723

and Forward Filtering Backwards Sampling algorithms have been proposed724

for this purpose (see e.g., Douc, Garivier, Moulines, and Olsson, 2011). One725

issue is that as these methods reweight or resample the particle values used726

to approximate the filtering distributions, but do not generate new particle727

values, they can be expected to perform poorly when the smoothing distri-728

butions differ substantially from the filtering distributions. An alternative729

approach, which can be expected to perform better in these situations, is730

the two-filter formulation of Briers, Doucet, and Maskell (2010).731
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5.2. Inferring time-invariant (static) parameters732

While particle filtering works generally well to estimate latent states733

φt, which can be viewed as time-varying parameters, estimation of time-734

invariant or static parameters θ is more problematic. For instance, consider735

the simple Gaussian process defined in (11) - (13), and suppose both σξ and736

σε are unknown. The inference problem is then to approximate737

p(φ0:t, θ|y1:t) ∝ p(φ0:t|θ, y1:t)p(θ|y1:t)738

where θ = (σξ, σε). The main problem for a particle filter approximation is739

again sample impoverishment: resampling will reduce the number of unique740

particle values that represent θ. For time-invariant parameters, there is no741

natural way to “jitter” the particles after resampling. One solution is to use742

an artificial dynamic process for the static parameters, e.g., drawing new743

particles from a (multivariate) Normal distribution centered around the old744

particle values745

θ
(i)
t+1 ∼ N(θ

(i)
t ,Σθ),746

where Σθ is a covariance matrix, and subscript t indicates that the parameter747

values reflect the time t posterior and not that the parameters are actually748

time-varying. While this reduces the problem of sample impoverishment, the749

artificial process will inflate the variance of the posterior distributions. Liu750

and West (2001) propose to view the artificial dynamics as a form of kernel751

smoothing: drawing new particle values from a Normal distribution centered752

around the old particle values is akin to approximating the distribution of753

θ by a (multivariate) Gaussian kernel density:754

p(θ|y1:t) ≈
N∑
i=1

W (i)N(θ|θ(i)
t ,Σθ).755
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To reduce variance inflation, Liu and West (2001) suggest to use a form of756

shrinkage, shifting the kernel locations θ
(i)
t closer to their overall mean by757

a factor which ensures that the variance of the particles equals the actual758

posterior variance.759

An alternative is to incorporate Markov chain Monte Carlo (MCMC)760

moves in the particle filter (Andrieu, Doucet, and Holenstein, 2010; Chopin,761

2002; Chopin, Jacob, and Papaspiliopoulos, 2013; Gilks and Berzuini, 2001).762

The idea is to rejuvenate the particle set by applying a Markov transition763

kernel with the correct invariant distribution as the target. As they leave the764

target distribution intact, inclusion of MCMC moves in a particle filter al-765

gorithm is generally allowed. For a recent comparison of various approaches766

to parameter estimation with SMC techniques, see Kantas, Doucet, Singh,767

Maciejowski, and Chopin (2015).768

5.3. Rao-Blackwellized particle filters769

There are models in which, conditional upon some parameters, the dis-770

tributions of the remaining parameters can be solved analytically. For in-771

stance, in the example of the Gaussian process, we could assume that the772

process can switch between periods of high and low volatility. This can be773

represented by assuming a second latent process ω1:T , where ωt is a discrete774

latent state indicating low or high volatility, and letting the innovation vari-775

ance σξ(ωt) be a function of this discrete latent state. This is an example776

of a switching linear state-space model, which is analytically intractable.777

Writing the joint posterior as778

p(φ0:t, ω1:t|y1:t) = p(φ0:t|ω1:t, y1:t)p(ω1:t|y1:t)779

and realizing that, conditional upon ω1:t, φ0:t is a linear Gaussian state-780

space model, the Kalman filter can be used to analytically compute the781
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conditional distributions p(φ0:t|ω1:t, y1:t). Hence, we only need to approxi-782

mate p(ω1:t|y1:t) through sampling (cf. Chen and Liu, 2000). Solving part783

of the problem analytically reduces the variance in the importance weights,784

and hence increases the reliability of the estimates (Chopin, 2004). The785

main message here is that sampling should be avoided whenever possible.786

The combination of sampling and analytical inference is also called Rao-787

Blackwellisation (Casella and Robert, 1996).788

6. A particle filter to track changes in learning rate during prob-789

abilistic category learning790

As a final example of SMC estimation, we use a particle filter to esti-791

mate changes in learning rate in probabilistic category learning. In proba-792

bilistic category learning tasks, people learn to assign objects to mutually793

exclusive categories according to their features, which are noisy indicators794

of category membership. Tracking the learning rate throughout a task is795

theoretically interesting, as it reflects how people adapt their learning to796

the volatility in the task. If the relation between features and category797

membership is time-invariant, people should ideally show “error discount-798

ing” (Craig, Lewandowsky, and Little, 2011; Speekenbrink, Channon, and799

Shanks, 2008), where they accept an unavoidable level of error and stabilize800

their classification strategy by slowly stopping to learn. On the other hand,801

if the relation between features and category membership changes over time,802

then people should continue to adapt their categorization strategy to these803

changes (Behrens, Woolrich, Walton, and Rushworth, 2007; Speekenbrink804

and Shanks, 2010). How quickly they adapt (i.e. their learning rate) should805

ideally depend on the rate at which the feature-category relation changes806
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(i.e. the volatility in the task). When the volatility is unknown, this it-807

self has to be inferred from experience, such that people effectively have to808

“learn how (much) to learn”.809

Previous investigations of dynamic changes in learning rate have either810

estimated learning rates separately in consecutive blocks of trials (Behrens811

et al., 2007), or assumed the changes in learning rate followed a predeter-812

mined schedule (Craig et al., 2011; Speekenbrink et al., 2008). Using a parti-813

cle filter, we can estimate the learning rate on a trial-by-trial basis without814

making too restrictive assumptions. In this example, we use unpublished815

data collected in 2005 by David A. Lagnado at University College London.816

Nineteen participants (12 female, average age 25.84) performed the Weather817

Prediction Task (WPT, Knowlton, Squire, and Gluck, 1994). In the WPT,818

the objective is to predict the state of the weather (“fine” or “rainy”) on the819

basis of four cues (tarot cards with different geometric patterns, which are820

either present or absent). Two cues are predictive of fine weather and two821

cues of rainy weather. The version of the WPT used here included a sudden822

change, whereby from trial 101 until the final (200th) trial, cues that were823

first predictive of fine weather become predictive of rainy weather, and vice824

versa.825

As in Speekenbrink et al. (2008), we will assume people learn an asso-826

ciative weight, vj , for each cue. Over trials, these weights are updated by827

the delta-rule828

vj,t+1 = vj,t + ηt (yt − pt)xj,t,829

where xj,t is a binary variable reflecting whether cue j was present on trial830

t, yt is a binary variable reflecting the state of the weather, and pt is the831
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predicted probability of the state of the weather:832

pt =
1

1 + exp
(
−
∑4

j=1 vj,txj,t

)833

People’s categorization responses are also assumed to follow these predicted834

probabilities.835

Our interest is in the learning rate ηt > 0, which we will allow to vary836

from trial to trial according to the following transition distribution:837

p(ηt+1|ηt) = TN (ηt, σ
2
η) (15)838

where TN is a normal distribution truncated below at 0 (as the learning839

rate is positive). We also use a truncated normal distribution for the initial840

learning rates:841

η0 ∼ TN (µ0, σ
2
0)842

Estimating the learning rates ηt is a difficult problem. Each response is843

a random variable drawn from a Bernoulli distribution with parameter pt,844

which depends on the cues on trial t and the associative weights vj,t. These845

associative weights in turn depend on the starting weights vj,1 (which we846

fix to 0), the previous cues and states of the weather, and the sequence of847

unknown learning rates η1:t−1. While the delta rule is deterministic, un-848

certainty about the learning rates induces uncertainty about the associative849

weights. Unfortunately, as we only have a single binary response on each850

trial, we obtain relatively little information to reduce the uncertainty about851

the associative weights and with that about the learning rates which gave852

rise to these weights. All in all, we can thus expect the estimated learning853

rates to be somewhat noisy.854

For each participant, we estimated the time-varying learning rates with855

a bootstrap filter with N = 2000 particles and selective resampling when856
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Neff < .5N , i.e. when the effective sample size was half the number of857

particles. The hyper-parameters were µ0 = 0.05, σ0 = 0.795 and ση = 0.101,858

which were determined maximizing the likelihood of the responses for all859

participants.860

We expected learning rates to start relatively high at the beginning of861

the task and then to gradually decrease due to error discounting. In re-862

sponse to the abrupt change in task structure at trial 101, learning rates863

were expected to increase again, possibly decreasing again thereafter. Fig-864

ure 9 shows the estimated means and 5% and 95% quantiles of the posterior865

(filtering) distributions p(ηt|x1:t+1, y1:t, r1:t+1). The results show that many866

participants show an increase in learning rate after trial 101, reflecting the867

change in task structure at that point. Thus, many participants appeared to868

indeed adapt their learning to the volatility in the environment. While some869

participants, such as S5, show the expected pattern with initially relatively870

high learning rate which decreases until the change at trial 101, then in-871

creasing and decreasing again thereafter, other participants, such as S14 do872

not show slowed learning towards the end of the task. This might be due to873

expecting more abrupt changes. There is quite some individual variability in874

the dynamics of learning rate over time. The best performing participants875

have relatively high learning rates and marked changes throughout the task.876

The less well performing participants had relatively low learning rates, in-877

dicative of a slow adaptation of their strategy to the task structure. While878

the posterior distributions are generally wide, because the responses provide879

limited information about the learning rates, the results were consistent over880

multiple runs of the algorithm and deviations in the hyper-parameters.881
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Figure 9: Particle filter estimates of time-varying learning rates. Solid lines represent

the estimated mean (solid line) and shaded areas the 5%-95% interpercentile range of

the posterior (filtering) distributions of ηt for each participant. Participants are ordered

row-wise according to the expected performance of their predictions (the probability that

their prediction was correct, rather than whether it was actually correct on a particular

trial), with the best performing participant appearing in the top-left panel.
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7. Conclusion882

This tutorial introduced sequential Monte Carlo (SMC) estimation and,883

in particular, particle filters. These techniques provide sampling-based ap-884

proximations of a sequence of posterior distributions over parameter vec-885

tors which increase in dimension, and allow inference in complex dynamic886

statistical models. They rely on a combination of sequential importance887

sampling and resampling steps. Sequential importance sampling provides888

sets of weighted random samples (particles), while resampling reduces the889

problem of weight degeneracy that plagues sequential importance sampling.890

SMC has proven especially useful in filtering problems for general state-891

space models, where the objective is to estimate the current value of a892

latent state given all previous observations, but its use extends to other893

problems including maximum likelihood estimation (e.g., Johansen, Doucet,894

and Davy, 2008) and optimizing experimental designs (Amzal et al., 2006).895

SMC is an active research field in statistics and machine learning and re-896

cent developments have focussed on combining SMC with Markov chain897

Monte Carlo (MCMC) techniques in order to provide efficient inference for898

statistical models with both dynamic states and static parameters (e.g., An-899

drieu et al., 2010; Chopin et al., 2013). Recent software to implement SMC900

techniques include Biips (http://alea.bordeaux.inria.fr/biips/) and901

LibBi (http://libbi.org/). All analyses in this tutorial were programmed902

in the R language and all code and data are available in the supplementary903

material and on the Open Science Framework (http://osf.io/b6gsk/).904
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