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ABSTRACT 

Goal-directed behaviour is characterized by an ability to make inferences without direct 

experience. This requires a model of the environment and of ourselves, which is flexibly 

adjusted in light of new incoming information. This thesis uses representational functional 

magnetic resonance imaging (fMRI) techniques in combination with computational 

modelling to investigate (1) whether humans can construct models of other people’s 

preferences and whether this process influences their own value representation, and (2) how 

statistical relationships between discrete, non-spatial objects are combined into a model of 

the world.  

The first part of the thesis investigates how subjective values are computed in an 

intertemporal choice paradigm, and how these value computations are updated as a 

consequence of learning about the preferences of another. Critically, subjects’ own 

preferences shift towards those of the other when learning about their choices, suggesting 

that subjects incorporate new knowledge about others into a model of their own preferences. 

The underlying mechanism involves prediction errors, which introduce plasticity into 

subjects’ mPFC value representations, in turn resulting in a shift in subjects’ own preferences.  

The second part of this thesis investigates how relationships between arbitrary objects are 

represented in the brain. Relational knowledge is often considered analogous to spatial 

reasoning, where relationships are encoded in a hippocampal-entorhinal ‘cognitive map’. 

Here, I show that maps can also be extracted from the entorhinal cortex for discrete 

relationships between arbitrary stimuli, and in the absence of conscious knowledge. The 

representation of abstract knowledge in map-like structures suggests that inferences do not 

need to rely on direct experiences but can be computed anew from mapped knowledge. 

Together, these studies reveal how world models are represented and updated at the level 

of neural representations, providing a bridge between representational codes and cognitive 

computations.  
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Every day we confront countless decisions, ranging from the mundane choice of whether 

to have ham or cheese on our breakfast toast, or the more consequential decision of whether 

to become a doctor or a lawyer in 10 years’ time. Although not every decision seems so 

consequential, deciding how to act ultimately influences our chances of survival and our 

reproductive success. It is therefore of critical importance to efficiently choose between 

possible actions. The human brain solves this problem by assigning value to the potential 

courses of action and choosing the action leading to the highest expected reward (Boorman 

et al., 2009; FitzGerald et al., 2009; Hunt et al., 2012). This strategy requires an adequate 

representation of the state of our internal and external environment, the putative actions that 

can be implemented, as well as the outcomes of the different actions. Both the representation 

of a constantly changing world, and our behavioural policies need to be flexibly adjusted in 

light of new information or unexpected outcomes in order to maximize reward.  

In this thesis, I investigate how the brain learns from experience and organizes new 

information into a model of the world. In the first part of the thesis, I study how humans 

compute the value of their choices, and how these value computations are updated as a 

consequence of learning. Critically, humans do not exclusively learn from their own direct 

experiences, but can also learn about the environment by observing the behaviour of others. 

I demonstrate that learning about the preferences of another individual introduces plasticity 

in subjects’ own value computation, which explains a shift in preference. In the second part 

of the thesis, I address how the brain represents the abstract statistical relationships between 

elements in the environment to form a model of the world. The representation turns out to 

be map-like, which is an efficient way of making experiences accessible for goal-directed 

behaviour, because it allows novel inferences to be made and relationships computed 

between things that have never been directly experienced before. In both parts of the thesis, 

I use functional magnetic resonance (fMRI) adaptation to investigate these questions at the 

level of neural representations.  

1.1  Mechanisms of decision making in the human brain 

1.1.1 Value computation in the brain 

Our brains have evolved to optimize action selection in order to increase our chances of 

survival. Decision making in the brain is therefore largely guided by our attempts to achieve 

goals, or receive rewards. A reward is typically defined as anything an animal is ready to work 
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for, it wants to attain and approach. Avoiding aversive events can also be rewarding. In 

humans, rewards are often associated with positive subjective states such as pleasure. 

Rewards include primary reinforcers such as taste, odors, sex, or social affiliation (Rolls, 

1999), which have inherent value that does not need to be learned. Other rewards have 

acquired value through repeated association with primary reinforcers, such as money.  

 

 

Figure 1.1 Subjective value coding across the human brain. Subjective value encoding at the 
time of evaluating a decision, receiving an outcome or both. The meta-analysis involved data from 
206 publications 348 analysis contrasts, 3857 participants, and 3933 activation foci. Reproduced with 
permission from Bartra et al. (2013).  

In the human brain, activity in a wide range of areas tracks the value of an anticipated or 

actual outcome, including ventromedial PFC (vmPFC), medial orbitofrontal cortex (OFC) 

and striatum track (Figure 1.1, Hunt et al., 2012; Kable and Glimcher, 2007; Plassmann et 

al., 2007). Notably, these areas are activated across a wide range of reinforcers, such as 

expected monetary value (Daw et al., 2006), attractive faces (O’Doherty et al., 2003a) or 
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preferred drinks (McClure et al., 2004). vmPFC activity also scales positively with the value 

of a chosen option, and negatively with the value of an unchosen option (Boorman et al., 

2009; De Martino et al., 2013). 

The prefrontal cortex also integrates information about an animal’s current internal 

motivational state. For example, activity in the orbitorfrontal cortex (OFC) correlates with 

the amount of food only if an animal is hungry (Rolls et al., 1989), and the response in 

vmPFC incorporates health information in a situation where subjects who successfully 

control their food intake are tasked to evaluate dietary choices (Hare et al., 2011). 

Furthermore, mPFC computes values on the fly or without previous experience, for example 

if information about complex task structures need to be integrated (Hampton et al., 2006), if 

novel objects need to be evaluated (Barron et al., 2013) or if one’s own experience and 

socially learnt information need to be combined (Behrens et al., 2008).  

Patients with damage to their vmPFC often become indecisive even in trivial situations 

(Barrash et al., 2000) or do not integrate future consequences of their actions in the decision 

making process (Bechara, 2000; Bechara et al., 1994). A particularly vivid description of the 

behavioural changes resulting from mPFC damage were provided by Harlow’s description 

of Phineas Gage, who suffered from a dramatic injury to his prefrontal cortex when an iron 

rod was driven through his head in a railroad accident. His doctor described the dramatic 

post-accident changes in behaviour as follows:  

“The equilibrium […] between his intellectual faculties and animal propensities, seems to 

have been destroyed. He is fitful, irreverent, indulging at times in the grossest profanity (which 

was not previously his custom), manifesting but little deference for his fellows, impatient of 

restraint or advice when it conflicts with his desires, at times pertinaciously obstinate, yet 

capricious and vacillating, devising many plans of future operation, which are no sooner 

arranged than they are abandoned in turn for others appearing more feasible. […] Previous to 

his injury, though untrained in the schools, he possessed a well-balanced mind, and was looked 

upon by those who knew him as a shrewd, smart business man, very energetic and persistent in 

executing all his plans of operation. In this regard his mind was radically changed, so decidedly 

that his friends and acquaintances said he was ’no longer Gage’ (Harlow, 1868) 

Anatomically, mPFC is widely connected to a large array of brain areas, including sensory 

areas, the hippocampus, the amygdala, the striatum, the insula, the hypothalamus and 

neuromodulatory systems, such as the dorsal raphe and locus coeruleus (Haber and Behrens, 

2014). It can be further subdivided into a lateral OFC part receiving strong sensory inputs, 
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which is involved in linking stimuli to their subjective value, and a medial OFC part, 

characterized by strong connections with hypothalamus and visceral control structure in the 

midbrain. Due to its connectivity to these areas, mPFC has immediate access to a wide range 

of contextual, sensory and emotional information and can directly influence autonomic and 

muscular activity. The dorsal mPFC has an overall similar connectivity profile, with stronger 

connectivity with motor and pre-motor areas and weaker connectivity with emotional and 

autonomic brain areas, suggesting a critical contribution of this structure to action selection 

processes (Euston et al., 2012). As a whole, mPFC is thus ideally positioned for assessing the 

behavioural context and the internal motivational state (Hyman et al., 2012) and mapping 

events onto an adaptive response to guide behaviour (Euston et al., 2012).  

1.1.2 Learning about the value of an action or a reward 

In animals, two learning systems are used to aid decision making. A habitual or model-free 

system chooses actions based on a reinforcement history and without relying on knowledge 

about the structure of the world, i.e. actions that were previously rewarded are repeated. 

While this system is computationally very inexpensive, it is also very inflexible, and habitual 

behaviours persist when outcomes are devalued. Model-free learning includes Pavlovian 

conditioning, which elicits strong reflexive approach and avoidance behaviours in response to 

previously neutral stimuli which have been repeatedly paired with a reinforcer. This 

behaviour is not goal-directed, as it is does not influence the chances of obtaining a reward, 

although there is some evidence that model-based Pavlovian evaluation also exists (Dayan 

and Berridge, 2014). A goal-directed or model-based system, on the other hand, explicitly 

computes the putative outcomes before action selection and implements the choice 

promising the highest reward. This requires profound knowledge of the contingencies and 

world relationships in the environment, and the state of the internal and external 

environment need to be assessed before deciding between alternative actions. The internal 

model of the world allows behaviour to be flexibly adjusted if an outcome is devalued, but 

employing a model-based system is computationally very costly. Humans typically display 

mixed strategies in decision making situations (Loewenstein and O’Donoghue, 2004; Daw et 

al., 2011). 
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1.1.3 Model-free reinforcement learning 

At the beginning of the 20th century, behaviourist theories dominated the understanding 

of behaviour (Ferster and Skinner, 1957; Skinner, 1938; Thorndike, 1898; Watson, 1913). 

Thorndike, Skinner and others argued that learning goal-directed behaviours occurs when a 

response is reinforced (stimulus-response learning or S-R learning). S-R learning can be 

investigated in operant (or instrumental) conditioning paradigms, where rewards are contingent on 

actions. For example, when trying to escape from a puzzle box, a hungry cat will try a random 

set of behaviours, until it eventually performs the action that results in a release from the 

box: a lever press. Thorndike argued that the reward of being released from the box 

strengthens the association between a stimulus (the puzzle box) and a response (pressing the 

lever), such that the animal becomes gradually faster at pressing the lever and escaping from 

the box in subsequent trials. Thorndike named this phenomenon ‘the law of effect’ (Thorndike, 

1927). Repeating rewarded behaviours can be highly adaptive in stable environments, 

because it is computationally very inexpensive and S-R learning accounts for the formation 

of simple reflexes and habits.  

Operant conditioning, or S-R learning contrasts with classical conditioning, a phenomenon 

whereby neutral stimuli acquire value via the repeated association with a reinforcer. Classical 

conditioning was first investigated by Ivan Pavlov (Pavlov, 1927). He repeatedly paired a 

neutral stimulus such as the sound of a bell (conditioned stimulus, CS) with a significant 

event such as the delivery of food (unconditioned stimulus, US). Food typically elicits an 

innate salivating response in dogs. After a few conditioning trials, the animal started to elicit 

an anticipatory salivating response when the previously neutral CS was presented, suggesting 

that the neutral stimulus had acquired value. This simple form of learning from experience 

can induce Pavlovian approach behaviour if the stimulus is paired with rewards such as food, 

and it can induce withdrawal behaviour if the stimulus is paired with aversive outcomes such 

as shocks. An example for such a conditioned response is the approach of a light that predicts 

the delivery of a reward (Dayan and Balleine, 2002). Because the conditioned response 

directly results from a prediction of reward, this Pavlovian approach behaviour is so powerful 

and inflexible that it persists even if it is detrimental to actually receiving a reward. This has 

been illustrated in a study by Hershberger (1986) who trained hungry chicks that a cup 

contained food. When he manipulated the cup such that it receded if the animal approached 

it, and vice versa, the chicks were unable to overcome their Pavlovian approach response 

and move backwards in order to get to the food. Critically, conditioning occurs only if there 
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is contingency between the CS and the US, and if no other CS already fully predict the US 

(Kamin, 1969). This suggests that model-free learning occurs via error-driven learning.  

1.1.4 Modelling reinforcement learning 

In the 1970s, error-driven prediction learning was first formally described by the Rescorla-

Wagner model (Rescorla and Wagner, 1972). The basic principle of the model is that animals 

learn from prediction errors, and the strength of a CS-US association, Vt, should be updated 

relative to the difference between the actual outcome and the predicted outcome. In its 

simplest form, this learning rule can be described by the following equation: 

 𝑉𝑡+1 = 𝑉𝑡 + α(𝑟𝑡 − 𝑉𝑡) (2.1) 

Here, the expected value of the reward in trial t+1 is given by the reward value in trial t 

(𝑉𝑡), plus a weighted prediction error term, (𝑟𝑡 − 𝑉𝑡), corresponding to the difference 

between the received reward 𝑟𝑡 and the expected reward 𝑉𝑡. Changes in expected value are 

therefore driven by the prediction error, which is maximally positive if a large, unexpected 

reward is received, 0 if a reward is perfectly predicted and negative if an expected reward is 

omitted. α corresponds to a learning rate (with 0 < α ≤ 1), indicating the rate at which 

associations change in time. 

Despite its simplicity, the Rescorla-Wagner model has proven very powerful in explaining 

a number of learning phenomena, such as reported in Pavlovian conditioning. However, it 

has two major shortcoming. Firstly, time is discretized in terms of trials, such that the 

framework does not account for the precise prediction of the time at which a reward can be 

expected. Secondly, the Rescorla-Wagner fails to explain second order conditioning, where 

a stimulus A predicts a reward (A→r) if A predicts B (A→B), and B predicts reward (B→r). 

In reality, second order conditioning is only effective if A precedes B. The Rescorla-Wagner 

model does not differentiate this situation from a scenario where B precedes A, and thus 

fails to account for the temporal credit assignment problem. 

A more generalized model that overcomes these shortcomings is the temporal difference 

learning model, which assigns a value to any given state in time based on the sum of expected 

future reward  𝑉𝑡 (Sutton, 1988; Sutton and Barto, 1990). The full algorithm is complex and 

beyond the scope of this thesis, but it is worth noting that learning of state values occurs via 

updating through the temporal difference prediction error defined at any point in time 𝛿𝑡+1:  
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 𝛿𝑡+1 = 𝑟𝑡+1 + 𝑉𝑡+1 − 𝑉𝑡 (2.2) 

where 𝑟𝑡+1 is the reward at time t+1, 𝑉𝑡+1is the state value at time t+1 and 𝑉𝑡 is the state 

value at time t. If an unexpected reward is delivered, 𝛿𝑡+1 is positive, because the reward 

value 𝑟𝑡+1 is positive, but the change in expectation of future rewards 𝑉𝑡+1 − 𝑉𝑡 is 0. The 

delivery of a fully predicted reward results in no prediction error even though 𝑟𝑡+1 is positive, 

as the agent proceeds from a valuable state Vt, in which a reward was to be expected, to a 

less valuable state Vt+1, which is no longer predictive of a reward. The unexpected appearance 

of a CS which predicts the appearance of a reward leads to a positive 𝛿𝑡+1 despite a reward 

𝑟𝑡+1 of 0, because the animal transitions to a more valuable state 𝑉𝑡+1 that is predictive of a 

future reward, i.e. 𝑉𝑡+1 > 𝑉𝑡. Temporal difference learning is therefore exactly consistent 

with the behavioural observations subsumed under the term classical conditioning.  

S-R learning is typically modelled using an actor-critic architecture, where a value function 

(‘critic’) and a policy structure (‘actor’) are represented independently. Here, the actor selects 

actions, and the critic evaluates the outcome of the performed actions. As a consequence, 

the critic learns an evaluation function for each state, reflecting the expected future reward 

given the typical actions taken from that state. Learning occurs through a temporal difference 

signal, which drives both learning of the mapping of states onto values (‘critic’) and of states 

onto an actions (‘actor’). If the TD error is positive and the outcome is better than expected, 

the mapping of state st onto action at is strengthened. If the TD error is negative, the mapping 

of state st onto action at is weakened. The actor critic architecture thereby prevents the 

temporal credit assignment problem. However, as it is based on ‘trial-and-error’ it is a slow 

method for learning from the environment, and it does not explain how behaviours that were 

never reinforced can be flexibly employed. 

1.1.5 Dopamine neurons carry a reward prediction error signal 

In the brain, activity of dopaminergic neurons in the ventral tegmental area (VTA) and 

substantia nigra pars compacta display responses consistent with the reward prediction error 

term in the temporal difference learning model (Schultz et al., 1997, Figure 1.2). Before 

learning, the unexpected presentation of a reward, such as receipt of a drop of fruit juice, 

leads to a burst of activity in dopamine neurons. If a reward is perfectly predicted because 

the association between a CS and the reward has been learnt, dopamine neurons respond to 

the presentation of the CS, but not to reward receipt. If, however, the reward is unexpectedly 
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omitted after the presentation of the predictive CS, activity of dopamine neurons is 

suppressed at the time when the reward would have occurred. In line with the predictions of 

the temporal difference learning model, the size of the dopamine burst scales with the 

expected value of the reward. The response to the reward itself is maximal if it is unexpected, 

and decreases with an increase in probability of receiving a reward on a partial reinforcement 

task; the opposite pattern is observed for the response to the CS (Fiorillo et al., 2003). 

 

Figure 1.2 Dopamine neurons encode reward prediction errors. Peri-stimulus time histograms 
and raster plots from a dopamine neuron in three experimental conditions: no prediction, reward 
occurs (top), reward predicted, reward occurs (middle) and reward predicted, no reward occurs 
(bottom). CS, conditioned stimulus, R reward. Reproduced with permission from Schultz et al. 
(1997). 

Signals consistent with prediction errors can also be measured in the human substantia 

nigra using direct intracranial recordings (Zaghloul et al., 2009) and in the VTA (D’Ardenne 

et al., 2008; Klein-Flügge et al., 2011) as well as in the human striatum, a region which receives 

dense inputs from dopaminergic midbrain nuclei (Gläscher et al., 2010; McClure et al., 2003; 

Niv et al., 2012; O’Doherty et al., 2003b). The dorsal striatum specifically supports stimulus-

response learning (Packard and Knowlton, 2002) and has been implicated in carrying 

prediction errors in instrumental tasks, but not in situations where value prediction errors 

occur in the absence of action selection (O’Doherty et al., 2004). The ventral striatum, on 



Introduction 

26 
 

the other hand, responds to primary rewards and reward prediction errors more generally 

(O’Doherty et al., 2004). This anatomical dissociation in expression is consistent with the 

actor-critic dissociation in reinforcement learning. The signal in the dorsal striatum might 

reflect the policy improvement function supported by the ‘actor’, and the signal in the ventral 

striatum might reflect the state evaluation signal supported by the ‘critic’. 

The magnitude of a striatal prediction error signal is modulated by drugs that affect 

dopamine activity (Pessiglione et al., 2006), and prediction error signals in dorsolateral 

striatum are impaired in Parkinson´s patients (Schonberg et al., 2010), who suffer from a loss 

of dopamine neurons in the substantia nigra. In line with an important role for dopaminergic 

prediction errors during learning, Parkinson´s patients are also impaired in learning from 

positive outcomes (Rutledge et al., 2009). MRI experiments provide further evidence for a 

critical contribution of a prediction error signal to learning a stimulus-reward association. 

For example, those subjects who learned to perform a four-armed bandit task successfully 

displayed a larger prediction error signal than non-learners (Schönberg et al., 2007). 

However, the first causal relationship between the release of dopamine and learning from 

a stimulus in the environment was provided by a recent optogenetics study. The study 

capitalized on the phenomenon of blocking, whereby the association of a CS with reward 

can be prevented if the CS forms a compound together with a second CS which already fully 

predicts the reward. In this situation, no dopamine is released in response to the new CS, 

and the animal does not express any behavioural response. If, however, dopamine release is 

triggered optogenetically when the compound cue is presented, a behavioural response 

develops to the new CS alone, demonstrating a causal relationship between dopamine release 

and learning (Steinberg et al., 2013). 

VTA neurons putatively exert their effects on learning via projections to the striatum, the 

hippocampus, the amygdala and neocortical areas such as the medial prefrontal, cingulate 

and perirhinal cortex (Haber and Behrens, 2014). Dopamine release in these downstream 

brain areas affects plasticity in cortico-striatal, hippocampal and meso-cortical synapses 

(Reynolds and Wickens, 2002; Wickens et al., 1996). For example, dopamine released in a 

novel spatial situation in the hippocampus directly influences plasticity in CA1 (Li et al., 

2003). In PFC, direct perfusion with dopamine, the application of a dopamine reuptake 

inhibitor or the increased release of transient dopamine through stimulation of VTA all lead 

to a sustained increase in long term potentiation (LTP) (Garris et al., 2006). By signalling the 

behavioural relevance of an external stimulus or action, dopamine can therefore directly 



Introduction 

27 
 

influence cortical representations. However, the optimal amount of prediction-error induced 

learning depends on the volatility of the environment as tracked by the anterior cingulate 

cortex (Behrens et al., 2007).  

1.1.6 Prediction errors outside value-based decision making 

Prediction errors can also be observed outside of reward-guided decision making, for 

example when sensory expectations (Näätänen et al., 1989; den Ouden et al., 2010) or when 

stimulus transition probabilities (Meyer and Olson, 2011) are violated. This demonstrates the 

importance of prediction error signals as a domain-general teaching signal for learning about 

the environment. This notion has been formalized in hierarchical predictive coding models 

of brain function (Friston, 2009), initially developed to explain the properties of simple cell 

receptive fields in the primary visual cortex (Rao and Ballard, 1999). Predictive coding 

assumes that top-down projections from downstream brain areas carry a prediction signal 

pertaining to the expected neural dynamics, which is constantly compared to bottom-up activity 

at a lower level of the cortical hierarchy. The brain aims to minimize the prediction error 

signal resulting from the discrepancy between the expected signal and the actual signal by 

optimizing the connectivity within cell assemblies at those levels of the hierarchy that 

experience prediction errors (Friston, 2010). Intriguingly, recent MEG studies provide 

evidence that bottom-up sensory information and a top-down expectancy signals are carried 

by synchronization in different frequency bands (Bastos et al., 2015; Michalareas et al., 2016). 

The prediction error theory of perceptual processing has been tested in a range of fMRI 

and MEG experiments, for example by manipulating expectancy through varying the 

frequency at which face stimuli were presented (Summerfield et al., 2008, 2011). Summerfield 

et al. (2008) observed an attenuated response to stimuli which occurred frequently (75% of 

trials) compared to stimuli whose occurrence was rare (25% of trials), suggesting that 

stimulus expectation modulates the size of a perceptual prediction error. Similar expectation 

suppression effects are observed in auditory oddball paradigms (Garrido et al., 2007), in 

response to visually presented shapes (Stefanics et al., 2011), and in somatosensory 

stimulation (Valentini et al., 2011). They are also consistent with heightened blood 

oxygenation level dependent (BOLD) signal or evoked responses to unexpected or novel 

stimuli (Egner et al., 2010; Näätänen et al., 1989; Ouden et al., 2009; Strange et al., 2005a).  

Evidence for prediction error coding can also be found in direct electrophysiological 
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recordings of monkey IT neurons, which respond more strongly when a presented image 

violates a learned statistical transition rule (Meyer and Olson, 2011).  

1.1.7 Incorporating social preferences of others into personal choice  

As humans, we not only learn from our own experiences but we can also derive inferences 

about the world from observing the behaviour of others. In fact, it has been argued the 

cultural success of mankind is attributable to our exceptional ability to learn in social 

contexts, and to cooperate with others (Boyd et al., 2011; Dunbar and Shultz, 2007; Frith 

and Frith, 2010). Social interactions between humans are highly complex, and in many ways 

our mental life is co-dependent on that of other human beings. A central element of social 

interactions is understanding behaviour of others as an outcome of their internal mental 

states. The ability to infer the mental states of another person, their beliefs and preferences 

is referred to as Theory of Mind or mentalizing (Premack and Woodruff, 1978).  

 It has long been a matter of debate whether the computations involved in processing 

information about social relationships and the mental states of conspecifics require 

specialized brain systems or whether the mechanisms involved in other cognitive domains 

also underlie social behaviours. The discovery of mirror neurons, which respond both to the 

execution and to the observation of an action (Kilner et al., 2009; Rizzolatti et al., 1996, 

2001), provided a hint that the same principles that underlie cognitive computations for self 

might also serve as a cortical substrate for understanding others. In line with this notion, 

experiencing pain and observing other people´s pain activates the anterior cingulate cortex 

(Jackson et al., 2005; Singer et al., 2004), experiencing and observing disgust in others 

activates the insula (Wicker et al., 2003) and choosing for self and for others activates medial 

prefrontal cortex (Jenkins et al., 2008; Nicolle et al., 2012). It has also been demonstrated 

that the prediction error signals controlling reinforcement learning also guide learning about 

a confederate player’s choices in a game (Behrens et al., 2008). This suggests that the signals 

that guide learning about stimuli or actions also guide learning about a confederate’s 

intentions.  

The network of brain regions involved in attributing mental states to other people 

includes the dorsomedial prefrontal cortex (dmPFC), the temporo-parietal junction, the 

precuneus/posterior sulcus, superior temporal sulcus and temporal poles (Amodio and Frith, 

2006; Saxe, 2006). Traditionally, it has been believed that these regions perform uniquely 

social computations. However, a recent experiment challenges this notion and instead 
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suggests that dmPFC also activity reflects value in situations where choice is made in an 

abstract frame of reference, which is particularly pertinent in situations where one’s own 

sensory and motor environment needs to be ignored. For example, if subjects choose for 

themselves in an intertemporal choice paradigm, their own subjective values are represented 

in vmPFC, while the subjective values of another individual whose preferences were learnt 

previously are simultaneously represented in dmPFC (Nicolle et al., 2012). Traditionally, this 

would have been taken to suggest that dmPFC performs social value computations. 

However, if roles are reversed and subjects execute a choice on behalf of the other individual, 

the other’s preferences are now represented in vmPFC while the subject’s own preferences 

are represented in dmPFC. This suggests that dmPFC instead represents a modelled choice, 

i.e. the values of the agent not currently relevant for behaviour, whereas a circuitry in vmPFC 

is involved in executing choice irrespective of an agent´s identity.  

1.2 Work in this thesis related to learning-induced plasticity in 
value computations 

In this thesis, I have used fMRI adaptation in combination with computational modelling 

to investigate how learning about another person´s preferences induces plasticity in a vmPFC 

value computation. Due to the shared circuitry computing value for self and other, 

introducing plasticity in a population computing value for another should lead to a 

simultaneous update of a value computation for self. This could potentially have profound 

consequences for one’s own preferences, and might thereby explain the social conformity 

effects observed when learning about other people’s opinions or memories (Campbell-

Meiklejohn et al., 2010; Edelson et al., 2011; Klucharev et al., 2009; Zaki et al., 2011). Such 

plasticity is likely driven by one of two types of social prediction errors. Confederate 

prediction errors can arise as we are updating our beliefs about the preferences of another 

individual. Such prediction errors could provide a teaching signal about the other’s 

preferences. However, a prediction error could also arise from observing another’s behaviour 

and comparing it to the most likely behaviour we would have executed given the same 

context. This includes social expectancy prediction errors, signalling the discrepancy between 

our own preferences, and the choices of a social group (Campbell-Meiklejohn et al., 2010; 

Harris and Fiske, 2010; Klucharev et al., 2009). I demonstrate that such a ‘self-referential’ 

prediction error, experienced when comparing the other’s choice to the decision one would 
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have made in the same situation oneself, predicts a mPFC plasticity effect, whereby the 

representational similarity between another person’s value computation and one’s own value 

computation increases. This plasticity effect in turn predicts a subject’s shift in preference, 

suggesting that social influence can be understood on the level of neural populations, as the 

consequence of a learning-induced plasticity in mPFC.  

1.3 Model-based learning 

Many aspects of behaviour can be learned through reinforcement of initially random 

movements, which ultimately leads to the formation of habits. However, relying on this 

system alone is insufficient in situations where the outcome is delayed, depends on a series 

of actions (‘credit assignment problem’), or requires an internal model that can be flexibly 

used to update behavioural policies in light of new information.  

The existence of such models was first demonstrated by Tolman in the 20th century. 

Tolman introduced the notion of latent learning, whereby animals find the location of a food 

reward in a novel environment faster if they previously have the opportunity to explore the 

environment (Tolman and Honzik, 1930). He investigated this by placing two groups of rats 

in a complex T-maze. One group was rewarded whenever they reached the end of the maze 

from day 1 onwards. Group 2 were not rewarded on the first ten days, and only received 

rewards from day 11 onwards. If animals simply learn through reinforcement, rats in group 

2 should show the same behaviour from day 11 onwards as rats in group 1 show from day 

1. Instead, Tolman observed that while the immediately rewarded animals performed better 

on the first 10 days of the experiment, when food was introduced for group 2 these animals 

showed a large decrease in response time and errors, and in fact performed better than the 

animals in group 1. This suggests that rats in group 2 acquired knowledge about the structure 

of the maze in the first ten days, even though it was not behaviourally relevant or rewarded. 

When they were later motivated to perform accurately, the acquired knowledge about the 

structure of the maze allowed the animals to quickly find the correct path to the rewarded 

location. Tolman called this type of learning latent learning and proposed that the animals must 

be forming a ‘cognitive map’ of the environment without explicit reinforcement, which 

allows them to find a path towards a goal when needed. This behaviour cannot be explained 

by Thorndike’s law of effect, since no actions were reinforced during the initial exploratory 

phase.  
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In a second study, Tolman tested whether rats are able to use the model they have 

acquired of the world to update their behavioural strategies in light of new incoming 

information. He trained animals on a maze task, in which they had to find the path from a 

start location A to a reward location G (Figure 1.3A). After multiple training days, the initial 

arm of the maze leading to a reward was blocked, and instead multiple radially arranged paths 

were provided (Figure 1.3B). Tolman observed that a large proportion of animals successfully 

chose path 6, a shortcut which directly led to the reward location from the start location 

(Figure 1.3C). Notably, the animals had never experienced this particular path before, so that 

it could not have been learned from the reinforcement history. Instead, animals would only 

be able to compute this new shortest path if they have an explicit representation of the 

relationship between their location, the reward location and the paths between start and goal 

locations. Tolman suggested that the animal had constructed a ‘cognitive map’ of the 

environment, which allowed for the relationship between landmarks to be computed flexibly 

and for shortcuts or detours around obstacles to be planned (Tolman, 1948). Notably, while 

Tolman deserves to be credited with the notion of a ‘cognitive map’ facilitating flexible, goal-

directed decision making, attempts to replicate his experimental results have not always been 

successful (Gentry et al., 1947; Muir and Taube, 2004).  

 

Figure 1.3 Tolman´s setup for exploring cognitive maps in rats. A Apparatus used in preliminary 
training. Rats entered the arena in location A. The food reward was located in position G. B After 
multiple training days, the original path was blocked. Instead, animals could choose from 18 radially 
arranged paths. The direct path leading to the reward was path 6. C Number of rats choosing paths 
1-12 displayed in B on the test trial. Most rats chose path 6. A second peak could be observed for 
path 1, which might relate to the fact that the most recent turn before reaching the goal in the original 
setting was a right turn. Adapted from Tolman (1948). 
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Unlike the model-free habitual system, this type of model-based system is very flexible as 

it accounts for changes in the environment or internal state. However, it is computationally 

very costly to compute the likely outcomes of all possible actions, and in many instances the 

problem becomes non-tractable. In highly practiced tasks in stable environments it can 

therefore be advantageous to rely on a computationally efficient, fast and highly trained 

behavioural policy as provided by the model-free habitual system (Daw et al., 2005). It is now 

believed that such model-free and model-based systems co-exist in the human brain (Daw et 

al., 2005) and human behaviour typically shows a mixture of model-free and model-based 

behaviour (Daw et al., 2011). Their relative influence on behaviour is best seen in devaluation 

paradigms. For example, hungry rats learn to press a lever in order to obtain food. When 

food is paired with illness, rats develop an aversion against the food and avoid pressing the 

lever if they have been moderately trained on the task (Holland). In this situation, the animals 

are sensitive to the outcome of their action, and realize it is no longer aligned with their goal. 

If, however, the rats have previously been overtrained on the lever-pressing task, their 

behaviour becomes insensitive to the fact that the outcome has been devalued and they 

continue pressing the lever. This suggests that with repetition the action has become 

automatic, or habitual. Crucially, habitual and value-based behaviours are supported by 

dissociable neural circuits. Animals who experience lesions to dorsolateral striatum never 

form habits and remain sensitive to devaluation even after overtraining (Yin et al., 2004). If 

prefrontal areas or the dorsomedial striatum are lesioned, on the other hand, rats behave 

habitually and are insensitive to devaluation irrespective of the amount of training (Yin et al., 

2005).  

1.4 Neural implementation of a cognitive map 

Despite the fact that Tolman’s experiment specifically investigated maps in spatial 

navigation, his notion of a cognitive map as an organizational principle went far beyond 

physical space. He hypothesized that other - or potentially all - types of relational information 

might be organized in a map-like fashion, which could then be used to guide model-based 

reasoning. Such organization of knowledge would allow for paths to be computed through 

an abstract ‘concept space’ which could underlie flexible model-based behaviour. This also 

means that the computations and neural codes involved in spatial information processing 

might be equally relevant for operations performed on the relationship between non-spatial 
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information. However, Tolman did not make explicit assumptions about the neural 

instantiation of this map in the brain.  

In the 1970s, John O’Keefe discovered hippocampal ‘place cells’ whose firing activity is 

precisely localized in space (O’Keefe and Dostrovsky, 1971). He hypothesized that these cells 

could form the physiological and psychological basis of a ‘cognitive map’ (O’Keefe and 

Nadel, 1978). A few years earlier, the critical contribution of the hippocampal formation to 

another, seemingly disparate aspect of cognition, namely episodic memory, had been 

discovered (Scoviille and Milner, 1957) based on studies in one of the most famous 

neuropsychological patients in history, Henry Molaison (H.M.). H.M. underwent bilateral 

medial temporal lobe (MTL) resection to treat his temporal lobe epilepsy. After the surgery, 

H. M. was found to suffer from severe anterograde amnesia, with no ability to encode new 

episodic or declarative memories. These seemingly separate accounts of the role of 

hippocampal function in spatial navigation and episodic memory co-existed in parallel for a 

long time, and converged only recently, when the first evidence appeared that indeed the 

physiological mechanisms evolved to support spatial navigation could also underlie non-

spatial cognitive computations. Here, I review the anatomy, physiology and seemingly 

separate function of the hippocampal formation, and suggest how they can be combined into 

a coherent framework that gives rise to our ability to navigate in physical space, as well as in 

a more abstract knowledge space.  

1.4.1 Anatomy of the hippocampal formation  

The hippocampal formation is located in the medial temporal lobe (MTL) and consists of 

the hippocampus, the entorhinal cortex, the subiculum, the pre- and the parasubiculum. The 

three-layered hippocampus itself consists of the dentate gyrus and the Cornus ammonis 

(Latin: head of the ram), which has three subfields, CA1, CA2 and CA3. Inputs to the 

hippocampus are funnelled by the entorhinal cortex, which receives projections from most 

neocortical sites, in particular from perirhinal and parahippocampal cortices integrating 

information from association cortices (Lavenex and Amaral, 2000). Fibers from entorhinal 

layer III project to area CA1, and entorhinal stellate cells in layer II distribute their 

information via perforant path fibers to a large number of granule cells in the dentate gyrus. 

A granule cell only spikes if it receives simultaneous inputs from many entorhinal cells. 

Granule cells in the dentate gyrus, in turn, send so called ‘mossy fibers’ to CA3 pyramidal 

neurons. A typical CA3 neuron receives information from less than 50 granule cells. 
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However, because mossy fiber terminals are the largest axon terminals in the mammalian 

brain they are unusually powerful, and activity trains of a single granule cell can activate a 

post-synaptic CA3 pyramidal neuron under some circumstances (Henze et al., 2002). Granule 

cell projections distribute information widely across CA3, thereby orthogonalizing input 

patterns and performing pattern separation (O’Reilly and McClelland, 1994; Treves and 

Rolls, 1994). CA3 contains strong and largely random, excitatory recurrent connections from 

other CA3 neurons. In combination with a very high sensitivity to LTP, the divergent and 

convergent loops in CA3 make this substructure ideal for forming auto-associative 

memories, and for recovering previously stored patterns from partial cues. CA3 neurons also 

project ‘Schaffer collaterals’ to area CA1. Structures forming the hippocampal formation are 

therefore connected to each other via a unidirectional ‘trisynaptic loop’ (Figure 1.4). Most 

CA1 neurons target the subiculum and layer V of the entorhinal cortex, or the prefrontal 

cortex. While the subiculum projects largely to subcortical destinations, the entorhinal cortex 

targets neocortical areas, mostly perirhinal and parahippocampal cortices. 

 

Figure 1.4 Hippocampal anatomy and connectivity between subfields of the hippocampal 
formation. Adapted with permission from Neves et al. (2008). 

The hippocampal formation and MTL structures have dense reciprocal connections with 

the prefrontal cortex. CA1, the subiculum and the entorhinal cortex directly project to the 

prefrontal cortex (Condé et al., 1995; Jay and Witter, 1991; Swanson, 1981), and information 

is also relayed to vmPFC via the perirhinal cortex (Eden et al., 1992). Inputs from mPFC 
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and OFC reach the hippocampus mainly via projections to the entorhinal cortex and 

perirhinal or parahippocampal cortex, respectively (Lavenex and Amaral, 2000).  

1.4.2 Cognitive maps in the hippocampus and the entorhinal cortex 

Mammals are very successful at finding the shortest path to their home base after 

exploring an environment for food or searching for their missing pup, even in the absence 

of external sensory inputs (Mittelstaedt and Mittelstaedt, 1980). This type of ‘path integration’ 

requires the existence of a map that allows animals to keep track of directions and distances 

travelled during navigation.  

In the early 1970s, it was discovered that such a map is in fact instantiated in the 

hippocampus. Neurons in hippocampal areas CA1 and CA3 were found to respond precisely 

to a circumscribed location in space (Figure 1.5) (O’Keefe, 1976; O’Keefe and Dostrovsky, 

1971), such that their activity closely tracks the animal’s position during spatial navigation 

(Wills et al., 2010). More recently, place cells have also been recorded in human epilepsy 

patients (Ekstrom et al., 2003). ‘Place fields’, the location where such ‘place cells’ are 

maximally active, are distributed evenly across the entire environment. An animal’s location 

in space can thus be precisely decoded from the activity of a population of hippocampal 

place cells (Zhang et al., 1998). Firing rates of place fields are cone-shaped, and place cells 

respond equally independent of the direction from which an animal arrives in the place field 

(unless the animal navigates on a one-dimensional track). The distribution of place fields 

therefore provides an allocentric map of space that can be used for planning shortcuts or 

detours in spatial navigation (Leutgeb et al., 2005; O’Keefe and Nadel, 1978). No 

topographic relationship between the anatomical location of a place cell and its place field in 

physical space exists (Dombeck et al., 2010). In fact, if the animal moves to a new 

environment, the cognitive map completely reconfigures and a new, independent map is 

formed by rearranging the cells’ place fields (Muller and Kubie, 1987; Wilson and 

McNaughton, 1993). This remapping reverses if the animal returns to the original 

environment, providing the animal with stable and decorrelated representations of different 

environments. Thus, through hippocampal remapping, very large numbers of orthogonal 

cognitive maps can be created, allowing for the storage of vast amounts of independent 

memories. The orthogonalization is particularly strong in CA3, where neurons are densely 

connected via recurrent collaterals. If only small features of the environment are altered a 



Introduction 

36 
 

less radical rate remapping can be observed, where firing rates, but not place field locations 

are changed (Leutgeb et al., 2005).  

Place cells are modulated by distant visual cues (Muller and Kubie, 1987), in particular 

geometric boundaries (O’Keefe and Burgess, 1996). Stretching or shrinking the dimensions 

of a testing apparatus leads to an elongation or shrinking of place fields in the same 

dimension, suggesting that place fields are arranged at fixed distances to boundaries or 

landmarks (O’Keefe and Burgess, 1996). The measure of allocentric distance to boundaries 

can be provided by border cells (Figure 1.7), firing at specific distances from geometric 

boundaries in the environment (Solstad et al., 2008).  

 

Figure 1.5 Place cell activity during spatial navigation. Top: Black lines indicate the animal’s 
path during foraging. Red dots indicate the location where three example CA3 place cells fired an 
action potential. Bottom: Firing rate map as a function of location. Adapted with permission from 
(Fyhn et al., 2007).  

Place cells do persist in darkness if a dark period is preceded by a light period during 

which the animal can familiarize itself with an environment (Quirk et al., 1990). When an 

animal is immobilized and transported through space by the experimenter (Foster et al., 

1989) or when an animal is stationary and the environment is rotated (Terrazas et al., 2005) 

place cells become largely inactive, suggesting self-motion cues are critical for their 

expression. Furthermore, place cell activity increases linearly with running speed even in 

situations where visual and vestibular inputs remain constant (Czurkó et al., 1999). 

Additionally, experience and behavioural relevance influence place cell firing. For 

example, place cells differentiate between identical paths in space if the required action at the 
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end of the path differs (Wood et al., 2000), and the concentration of place cells is particularly 

high around reward locations (Hok et al., 2007; Hollup et al., 2001), a phenomenon which 

aids memory recall (Dupret et al., 2010). Furthermore, highly travelled routes are 

overrepresented in terms of the number of place cells encoding a location along this path. 

The organization of a cognitive map with respect to behavioural relevance is presumably 

mediated via the input the hippocampus receives from a wide range of other brain areas that 

are active during learning, including input from sensory cortices and dopamine projections 

from the midbrain. Hippocampal place cells therefore reflect a multimodal representation of 

the environment.  

Other types of stereotyped cells are found in the medial entorhinal cortex, including 

border cells, head direction cells and grid cells. Entorhinal grid cells, the most abundant cell 

type in medial entorhinal cortex, are characterized by a very regularly spaced triangular firing 

fields (Figure 1.6, Hafting et al., 2005). The emerging hexagonal array spans the entire 

available environment and anatomically neighbouring grid cells typically show the same 

orientation and spatial frequency, but not the same phase. Furthermore, grid cell spacing 

decreases from ventral to dorsal entorhinal cortex, such that ventrally located grid cells have 

larger firing fields and larger spacing between adjacent firing fields than dorsally located grid 

cells, with discrete step-like increases in size (Stensola et al., 2012). This gradient mirrors the 

change in size of hippocampal place fields along the same axis, where place field sizes 

increase gradually from approximately 1 metre dorsally to up to 10 m ventrally (Kjelstrup et 

al., 2008). The dorsal-to-ventral axis in rodents corresponds to a posterior-to-anterior axis in 

humans (Insausti, 1993).  

While the topography of place fields can take up to several days to form in a novel 

environment (Lever et al., 2002), grid patterns typically form as soon as an animal enters a 

novel environment and remain fixed thereafter. Crucially, grid cell patterns do not depend 

on visual input as they are also present in darkness (Hafting et al., 2005). Furthermore, grid 

cell firing is invariant to an animal’s speed and behaviour (Hafting et al., 2005; McNaughton 

et al., 2006), suggesting it might provide a stable internal metric of the environment. Notably, 

a deformation of the environment causes complementary changes in grid scale (Barry et al., 

2007) suggesting that grid patterns are modulated by visual input. 
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Figure 1.6 Firing fields of a grid cell in the entorhinal cortex. Left: the spiking activity of the 
grid cell (red dots) is overlaid on the animal’s path in space (black line). Middle: Firing rate map. The 
peak rate for this neuron was 19 Hz. Right: Spatial autocorrelogram computed from the firing rate 
map. Adapted with permission from Hafting et al. (2005).  

Grid cell patterns could result from self-motion cues indexing speed, and direction, and 

corrected by feedback from place cells and or boundary vector cells (McNaughton et al., 

2006). Animals typically return straight to their starting location after leaving their nest to 

find food, even in the absence of sensory cues. This is taken as evidence for a path integration 

mechanism, whereby self-motion cues are continuously tracked such that the shortest path 

can be computed to return to the starting point. Path integration requires a navigation system 

assessing speed, elapsed time, head direction and initial position (Buzsáki and Moser, 2013). 

Boundary cells (Solstad et al., 2008) as well as visual information entering MEC from 

parahippocampal and postrhinal cortex (Epstein et al., 2007) ensure alignment of the path 

integration signal with the external world.  

Place cells (Ekstrom et al., 2003) and grid cells (Jacobs et al., 2013) have also been 

recorded in humans epilepsy patients using electrophysiological recordings. Furthermore, 

because the phases of grid cells are aligned, a six-fold rotational symmetry can be detected in 

the fMRI BOLD signal in the entorhinal cortex when human subjects navigate through a 

virtual environment (Doeller et al., 2010). This technique also provided evidence for grid 

cells in mPFC, parietal cortex and temporal cortex. Furthermore, recent evidence shows that 

the entorhinal cortex encodes Euclidian distances to goals (Howard et al., 2014) and goal 

direction (Chadwick et al., 2015). 

Some entorhinal grid cells are directly modulated by head direction (Sargolini et al., 2006), 

providing the hippocampal formation with directional information. Head direction cells, 

firing specifically when an animal´s head faces a certain direction in the environment 

irrespective of the animal’s location, were first identified in the presubiculum by Jeffrey 

Taube and James Ranck (Figure 1.7B-D, Taube et al., 1990). Since the initial discovery, ‘head 
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direction cells’ have been identified across a wide range of brain regions, including in the 

thalamus (Mizumori and Williams, 1993) and the entorhinal cortex (Sargolini et al., 2006).  

 

Figure 1.7 Examples of medial entorhinal border cells and head direction cells. A Colour-
coded firing rate maps for two representative example border cells, recorded in medial entorhinal 
cortex. Adapted with permission from Solstad et al. (2008). B Left: the spiking activity of the cell (red 
dots) is overlaid on the animal’s path in space. Right: Colour-coded firing rate map. The peak rate for 
both neurons was 12 Hz. C Colour-coded spatial autocorrelogram of two head-direction cells, 
computed from the firing rate map. D Polar plots visualizing directional tuning of the firing rate. 
Firing rate as a function of head direction. Adapted with permission from Sargolini et al. (2006). 

Another dimension encoded in the hippocampal formation is the temporal order of 

events. Only recently hippocampal ‘time cells’ have been discovered, which fire at specific 

moments during temporally structured experiences irrespective of an animal’s spatial 

location. The neural ensemble as a whole thereby signals the passage of time. For example, 

when a rat runs on a running mill where it maintains a stable position in space, time cells 

responded at specific segments of the run (Figure 1.8) (Pastalkova et al., 2008). Time cells 

also keep track of the time that elapses between events in a task where rats learn to associate 

objects with odours presented after a delay (MacDonald et al., 2011). Critically, in this setting 

the ensemble activity is stable over subsequent experiences, but differs depending on which 

information is required for memory recall. Similarly, recordings in primate hippocampus 

have revealed the existence of time cells in a temporal-order memory task (Naya and Suzuki, 

2011). Time cells could provide the temporal context of episodic memories and add to the 

notion that the hippocampus links event sequences in space and time.  
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Figure 1.8 Hippocampal time cells. A Colour-coded spikes of multiple hippocampal CA1 neurons. 
Dots indicate the location where place cells fired an action potential. In between runs around the 
maze the animal was required to run in the wheel. B Colour-coded firing rate of six neurons, recorded 
during wheel running. Each line corresponds to a separate trial. Time cells fire at specific delays 
during the wheel running episode. C Colour-coded firing rate for a set of neurons recorded during 
wheel running, sorted by latency of peak firing rate. The neuronal ensemble encodes the time spent 
on the wheel. Adapted with permission from Pastalkova et al. (2008). 

1.4.3 Hippocampal place cells and entorhinal grid cells 

The combined information concerning speed, elapsed time, direction, position and 

boundaries provided by cells in the hippocampus and entorhinal cortex can provide a 

distance metric and directional reference frame for mapping the environment. This map 

allows an animal to establish its exact position in space and plan trajectories through the 

environment. However, the exact relationship between hippocampal place cell and 

entorhinal grid cell patterns is still a matter of debate. Grid cells can be found in superficial 

and deep layers of the entorhinal cortex, suggesting that they process inputs to, and outputs 

from, the hippocampus. Most entorhinal cells in layer II and III, which project to the 

hippocampus, have grid cell properties (Sargolini et al., 2006). Furthermore, MEC contains 

head direction and border cells, and it is ideally placed to integrate spatial information with 

inputs it receives from neocortical areas (Hafting et al., 2005). It has therefore traditionally 

been assumed that MEC neurons project information about spatial location, direction and 

distance to place cells, with hippocampal place fields constituting a ‘read-out’ of entorhinal 

grid cells. Indeed, a linear combination of multiple grid cells with various spatial frequencies 
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and random phases could provide a precise estimate of an animal’s location, suggesting that 

grid cell activity could constitute a basis set that can be combined linearly to generate place 

fields in the hippocampus (Fuhs and Touretzky, 2006; McNaughton et al., 2006). A place 

field in this setting emerges at the location where most grid cells are in phase. Theoretically, 

it has been demonstrated that the summation of grid cells with biologically plausible 

differences in grid frequency, aligned phases, and random grid orientation would indeed lead 

to the emergence of place cell-like activity (Solstad et al., 2006). Place cells in this context 

would not need to be hard-wired, but could instead emerge from Hebbian plasticity between 

random grid cell-place cell connections if grid cells vary sufficiently in orientation, phase and 

scale (Rolls et al., 2006). This is also in line with the observation that place fields in CA1 

remain unaffected when the input from hippocampal CA3 to hippocampal CA1 is removed 

(Brun et al., 2002), suggesting either that the perforant-path input from the entorhinal cortex 

provides CA1 with spatial information, or this information is directly computed within CA1.  

However, recent evidence is inconsistent with the notion that place cells are downstream 

read-outs of grid cell activity. Size and shape of place cell firing fields are mostly unaffected 

by the absence of grid cell inputs (Hales et al., 2014; Koenig et al., 2011) whereas inactivating 

the hippocampus leads to a loss of hexagonal grid cell firing (Bonnevie et al., 2013). In this 

framework, the hippocampus can be considered the area encoding individual experiences or 

locations in space, whereas the entorhinal cortex computes the relationship between 

experiences, locations, objects or other types of relational information. In other words, grid 

cell activity could represent a read-out of place cell activity, whereby spatial and contextual 

information arising from external visual inputs and computed by the hippocampus can be 

processed and efficiently signalled to relevant cortical areas (Barry et al., 2006). Indeed, 

during development, place cells mature before grid cells (Langston et al., 2010; Wills et al., 

2010) and the development of grid cells coincides with an increased accuracy of place cell 

activity (Muessig et al., 2015).  

1.4.4 Sequence coding by theta phase precession  

Population activity in the hippocampus is characterised by large oscillatory activity in the 

theta frequency band (7-12 Hz), which is present during ongoing behaviour such as spatial 

navigation (Green and Arduini, 1954). The intracellular membrane potential of individual 

place cells, however, oscillates faster than this population rhythm. As a consequence, their 

spikes shift relative to the phase of the theta oscillations as an animal transverses a place field, 
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a phenomenon called ‘phase precession’ (Figure 1.9A,B). When a rat first enters the firing 

field of a place cell, the place cell’s activity occurs at a late theta phase, and systematically 

shifts to earlier theta phases with the progression through the firing field (O’Keefe and Recce, 

1993). Phase precession can also be observed in entorhinal grid cells, even if hippocampal 

inputs are removed (Hafting et al., 2008), and in medial prefrontal cortex (Jones and Wilson, 

2005). The animal’s location in space and the phase of neuronal spiking are therefore 

correlated, providing an animal with a precise temporal code of its position.  

 

Figure 1.9 Hippocampal phase precession. A Neural activity as a function of position and phase. 
Dots represent location and theta phase at the time when an action potential is fired in a CA1 place 
cell. B Firing rate of the neuron in A as a function of position and phase. A and B reproduced with 
permission from Mehta et al. (2002) C Schematic illustrating the compression of sequences through 
phase precession in ventral/anterior hippocampus (top) and dorsal/posterior hippocampus 
(bottom). Coloured Gaussians represent hippocampal place fields. Coloured circles represent spikes 
of the corresponding place cell. As the animal transverses a cell’s firing field, the spiking activity 
precesses. As a consequence, within a theta cycle, the sequence (A-E) is preserved and compressed. 
Importantly, more ventral parts of the hippocampus can accommodate longer sequences. 
Reproduced with permission from Strange et al. (2014). 

Furthermore, the spikes of neurons whose place cells overlap occur within one theta cycle 

in an order that preserves the temporal relationship between place fields encountered during 

navigation (Figure 1.9C). Not only does the temporal relationship of spikes provide the 

animal with an estimate of the distance travelled at a millisecond time scale (Skaggs et al., 
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1996), phase precession also compresses the place cell activity enough to allow spike-timing 

dependent plasticity to occur between the corresponding place cells. This plasticity between 

sequentially activated place cells might underlie the formation of cell assembly sequences or 

episodes (Blum and Abbott, 1996). When animals first encounter a novel environment, they 

explore in random directions, and the paths they take often cross (Whishaw and Brooks, 

1999). The locations where paths cross are thus part of multiple independent routes, which 

become linked through Hebbian plasticity, ultimately resulting in the formation of a map. At 

the same time, the temporal compression results in a concurrent representation of present, 

past and future locations. The current location is represented by the neurons that are active 

at the trough of the theta oscillation. However, at the same time assemblies active at 

descending and ascending phases correspond to passed and upcoming locations. As a 

consequence, the current location is always embedded in a spatiotemporal sequence. 

1.4.5 Map-based influences on behaviour 

During slow wave sleep (SWS) and rest periods after performing a task, self-organized 

sharp wave ‘ripple’ oscillations emerge in CA3 place cells, and drive CA1 pyramidal cells 

(Csicsvari et al., 2000). The sequence in which place cells are activated during sharp-wave 

ripples is not random. Instead, firing sequences of hippocampal place cells correspond to 

recent spatial experience, which is replayed at an accelerated speed (Diba and Buzsáki, 2007; 

Karlsson and Frank, 2009; Skaggs and McNaughton, 1996; Wilson and McNaughton, 1994). 

This selective and repeated activation of cell assemblies could underlie memory consolidation 

by aiding synaptic plasticity in the hippocampus as well as in neocortical targets. Disrupting 

sharp wave ripples during sleep leads to memory impairments on a spatial task, emphasizing 

the causal relationship between ripples and memory consolidation (Girardeau et al., 2009).  

Rapid reactivation of spatial sequential activity patterns can also be observed in non-

exploratory wake periods immediately after spatial experience, in particular in novel 

environments (Foster and Wilson, 2006). Critically, these replay events typically occur in 

reverse temporal order and they can occur at the same time as a VTA prediction error signal 

if a reward has been experienced (Gomperts et al., 2015). Reverse replay in combination with 

a VTA prediction error signal can solve the temporal credit assignment problem, by 

facilitating the propagation of value information from a rewarded location backwards along 

an experienced trajectory. This is also consistent with the observation that place preferences 
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can be experimentally induced by pairing a replayed trajectory with a rewarding stimulation 

of the medial forebrain bundle (de Lavilléon et al., 2015).  

Replay can also contribute to integrating multiple experiences into a coherent 

representation. Due to the fast time scale of sharp-wave ripples, representations that occur 

at longer intervals can be compressed into a suitable time scale for synaptic plasticity. Indeed, 

after exploring a large track, multiple sharp wave ripple events are chained such that large 

trajectories are reactivated in a coordinated fashion, including trajectories distant from an 

animal’s current location (Davidson et al., 2009). In this way, replay putatively contributes to 

the creation of a unified representation of an extended experience. This could also allow 

unnecessary details of single experiences to be discarded, and regularities and structure across 

experiences extracted across experiences. It also allows for new information to be combined 

with previously acquired and reactivated knowledge. 

It is assumed that memories are encoded in a distributed fashion across associative areas 

of the neocortex that are active during learning (Cowansage et al., 2014). These populations 

of neurons form a ‘memory engram’, i.e. a cellular representation of a memory that, if 

reactivated, reinstates the corresponding memory experience. The role of the hippocampus 

is to reinstate these distributed memories during memory recall (Tanaka et al., 2014) and 

integrate new information during learning. It is therefore not surprising that the sharp-wave-

ripple consolidation processes involve interactions between a range of brain areas, including 

the hippocampal-entorhinal cortex, prefrontal brain areas as well as association cortices 

(O’Neill et al., 2008). For example, simultaneous recordings in the hippocampus and the 

primary visual cortex during sleep suggest that sequence reactivation occurs simultaneously 

in both in hippocampus and visual cortex (Ji and Wilson, 2007).  

Replay phenomena also have a corresponding counterpart in preplay events, where 

hippocampal activity sweeps through state spaces that correspond to potential future 

trajectories. Preplay can also be observed during sharp wave ripple oscillations, where 

sequences are often biased to progress from the animal’s current location to a goal location. 

Crucially, the decoded sequences are predictive of an animal’s future trajectory (Pfeiffer and 

Foster, 2013). This phenomenon may correspond to the neural instantiation of prospective 

search, demonstrating that a cognitive map may indeed support flexible model-based 

planning in goal-directed behaviour. The delivery of a reward in a visible, yet unexplored 

environment can also result in preplay of the corresponding trajectory in space, 

demonstrating goal-directed future simulation in rats (Ólafsdóttir et al., 2015). Prospective 
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planning activity involving the reactivation of reward states can also be seen when human 

participants perform model-based choices in the two-step task (Doll et al., 2015). 

Preplay has also been reported in the theta-frequency domain. When rats face a choice to 

turn left or right at a decision point in a T-maze, hippocampal activity no longer reflects the 

animal’s current location in space. Instead, the sequence in which hippocampal place cells 

have been activated when the animal previously experienced the left or the right path is 

preplayed in the theta frequency domain (Johnson and Redish, 2007). It thus appears as 

though the animal is contemplating the choice options at a decision point by projecting 

themselves into the future. It is worth noting, however, that no direct link between preplay 

events in theta and subsequent choice was observed in this study, indicating that the preplay 

signature may instead reflect upcoming states rather than a signature of goal-directed 

planning.  

 

Figure 1.10 Forward-projecting neural representation at a choice point. When the animal 
reaches a decision point, neural activity in the hippocampus no longer reflects the animals’ actual 
location in space, but the representation instead moved ahead into the two arms of the T-maze. 
Reproduced with permission from Johnson and Redish (2007). 

1.4.6 Cognitive maps in non-physical abstract space 

As humans, we live in ever-changing world and numerous random events occur at all 

times. While most of these events are insignificant for our survival, storing some information 

can be important for processing future sensory experiences and modifying our behavioural 

policies. The relationships between events, objects and other types of information is 

particularly relevant for goal-directed planning. Just like relationships in physical space, these 

relationships can often be defined in terms of distances and positions, e.g. semantic proximity 

(Trope and Liberman, 2010), social proximity, or even proximity to myself in the past or the 

future. Similarly, paths in physical space can be considered analogous to episodes of 

sequentially experienced events or the repeated experience of semantic relationships. Storing 
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abstract relationships as a cognitive map would have tremendous advantages for goal-

directed behaviour, as a network of memories or conceptual relationships would allow us to 

travel new routes through an abstract memory space and solve novel problems (Eichenbaum 

and Cohen, 2014).  

There is now good evidence that the brain networks underlying spatial navigation (Doeller 

et al., 2010), memory (Binder et al., 2009), imagination (Schacter et al., 2012) or valuation 

(Clithero and Rangel, 2014) overlap substantially. All of these processes require binding of 

disparate details into coherent events, which can be recollected as a whole when a cue is 

encountered (Buzsáki and Moser, 2013). As outlined above, the hippocampal formation is 

ideally suited for storing vast amounts of experiences and environments, constructing 

relational information and organizing experiences into event sequences. It therefore provides 

an ideal basis for representing non-spatial relational knowledge (Buzsáki and Moser, 2013).  

In recent years, evidence has accumulated that the hippocampus computes non-spatial 

and abstract relational mappings between arbitrary stimuli. In rats, the response of individual 

neurons in rat CA1 differs depending on whether an odour is presented at a position 

consistent with its position in a previously learned sequence or not (Allen et al., 2016), 

suggesting that the hippocampus also encodes the temporal relationship between non-spatial 

stimuli. This is corroborated by a recent neuroimaging study in humans demonstrating that 

the hippocampus encodes the temporal order of objects in learned object sequences (Hsieh 

et al., 2014). 

Furthermore, rats can infer a link between odours A and C after learning that odours A 

and B as well as odours B and C are associated (Bunsey and Eichenbaum, 1996). This 

suggests the rats construct cognitive maps of simple associations allowing them to make 

transitive inferences. Critically, animals with hippocampal lesions are specifically impaired in 

forming this transitive link. In humans, a signature of transitive inference can be found in 

anterior, but not posterior, hippocampus (Collin et al., 2015; Horner et al., 2015; Preston et 

al., 2004), suggesting that this part of the hippocampus generalizes over individual episodes 

to facilitate inferential reasoning (Komorowski et al., 2013). This is in line with the 

observation that the size of place fields increases from posterior to anterior in the human 

hippocampus, or along the dorso-ventral axis in rodents. As a consequence, neurons with 

more distant place fields in the anterior (or ventral) hippocampus are more likely to fire 

together, resulting in the formation of higher-order links between distant locations or stimuli, 

e.g. between locations A-E in the schematic example (Figure 1.9C). Such higher-order links 
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between place cells firing at non-adjacent places could putatively underlie transitive inference 

(Strange et al., 2014).  

More generally, the human hippocampus encodes the statistical relationships between 

non-spatial stimuli in the environment (Schapiro et al., 2012), and clusters mutually predictive 

stimuli into event representations (Schapiro et al., 2013). There is also some evidence that 

non-spatial relational information is organized in a map in the hippocampus, as demonstrated 

in an fMRI experiment investigating the representation of social relationships (Tavares et al., 

2015).  

1.5 Thesis overview 

In this thesis, I set out to investigate basic mechanistic principles underlying learning and 

decision making by combining computational with representational techniques in fMRI. In 

a first set of studies, I measured changes in similarity between neuronal representations 

during learning using repetition suppression. Because different neuronal computations are 

performed by overlapping neural circuitries, learning to perform one behaviour can cause 

plasticity in an overlapping computation. When subjects learn the preferences of a new 

individual, repetition suppression is observed between the subjects’ representation of 

themselves and their representation of this newly learnt partner. Strikingly, this new 

representational overlap predicts a change in subjects’ own preferences. In fact we show that 

subject whose preferences are most influenced by others are those who also develop the 

most overlapping neural representations. This suggests that social influences can act at the 

most basic level of neuronal representations. 

In a second set of studies, I use a similar representational approach in combination with 

an implicit learning paradigm to investigate how the brain extracts information about 

statistical regularities and organizes this information to build models of the world. Goal-

directed behaviour requires a neural representation of the associations between objects, 

events and other types of information. The mechanisms underlying the association of pairs 

of objects are well characterized, and involve an increase in the similarity of the respective 

object representations. Much less is known about how the human brain stores multiple 

associations that form a more complex global structure. Does the cortex continue to store 

simple associative links, or is global knowledge about the relationship between objects that 

have not been directly associated nevertheless incorporated in the representation? Here, I 
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address this question from a functional perspective and ask whether a signature of a global 

structure is apparent following an implicit learning paradigm. I find that humans acquire 

implicit knowledge about global structure and store this knowledge in an entorhinal map. 

These effects can be explained by two mechanistic models: Firstly, a map emerges in a simple 

Hopfield network with auto-associative attractors and Hebbian plasticity between associated 

objects. This suggests that global knowledge about the relationship between non-associated 

objects emerges through increases in representational similarity for pairwise associations. I 

also propose a conceptually distinct model, wherein the entorhinal cortex performs an 

eigenvalue decomposition of place cell activity. This model not only explains the emergence 

of a global structure in the entorhinal cortex, and it can also account for the characteristic 

hexagonal arrangement of grid cell firing fields.  
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* The material presented in Chapter 2.4 is partly taken from a paper being prepared 

for publication as the following article: 

Barron, HC+, Garvert, MM+ & Behrens TEJ (in press). Repetition suppression: a 

means to index neural representations using BOLD’, Philosophical Transactions of 

the Royal Society B 

+
 equal contribution 

 

The ideas were developed jointly with Helen Barron, and it is not possible to clearly 

identify individual contributions. 
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2.1 Introduction 

A popular technique used to image physiological activity in the human or animal brain 

with a high spatial resolution is blood oxygenation level dependent (BOLD) fMRI (Ogawa 

et al., 1990). In fMRI, brain activity is measured indirectly as a change in blood flow thought 

to accompany neural activity. Oxygenated and deoxygenated blood differ in their magnetic 

susceptibility, which can be measured non-invasively using the phenomenon of nuclear 

magnetic resonance (NMR, Bloch, 1946; Purcell et al., 1946). 

Typically, fMRI data has been analysed in a mass univariate manner, which permits 

making inferences about brain activity at a macro-anatomical scale, i.e. at the level of brain 

regions. This has led to important contributions to our understanding of regional 

specialization in the brain, such as the identification of the parahippocampal place area 

(Epstein and Kanwisher, 1998) or the fusiform face area (Kanwisher et al., 1997). More 

recently, techniques such as fMRI adaptation have been developed that can be used to 

measure activity at a meso-scale and provide a more fine-grained access to neural 

representations and coding schemes. In this chapter, I will first review the general principle 

of fMRI, and subsequently discuss mechanisms and applications of fMRI adaptation.  

2.2 Principles of Magnetic Resonance Imaging (MRI)  

2.2.1 Static magnetic field and magnetization 

An MRI scanner generates a strong static magnetic field of typically 1.5 to 7 Tesla (T), 

denoted B0. This magnetic field induces a proton spin flip in atomic nuclei that have a 

magnetic moment such as the hydrogen nuclei found in water molecules in the human brain. 

Outside a magnetic field the nuclei are randomly oriented, but in a magnetic field they align 

parallel or anti-parallel to the direction of the magnetic field, also denoted z-axis (Figure 2.1, 

Figure 2.2A). The degree of alignment depends on the strength of the magnetic field. Since 

slightly more protons align parallel, this results in a net magnetization (M) along the 

longitudinal axis B0, but no magnetization along the transverse plane. Protons precess around 

the z-axis at a random phase, but a specific angular frequency, called ‘Lamor frequency’. This 

frequency is determined by the field strength B0 and by an atom-specific constant γ called 

the gyro-magnetic ratio (42.58 MHz/T for hydrogen): 



Methods for Investigating Physiological Brain Activity and Behaviour 

51 
 

 𝐿𝑎𝑟𝑚𝑜𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦: 𝑓 =  𝛾𝐵0 (2.1) 

 

Figure 2.1 Hydrogen atoms align with the static magnetic field and precess about the z-axis. 

2.2.2 Application of a radiofrequency pulse 

Electrical coils placed around the participant’s head deliver oscillating radiofrequency 

(RF) pulses, also called B1 field, which is perpendicular to the static magnetic field B0 (Figure 

2.2B). When energy is delivered at the resonance frequency as determined by the Larmor 

equation, the targeted molecules (here: hydrogen molecules) absorb energy and jump from a 

low-energy state to a high-energy state. As a consequence, the net magnetization vector M 

tips towards the transverse x-y plane (Figure 2.2A-B) and a new transversal magnetization is 

established, while the longitudinal magnetization decreases. Oscillations in the x-y plane 

generate an electromagnetic signal which can be measured by the receiver coils. Note the net 

magnetization need not be flipped by 90°, the flip angle (final angle between B0 and B1) can 

be smaller.  

When the radiofrequency pulse is removed, the atomic nuclei lose energy and 

exponentially decay back to the direction of B0. The longitudinal relaxation corresponds to 

the restoration of the net magnetization along B0, and its time course is characterized by the 

time constant T1 (Figure 2.2C). At the same time, the transverse magnetization decays 

exponentially (transverse relaxation), and the atomic nuclei dephase in the x-y plane at a time 

course characterized by the time constant T2 (Figure 2.2D). The decay in transverse 

magnetization is caused by molecular interactions between neighbouring nuclei (spin-spin 
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interactions). Through these interactions, nuclei pass energy from one to another such that 

their rotations become desynchronized. A second important component affecting T2 

relaxation are local magnetic field inhomogeneities. The parameter T2* (“apparent T2”) 

constitutes the time constant capturing both effects, and is the basis of fMRI. Crucially, T1 

and T2 depend on the proton density in a given tissue. T1 for white matter is much shorter 

than T1 for grey matter or cerebral spinal fluid (CSF), and also T2 differs between CSF and 

grey / white matter. As a consequence, the time constants can be used to generate images of 

different contrasts.  

 

Figure 2.2 The consequences of applying a radiofrequency pulse to a B0 field. A Before 
applying a pulse, the atomic nuclei precess about B0 at a frequency determine by the Larmor equation. 
B A radiofrequency (RF) pulse perpendicular to B0 tips the net magnetization vector M towards the 
transverse x-y plane. C When the radiofrequency pulse is removed, the longitudinal magnetization 
decays back to B0 (T1 relaxation). D Furthermore, the atomic nuclei dephase in the x-y plane (T2 
relaxation). 

The contrast of the image obtained with MRI is influenced by the echo time (TE), the 

repetition time (TR, Table 2.1), as well as the flip angle and the strength of the RF pulse. TE 

denotes the time between the application of a RF pulse, which causes the flip of the 

magnetization vector into the x-y plane, and the measurement of the electromagnetic signal. 

The longer the TE, the more T2 relaxation. TR corresponds to the time between two 

successive RF pulses. The longer the TR, the more magnetization is available for the next 
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excitation. Very long TRs measure the proton density of a voxel, but are suboptimal if the 

contrast between tissue types is of interest, as all tissue types ultimately recover maximal 

longitudinal magnetization. T1-weighted sequences used for anatomical imaging use short 

TEs and short TRs (TE < 30ms and TR < 1s).  Longitudinal magnetization recovers faster 

for white matter than for grey matter, such that white matter appears brighter on T1 weighted 

images (Table 2.1).  

                                     TE 

  Short Long 

  T1 

 

Not used 

 

Proton density 

(not used in this thesis) 

T2 

 

Table 2.1 Image contrast depending on repetition time (TR) and echo time (TE). 

2.2.3 Field gradient 

To locate atoms in a sample, a gradient amplifier applies an additional z field, or “field 

gradient”, that varies linearly along the x-axis. As a consequence, the atomic nuclei along the 

x-axis precess at different frequencies, because the precession frequency depends linearly on 

the magnetic field strength (see Larmor equation, (2.1). The signal picked up by the receiver 

coil is then a linear combination of individual frequencies, and spatial information about the 

obtained signal can be obtained by matching the RF pulse to the Larmor frequency of a 

particular location. The entire brain can be sampled by applying RF pulses of varying 

frequency. The measurements are acquired in the frequency domain (k-space).  
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2.3 Functional magnetic resonance imaging (fMRI) 

2.3.1 The BOLD signal 

fMRI measures neuronal activity indirectly through its relationship with regional changes 

in blood flow (Figure 2.3). Following neuronal activity, ionic gradients need to be restored 

and neurotransmitters need to be recycled. These process demand energy provided in the 

form of adenosine triphosphate (ATP). While a small amount of ATP can be produced by 

anaerobic glycolysis, under healthy conditions 90% of ATP is produced by oxidative 

phosphorylation. This process is aerobic, and requires oxygen as well as glucose. As the brain 

has no available pool of either, both are delivered via the cerebral vascular system. Since 

energy requirements are particularly high during neural activity, cerebral blood flow and 

vessel dilation increase locally under high neuronal activity. However, cerebral blood flow 

surpasses oxygen consumption such that areas with an increase in neural activity display a 

net increase in the amount of oxygen present.  

 

Figure 2.3 Determinants of the BOLD signal. Neuronal activity leads to a regional increase in the 
demand for oxygen. Complex neurovascular coupling processes then trigger a haemodynamic 
response, namely an increase in local blood flow and vessel dilatation. This changes the relationship 
between the amount of oxygenated and de-oxygenated blood present in a region, which can be 
detected by the MRI scanner and ultimately results in the fMRI BOLD response. Adapted with 
permission from Arthurs and Boniface (2002). 

Oxygen is transported via haemoglobin, an iron-containing molecule in erythrocytes (red 

blood cells). When oxygen is released, oxygenated haemoglobin becomes deoxygenated. 

Crucially, oxygenated and deoxygenated haemoglobin differ in their magnetic susceptibility. 

Whereas oxygenated haemoglobin is diamagnetic, deoxygenated haemoglobin is 

paramagnetic because it contains two unbound iron-containing haem groups (Pauling and 

Coryell, 1936). These haem groups alter the magnetic field by introducing local field 

inhomogeneities, thereby causing dephasing of spins of nearby protons. This accelerates the 

decay of the transverse magnetization and thus shortens the T2* time. As a consequence, 

oxygenated and deoxygenated produce different T2* signals, which can be contrasted. 
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The dynamics of neurovascular coupling are slow and changes in blood flow substantially 

lag behind neuronal activity. Initially, oxygen demand results in a small increase of 

deoxygenated haemoglobin, resulting in a delayed onset or even a small initial dip of the 

stimulus-induced BOLD response (Figure 2.4). Then, vasodilatation takes effect resulting in 

an oversupply of oxygen and a decrease in deoxygenated haemoglobin. This phase typically 

reaches its peak only after 6-10 sec (Logothetis, 2003). After about 20 sec, a peak in the 

BOLD response is followed by an undershoot. These slow dynamics of the hemodynamic 

response impose important constraints on the temporal resolution of fMRI. Whereas 

neuronal activity typically occurs on the millisecond timescale, the slow hemodynamic 

response function (HRF) acts as a temporal filter for neural activity. Fast neuronal activity 

can therefore not be detected in the BOLD response. It is also important to note that the 

exact dynamics of the BOLD response differ between brain regions and species.  

 

Figure 2.4 The hemodynamic response function. 

2.3.2 Neurophysiological basis of the BOLD signal 

Simultaneous recordings of the BOLD signal, neuronal spiking activity as well as LFPs in 

the macaque visual cortex have demonstrated the BOLD response correlates better with 

LFPs than with a region’s spiking activity (Logothetis et al., 2001). This is consistent with the 

observation that manipulations of neuronal firing activity do not cause changes in cerebral 

blood flow (Lauritzen and Gold, 2003; Thomsen et al., 2004). LFPs reflect the summated 

excitatory and inhibitory postsynaptic potentials, i.e. mostly incoming synaptic activity and 

the result of local cortical computations rather than outgoing spiking information, although 



Methods for Investigating Physiological Brain Activity and Behaviour 

56 
 

LFPs and spiking activity usually correlate (Logothetis, 2003; Logothetis et al., 2001). This 

should be kept in mind when comparing fMRI studies to neurophysiological recordings in 

animals which mostly measure firing activity.  

In typical fMRI experiments, the hemodynamic response increases linearly with neural 

activity (Li and Freeman, 2007; Logothetis, 2003; Rees et al., 2000). However, nonlinear 

threshold and saturation effects have also been described (Sheth et al., 2004). Such nonlinear 

effects can, for example, be observed if stimuli are spaced close together in time and are 

thought to be related to neuronal refractoriness or hemodynamic saturation effects (Friston 

et al., 1999). The practical implication is that this mandates the use of inter-trial intervals of 

a few seconds to ensure that the assumption of linearity holds. 

2.3.3 fMRI data analysis 

In my experiments, I collected functional brain data using a T2*-weighted echo-planar 

imaging (EPI) sequence, a T1-weighted whole-brain structural MRI scan and individual 

fieldmaps for each subject. To allow for scanner equilibration, the first five volumes of each 

experimental block were discarded as “dummy volumes”. Subsequently, both the fMRI and 

the structural scans were spatially preprocessed before performing statistical analyses on the 

data. This reduces the inter-subject variability in brain anatomy by spatially transforming each 

subject’s images to a standard anatomical space and therefore increases validity and sensitivity 

in group analyses (Friston et al., 1995). Furthermore, during the preprocessing procedure 

various sources of noise, which corrupt the fMRI signal, were corrected. These include 

movement-induced noise during scanning, physiological parameters (heartbeat and 

respiration) and low frequency signal drift. After applying preprocessing procedures, 

parametric statistical models can be designed to test hypotheses about the relationship 

between experimental parameters and BOLD activity.   

All procedures reported in this thesis were performed using Statistical Parametric 

Mapping software (Wellcome Trust Centre for Neuroimaging, UCL, 

http://www.fil.ion.ucl.ac.uk/spm/) implemented in Matlab R2012b (The Mathworks, USA).  

2.3.4 Slice time correction 

Since EPI volumes are collected in ascending order, the first slice in a volume can be 

collected up to 1 TR later than the last slice in a volume. To correct this, a reference slice is 

http://www.fil.ion.ucl.ac.uk/spm/
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chosen (typically a middle slice in the sequence) and a phase shift is introduced which shifts 

the Fourier transform of each voxel’s time series such that they have the values they would 

have had they been sampled at the same time as the reference slice.  

2.3.5 Bias-correction 

The 32-channel head coil can cause local field inhomogeneities which alter image 

intensities locally, an effect which can bias spatial preprocessing. To minimize these 

influences, image intensities were adjusted using the bias-correction procedure before spatial 

preprocessing. 

2.3.6  Spatial preprocessing 

The assumption that a given voxel depicts the activity of the same part of the brain at 

every time point is incorrect if a subject moves, simply because voxel coordinates might refer 

to different locations in the brain before and after the movement. Therefore, head movement 

during scanning, even in the order of millimetres, can severely distort signal intensities. The 

realignment procedure corrects for such misattributions by aligning each EPI image with the 

first (or an alternative target) image in an experimental block through a rigid-body 

transformation (Andersson et al., 2001). Three translation and three rotation parameters are 

computed for each image such that the difference between this image and the first image in 

the sequence is minimized. However, not all artefacts can be removed by this procedure. 

Therefore, the estimated movement parameters are also later included in the design matrix 

as covariates.  

The unwarp procedure corrects for scaling, shear as well as distortions and signal 

dropouts caused by susceptibility-induced field inhomogeneities. These geometric 

distortions are particularly prominent at air-tissue interface (e.g. orbitofrontal cortex and 

medial temporal lobes). As they are detrimental for functional activation maps they can 

interfere with accurate registration between an EPI image and a structural image. The 

geometric distortions were therefore directly measured using a fieldmap sequence recorded 

during the experiment and distortion correction was performed using the FieldMap toolbox 

implemented in SPM. 

To align functional and anatomical images, the EPI images are coregistered with subject-

specific anatomical scans so that task activations are overlaid on an individual’s anatomical 
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scan. SPM performs this coregistration by computing a transformation matrix that 

maximizes the mutual information between the functional and structural images.  

Functional and anatomical scans across subjects vary in size and shape, so consequently 

all images are transformed into a standard space using a normalization procedure to make 

inferences across the group. This procedure involves the warping of subject specific images 

with a 12-parameter affine transformation and a nonlinear transformation. The goal of this 

procedure is to minimise the differences between the Montreal Neurological Institute (MNI) 

reference brain and subject specific images. Normalized images can then be averaged across 

subjects, and results can be compared across studies and generalized to larger populations. 

The MNI space used here corresponds to an average of 152 MRI scans of right-handed 

healthy control subjects and is as such more representative of the general population than 

the often used Tailarach space which is based on a single subject.  

A 3-dimensional Gaussian kernel with a full-width at half-maximum (FWHM) of 8 mm 

is then applied to the functional images. This spatial smoothing procedure reduces the noise 

in the data by averaging signal from neighbouring voxels. According to the matched filter 

theorem, signal-to-noise is optimal if the filter width matches the expected signal width. 

Furthermore, spatial smoothing increases the validity of the statistical analysis by making the 

error distribution more normal, and it reduces the effects of regional anatomical differences 

between subjects. Of course, spatial smoothing also has disadvantages such as a reduced 

spatial resolution.  

2.3.7 Statistical analysis 

fMRI studies typically aim at identifying brain regions or networks which respond to an 

experimental manipulation. The aim of the statistical analysis of fMRI data is therefore to 

find voxels in the brain whose neural signal significantly correlates with the measure of 

interest and cannot be explained by random signal changes alone.  

The BOLD response is typically analysed using a linear regression model, or general linear 

model (Friston et al., 1994). Notably, in a standard univariate approach the regression is 

performed for each voxel, which are treated as independent units. The observed BOLD time 

series (Y) is modelled as a linear combination of known explanatory variables or regressors 

specifying the onset of a condition, which are combined in a design matrix (X), and a 

normally distributed error (ε). The amplitudes of the predictors β are then estimated such 

that the fit of the model’s prediction to the data is maximized. 
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 𝑌 = βX +  ε (2.3) 

The design matrix contains all experimental manipulations as well as effects of no-interest 

such as movement parameters, pulse and breathing, which are thought to contribute to the 

BOLD signal by causing noise. Furthermore, parametric modulators can be included if the 

amplitude of the neuronal response is thought to vary parametrically with trial-by-trial 

stimulus variations. 

The signal at time 𝑡 is then modelled as the convolution of the experimental stimulus 

function (i.e. the onset regressors, modelled as a boxcar for block designs and modelled as 

delta functions for event-related designs) and the hemodynamic response h(t) (Figure 2.5): 

 x(t)  =  (v ∗ h)(t) (2.4) 

It is worth noting that the HRF might differ for different voxels as it depends on region-

specific differences in vasculature and neural activity. To take such variability into account, 

temporal and dispersion derivatives can be added to the canonical basis function. In this 

thesis, convolution was performed with the canonical HRF alone. 

2.3.8 Model estimation and statistical inference 

The model estimation step aims at finding parameters β which provide the best fit to the 

data Y by minimizing the residual error. If ε is independent and identically distributed (i.i.d.), 

then β can be estimated using Ordinary Least Squares according to Eq. 2.5: 

 Y = Xβ + ε ↔ β = (XTX)-1XTY (2.5) 

Importantly, time-series data are in fact not independent. They are temporally correlated 

due to the shape of the HRF as well as due to the low-frequency noise contained within the 

fMRI signal (e.g. scanner drift). SPM adjusts for the resulting autocorrelations by adjusting 

the degrees of freedom.  
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Figure 2.5 Convolution of condition regressors (top) with the HRF (middle) to predict neural 
activity (bottom). Onsets are modelled as boxcars for block designs, and as delta functions for 
event-related designs. 

The result of the model estimation is a number of beta images, which reflect the estimated 

parameters for each of the regressors in the design matrix. F and t test procedures can be 

used to test each voxel for significant activation in response to a stimulus. To test the null 

hypothesis that a linear combination of parameters is significant, a contrast vector is defined 

as follows: 
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 𝑐𝑇𝛽 =  𝑐1𝛽1  +  𝑐2𝛽2  +  … +  𝑐𝑛𝛽𝑛 (2.6) 

with 𝛽1, 𝛽2, … 𝛽𝑛 corresponding to the parameter estimates of interest. This test is 

performed using a T statistic, which is calculated according to the following formula: 

 
𝑇 =

𝑐𝑇β

√𝑉𝑎𝑟(𝑐𝑇β)
 

(2.7) 

To simultaneously test whether any of a number of regressors explains any variance in 

the data, an F test is performed. An example scenario would include an F test across the 

movement parameters to test for areas correlating with subject movement (in any direction).  

Both procedures create a statistical map indicating the T and F statistics for each voxel, 

respectively. To determine statistical significance, a threshold that carefully balances 

sensitivity and specificity needs to be chosen carefully. Furthermore, any result needs to be 

corrected for multiple comparisons. This correction accounts for the many false positives 

that are to be expected due to the very large number of tests that are performed across all 

voxels in the brain.  

2.3.9 Group inferences 

A second level random-effects analysis at the population level then allows for making 

inferences at the population level. Here, a one-sided t-test is performed to test whether a 

contrast is significant across subjects.  

2.4 Tools for indexing neural computations at the meso-scale 

Compared to other non-invasive recording techniques used to measure neural activity in 

the human brain, such as electroencephalography (EEG) or magnetoencephalography 

(MEG), fMRI allows for human brain activity to be measured at a high spatial resolution. 

This feature allows activity within the brain to be localized and enables the identification of 

brain regions with a specialized psychological function, such as areas specialized for face-, 

body- and place-related processing (Downing et al., 2001; Epstein and Kanwisher, 1998; 

Kanwisher et al., 1997), or emotion processing (Morris et al., 1996). More recently, model-

based fMRI studies have identified brain regions performing particular computations, such 
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as reward prediction error (O’Doherty et al., 2003b) and value computations (Boorman et 

al., 2009; FitzGerald et al., 2009; Hayden et al., 2011). While these studies have been seminal 

for understanding functional specialization within the brain, neural processing in general 

cannot be fully characterized by a region’s average activation profile. A voxel contains more 

than 105 neurons, making it difficult to infer the computations performed by neuronal 

subpopulations from the average activation profile of a voxel. This is further complicated by 

a fundamental principle of neural information processing, namely the fact that information 

is typically encoded across a population of neurons in a distributed fashion (Averbeck et al., 

2006; Haxby et al., 2001; Pouget et al., 2000). If we really want to understand how the brain 

encodes information relevant for behaviour, we need to understand how representations at 

the level of neural populations are transformed by relevant computations. 

The spatio-temporal characteristics of a neural representation can be well characterized 

using large-scale electrophysiological recordings, which simultaneously provide high 

temporal and spatial resolution. Such recordings have yielded important insight into cortical 

information processing, and have contributed to our understanding of the population 

dynamics underlying motor responses (Churchland et al., 2012), choice (Mante et al., 2013) 

or memory consolidation (Hoffman and McNaughton, 2002). However, except under 

unusual circumstances such as pre-operative recordings in epilepsy patients (Ekstrom et al., 

2003; Fell et al., 2001), direct recordings of neural activity are not feasible in the human brain 

due to their invasive nature. Yet, it is particularly important to get access to neural 

representations in the human brains. It is unclear whether the neural mechanisms underlying 

complex behaviours are preserved across species, and how the extensive training that is 

necessary for animals to perform complex tasks influences these mechanisms. Some higher 

cognitive functions, such as social behaviour, are likely not to be present to the same degree 

in species where single-cell activity is readily available. Furthermore, the contribution of brain 

areas that are unique to humans cannot be studied in primates and other mammals. In recent 

years, various attempts have therefore been made to refine the coarse signal available in fMRI 

and investigate neural responses at the meso-scale, i.e. at the level of neural populations. The 

most widely used techniques include fMRI adaptation or repetition suppression paradigms 

(Grill-Spector et al., 1999) and multi-variate pattern analysis (Haynes and Rees, 2006). fMRI 

adaptation relies on the suppression of neuronal responses observed upon repeated 

activation, a phenomenon which can be reliably observed across species, brain regions and 

conditions (Auksztulewicz and Friston, 2016; Grill-Spector et al., 2006; Krekelberg et al., 

2006; Larsson et al., 2015; Malach, 2012). fMRI multivariate pattern analysis (MVPA) takes 
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advantage of small biases in the distribution of neurons across neighbouring voxels, thereby 

providing a multivariate estimate of distributed activity (Haxby, 2012; Kriegeskorte et al., 

2008; Norman et al., 2006; Quian Quiroga and Panzeri, 2009). In this thesis, fMRI adaptation 

paradigms have been used to investigate the neural plasticity associated with learning and 

consolidating new information. 

2.4.1 Repetition suppression as a tool for measuring the similarity of neural 
representations 

If the same stimulus is repeatedly presented in an experimental setting, then activity in 

neurons encoding any feature of the stimulus is suppressed, a phenomenon termed 

‘repetition suppression’. Repetition suppression was first reported using electrophysiological 

recordings in primate inferotemporal (IT) cortex, where a suppression effect was observed 

in response to the repeated presentation of a light stimulus (Gross et al., 1967, 1969). Since 

its discovery, such a reduction in response with repetition has been observed across a wide 

range of brain areas and time scales (Albrecht et al., 1984; Baylis and Rolls, 1987; Blakemore 

and Campbell, 1969; Cohen-Kashi Malina et al., 2013; Miller et al., 1991, 1996; Riches et al., 

1991) and even if other stimuli are interleaved (Li et al., 1993a). Repetition suppression is 

also present if the stimulus is task-irrelevant (Miller and Desimone, 1994), suggesting a 

functional role as an automatic short-term memory mechanism.  

More recently, repetition suppression has been used to infer representational overlap 

between separate stimulus representations. In single-unit recordings in macaque area IT, a 

neuron that responds to both stimuli A and B shows a suppressed response not only if A is 

preceded by A, but also if A is preceded by B (Sawamura et al., 2006). This ‘cross-stimulus 

suppression’ effect is best explained by the similarity between the adaptor and test stimuli 

and by the strength of response to the adaptor stimulus (Baene and Vogels, 2010; Liu et al., 

2009) rather than the neuron’s response to each stimulus per se (Piazza et al., 2007). This 

suggests that cross-stimulus adaptation scales with the amount of shared input between the 

two stimuli (Sawamura et al., 2006). Cross-stimulus suppression can therefore be utilized for 

probing a neuron´s selectivity and the representational overlap for different stimuli even, 

thereby providing access to both the nature and the relationship between different neural 

representations.  

A similar reduction of stimulus-specific activity with repetition is widely observed in the 

human brain. Again, the phenomenon has been particularly well document in visual areas, 
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where a repetition of the same visual object (Buckner et al., 1998) or face (Henson et al., 

2000) leads to reductions in BOLD signal in lateral occipital and inferior temporal visual 

regions (Grill-Spector et al., 1999, 2006; Vuilleumier et al., 2002). Cross-stimulus suppression 

can also be observed in fMRI, even in a situation where the average response to different 

stimuli does not differ (Figure 2.6A). Neurons that contribute to the representations of both 

stimuli X and Z should show suppression to presentation of stimulus X preceded by Z 

(Figure 2.7B), resulting in a reduced BOLD signal relative to a situation where X is preceded 

by a stimulus Y which activates a non-overlapping neural representation (Figure 2.8B). This 

technique has proved useful in identifying different stages of object representation 

(Vuilleumier et al., 2002) or differentiating reward identity encoding from stimulus-reward 

association in medial OFC (Klein-Flügge et al., 2013b). Furthermore, cross-stimulus 

suppression can be used for indexing associative memories (Barron et al., 2016a), because 

they are formed by an increase in synaptic strength between the relevant cell assemblies, 

resulting in an increased overlap of the respective neural representations (Nabavi et al., 2014). 

Recently, it has even been used to track ongoing plasticity by measuring changes in 

association between a stimulus and reward representation over time (Boorman et al., 2016).  

Furthermore, repetition suppression has been used to measure computations previously 

observed in animal models. One particularly striking example is the investigation of grid cells 

in the human brain. Grid cells are characterized by their hexagonally arranged firing fields 

which allow spatial knowledge to be organised into a map (Hafting et al., 2005). Remarkably, 

the phases of grid cells are aligned, which can be exploited using fMRI repetition suppression 

in the human brain. When subjects navigate through a virtual environment, the entorhinal 

cortex, mPFC, parietal cortex and temporal cortex show suppression as a function of running 

direction, modulated by running speed (Doeller et al., 2010). Crucially, this adaptation effect 

is selective to a running direction of 60o, consistent with six-fold rotational symmetry of the 

raw BOLD signal in the same brain regions and the predicted population response of grid 

cells. Together these studies illustrate how fMRI repetition suppression can be used to 

investigate the complex computations that underlie cognitive processes in the human brain.  
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Figure 2.6 Illustration of the principle underlying fMRI adaptation. The raw BOLD signal 
measured in conventional fMRI paradigms is invariant to the relationship between neural 
representations and instead provides only a measure of the mean activity of a population of neurons 
within a given voxel. In this example, the raw BOLD signal in response to stimuli X, Y and Z appears 
to be the same, because all representations recruit the same number of neurons. From the BOLD 
signal alone it is therefore not clear how the representations of stimuli X, Y and Z relate to one 
another. B In fMRI adaptation paradigms, the relationship between different stimulus representations 
X, Y and Z can be indirectly measured. If stimulus X is preceded by stimulus X (X-X), then the fMRI 
signal in areas encoding features particular to stimulus X are suppressed. If stimulus X is preceded 
by stimulus Y (Y-X), the response to X should not show any suppression, as the representations for 
X and Y are not overlapping. If X is preceded by Z (Z-X), the response in areas encoding the features 
that are shared between X and Z should show some suppression due to the overlapping 
representations of X and Z. Reproduced with permission from Barron et al. (2016b). 

2.4.2 Biophysical mechanism underlying repetition suppression 

Various attempts have been made at explaining the mechanisms underlying repetition 

suppression effects (Grill-Spector et al., 2006; Kohn, 2007). The ‘fatigue model’ assumes that 

repetition suppression is a consequence of low-level adaptation mechanisms resulting in a 

reduction of a neuron’s response. Here, the assumption is that the response amplitude, but 

not the response pattern, changes with repetition. Fatigue could in theory be due to reduced 

action potential firing caused by tonic hyperpolarization (Carandini and Ferster, 1997; 
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Sanchez-Vives and McCormick, 2000), or a synaptic depression mechanism which results in 

a reduced efficacy of synaptic inputs (Abbott et al., 1997; Carandini and Ferster, 1997). 

Recordings in macaque IT cortex suggest the latter is a more likely mechanism, because 

neurons responding equally to two stimuli A and B showed more suppression if A was 

preceded by A than if A was preceded by (Sawamura et al., 2006). This demonstrates that 

repetition suppression, like LFP recordings and the BOLD signal, are likely to reflect shared 

local computations and integrated synaptic computations rather than action potential firing. 

An alternative account of repetition suppression is the ‘sharpening model’, which assumes 

that information might be encoded more sparsely or efficiently with repetition, by recruiting 

fewer neurons and thereby sharpening a representation (Wiggs and Martin, 1998). 

Sharpening could be achieved by increased inhibitory input from lateral connections 

(Norman and O’Reilly, 2003), whereby neurons that are less selective cease to respond to a 

stimulus (Desimone, 1996). Under this model, repetition suppression not only alters the 

amplitude, but also the pattern of neuronal responses. While such effects are indeed observed 

in response to familiar stimuli and might therefore reflect learning, they fail to account for 

suppression in response to repeated novel stimuli. In contrast to the ‘fatigue model’, which 

predicts that neurons that respond most strongly to a stimulus show the largest amount of 

suppression, the ‘sharpening model’ predicts that the neurons most optimally tuned to a 

particular stimulus feature are the least affected by stimulus repetitions, which is inconsistent 

with the observations in single unit recordings (Li et al., 1993b; McMahon and Olson, 2007)..  

The ‘facilitation model’ assumes that processing speed increases with repetition, due to 

shorter response latencies or firing durations (Grill-Spector et al., 2006). This model thus 

accounts for behavioural priming effects, whereby behavioural performance such as reaction 

time and accuracy improves in response to repeated stimulus exposure (Ferrand and 

Grainger, 1992; Schacter and Buckner, 1998; Tulving and Schacter, 1990). However, 

although repetition suppression and behavioural priming can be observed under similar 

conditions, the effects do not necessarily correlate (McMahon and Olson, 2007), suggesting 

that repetition suppression does not causally underlie behavioural priming.  

Mechanistically, a ‘facilitation’ effect could occur due to synaptic potentiation or top-

down modulations of activity. The ‘facilitation model’ is therefore also consistent with a 

predictive coding account of brain function. According to predictive coding, repetition 

suppression may be caused by top-down modulations from higher cognitive areas (Friston, 

2005; Summerfield et al., 2008). The brain constantly tries to predict upcoming sensory 
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information. If a sensory input corresponds to the expected signal, top-down signals 

suppress a neuron’s response. If, however, an expectation is violated or a novel stimulus is 

presented, the incoming sensory information is inconsistent with the predicted signal, and a 

prediction error signal is elicited. This account of repetition suppression makes the prediction 

that repetition suppression should be modulated by expectancy. This hypothesis could 

indeed be confirmed in an fMRI study where stimulus repetitions and expectation were 

modulated independently (Summerfield et al., 2008). Here, repetition suppression was 

stronger in response to stimuli that occurred with a higher frequency (75%) and were 

therefore less surprising than less frequent stimuli (25%). However, auditory evoked 

potentials measured using magnetoencephalography (MEG) in a situation where repetition 

and expectation were manipulated independently show that the two effects can be separated 

in time, with an early repetition suppression effect, and a later expectation suppression effect 

(Todorovic and Lange, 2012). This suggest that repetition suppression and expectation 

suppression need to be understood as two distinct processes, which may reflect prediction 

errors at different levels of the hierarchy (Todorovic and Lange, 2012).  

2.4.3 Comparison of repetition suppression and multivariate pattern analysis 
methods 

An alternative approach for measuring representations are multi-variate pattern analysis 

(MVPA) methods. These methods again rely on the assumption that information is 

represented in the brain in a distributed fashion. However, while repetition suppression 

probes the representational similarity within voxels, in MVPA a representation is typically 

defined as the activity pattern across multiple voxels. Typically, a classifier such as a support 

vector machine is trained to discriminate between different multi-voxel patterns for different 

experimental conditions in a subset of the data, and the results are subsequently tested in an 

independent test data set. MVPA analyses can be performed within a particular region of 

interest (ROI), or across the whole brain in a searchlight analysis. 

MVPA therefore relies on a fine-grained spatial structure across voxels within a brain 

region. Such a fine-grained spatial structure is particularly prominent in the visual cortex 

where neurons with a similar orientation selectivity are clustered in columns of several 

hundred micrometer width (Bartfeld and Grinvald, 1992; Obermayer and Blasdel, 1993). 

Even though the size of a voxel is much larger, visual features can still be successfully 

classified because orientation-selective columns are non-uniformly distributed (Figure 2.7). 

Similarly, neurons in IT cortex are organized in columns which share sensitivity to high level 
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features (Wang et al., 1996). As a consequence, MVPA has allowed for successfully decoding 

visual features from BOLD activity, such as the orientation (Haynes & Rees 2005a; Kamitani 

& Tong 2005), the perceived colour of a stimulus (Haynes & Rees 2005b) or object categories 

(Haxby et al., 2001).  

  

Figure 2.7 Orientation-selective cortical columns in the primary visual cortex. Neurons 
sensitive to a particular edge orientation are clustered in cortical columns of approximately 500 μm 
width (left). With a typical voxel size of 3mm, fMRI cannot resolve different cortical columns per se. 
However, computer simulations predict that the distribution of different object orientation 
sensitivities is not perfectly uniform across V1 (right), such that most voxels have a slightly higher 
number of columns sensitive to a particular orientation than expected by chance. Any presented bar 
should therefore cause slightly varying activity across voxels, which a sensitive machine learning 
algorithm can pick up. Reproduced with permission from Haynes and Rees (2006). 

Other parts of the brain, however, do not display an architecture where neurons selective 

to a particular stimulus feature cluster within a particular cortical column. For example, 

response profiles of neurons in mPFC are very heterogeneous. Individual neurons display a 

nonlinear mixed selectivity to various features of a task (Rigotti et al., 2013), their tuning 

function can change throughout a task, and across the population the neural dynamics are 

very high-dimensional. Furthermore, mPFC receives inputs from a much wider array of 

cortical areas, as reflected cytoarchitectonically by long-ranging dendritic fields in mPFC 

(Jacobs, 2001). As a consequence, information encoded within mPFC is much more varied 

and less likely to display fine grained spatial structure than sensory areas. Nevertheless, 

MVPA has been successfully applied to classify information in mPFC and other prefrontal 

brain areas (Howard et al., 2015; Kahnt et al., 2010).  

Representational similarity analysis (RSA) is a variant of MVPA. Like MVPA, RSA 

assumes that representations in the brain needs to be understood in terms of the multi-voxel 

activity patterns rather than bulk effects within a particular brain region. However, rather 



Methods for Investigating Physiological Brain Activity and Behaviour 

69 
 

than trying to decode information about stimuli from brain states, RSA focusses on the 

neural representation of stimuli and specifically characterizes the relationship between 

different stimulus representations, or the representational geometry within a brain region for 

each individual (Kriegeskorte and Kievit, 2013). Many computationally trivial 

transformations such as rotations could fundamentally alter the bulk activity within a voxel, 

without influencing the representational geometry across voxels. Furthermore, in individual 

subjects the relationship between stimulus representations can be highly invariant, even if 

the activity patterns for each stimulus varies greatly Understanding a neural code within a 

brain region therefore requires an understanding of the relationship between stimulus 

representations in a high dimensional response pattern space (Kriegeskorte et al., 2008). RSA 

measures such a dissimilarity between stimulus representations and compares the resulting 

representational dissimilarity matrix to dissimilarity matrices derived from stimulus 

descriptions, behaviour or computational models. This approach has proven successful in 

characterizing low level visual processing (Hiramatsu et al., 2011), sensory and motor 

representations (Wiestler et al., 2011) and even memory (Xue et al., 2010). 

In conclusion, repetition suppression, MVPA and RSA measure different aspects of the 

BOLD signal, and consequently differ in the sensitivity to particular features of the neural 

code (Drucker and Aguirre, 2009). Due to the architecture of sensory cortices, MVPA can 

be more sensitive than repetition suppression in sensory areas such as the visual cortex 

(Sapountzis et al., 2010). However, it is also important to note that repetition suppression 

and MVPA measures typically correlate (Sapountzis et al., 2010).  

2.5 Hopfield networks as models of associative memory 

In 1982, John Hopfield proposed a very simple neural network that is able to retrieve an 

entire stored pattern from partial information (Hopfield, 1982). This idea is reminiscant of 

Hebb’s postulate that the entirety of a representation can be retrieved by activating a 

subpopulation of the cell assembly. The Hopfield network has therefore been hugely 

successful as a simple model of associative memory.  

Hopfield networks can be described as complete, un-directed graphs with symmetric 

weights (Figure 2.8), where each node corresponds to a simple model of a neuron. The details 

of action potential timings of each model neuron are suppressed. Instead, activity 𝑥𝑖  of each 

neuron in the network can be conceptualized as an instantaneous firing rate generating action 
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potentials stochastically. 𝑥𝑖  is iteratively updated by computing the weighted sum of the 

inputs it receives from all the other neurons in the network, bounded by +1/-1: 

 

𝑥𝑖 =  tanh (∑ 𝑤𝑖,𝑗𝑥𝑗

𝑗

) (2.8) 

 

 

 

Figure 2.8 Schematic of a complete, undirected Hopfield network. 𝑤𝑖,𝑗 denotes the connection 

strength between neurons 𝑥𝑖 and 𝑥𝑗 

Memories are stored as n-dimensional patterns of activity µ across all of the n neurons 

𝑥1, 𝑥2, … , 𝑥𝑛 and can be described as an n-dimensional location in state space. To store these 

memories, the network’s connection weights need to be set according to a learning algorithm. 

The most common learning rule is a biologically plausible, auto-associative Hebbian learning 

rule, where the weight between two neurons 𝑤𝑖,𝑗 is given by the product of the pre- and 

post-synaptic activity 𝑥𝑖 and 𝑥𝑗 :  

                            wi,j =  
1

N
∑ (xi

µ
xj

µ
)µ , with wi,i = 0 (2.9) 

Applying this algorithm results in the memory patterns being stored in the weight matrix. 

Crucially, the stored memory patterns can then be considered stable attractor points in a state 

space of this neural system. Initializing the system with a cue which resembles one of the 

stored memory patterns µ then corresponds to a situation where the network starts relatively 

nearer to the corresponding pattern in state space. For example, all neurons in the network 

can be initialized with a noisy version of memory pattern µ: 
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 xi = tanh (xi
µ

+ N(0,1)). (2.10) 

Conceptually, this initialization can be thought of as an activation of a small subpopulation 

of neurons forming a representation, in line with the Hebbian idea of a cell assembly outlined 

above (Hebb, 1949). The activity of each neuron is then iteratively updated according to the 

weight matrix. Here, the input to each neuron 𝑥𝑖 is computed as the sum of the activity of 

all other neurons 𝑥𝑗  multiplied by the synaptic weight 𝑤𝑖,𝑗 between neurons 𝑥𝑖 and 𝑥𝑗 , and 

bound between -1 and 1. This term was weighed with a factor 𝑑𝑡 and added to the current 

state of the neuron 𝑥𝑖 , weighed by 1 − 𝑑𝑡:  

 

𝑥𝑖 = (1 − 𝑑𝑡)𝑥𝑖 + 𝑑𝑡 ∗ tanh (∑ 𝑤𝑖,𝑗𝑥𝑗

𝑗

) (2.11) 

The activity levels of all neurons can be updated simultaneously (synchronous updating), 

or one unit is updated at a time (asynchronous updating). The network’s state, which can be 

described as a state vector whose elements corresponds to the activity of each neuron in the 

network, then evolves in time in a way that reduces the value of a so called ‘energy function’. 

The energy of a given neuron 𝑥𝑖  in the Hopfield network is defined as:  

 

Ei = −
1

2
(∑ wi,jxj

j

) xi (2.12) 

Importantly, any change in activity of neuron 𝑥𝑖 will lead to a decrease in energy (Figure 

2.9). If (∑ 𝑤𝑖,𝑗𝑥𝑗𝑗 ) is negative, then the change from 𝑥𝑖 at time step t to 𝑥𝑖 at time step t+1 

must be zero or negative (Eq. 2.13), such that ∑ 𝑤𝑖,𝑗𝑥𝑗𝑗 (𝑥𝑖
𝑡+1 − 𝑥𝑖

𝑡) ≥ 0, and 𝛥𝐸 ≤ 0. If, 

however, (∑ 𝑤𝑖,𝑗𝑥𝑗𝑗 ) is positive, then 𝑥𝑖 will become more positive, such that, again, 

∑ 𝑤𝑖,𝑗𝑥𝑗𝑗 (𝑥𝑖
𝑡+1 − 𝑥𝑖

𝑡) ≥ 0 and 𝛥𝐸 ≤ 0. In summary, 𝛥𝐸𝑖 is always zero or negative, such 

that the network must converge towards a local minimum. This local minimum corresponds 

to a stable attractor state, which is most similar to the cue.  

 

ΔEi = [−
1

2
∑ wi,jxj

j

xi
t+1] − [−

1

2
∑ wi,jxj

j

xi
t]

= −
1

2
∑ wi,jxj

j

(xi
t+1 − xi

t) 

(2.14) 
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Figure 2.9 Illustration of a one-dimensional energy surface. 
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* This chapter is published in the following article: 

Garvert MM, Moutoussis M, Kurth-Nelson Z, Behrens TEJ & Dolan RJ (2015). 

Learning-induced plasticity in medial prefrontal cortex predicts preference 

malleability. Neuron 85: 418-428 
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3.1 Abstract 

Subjective preferences in decision-making situations vary widely across humans, and are 

often susceptible to social influence. Here, we used a Bayesian model of choice behaviour to 

investigate the mechanisms underlying social influence in intertemporal choice, where 

subjective preferences can be precisely quantified using a subject-specific discount rate 

parameter. We show that a subject’s discount rate shifts towards the discount rate of a partner 

when the other’s preferences are learned, irrespective of whether the other is human or a 

computer. Preference shifts do not arise if choices for the other can be based on a simple 

category-learning task, suggesting that simple stimulus- or action-reinforcement cannot 

account for a shift in subjective preference. Instead, preference shifts are a consequence of 

preference simulation, whereby the same discounting mechanism is employed when 

choosing for self and other. These findings provide evidence that intertemporal preferences, 

far from being a fixed trait, are modified in a manner that reveals a subtle but powerful 

influence of social learning mechanisms. 

3.2 Introduction 

Our perception, values and even memories are highly susceptible to the opinions, 

judgements and behaviour of others (Berns et al., 2010; Campbell-Meiklejohn et al., 2010; 

Edelson et al., 2011; Klucharev et al., 2009; Shestakova et al., 2013; Zaki et al., 2011). 

However, the mechanisms driving a change in our attitudes and behaviour as a consequence 

of social influence are not well understood (Cialdini and Goldstein, 2004). Psychological 

explanations provided for this phenomenon include a pursuit of acceptance of a social group 

(Deutsch and Gerard, 1955) or a pursuit of accuracy in situations where the other has 

additional information (Jetten et al., 2006). Here, we propose that in some instances social 

influence on subjective preference can be explained mechanistically as the consequence of a 

learning-induced plasticity in overlapping neural representations. In medial prefrontal cortex 

(mPFC), for example, the same neural circuitry performs value computations on behalf of 

oneself and on behalf of another person (Nicolle et al., 2012), and the same neural population 

performs self-referential as well as social value computations (Jenkins et al., 2008). In light 

of this, multiple value computations might be updated simultaneously if a learning-induced 

plasticity is introduced into this circuitry, resulting in a shift in preference. Here, we 
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investigate whether learning the preferences of another impacts on subjects’ own preferences 

in a situation where subjective preferences can be precisely quantified, and where they vary 

substantially across individuals.  

It has been well established for centuries that changes in the objectively measurable 

features of the environment do not translate linearly to changes in subjective perception. For 

example, a ‘just noticeable difference’ in weight between two objects is proportional to the 

absolute weight of the objects (Weber, 1834), and the relationship between subjective 

perception and objective features of the environment is logarithmic across many domains 

(Fechner, 1860). Similarly, in economic decision making the subjective value of a good does 

not necessarily relate linearly to objective features such as its amount (Park et al., 2011). A 

nonlinear mapping of subjective preferences onto objective values is also evident in 

situations where a reward can only be attained after a certain delay. In a standard 

intertemporal choice task, participants choose between a smaller, immediately available, 

reward and a larger, temporally delayed, reward. Empirically, participants value rewards less 

the longer they have to wait to obtain them. The steepness of this decrease in the subjective 

value of delayed options can be described by a hyperbolic function with a subject-specific 

discount rate parameter (Myerson and Green, 1995). This parameter varies widely across 

people, but is considered stable over time in an individual in the absence of an experimental 

manipulation (Kirby, 2009; Ohmura et al., 2006). Furthermore, discount rates are related to 

self-control abilities, and elevated in drug addiction (Kreek et al., 2005), problem gambling 

(Alessi and Petry, 2003), attention deficit/hyperactivity disorder (Winstanley et al., 2006) and 

other impulsivity disorders (Madden et al., 1997).  

In this chapter, we investigate whether a Bayesian learning algorithm can be used to infer 

subjects’ own discount rate preferences and their beliefs about the preferences of a (human 

or computer) partner from the choices subjects make in a delegated intertemporal choice 

paradigm. Critically, subjects own preferences are assessed before and after choosing on 

behalf of the partner to assess whether learning about another’s preferences modulates 

subjects’ own preferences. Performance in this ‘mentalizing’ condition is compared to a 

category-learning control experiment, where a decision for the other is based on a geometric 

depiction of the given options on the screen. This control experiment consisted of the same 

stimuli and actions, but the necessity to simulate another’s preferences was removed.  
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3.3 Methods 

3.3.1 Particpants 

27 volunteers (mean age ± std: 23.6 ± 3.7, 14 females) participated in the main behavioural 

experiment (human partner group) and 54 volunteers (mean age ± std: 23.0 ± 7.9, 31 

females) participated in the two control experiments. 27 were randomly assigned to a 

computer and a visual choice task condition, respectively. There were no significant 

differences in age (F2,78 = 0.71, P = 0.49) or gender (F2,78 = 1.04, P = 0.36) between the 

human partner, the computer partner, and the visual display group.  

16 volunteers (mean age ± std: 22.4 ± 2.9, 10 females) participated in the second 2-partner 

behavioural experiment. All subjects were neurologically and psychiatrically healthy. The 

study took place at the Wellcome Trust Centre for Neuroimaging in London, UK. The 

experimental procedure was approved by the University College London Hospitals Ethics 

Committee and written informed consent was obtained from all subjects. 

3.3.2 Human partner task 

Pairs of gender-matched participants were introduced to each other as partners before 

the experiment and instructed simultaneously, but performed the task in separate rooms. 

Both subjects made a series of choices between a smaller amount paid on the same day and 

a larger amount paid later (Figure 3.1). The amounts varied between £1 and £20 and the 

delay was tomorrow, 1 week, 2 weeks, 4 weeks, 6 weeks, 2 months, or 3 months. The two 

options were presented simultaneously and the location of the immediate and delayed option 

on the screen was randomized. Subjects chose by pressing a button corresponding to the 

location of their preferred option on the screen without any time constraint.  

In block 2, subjects were told that they are exposed to their partner’s options from block 

1 and were tasked to reproduce the partner´s decisions. Choices were correct if they 

corresponded to the decision that would be preferred by a hyperbolic discounter with the 

discount rate used to generate the decisions (see below for details). Block 2 ended once 

subjects made 85% correct responses for their partner in a sliding window of 20 trials or 

after a maximum of 60 trials. In block 3, smaller blocks of ten trials of choosing for self, 

alternated with blocks of ten trials of choosing for the partner. Block 3 ended after a total of 

200 trials.  
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Figure 3.1 Experimental design. A On each trial, subjects chose between an immediately available, 
smaller and a delayed, larger reward. On “self” trials, subjects considered the choice for themselves. 
On “other” trials, they made the choice on behalf of a partner, and feedback indicated whether their 
choice corresponded to the partner’s (simulated) choice. B Block 1 consisted of self choice trials 
alone, block 2 consisted of other choice trials alone and block 3 consisted of alternating short blocks 
of 10 choice trials per agent (self or other). 

One of the outcomes chosen by the subject for themselves was randomly selected at the 

end of the experiment and transferred to their bank account after the respective delay. After 

finishing the experiment, subjects completed a debriefing questionnaire designed to assess 

the credibility of the experimental design. The questionnaire consisted of two questions:  

 Did we communicate clearly that you would be confronted with the choices and 

evaluations your partners had been exposed to before, and the feedback you 

received was based on the decisions your partners had made? 

 Was it clear to you that your payment depends only on the decisions you made 

for yourself, and that the same applied to your partners’ payment 

All subjects believed in our experimental manipulation (Figure 3.2). Subjects were also 

instructed that the choices they made for the other were not communicated to the partner 

and did not have any consequences for either subject. 

3.3.3 Estimation of discount rates using Bayesian modelling 

I characterized subjective preferences in the different blocks by estimating subject-specific 

discount rates k, which quantify the devaluation of future rewards according to a hyperbolic 

discounting model (Rachlin et al., 1991): 
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V =  

M

1 + kD
 

(3.1) 

Here, V is the subjective value of an option, M is the magnitude, and D is the delay.  When 

k = 0, subjects do not discount future rewards and base their valuation of an option purely 

on its magnitude, without regard for delay. As k grows, subjects discount future rewards 

more and more steeply. Since the delay of the smaller option was always 0 (today), the 

subjective value of the smaller option (VSS) always corresponded to its magnitude. Choice 

can then be modelled using a softmax function, whereby the difference in value between the 

smaller/sooner option and the larger/later option is translated into a choice probability 

according to the following equation: 

 
P(y|k, β) =  

1

1 + e−β(VLL−VSS)
 

(3.2) 

Here, β is a subject-specific inverse temperature parameter that characterizes non-

systematic deviations around the indifference point.  

 

Figure 3.2 Results of debriefing questionnaire. Illustrated is the percentage of subjects answering 
1 (yes, fully) to 5 (no, not at all) in response to the following questions: A “Did we communicate 
clearly that you would be confronted with the choices and evaluations your partners had been 
exposed to before, and the feedback you received was based on the decisions your partners had 
made?” and B “Was it clear to you that your payment depends only on the decisions you made for 
yourself, and that the same applied to your partners’ payment?”  

I estimated subject-specific discount rates k as well as individual temperature parameters 

β from subjects’ choices in the different blocks using Bayes rule. According to a Bayesian 

inference framework, a prior belief distribution about the state of the world P(k, β) (in this 
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case: a belief about a subject’s discount rate k and inverse temperature parameter β) is 

updated every time new data is encountered, i.e. when subjects make a new decision. The 

prior probability P(k, β) over discount rates k and temperature parameters β was initially 

uniform within a range of log k = [−4; 0] and log β = [−1; 1].  

 

Figure 3.3 Schematic visualization of discount rate estimation. Based on a subject’s decision 
(here: £15 in 2 months) the likelihood for each possible discount rate k is computed. The likelihood 
is then multiplied with the prior to yield the posterior. The posterior is used as the prior on the next 

trial. Note the second parameter 𝛃 is neglected in this schematic for simplicity. 

The likelihood that a given choice (smaller/sooner or larger/later) would be made given 

all possible combinations of k and β was computed according to Eq. (3.2). A posterior 

distribution P(k, β|y) can then be inferred by updating the prior distribution P(k, β) with 

the observed data y according to Bayes’ rule (Figure 3.3):  

 
P(k, β|y) =  

P(y|k, β) ∗ P(k, β)

P(y)
 

(3.3) 

A trial-by-trial discount rate estimate could then be computed as the weighted sum of the 

posterior distribution over all discount rates k according to the following equation: 
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kt =  

∑(k ∗ posterior)

∑ posterior
 

(3.4) 

The posterior distribution on trial t was then used as the prior distribution on trial t+1, 

providing us with trial-by-trial estimate of subjects’ discount rates and temperature 

parameters.  

3.3.4 Simulation of the other’s choices 

To generate feedback for the confederate’s choices, we simulated a partner with a 

discount rate that differed from the subject’s own baseline discount rate by 1, i.e. 

log kother = log kself,block1 ± 1. Choices were correct if they corresponded to the decision 

that would be preferred by a hyperbolic discounter with this discount rate. Importantly, the 

simulated partner’s choices were probabilistic, as the other’s subjective value Eq. (3.1) was 

translated to a choice probability with a softmax function (temperature parameter β = 1) 

according to Eq. (3.2). 

3.3.5 Behavioural modelling of a subject’s belief about the other’s preferences 

We applied a similar Bayesian model to track a subject’s beliefs about their partner’s 

preferences over trials. We assumed that participants had a prior belief about the partners’ 

discount rate, which can be characterized by a log-normal distribution log 𝑁 (𝑘0, σ0
2) and 

will be updated whenever subjects’ received feedback about the actual choice of the other. 

We aimed at identifying that combination of initial k0 and standard deviation σ0
2 that best fit 

the subject’s choices behaviour on behalf of the other in the task.  

To this end, we estimated the probability of observing the choice behaviour that 

participants displayed for all possible combinations of k0 and σ0
2. For each combination, we 

calculated the initial expected discount rate EV for the partner as: 

 
k0 =  

∑(k × prior)

∑ prior
, with prior ~ log 𝑁 (k0 , σ0

2)  (3.5) 

This initial discount rate could be used to compute the likelihood of observing the choice 

that participants executed (likelihoodex, Pex(yex|k, σ2, β)) as well as the choice that they 

observed when receiving feedback (likelihoodobs, Pobs(yobs|k, σ2, β), these are the same if 
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the participant chooses correctly for the partner) for all possible discount rates log k0 ranging 

from -4 to 0 and log β according to Eq. (3.2). Based on the thus determined likelihoods, we 

calculated the posterior probabilities according to Bayes’ rule for the executed and the 

observed choice: 

 
Pex(k, σ2, β|yex) =  

Pex(yex|k, σ2, β) ∗ P(k, σ2, β)

P(y)
 (3.6) 

 
Pobs(k, σ2, β|yobs) =  

Pobs(yobs|k, σ2, β) ∗ P(k, σ2, β)

P(y)
 (3.7) 

Based on the assumption that subjects updated their beliefs according to the decisions 

they observed during feedback, the posteriorobs distribution on trial t was then used as the 

prior distribution on trial t+1. The log evidence for the model and the parameters was 

estimated on each trial according to: 

 

Et =  log (∑ posteriorex ∗ likelihoodex) (3.8) 

The goodness of fit across trials for the given parameter combination can then be 

estimated as: 

 
Q(log k0 , σ0

2, β) = ∑ E (3.9) 

After estimating this for all parameter combinations, we summed the exponential of this 

distribution over the irrelevant dimensions to determine the parameter combination 

(𝑘0, σ0
2, β) with the highest evidence. This particular parameter combination was used to 

define the participant’s prior belief about the partner’s discount rate. To estimate changes in 

belief over trials, the described procedure was reiterated starting from a prior defined 

according to the best fitting parameter combination (𝑘0, σ0
2, β) to estimate the change in 

belief over trials.  

The trial-by-trial estimate of subjects’ own discount rate also allowed for quantifying the 

surprise that subjects experienced when observing their partner’s choice on each trial. This 

surprise was simply computed by subtracting the subject’s probability to make the same 

choice herself from 1. 
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surprise =  1 − 

1

1 + e−β(VLL−VSS)
 (3.10) 

Note, VSS and VLL are computed based on a trial-by-trial estimate of subjects’ own 

discount rate based on Eq. (3.1).  

Furthermore, on each trial a prediction error can be estimated by calculating the 

discrepancy between the estimate of the participants’ belief EVex about the partner’s discount 

rate based on his choice for the partner, and the updated belief EVobsafter receiving the 

feedback: 

 
PEt =

∑(k × posteriorex)

∑ posteriorex
−

∑(k × posteriorobs)

∑ posteriorobs
  (3.11) 

On trials on which the participant made the correct choice, the two terms, and 

consequently the prediction error, are 0.  

3.3.6 Optimization of choice pairs 

In order to accurately estimate subjects’ shift in discount rate, an efficient and precise 

estimate of subjects’ discount rates was needed. To optimize choice pairs for this purpose,  

two option generation methods on choice trials for self were alternated. In method 1,  first 

generated all possible pairs of amounts and delays and selected a subset of n/2 trials (n = 

total number of trials in a block) that best matched the indifference points of n/2 

hypothetical subjects whose discount rates log k were evenly distributed between [-4:0] in 

log10 space (Nicolle et al., 2012). This procedure allowed for an efficient, but relatively 

imprecise, estimate of subjects’ discount rates. 

To increase the precision of our estimate of subjects’ discount rates, I alternated the 

generated trials with choices generated according to a second method, which was adaptive 

in nature and based on the same Bayesian framework outlined above for estimating subjects’ 

discount rates on a trial-by-trial basis. Here, the population distribution of log k with a mean 

of -2 and a standard deviation of 1 was taken as a prior belief about an individual’s log k. 

Every time the subject made a decision, this belief distribution about their log k was updated 

using the above described Bayes rule. Questions were then generated to specifically probe 

our current estimate of subjects’ indifference point (where both options are equally 

preferred). The thus generated choices were more informative about the subjects’ exact 
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discount rate than many of the other choice trials, such that this procedure gave us a more 

precise estimate of the subjects’ discount rate. I validated the adaptive Bayesian method 

against the standard non-adaptive method and found that the adaptive method produced 

similar results as the non-adaptive method using fewer trials (Figure 3.4). The absolute 

difference between the actual discount rate and the estimated discount rate did not differ 

between the two methods (t1,94 = 0.26, P = 0.79). However, data from both methods were 

included in the final analysis to maximize power. 

Choice pairs on “other” trials, were selected as a set of trials that best matched the 

indifference points of 60 (block 2) vs. 100 (block 3) hypothetical subjects whose discount 

rates were evenly distributed across the range centred on the other’s discount rate [log kother-

1; log kother+1]. This ensured that the number of immediate and delayed choices the subject 

made for the partner was approximately equal.  

 

Figure 3.4 Validation of adaptive method. To compare the estimate obtained from the adaptive 
method versus the non-adaptive method, I first computed the variance of our discount rate estimate 
after 20 trials that were generated using the adaptive method. In a second step, I computed the 
variance of the discount rate estimated for choices that were generated using the non-adaptive 
method on a trial-by-trial basis. This iteration was terminated when the variance of the estimate 
obtained from the non-adaptive method was equal or smaller than the variance of the estimate 
computed based on the adaptive method. A Across all simulated discount rates more non-adaptive 
trials were required to obtain an estimate that was equally precise as the estimate obtained from the 
adaptive method. B The difference in number of trials needed was significant across simulated 
subjects (t = 9.26, P< 0.001). 
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3.3.7 Computer partner and visual display conditions 

Subjects in the computer partner condition were told that a computer programme was 

trained to make decisions according to a specific strategy, while all other experimental 

settings were the same as in the human partner group. In actual fact, choices were generated 

in the same way as in the human partner condition.  

Subjects assigned to the visual display condition learned a discount rate without engaging 

in any form of mentalizing. Instead, subjects were presented with a geometric depiction of a 

given choice on the screen (Figure 3.5, right) where the x-axis of the rectangle represented 

the delay of the delayed option and the y-axis represented the ratio of magnitudes for the 

delayed and the immediate options (MLL/MSS). Subjects were told that the computer was 

programmed to choose one of the two options according to the location of the dot relative 

to an iso-probability line, which they had to learn based on the feedback they received after 

each choice. In fact, choice in all three versions of the experiment were generated according 

to the above-described method.  

 

 
Figure 3.5 Design of computer partner and visual display control experiments. A On self trials, 
subjects chose for themselves between an amount of money available on the same day and a larger 
amount of money available after a delay. On computer partner trials, subjects made these kinds of 
choices on behalf of a computer (left). On visual display trials, the choice pair was presented on a 2D 
grid. Subjects were instructed to choose according to their belief about the orientation of an imaginary 
isoprobability line. After each computer and visual display trial, feedback indicated whether a choice 
was correct. B Experimental structure: Block 1 consisted of self choice trials alone, block 2 consisted 
of other choice trials alone and block 3 consisted of alternating short blocks of 10 choice trials per 
agent (self or other). Block 2 terminated after 17 correct choices for the confederate within a sliding 
window of 20 consecutive trials or a maximum of 60 trials.  
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The orientation of the iso-probability line that participants had to learn was determined 

by the discount rate k, with larger discount rates corresponding to a steeper line. This follows 

from comparing choices for which the value of the immediate and the delayed option are 

equal: 

 VSS = VLL ⇔ MSS =  
MLL

1+kDLL
    ⇔

MLL
MSS

⁄ = kDLL + 1 (3.12) 

Participants were instructed that dots above the line correspond to choosing the delayed, 

and dots below the line correspond to choosing the immediate option. Again, choice was 

translated into probabilities with a softmax function according to Eq. (3.2) such that choices 

were noisy. This was communicated to the participants.   

3.3.8 Discount rate shift analyses 

In all three versions of the experiment,  computed subjects’ shift in discount rate towards 

the novel other as follows: 

 
shiftself→novel =  

log kself,block 3 − log kself,block 1

log knovel,block2 − log kself,block1
 (3.13) 

Some participants estimated their confederate’s discount rate to be very similar to their 

own. As a result even small shifts of subjects’ own discount rate were substantially inflated 

when comparing it to the distance log knovel,block2 − log kself,block1. Therefore, 

participants with an absolute distance |log knovel,block2 − log kself,block1| < 0.3 were 

excluded from all shift analyses. This value seemed to constitute a tipping point in all three 

experimental groups with strongly overrated shifts in discount rate for subjects with 

|log knovel,block2 − log kself,block1| ≤ 0.3 (Figure 3.6). According to this criterion, I 

excluded 5 subjects in the human partner condition, 3 subjects in the computer partner 

condition and 2 participants in the visual display condition.  

To test the robustness of our procedure to the particular threshold I chose, I also 

examined the results for a threshold of 0.5. This excluded 12 subjects in the human partner 

condition, 4 subjects in the computer partner condition and 2 subjects in the visual display 

condition. Importantly, I found that this threshold did not impact on the discount rate shift 

results, subjects in the human and computer, but not the visual display group to still shifted 
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towards the preferences of their partners: (t14 = 2.76, P = 0.02, t22 = 3.89, P = 0.001 and t24 

= 0.61, P = 0.5, respectively) with a significant difference between groups (F2,60 = 3.7, P = 

0.03). Note that all discount rate analyses in this thesis were performed in log10 space, 

transforming typical discount rates of [0.0001 – 0] to the range [-4 – 0]. 

 

 
Figure 3.6 Discount rate shift binned according to the distance between kself and kother. 

Discount rate shift (shift =  
log kself,block 3−log kself,block1

log kother,block 2−log kself,block1
) binned according to the distance between 

|log kother,block2 – log kself,block1|. As shift estimates were inflated for |log kother,block2 - log kself,block1| ≤ 
0.3, subjects who estimated the other’s discount rate to be within that range were excluded from all 
discount rate shift analyses. 

3.3.9 Two-partner behavioural experiment 

In the 2-partner version of the experiment, a set of probe trials was added to the 

experiment (Figure 3.7B). The combinations of amount and delay on probe trials were drawn 

randomly from the same set as the options presented in choice trials. Participants were 

instructed to choose according to their own preferences (“self” trials) or according to the 

choice their partners had made when they had participated in the same experiment previously 

(“other” trials).  

Subjects learnt the preferences of a second partner (‘familiar other’) during training 

(Figure 3.7A). In this session, participants performed one block of choices and evaluations 

for self before and after a block of choices for the partner. Each pre-training block contained 

48 choice trials as well as 16 randomly interleaved probe trials to familiarize subjects with 

this trial type. Each of the three experimental test blocks consisted of 197 probe trials for 

self, novel other and familiar other and 16 short interleaved blocks of one choice trial per 

agent (Figure 3.7A, bottom).  
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Again, participants were informed that one of the choices for self in the experiment would 

be randomly selected and the amount would be transferred to the participant's bank account 

after the appropriate delay. Decisions in probe trials did not influence the pay-out.  

 
Figure 3.7 Experimental design of the two-partner version of the experiment. A During 
training, blocks 1 and 3 consisted of self choice and probe trials, and block 2 consisted of ‘familiar 
other’ choice and probe trials. During test, subjects chose and evaluated for themselves, for the 
familiar other and for a novel other. The experiment was divided into three experimental blocks with 
probe trials the predominant type in all blocks. B Trial types. On choice trials, subjects chose between 
an immediately available, smaller and a delayed, larger reward. On “self” trials, subjects considered 
the choice for themselves. On “other” trials, they made the choice on behalf of a partner, and 
feedback indicated whether their choice corresponded to the partner’s (simulated) choice. On probe 
trials subjects indicated on a four-item scale how happy they themselves or one of their partners 
would be with the presented option. These trials are not relevant here, but they are analysed in the 
fMRI version of the experiment (Chapter 4). 

In contrast to the behavioural experiment and the training, subjects learned about the 

novel other’s discount rate while we assessed their own discount rate. To make sure that we 

captured a potential shift in discount rate in this scenario, we excluded the first third of all 

choice trials subjects performed in the test phase of the experiment. The relative shift effects 

reported in Figure 3.13 were then calculated as: 

 
shiftself→fam,train =  

log kself,training_block 3 − log kself,training_block1

log kfamiliar,training_block2 − log kself,training_block1
 (3.14) 

 
shiftself→fam,test =  

log kself,test − log kself,training_block3

log kfamiliar,test − log kself,training_block3
 (3.15) 
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shiftself→novel,test =  

log kself,test − log kself,training_block3

log knovel,test − log kself,training_block3
 (3.16) 

 
shiftfam→novel,test =  

log kfamiliar,test − log kfamiliar,training_block2

log knovel,test − log kfamiliar,training_block2
 (3.17) 

In line with the procedure outlined in 3.3.8, subjects for whom the denominator was 

smaller than 0.3 (1 subject for shiftself→fam,training, 3 subjects for shiftself→novel,test, 4 subjects for 

shiftself→familiar,test and 2 subjects for shiftfam→novel,test) were excluded from the analyses. 

3.4 Results 

3.4.1 Subjects’ behaviour can be modelled using a Bayesian learner 

To examine whether learning about the preferences of another agent impacts on 

subjective inter-temporal preferences we tested 27 subjects on a standard inter-temporal 

choice task both before, and after, performing the identical task on behalf of a partner (Figure 

3.1). As in the standard format, subjects deciding for themselves chose between an 

immediately available smaller reward and a delayed larger reward. The degree to which delay 

diminishes the value of a reward was then quantified by a discount rate, computed from each 

subject’s actual choices both before and after the experimental manipulation. The latter 

involved a context whereby subjects performed the very same task but now chose the option 

they inferred a confederate would prefer. After each trial they were given feedback about the 

choice the confederate had actually made, such that they could learn to simulate these choices 

in future trials. Subjects believed that the partner was a human participant playing the game 

in a neighbouring room (Figure 3.2). In actual fact, and in part motivated by a need for good 

experimental control, I delivered feedback of a simulated player with preferences very 

different from the subjects’ own.  
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Figure 3.8 Estimation of belief about the other’s discount rate in one example subject. A 
White dot indicates parameter combination of the prior belief about the other´s preferences, 
estimated from subjects’ choices on behalf of the other. White dashed line indicates true discount 
rate of the other. Black dashed line indicates this subject’s own discount rate in block 1. B Evolution 
of estimated discount rate (orange) and prediction error (green) over trials. Black dashed line indicates 
true discount rate of the other. C Marginal posterior distribution tracking the belief about the other’s 
discount rate across trials. The dashed shite line indicates the true discount rate of the other. B and 
C demonstrate that the Bayesian learner was confident that the other´s discount rate was stable at 
around log k = -2 after approximately 30 trials.  

The discount rate used to generate the other’s choices could not be inferred from 

individual trials, and choices of the confederate were noisy. Optimal behaviour in this task 

therefore required subjects to learn the preferences of the other individual by tracking their 

behaviour across trials and updating beliefs when a new piece of information was received 

at the feedback stage. The integration of knowledge across trials can be modelled using a 

Bayesian learner whose initial prior distribution log 𝑁 (𝑘0, σ0
2) was first estimated (Figure 

3.8A) and then updated on every trial (Figure 3.8B,C). Ultimately, the estimate of the other’s 
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discount rate approximated the actual discount rate used to generate choice behaviour for 

the other. Belief updates are likely to be driven by prediction errors, arising at the feedback 

stage when a subject’s choice for the other is inconsistent with the other’s actual decision. 

Indeed, changes in belief are particularly large on trials where a prediction error is 

encountered (Figure 3.8B). The size of the prediction error here is quantified as the 

discrepancy between a subject’s estimated discount rate before feedback and the estimated 

discount rate after feedback (Figure 3.8B).  

3.4.2 Discount rates are susceptible to social influence 

 

Figure 3.9 Learning the discount rate of another and the consequences for behaviour. A Block 
2 terminated after 17 correct choices for the confederate within a sliding window of 20 consecutive 
trials or a maximum of 60 trials. Depicted here is the cumulative sum of participants who terminated 
after a given number of trials. The inset shows the mean number of trials to criterion for the different 
groups. The average number of trials subjects needed to reach criterion in block 2 did not differ 
between groups (F2,78 = 0.82, P = 0.44). B Correct choices for the confederate in block 3 did not 
differ between groups (F2,78 = 2.55, P = 0.08), suggesting that subjects in all three groups learnt the 
other’s discount rate equally well. C Shift of subjects’ own discount rate in the direction of the 

partner’s discount rate relative to the distance between = log kself,block 1 and log kother,block 2.  
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Figure 3.10 Visualization of choice behaviour in one representative subject in the human 
partner group (top), the computer partner group (middle) and the visual display group 
(bottom). A Fraction of delayed choices as a function of the indifference point a choice can be 
mapped onto. For example, the decision [£10 today OR £100 in 3 months] maps onto -1, as an 
individual with a discount rate of -1 would be indifferent in this situation. [£10 today OR £11 in 3 
months] maps onto -3 according to the same logic. B Summed likelihood distribution across discount 
rates. The peak indicates the estimate of the subject’s own or the other’s discount rate. C Evolution 
of discount rate estimate over trials. In all subplots, [self, block 1] is depicted in orange, [self, block 
3] is depicted in green, [other, block 2] is depicted in blue (dashed line) and [other, block 3] is depicted 
in blue (solid line). Dashed blue line indicates the modelled other’s discount rate. 
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As previously reported (Nicolle et al., 2012), subjects learnt quickly, and accurately, to 

choose according to a novel partner’s preferences (Figure 3.9A,B). Notably,  found that, after 

learning a partner’s preferences, subjects’ own discount rate shifted in the direction of the 

partner (relative shift calculated as 
log kself,block 3−log kself,block 1

log kother,block 2−log kself,block 1

, t21 = 3.06, P = 0.006, visualized for 

individual subjects in Figure 3.10 and for the entire group in Figure 3.9). Their estimate of 

the novel other’s preferences remained stationary (relative shift of other’s discount rate 

calculated as 
log kother,block 3−log kother,block 2

log kself,block 1−log kother,block 2

, t21 = 0.99, P = 0.33) and was not biased towards subjects’ 

own preferences (t21 = 0.49, P = 0.63). 

 
Figure 3.11 Relationship between behavioural shift in preference and performance on ‘other’ 
trials. A Correlation between the number of ‘other’ trials to criterion in block 2 and performance for 
‘other’ in block 3. B Correlation between number of ‘other’ trials to criterion in block 2 and the shift 
of subjects’ own discount rate in the direction of the partner’s discount rate relative to the distance 

between log kself,block 1 and log kother,block 2. C Correlation between performance for ‘other’ in 

block 3 and shift of log kself towards log kother.  

This effect is not easily understood as a social norm effect (Ruff et al., 2013) as discount 

rates shifted similarly when subjects were instructed they were deciding on behalf of a 
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computer agent (t22 = 3.89, P < 0.001, Figure 3.9C, Figure 3.10 middle). Subjects’ estimate 

of the novel other’s discount rate did not change from block 2 to block 3 in either of the two 

conditions (relative shift of other’s discount rate calculated as 

log kother,block 3−log kother,block 2

log kself,block 1−log kother,block 2
,  human partner: t21 = 0.99, P = 0.33, computer partner: t23 = 

-1.75, P = 0.09). This confirms that discount rates for self and other are not converging. 

Instead the change in discount rate corresponds to a selective shift of subjects’ own discount 

rate towards the discount rate of the other. 

Although the number of trials to criterion as well as the performance for the other in 

block 3 varies across subjects, this variability is not predictive of an individual’s shift in 

preference (Figure 3.11). Similarly, the preference shift is not related to subjects’ initial belief 

about the other’s discount rate (Figure 3.12A), or the final belief at the end of the learning 

period (Figure 3.12B). However, those subjects whose beliefs change negatively (i.e. the other 

is more patient than they initially believed) shift more towards the novel other than those 

subjects whose beliefs change positively (i.e. the other is more impatient than they initially 

believed (Figure 3.12C). This is in line with the observation that subjects’ shift was also 

particularly pronounced if the other was more patient than they were themselves (Figure 

3.12D).  

3.4.3 Discount rate shifts arise out of a simulation of the other´s preferences 

One account of this shift in preference is that it arises out of a simulation of the other’s 

preferences. In order to test whether such simulation is crucial for this shift or whether the 

behaviour can be explained by simple stimulus- or action-based reinforcement, we designed 

a category-learning control experiment (Ashby and Maddox, 2005). This consisted of the 

same stimuli and actions, but the necessity to simulate another’s discount rate was removed. 

Subjects were presented with a geometric depiction of a given choice on the screen (x-axis: 

delay of the later option, y-axis: ratio of magnitudes MLL/MSS, Figure 3.5, right) and instructed 

to choose according to the location of the dot with respect to an imaginary isoprobability 

line. Rather than using feedback to update a value simulation, subjects now updated their 

belief about the orientation of this line. There was no differences in the number of trials 

required to reach criterion (F2,78 = 0.82, P = 0.44) or performance on ‘other’ trials in block 3 

(F2,78 = 2.55, P = 0.08) compared to the human and computer partner conditions suggesting 

that learning and performance were comparable. However, in this scenario, subjects’ 
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discount rates did not shift, indicating that subjects were not merely repeating previous 

choices they had made on behalf of the other (t24 = 0.61, P = 0.55, Figure 3.9).  

 

Figure 3.12 Relationship between belief about the other’s discount rate, and subjects’ shift in 
preference. A Correlation between subjects’ initial belief about the other’s discount rate and the shift 
of their own preferences towards the preferences of the novel other. B Correlation between subjects’ 
final belief about the other’s discount rate at the end of block 2 and the shift of their own preferences 
towards the preferences of the novel other. C Correlation between the difference in subjects’ final 
belief and subjects’ initial belief about the other’s discount rate and the shift of their own preferences 
towards the preferences of the novel other. D Shift of log k separately for situations where the other 
had a smaller, or a larger discount rate than the self. 

This was confirmed in a one-way ANOVA, which revealed that the shift towards the 

other’s preferences differed between experimental groups (F2,68 = 3.5, P = 0.04). Post-hoc t-

tests attributed this difference to a smaller shift in the visual display group: Both subjects in 

the human and in the computer partner group displayed a stronger shift in discount rate 
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towards the other than subjects in the visual display group (t45 = 2.37, P = 0.02 and t47 = 

2.25, P = 0.03). There was no difference in shift towards the partner for the human versus 

the computer partner group (t44 = 0.61, P = 0.5). Figure 3.10 visualizes the results for three 

representative individuals. 

Note we cannot rule out differences in terms of attention, working memory or other 

factors that prevent the update of one’s own preferences for the visual display condition. 

Since stimuli and actions were the same as in the human and the computer partner condition, 

however, we can rule out that the behavioural shift in the other experimental conditions is 

due to simple stimulus- or action-reinforcement. Instead, preference simulation is necessary 

to induce modulation in a discount rate. 

3.4.4 Subjective value changes are induced by learning 

To be certain that any effects were driven by learning about the partner, as opposed to 

exercising a choice per se, we designed another version of the behavioural experiment, in 

which the discount rates of two partners were learnt at different points in time. This 

experiment comprised three players: the subject (“self”), a partner whose preferences were 

learnt in a training session (“familiar other”) and a partner whose preferences were learnt 

during the actual test phase (“novel other”). The familiar and novel others’ choices were 

simulated based on discount rates placed on opposite, and counterbalanced, sides of the 

subject’s original discount rate. This means that one partner had a smaller, and the other 

partner a larger, discount rate than the subject himself.  

16 participants performed two interleaved tasks. In choice trials, as in the behavioural 

experiment described above, participants again made inter-temporal choices for themselves 

and for the two partners. In probe trials, participants performed evaluations serially on behalf 

of different players, which would allow us to measure repetition suppression between the 

value representations of different individuals in a later fMRI experiment (Chapter 4). After 

each choice trial for the novel or the familiar partner, but not after probe trials, subjects were 

given feedback about the choice the confederate had made.  

In this context, subjects’ discount rates shifted towards the discount rate of the familiar 

partner during the initial training (t14 = 2.63, P = 0.02). During test, subjects’ own discount 

rate shifted towards the newly learnt discount rate of the novel partner (t12 = 2.41, P = 0.03), 

but not the discount rate of the familiar partner (t11 = 0.50, P = 0.63). Furthermore, the shift 

of subjects’ estimated discount rate of the familiar partner, shifted slightly towards the newly 
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learnt discount rate of the novel partner, but this shift did not reach significance (t13 = 1.86, 

P = 0.08). These preference shifts were therefore not simply associated with repeating the 

partner´s choices but instead are most parsimoniously explained as induced by learning a 

new individual’s preferences.  

 

Figure 3.13 The shift in preference is induced by learning about the other's preferences. In 
the 2-partner version of the experiment, participants are first trained on the preferences of one 
partner (familiar other). This training induced shifts of the participants’ own discount rates in the 
direction of the interaction partner’s discount rate (green part/training, t14 = 2.63, P = 0.02). During 
the main part of the experiment, participants’ discount rate moved towards the discount rate of the 
partner they now learned about (novel other, t12 = 2.41, P = 0.03), but not towards the familiar other 
(t11 = 0.50, P = 0.63). Subjects’ estimate of the familiar other’s discount rate shifts towards the novel 
did not reach significance (t13 = 1.86, P = 0.08). 

3.5 Discussion 

Here we investigated the behavioural consequences of learning about another’s 

preferences in a delegated intertemporal choice task. In line with previous reports that 

highlight a social influence on the valuation of objects (Campbell-Meiklejohn et al., 2010; 

Klucharev et al., 2009; Zaki et al., 2011), we found that participants’ own discount rate shifted 

towards the discount rate of a human or computer partner when learning about another’s 

temporal discounting preferences. Importantly, this was only the case if we encouraged the 

simulation of the partner’s preferences, but not if the same decisions were made based on a 

geometric display of the choice options. This demonstrates that participants integrate 

information about intertemporal preferences into their own preferences only if they use the 

same psychological mechanism to make choices for the partner as they do for themselves. 

On this basis we conclude that the observed change in subjective preference is best 
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understood as a consequence of a learning-related plasticity in neural populations computing 

valuations for self. Such a phenomenon could arise as a consequence of an overlap in the 

population of neurons in mPFC computing valuation for self and for others (Jenkins et al., 

2008; Nicolle et al., 2012; Suzuki et al., 2012). The plasticity caused by learning about the 

preferences of a novel other may concurrently affect other value computations, such as 

subjects’ own.  

Subjects’ own discount rate shifted towards the discount rate of their partner, irrespective 

of whether their partner was human or a computer. This is in line with studies demonstrating 

that individuals use strategies akin to those used in real social contexts when interacting with 

a computer agent (Nass and Moon, 2000). Crucially, a control condition with the same stimuli 

and actions, but without the need to employ a discounting computation, did not evoke a 

change in subjects’ own preferences. This demonstrates that the shift cannot be explained 

by social rewards or expected social approval for making choices like another person. 

Instead, the behavioural effect is tied to subjects’ deployment of the very same discounting 

mechanism to learn on behalf of another agent, be it a human or non-human agent. 

Furthermore, when subjects made decisions on behalf of two agents – a familiar other whose 

preferences they had learnt about previously, and a novel other whose preferences they 

currently learn about – their own discount rate shifted specifically towards the discount rate 

of the novel other. Thus, it is presumably a learning-induced plasticity in acquiring a novel 

value representation that impacted on subjects’ own subjective value computation rather 

than the execution of a choice for another person alone.  

The discount rate parameter manipulated here describes the degree to which future 

rewards are devalued (Myerson and Green, 1995) and is a reliable measure of impulsivity 

(Evenden, 1999; Robbins et al., 2012).  It is known to be elevated in drug addiction, problem 

gambling, and other impulsivity disorders (Madden et al., 1997). In the absence of 

experimental manipulations, an individual’s discount rate is often considered to be stable 

over time (Kirby, 2009; Ohmura et al., 2006). However, our results hint that in the real world 

social context plays an important role in determining impulsivity. The existence of such an 

influence raises the possibility of self-reinforcing patterns of impulsivity within social groups. 

Indeed, the magnetic effect exerted on a participant’s discount rate by another person 

provides an interesting mechanistic link to the well-known phenomenon of social context 

influencing relapse, or alternatively self-restraint, in substance abuse. 
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Social conformity effects are also prominent in a range of other contexts (Campbell-

Meiklejohn et al., 2010; Edelson et al., 2011; Zaki et al., 2011) and they may serve different 

cultural functions. For one, it has repeatedly been argued that we owe the cultural success of 

mankind to our exceptional ability to learn from others (Boyd et al., 2011; Frith and Frith, 

2010). There may be good reason to believe that the other has more information about the 

world than me, in which case adapting my preferences to align with his would be adaptive. 

Crucially, this would mean that a preference shift should be less pronounced in a context 

where the other’s preferences are not adaptive. Secondly, aligning preferences can be very 

important for collective decision making. The ability to work together towards common 

goals regularly requires reaching a consensus between individuals. This holds both for big 

political questions (Is it more important for the government to invest in health or in 

education?) as well as for less consequential personal decisions (Do we want to have sushi 

or pizza for dinner?). Decision making in such situations is greatly facilitated if the involved 

parties share values and preferences. A mechanism whereby humans approximate each 

other’s values in a social setting could therefore be essential for decision making in groups.  
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4.1 Abstract 

Learning induces plasticity in neuronal networks. As neuronal populations contribute to 

multiple representations, we reasoned plasticity in one representation might influence others. 

We used human fMRI repetition suppression to show that plasticity induced by learning 

another individual’s values impacts upon a value representation for oneself in medial 

prefrontal cortex (mPFC), a plasticity also evident behaviourally in a preference shift. We 

show this plasticity is driven by a striatal “prediction error”, signalling the discrepancy 

between the other’s choice and a subject’s own preferences. Thus, our data highlight that 

mPFC encodes agent-independent representations of subjective value, such that prediction 

errors simultaneously update multiple agents’ value representations. As the resulting change 

in representational similarity predicts inter-individual differences in the malleability of 

subjective preferences, our findings shed new mechanistic light on complex human processes 

such as the powerful influence of social interaction on beliefs and preferences.  

4.2 Introduction 

Information in the brain is encoded within distributed neuronal populations such that 

individual neurons typically support more than one representation or computation. Neurons 

in medial prefrontal cortex (mPFC), for example, perform self-referential as well as social 

value computations (Jenkins et al., 2008; Nicolle et al., 2012; Suzuki et al., 2012). Whereas it 

is traditionally suggested that computations for self and other are performed within  separate 

populations of neurons (D’Argembeau et al., 2007; Denny et al., 2012), recent work suggests 

a functional organization within this region does not neatly conform to such a distinction by 

agent. Instead value computations on behalf of any individual can be realised by the same 

circuitry (Nicolle et al., 2012) and the neural code depends only on the subjective value of an 

offer. In light of this we conjectured that multiple value computations might be updated 

simultaneously if plasticity is introduced into this circuitry.  

The contribution of overlapping neural circuitry to distinct computations has previously 

been demonstrated during delegated inter-temporal choice (Nicolle et al., 2012). In inter-

temporal choice paradigms, subjects reveal their preferences for larger rewards delivered later 

versus smaller rewards that arrive sooner. Choice in this context is quantified by a ‘temporal 

discount rate’ (Myerson and Green, 1995), believed to index forms of behavioural impulsivity 
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(Evenden, 1999; Robbins et al., 2012) and an ability to imagine future outcomes (Cooper et 

al., 2013; Ersner-Hershfield et al., 2009; Mitchell et al., 2010; Peters and Büchel, 2010). When 

subjects are asked to make such inter-temporal choices on behalf of another individual 

(“delegated inter-temporal choice”), they rapidly learn the confederate’s discount rate 

(Nicolle et al., 2012). This adaptability depends on the medial frontal cortex, where a neural 

circuitry used to compute a subject’s own values also computes those of a confederate, 

enabling rapid switches between the two computations (Nicolle et al., 2012).  

We reasoned that if the same circuitry in the mPFC computes the value of a delayed offer 

irrespective of agents, plastic changes necessary to learn a new partner’s preferences might 

have consequences for a subject’s own value computations. The presence of such plasticity 

would also be expected to induce behavioural change in the subject’s own temporal discount 

rate, a parameter usually assumed to index a stable personality trait (Kirby, 2009; Ohmura et 

al., 2006). One can conjecture that such plasticity might underlie social conformity effects, 

where individuals adjust their beliefs or preferences to align more with those with whom they 

interact (Campbell-Meiklejohn et al., 2010; Edelson et al., 2011; Zaki et al., 2011). 

At a neuronal level a formal test of these predictions requires a fine-grained access to 

neural populations supporting distinct value computations, as well as a robust measure of 

learning-induced change in activity of these same populations. Despite its coarse spatial 

resolution, fMRI can reveal relationships between underlying cellular representations. In 

particular, fMRI adaptation paradigms can be finessed to measure plastic changes associated 

with the behavioural pairing of different items (Barron et al., 2013; Klein-Flügge et al., 

2013b). The principle of fMRI adaptation builds on the idea that the repeated engagement 

of the same neuronal population leads to a diminished response and attenuated BOLD 

signal, even though the underlying biophysical mechanism remains ambiguous (Grill-Spector 

et al., 2006; Kohn, 2007). 

Here we used an fMRI adaptation paradigm to measure the relationship between neuronal 

value representations for self, a familiar other whose preferences had been learnt prior to 

scanning and a novel confederate as this latter agent’s preferences were learnt. We deployed 

a dynamic repetition suppression procedure to provide us with a probe of plastic neural 

changes associated with learning a new flexible computation. We hypothesized that plasticity 

associated with this new learning would impact upon the preference representation for  self 

as a consequence of a neuronal representation that maps agent and offer onto an agent-

independent measure of subjective value. In essence this predicts that neuronal value 
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representations between self and a novel other should become more similar with learning, in 

line with a behavioural shift in preference. An alternative hypothesis posits separate value 

computations for distinct agents. In such a case a subject might use their own separate neural 

representations as a proxy for understanding another’s traits, and an independent neuronal 

value representation for this other would be constructed through learning-induced plasticity 

(Barron et al., 2013). This alternative scenario predicts that neural value representations for 

self and other should become less similar with learning. In terms of a mechanism driving 

such plasticity, we reasoned that the same prediction errors that drive learning about a new 

partner’s inter-temporal preferences would also induce shifts in the subject’s own discount 

rate towards that of the partner. 

4.3 Methods 

4.3.1 Subjects 

29 volunteers (mean age ± std: 25.6 ± 5.6 years, 14 females) participated in the fMRI 

experiment. Two subjects were excluded from fMRI analyses, one because they had 

previously participated in the behavioural experiment and a second subject because of 

technical difficulties during data acquisition. All subjects were neurologically and 

psychiatrically healthy. The study took place at the Wellcome Trust Centre for Neuroimaging 

in London, UK. The experimental procedure was approved by the University College 

London Hospitals Ethics Committee and written informed consent was obtained from all 

subjects.  

4.3.2 Task– fMRI study 

The fMRI experiment was identical to the 2-partner behavioural experiment described in 

Chapter 3 and consisted of two trial types: choice trials and probe trials, in which subjects 

evaluated a single option on a scale from 1 to 4 (Figure 4.1). Subjects learned the preferences 

of a second partner (‘familiar other’) before the scan (Figure 4.1A). Option generation and 

shift estimates were the same as described in Chapter 3. 
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Figure 4.1 Experimental design of the fMRI experiment. A During training, blocks 1 and 3 
consisted of self choice and probe trials, and block 2 consisted of ‘familiar other’ choice and probe 
trials. During test, subjects chose and evaluated for themselves, for the familiar other and for a novel 
other. The experiment was divided into three experimental blocks with probe trials the predominant 
type in all blocks. B Trial types. On choice trials, subjects chose between an immediately available, 
smaller and a delayed, larger reward. On “self” trials, subjects considered the choice for themselves. 
On “other” trials, they made the choice on behalf of a partner, and feedback indicated whether their 
choice corresponded to the partner’s (simulated) choice. On probe trials subjects indicated on a four-
item scale how happy they themselves or one of their partners would be with the presented option.  

Again, we excluded the first third of all choice trials subjects performed in the scanner 

when estimating kself,scan, knovel,scan and kfamiliar,scan. The relative shift effects reported in were then 

calculated as: 

 𝑠ℎ𝑖𝑓𝑡𝑠𝑒𝑙𝑓→𝑓𝑎𝑚,𝑡𝑟𝑎𝑖𝑛

=  
log 𝑘𝑠𝑒𝑙𝑓,𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑏𝑙𝑜𝑐𝑘 3 − log 𝑘𝑠𝑒𝑙𝑓,𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑏𝑙𝑜𝑐𝑘1

log 𝑘𝑓𝑎𝑚𝑖𝑙𝑖𝑎𝑟,𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑏𝑙𝑜𝑐𝑘2 − log 𝑘𝑠𝑒𝑙𝑓,𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑏𝑙𝑜𝑐𝑘1
 

(4.1) 

 
𝑠ℎ𝑖𝑓𝑡𝑠𝑒𝑙𝑓→𝑓𝑎𝑚,𝑡𝑒𝑠𝑡 =  

log 𝑘𝑠𝑒𝑙𝑓,𝑡𝑒𝑠𝑡 − log 𝑘𝑠𝑒𝑙𝑓,𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑏𝑙𝑜𝑐𝑘3

log 𝑘𝑓𝑎𝑚𝑖𝑙𝑖𝑎𝑟,𝑡𝑒𝑠𝑡 − log 𝑘𝑠𝑒𝑙𝑓,𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑏𝑙𝑜𝑐𝑘3
 

(4.2) 

 
𝑠ℎ𝑖𝑓𝑡𝑠𝑒𝑙𝑓→𝑛𝑜𝑣𝑒𝑙,𝑡𝑒𝑠𝑡 =  

log 𝑘𝑠𝑒𝑙𝑓,𝑡𝑒𝑠𝑡 − log 𝑘𝑠𝑒𝑙𝑓,𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑏𝑙𝑜𝑐𝑘3

log 𝑘𝑛𝑜𝑣𝑒𝑙,𝑡𝑒𝑠𝑡 − log 𝑘𝑠𝑒𝑙𝑓,𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑏𝑙𝑜𝑐𝑘3
 

(4.3) 
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shiftfam→novel,test =  

log kfamiliar,test − log kfamiliar,training_block2

log knovel,test − log kfamiliar,training_block2
 

(4.4) 

As in the behavioural experiment, the estimation of absolute shifts the denominator z was 

set to sign(z). Outliers (outside the range mean ± 3*std) as well as subjects for whom the 

denominator was smaller than 0.3 (2 subjects for shiftself→fam,scan, 3 subjects for shiftself→novel,scan, 

2 subjects for shiftfam→novel,scan) were excluded from the analyses. 

4.3.3 Surprise measure 

I used the trial-by-trial estimate of subjects’ own discount rates to compute differences in 

subjective value for all choices that subjects observed their partner make (Vchosen_by_partner-

Vunchosen_by_partner), where Vchosen_by_partner and Vunchosen_by_partner were computed according to 

equation (4.5): 

 
𝑉 =  

𝑀

1 + 𝑘𝐷
 

(4.5) 

This difference in subjective value was transformed to a probability indicating how likely 

the subject would be to make the same choice himself using a softmax function:  

 
𝑃(𝑐ℎ𝑜𝑠𝑒𝑛) =  

1

1 + 𝑒−𝛽(𝑉𝑐ℎ𝑜𝑠𝑒𝑛−𝑉𝑢𝑛𝑐ℎ𝑜𝑠𝑒𝑛)
 

(4.6) 

Subject’s inverse temperature parameter β was also estimated on a trial-by-trial basis from 

subjects‘ choices on the task. This measure gave us an estimate of how likely the subject 

would have been to make the same choice himself. We subtracted this likelihood from 1 to 

translate this to a surprise measure.  

4.3.4 Scan procedure, fMRI data acquisition and pre-processing 

Visual stimuli were projected onto a screen via a computer monitor. Subjects indicated 

their choice using an MRI-compatible button box. Stimuli were presented for a minimum 

duration of 3 to 5 seconds or until subjects indicated their decision. MRI data was acquired 

using a 32-channel head coil on a 3 Tesla Allegra scanner (Siemens, Erlangen, Germany). A 

special sequence was used to acquire T2*-weighted EPIs to minimize susceptibility related 

artefacts in the ventral prefrontal cortex (Weiskopf et al. 2006): 43 transverse slices 
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(ascending order) of 2 mm thickness with 1-mm gap and in-plane resolution of 3x3mm, a 

TR of 3.01s and TE of 70ms were collected. Slices were tilted by 30° relative to the rostro-

caudal axis and a local z-shim with a moment of -0.4mT/m was applied to the OFC region. 

The first five volumes of each block were discarded to allow for equilibration. A T1-weighted 

anatomical scan with 1x1x1mm resolution was acquired at the end of the session in order to 

spatially normalize the EPIs. In addition, a whole-brain fieldmap with dual echo-time images 

(TE1 = 10ms, TE2 = 14.76ms, resolution 3x3x3mm) was obtained to correct for geometric 

distortions induced in the EPIs at high field strength.  

We used SPM8 for image pre-processing and data analysis (Wellcome Trust Centre for 

Neuroimaging, London UK). We corrected for signal bias, co-registered functional scans to 

the first volume in the sequence and corrected for distortions using the fieldmap. Data were 

spatially normalized to a standard EPI template and smoothed using an 8mm full-width at 

half maximum Gaussian kernel.  

4.3.5 Physiological noise  

To reduce the contribution of physiological noise to the BOLD signal (Hutton et al. 

2011), the cardiac pulse was recorded using an MRI compatible pulse oximeter (Model 8600 

F0, Nonin Medical Inc., Plymouth, MN, USA) and thorax movement was monitored using 

a custom-made pneumatic belt positioned around the abdomen. The pneumatic pressure was 

converted into an analogue voltage signal using a pressure transducer (Honeywell 

International Inc., Morristown, NJ, USA) before digitization.  

Models for cardiac and respiratory phase and their aliased harmonics were based on 

RETROICOR (Glover et al., 2000); the model for respiratory volume changes was based on 

(Birn et al., 2006). Slice 15 was used as a reference slice for modelling fluctuations arising 

from cardiac phase because of its proximity to the OFC (Hutton et al., 2011). Sessions were 

modelled separately within the general linear model (GLM). 

4.3.6 fMRI data analysis 

Data were analysed with an event-related GLM. Probe trials were sorted into nine 

different conditions (self preceded by self (SS), novel preceded by self (SN), familiar preceded 

by self (SF), self preceded by novel (NS), novel preceded by novel (NN), familiar preceded 

by novel (NF), self preceded by familiar (FS), novel preceded by familiar (FN), familiar 
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preceded by familiar (FF)) with 20 trials per condition and block. Each regressor was 

accompanied by a parametric modulator reflecting subjective value from the respective 

agent’s perspective. This value was calculated based on a trial-by-trial estimate of the subject’s 

current belief about their partners’ discount rate k. Furthermore, we defined one choice 

regressor per agent and block indexing the time at which subjects indicated their decision on 

choice trials and received feedback. Each was accompanied by a parametric regressor 

corresponding to the surprise subjects experienced as they observed the partner’s choice. 

Button presses were included as a regressor of no interest. Because of the sensitivity of the 

BOLD signal in the OFC region to subject motion and physiological noise, we included six 

motion regressors obtained during realignment as well as ten regressors for cardiac phase, 

six for respiratory phase and one for respiratory volume extracted with an in-house 

developed Matlab toolbox as nuisance regressors (Hutton et al., 2011). Sessions were 

modelled separately within the GLM. 

To detect areas showing adaptation to repeated agents as depicted in Figure 4.3, we used 

the contrast [(agent preceded by different agent) – (agent preceded by same agent)], i.e. ([SN 

+ SF + NS + NF + FS + FN] - 2 x [SS + FF + NN]). To test for areas displaying greater 

increases in suppression between self and the novel other compared to between self and 

familiar other (Figure 4.4A), we defined the following contrast: ([SN+NS]block1-[SN+NS]block3) 

– ([SF+FS]block1-[SF+FS]block3). To test for greater increases in suppression between self and 

novel other than between novel other and familiar other, we defined a contrast as follows: 

([SN+NS]block1-[SN+NS]block3) – ([NF+FN]block1-[NF+FN]block3).  

The contrast images of all subjects from the first level were analysed as a second-level 

random effects analysis. Results are reported at a cluster-defining threshold of P < 0.01 

uncorrected combined with a family-wise-error (FWE) corrected significance level of P < 

0.05.  

We performed a jack-knife procedure from the mPFC ROI (Figure 4.4A) to extract 

parameter estimates from this region without biasing the selection. To this end, we extracted 

parameter estimates for each subject from an ROI defined according to all other subjects 

(threshold at P < 0.01 uncorrected). This signal was used to perform all analyses depicted in 

Figure 4.4-Figure 4.7 and Supplementary Figure 4.1.  

In ROI correlation analyses, we performed partial correlations to control for correlations 

between shiftself→novel,scan and shiftfam→novel,scan. This removes the shift of the familiar other 

towards the novel other from the subjects’ own discount rate shifts and the neural plasticity 
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index [SN-SF]1-3 (Figure 4.5A) and the shift of self towards the novel other from the familiar 

other’s shift towards the novel other and the neural plasticity index (Figure 4.5B). We also 

estimated a linear regression model on the same data with shiftself→novel,scan and shiftfam→novel,scan 

as independent variables and [SN-SF]1-3 as the dependent variable. The relationship between 

shiftself→novel,scan and [SN-SF]1-3 was directly contrasted with the relationship between 

shiftfam→novel,scan and [SN-SF]1-3. 

To test for the influence of surprise on mPFC plasticity, we defined a contrast assessing 

BOLD correlate of the surprise subjects experienced as they got feedback about the novel 

and the familiar partners’ choices. This contrast revealed activity in ACC, in bilateral insula 

and dorsal striatum (Figure 4.6A; note that insula and striatal activity did not survive cluster-

based FEW thresholding). Parameter estimates were then extracted from these regions and 

correlated with the plasticity measure [SN-SF]1- 3 extracted from the mPFC ROI in Figure 

4.6B. To identify the surprise experienced when learning about the novel other, parameter 

estimates were then extracted from these ROIs for the novel other’s choices only. This 

surprise measure in the striatum was correlated with subjects’ shift in discount rate and the 

plasticity measure [SN-SF]1-3 (Figure 4.6B) extracted from the mPFC ROI (Figure 4.6C). 

To test the specificity of adaptation effects we analysed repetition suppression effects in 

visual regions. We defined an ROI from a contrast identifying a main effect to any visual 

event, averaged across all blocks and performed the same analyses as for the mPFC ROI 

(thresholded at P < 0.0001 uncorrected; Supplementary Figure 4.2).  

4.3.7 Mediation analysis 

We used the Mediation and Moderation Toolbox (Atlas et al., 2010; Wager et al., 2008) 

to perform a single-level mediation analysis. To test whether mPFC plasticity mediates the 

effect of striatal surprise on behavioural shift, we first extracted each individual’s parameter 

estimate from the striatal ROI encoding surprise. The mediator corresponded to each 

subject’s plasticity index [SN-SF]1-3 computed from parameter estimates extracted from the 

mPFC ROI. The outcome variable was defined as a subject’s relative shift in discount rate 

towards the novel other. The relationship between striatal surprise and behavioural shift 

controlling for the mPFC effect is referred to as path “c”. We also estimated the relationship 

between striatal surprise and mPFC plasticity (path “a”) as well as between mPFC plasticity 

and behavioural shift (path “b”). This last path “b” is controlled for striatal surprise, such 

that paths “a” and “b” correspond to two separable processes contributing to the behavioural 
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effect. A mediation test (path “ab”) examines whether the mediator (mPFC plasticity) 

explains a significant amount of the covariance between striatal surprise and behavioural 

shift. We determined two-tailed uncorrected P values from the bootstrap confidence 

intervals for the path coefficients (Atlas et al., 2010). 

4.4 Results 

4.4.1 Subjective value changes are induced by learning  

The results described in Chapter 3 suggest that learning to compute the preferences of 

another agent induces plastic changes in the neural architecture responsible for personal 

valuation. This in turn predicts the neural population engaged during the computation of 

self-valuation should change over the course of the experiment. This population should 

either become closer to that evoked during valuation for the partner if the representational 

structure of an offer depends solely on its subjective value irrespective of the individual. 

Alternatively, it should become less close if separate agent-specific representations exist and 

subjects construct an independent representation for the novel other as a consequence of 

learning.  

To test for such change in similarity between neural representations for self and others 

we interleaved trials from the delegated inter-temporal choice task with ‘probe’ trials. These 

probe trials enabled us to measure repetition suppression between individuals (Figure 4.1). 

We reasoned that, if self and partner valuation mechanisms overlapped more after learning 

than before, in line with an increase in behavioural similarity, then this predicts greater 

repetition suppression at the end of the experiment than at the beginning. If, however, 

subjects constructed a representation of the novel other from their representation of self, 

then this predicts the very opposite, namely repetition suppression at the beginning of the 

experiment which disappears as subjects build a separate representation of the novel partner.  

Like the 2-partner behavioural experiment (Chapter 3), our experiment comprised three 

players: the subject (“self”), a partner whose preferences were learnt prior to scanning 

(“familiar other”) and a partner whose preferences were learnt during scanning (“novel 

other”). The familiar and novel others’ choices were simulated based on discount rates placed 

equally far apart on opposite, and counterbalanced, sides of the subject’s original discount 

rate. This meant that one partner had a smaller, and the other partner a larger, discount rate 

than the subject himself. The familiar partner was introduced to ensure that any effects were 
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driven by learning about the partner, as opposed to exercising a choice per se. The familiar 

other also controlled for non-specific time-dependent signal changes not associated with 

learning of new preferences.  

I scanned 27 subjects whilst they performed the two interleaved tasks. In choice trials, as 

in the behavioural experiment described in Chapter 3, subjects again made inter-temporal 

choices for themselves and for the two partners. In ‘probe trials’, subjects performed 

evaluations serially on behalf of different players, allowing us to measure repetition 

suppression between the value representations of different individuals (Figure 4.1B). After 

each choice trial for the novel or the familiar partner, but not after probe trials, subjects were 

given feedback about the choice the confederate had made.  

 

Figure 4.2 The shift in preference is induced by learning about the other's preferences. 
Relative shift of subjects’ own discount rate (blue background) and the discount rate of the familiar 
other (green background) towards the familiar other (green bars) and the novel other (orange bars) 
during training and scanning. In line with the 2-partner behavioural experiment, training on the 
preferences of the familiar other induced shifts of the participants’ own discount rates in the direction 
of the interaction partner’s discount rate (green part/training, t23 = 3.17, P = 0.004). During scanning, 
participants’ discount rate moved towards the discount rate of the partner they now learn about 
(novel other, t23 = 3.05, P = 0.006), but not towards the familiar other (t23 = -1.69, P = 0.10). 
Furthermore, subjects’ estimate of the familiar other’s discount rate also shifted towards the novel 
other (t24 = 2.87, P = 0.008). 

In line with our previous behavioural results, in this fMRI based experiment subjects’ 

discount rates shifted towards the discount rate of a familiar partner during preference 
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learning prior to scanning (t23 = 3.17, P = 0.004). During scanning, both subjects’ own 

discount rate (t23 = 3.05, P = 0.006), and subjects’ estimated discount rate of the familiar 

partner (t24 = 2.87, P = 0.008), shifted towards the newly learnt discount rate of the novel 

partner, with a stronger relative shift evident for subjects’ own discount rate (t22 = 2.18, P = 

0.04, Figure 4.2), but comparable absolute shifts (t22 = 0.72, P = 0.48). These preference 

shifts were therefore not simply associated with repeating the partner´s choices but instead 

are most parsimoniously explained as induced by learning a new individual’s preferences.  

4.4.2 Plasticity between neural representations of self and other 

To address whether a measured change in subjective preference is linked to plasticity in 

neural populations computing valuations for self, we focused our analysis on probe trials. 

We first established that we could measure repetition suppression by comparing brain activity 

elicited by simulating values for an agent when preceded by the same agent compared to a 

situation where an agent was preceded by another agent (Figure 4.3). Different agents were 

indicated to the subject by different colours on screen (Figure 4.1B). Unsurprisingly, we 

observed fMRI adaptation in the visual cortex (P < 0.001, peak t26 = 16.93, [30, -61, -8], 

reported here and in subsequent fMRI analyses as family wise error (FWE) corrected on 

cluster level, (Figure 4.3, (Buckner et al., 1998; Wiggs and Martin, 1998), but also in a network 

that included mPFC (P = 0.02, peak t26 = 5.76, [3, 53, -11]) and left superior temporal sulcus 

(STS, P < 0.001, peak t26 = 4.95, [-51, -13, -8]). The latter two regions are associated with 

mentalizing (Gallagher and Frith, 2003), valuation for self (Boorman et al., 2009; Hunt et al., 

2012; Kable and Glimcher, 2007) and valuation for others (Jenkins et al., 2008; Nicolle et al., 

2012). Whilst this main effect of repetition suppression does not dissociate visual from agent-

specific effects, it confirms that similarity in neural patterns evoked in a valuation network 

can be indexed by repetition suppression (Barron et al., 2013; Jenkins et al., 2008).  

We reasoned that we could use this index of neural similarity to investigate whether the 

observed shift in subjective preferences was linked to plastic changes in the valuation 

network. If the neural code depends on the subjective values of a given offer alone, then 

repetition suppression should emerge between self and novel other over the course of the 

experiment, given that discount rates for self align with discount rates for a novel other. If, 

on the other hand, the mPFC encodes value differentially depending on agent, where  

learning another’s preferences involves construction of an independent representation of this  

novel other from a representation of self, then repetition suppression should decrease over 
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the course of the experiment. Whilst a similar change in suppression might also be predicted 

between novel and familiar others, there should be no such change in suppression between 

self and familiar other if in fact we are indexing changes induced by new learning.  

 

Figure 4.3 Repetition suppression as an index of representational similarity. Displayed are 
brain areas with significantly less activity for repeated compared to changing agents on subsequent 
trials. Contrast images are thresholded at P < 0.01 uncorrected for visualization. 

We designed a contrast that measured the change in repetition suppression between self 

and novel other from block 1 to block 3, controlled for by the change in repetition 

suppression between self and familiar other over the same blocks. The only brain region to 

survive whole-brain statistical correction was in mPFC (Figure 4.4A, P = 0.01, peak t26 = 

3.82, [-12, 53, 1]), although sub-threshold clusters in the left and right STS were also present 

(P = 0.27, peak t26 = 3.77 and P = 0.48, peak t26 = 3.38, respectively). This region overlaps 

with an area involved in self-referential processing and in encoding value on probe trials 

(Supplementary Figure 4.1B,C). There were no significant effects for the opposite interaction. 

This change cannot be due to visual effects as we controlled for these both by inclusion of 

the familiar agent, and separately by the comparison between early and late blocks in the 

experiment. Consequently visual regions do not show these condition-specific changes in 

suppression (Supplementary Figure 4.2). Neither can the effect be due to novelty or 

differences in processing speed, as no differences between main effects of novel and familiar 

others were seen in this region (Supplementary Figure 4.1) or in the response times 

(Supplementary Figure 4.3). Furthermore, an equivalent contrast measuring the change in 

suppression between self and novel other, but now controlling for the change in suppression 

between familiar and novel other, revealed a similar change in activity in an overlapping brain 

region (Figure 4.4B). Hence, within the mPFC learning the preferences of a novel agent 
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specifically increased repetition suppression between representations of self and this novel 

partner. 

 

Figure 4.4 Learning-induced plasticity in mPFC. A Brain areas with a significantly greater 
increase in suppression from block 1 to block 3 between self and novel other compared to the 
increase in suppression between self and familiar other. B Areas displaying an increase in suppression 
from block 1 to block 3 between self and novel other relative to changes in suppression between 
novel and familiar other. C Parameter estimates extracted by a jack-knife procedure from the mPFC 
ROI in A, averaged across subjects. D Same parameter estimates as in C but now separated into the 
distinct components. Data are represented as mean ± SEM. Contrast images in A,B are thresholded 
at P < 0.01 uncorrected for visualization. a.u. arbitrary units 

To further investigate mPFC suppression effects, we employed a jack-knife procedure 

across subjects to extract parameter estimates from the cluster of interest. Consistent with 

the whole-brain analysis, we found a significant change in novel-to-self/self-to-novel 

suppression (Figure 4.4C, t26 = 2.86, P = 0.008), but not in self-to-familiar/familiar-to-self 

suppression from block 1 to block 3 (t26 = 0.64, P = 0.52). The change in novel-to-

familiar/familiar-to-novel suppression in the same ROI was in the same direction, but did 

not reach significance (t26 = 1.54, P = 0.14), and was smaller than the change in novel-to-
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self/self-to-novel (t26 = 1.65, P = 0.05). Since overall activity in mPFC for self trials was 

greater than activity for other trials (Supplementary Figure 4.1), sensitivity to repetition 

suppression may differ depending on the order of the two agents. To explore potential 

differences, we decomposed the contrasts described above. Changes in repetition 

suppression between self and novel other were observed in both directions (Figure 4.4D), 

but were only significant when self trials were the priming and not the test trials (Figure 4.4D 

left, ANOVA:  left, F2,78 = 3.39, P = 0.04, right F2,78 = 1.55, P = 0.21). 

4.4.3 Plasticity in mPFC predicts discount rate shifts 

 

Figure 4.5 Relationship between [SN-SF]1-3 plasticity and shift in discount rate. A Partial 
correlation between the magnitude of change in suppression between self and novel relative to the 
change in suppression between self and familiar agents over blocks and the shift in subjects’ own 
discount rate towards the novel other. B Partial correlation between the change in suppression 
between self and novel relative to the change in suppression between self and familiar over blocks 
and the shift in subjects’ estimate of the familiar other’s discount rate towards the novel other. 
Parameter estimates in A and B were extracted from the mPFC ROI shown in Figure 4.4A. To 
account for the correlation between subjects’ own shift in discount rate and the shift in their estimate 
of the familiar other’s discount rate, we performed partial correlations, i.e. the familiar shift was 
removed from behaviour and neural signal in A and the self shift was removed from behaviour and 
neural signal in B. The relationship between [FN-SN]1-3 plasticity and the shift of the familiar other’s 
discount rate towards the novel other is analysed in Supplementary Figure 4.4. a.u., arbitrary units. 

If the observed behavioural change in preference is related to learning-induced plasticity 

in value computations, then the increase in representational similarity between self and novel 

other should predict a subject’s shift in preference. The increase in self-to-novel relative to 

self-to-familiar suppression over blocks did indeed predict the shift in subjects’ own discount 

rate (partial correlation, r = 0.54, P = 0.007, Figure 3A) towards the novel other, but not the 

same shift in the subjects’ estimate of the familiar other’s discount rate (partial correlation, r 

= 0.15, P = 0.46, Figure 3B), although a direct comparison of these effects in a multiple 
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regression analysis did not reach significance (t23 = 0.71, P = 0.24). The shift in subjects’ 

estimate of the familiar other’s preferences was instead loosely related to an increase in 

representational similarity between familiar and novel other (Supplementary Figure 4.4). The 

fact that the behavioural estimate for a shift in discount rate was derived from choice trials, 

whereas the neural plasticity effect was extracted from probe trials strongly suggests that 

learning a partner’s choice induces a stable plasticity in regions involved in value 

computation.  

4.4.4 Plasticity in mPFC is predicted by surprise coding in the striatum  

A plausible mechanism for inducing plastic change is surprise or prediction error, which 

in this context arises when the familiar or the novel partner’s choices diverge from the choice 

the subject themselves would have made given the same choice context. Bayes-optimal 

estimates of this measure (see Experimental Procedures) were reflected in the posterior 

medial frontal cortex (Figure 4.6A, P = 0.04, peak t26 = 4.09, [-9, 29, 58]), a region previously 

associated with surprise coding in monkeys (Hayden et al., 2011), as well as in both insula 

and striatum (caudate nucleus) although these did not survive a stringent multiple 

comparisons correction (right insula: P = 0.16, peak t26 = 8.37, [30, 26, -8]; left insula: P = 

0.19, peak t26 = 6.25, [-33, 26, -5]; left striatum (P = 0.84, peak t26 = 3.44, [3, -25, -8]). Posterior 

medial frontal cortex (pMFC) and striatum are strongly implicated in the expression of a 

prediction error type signal in reinforcement learning (Pessiglione et al., 2006; Voon et al., 

2010), as well as in signalling a discrepancy between an individual’s behaviour and the 

behaviour of a group (Tomlin et al., 2013). An alternative measure of prediction error, where 

surprise was quantified as the discrepancy between the predicted choices of the partner and 

the partner’s actual choices, did not yield significant activity in any area of the brain.  
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Figure 4.6 Surprise as a mechanism underlying mPFC plasticity. A Brain areas correlating with 
the surprise a subject experienced on observing a partner’s choice. B Correlation between the average 
surprise encoding in the striatum, extracted from ROI in (A) and [SN-SF]1-3 plasticity in mPFC. C 
Correlation between striatal surprise correlate and the shift in subjects’ discount rates towards the 
novel other. A is thresholded at P < 0.01 uncorrected for visualization. a.u., arbitrary units. 

A striatal prediction error type signal is known to drive learning through an influence on 

cortico-striatal plasticity (Reynolds and Wickens, 2002). In line with this notion, the BOLD 

correlate of the surprise about the partner’s choice in the striatum predicted the behavioural 

shift in subjects’ own discount rate (Figure 4.6C, r = 0.50, P = 0.01) as well as the change in 

self-to-novel versus change in self-to-familiar neuronal suppression over blocks in mPFC 

(Figure 4.6B, r = 0.41, P = 0.04). No such relationship was evident for pMFC or insula 

activity and mPFC plasticity (r = 0.04, P = 0.84 and r = 0.14, P = 0.48, respectively).  

 

Figure 4.7 Mediation path diagram for discount rate shift as predicted from a striatal surprise 
signal. The striatal surprise signal predicted [SN-SF]1-3 plasticity in the medial prefrontal cortex (path 
a) and the mediator (mPFC plasticity) predicted the shift of subjects’ own discount rate towards the 
discount rate of the novel other (path b, controlled for the striatal surprise signal). Importantly, there 
was a significant mediation effect (path a*b), indicating that mPFC plasticity formally mediates the 
relationship between striatal surprise and the shift in discount rate. The direct path between striatal 
surprise and shift in discount rate, controlled for both mediators, was not significant (path c). The 
lines are labelled with path coefficients (SEs). 
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Finally, if prediction errors cause plasticity, and plasticity in turn causes the shift in 

subjects’ discount rate, then plasticity in medial prefrontal cortex should formally mediate 

the impact of the striatal surprise signal on the shift in discount rate. We used single level 

mediation to test this hypothesis (Wager et al., 2008). The path model jointly tests three 

effects required if indeed mPFC plasticity provides the link between a surprise signal and the 

shift in discount rate: namely, the relationship between striatal surprise effects and mPFC 

plasticity (path a), the relationship between mPFC plasticity and shift in discount rate (path 

b), and a formal mediation effect (path a*b) which indicates that each explains a part of the 

discount rate shift covariance while controlling for effects attributable to the other mediator. 

All three effects were significant in a  mediation analysis (path a = 0.15, SE = 0.07, P = 0.04; 

path b = 0.30, SE = 0.12, P < 0.001; path a*b = 0.05, SE = 0.03, P = 0.01, Figure 4.7) 

supporting the idea that prediction errors influence the discount rate by inducing medial 

prefrontal cortex plasticity, which in turn impacts upon choice behaviour. Hence, subjects 

with the largest striatal surprise signal at outcome of choice trials exhibited both the largest 

changes in representational similarity on probe trials, and the largest changes in preferences, 

suggesting a role for striatal prediction error signals in inducing cortical plasticity and 

associated behavioural change. A mediation analysis testing the opposite direction, i.e. a 

mediating effect of the striatal surprise signal on the relationship between mPFC plasticity 

and the shift in discount rate, was not significant (Supplementary Figure 4.5). 

4.5 Discussion 

The brain’s representational architecture involves population codes wherein individual 

neurons contribute to a multitude of computations. We set out to investigate whether 

multiple neuronal representations can be updated simultaneously by learning-induced 

plasticity targeting one computation alone. We developed a novel approach that exploited 

repetition suppression (Grill-Spector et al., 1999; Henson et al., 2000) to probe the similarity 

between distinct neural representations (Barron et al., 2013), by interleaving probe valuation 

trials with decision blocks that induced prediction errors and learning. Whilst the biophysical 

mechanisms underlying fMRI repetition suppression remain ambiguous (Sobotka and Ringo, 

1994), in a careful experimental design this approach allows inferences about population 

coding with respect to precise features of stimuli (Kourtzi and Kanwisher, 2001) or 

computations (Barron et al., 2013; Doeller et al., 2010).  
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I was interested in changes of value representational similarity over time. By asking 

subjects to evaluate presented options on behalf of themselves, a novel other whose 

preferences were acquired during on-line scanning and a familiar other whose preferences 

had previously been learnt, we could interrogate representational similarity in neuronal 

populations encoding valuation for these three agents. Learning about the preferences of a 

novel  agent had a clear behavioural consequence evident in a shift in subjects’ own, as well 

as their estimation of a familiar other’s, discount rate. This behavioural effect coincided with 

an increase in neural representational similarity in the medial prefrontal cortex. This supports 

a view that value representations in the mPFC are not aligned to the frame of reference of 

an individual. Instead, an increase in neuronal overlap tied to a shift in behavioural 

preferences suggests that the mPFC encodes agent-independent representations of 

subjective value.  

The presence of a learning-induced representational plasticity for value is likely to depend 

on generic learning mechanisms. The most influential computational account posits a role 

for a reward prediction error implemented via phasic activity of  dopamine neurons (Schultz 

et al., 1997; Steinberg et al., 2013), a putative teaching signal for cortico-striatal learning 

(Calabresi et al., 2007; O’Doherty et al., 2004; Reynolds and Wickens, 2002). Prediction errors 

align with the dimension relevant for learning in a given situation. They manifest as a sensory 

prediction error when subjects learn to predict a sensory event (den Ouden et al., 2010), a 

probability prediction error when subjects learn about reward probability (Behrens et al., 

2008) and a social expectancy prediction error when group preferences diverge from subjects’ 

own valuations (Campbell-Meiklejohn et al., 2010; Klucharev et al., 2009). In the current 

experiment a prediction error, expressed in posterior medial frontal cortex (pMFC), insula 

and striatum, corresponds to the surprise subjects experience when a partner’s choice is 

incongruent with their own preference. This accords with previous studies demonstrating 

expression of a similar signal representing a discrepancy between one’s own and a group’s 

opinion (Berns et al., 2010; Campbell-Meiklejohn et al., 2010; Falk et al., 2010; Klucharev et 

al., 2009; Tomlin et al., 2013). Crucially, my results extend on these reports by showing this 

error coding is directly related to an expression of plasticity in mPFC, a region widely 

implicated in tracking preferences for stimuli (Lebreton et al., 2009), as well as inter-temporal 

preferences (Kable and Glimcher, 2007; Pine et al., 2009).   

The mPFC region displaying the change in repetition suppression is a complex and 

heterogeneous area with strong connections to regions such as the amygdala, hippocampus, 
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hypothalamus and insula enabling access to sensory, visceral and emotional information. It 

is considered ideally placed for self-referential processing (Kelley et al., 2002; Magno and 

Allan, 2007) and for attributing value to stimuli across many reward contexts (Bartra et al., 

2013; Clithero and Rangel, 2014), and internally generated states (Bouret and Richmond, 

2010). However, a mPFC value computation is also remarkably flexible, and can occur even 

if direct experience is not available (Barron et al., 2013) or if there is a requirement for an 

abstract model of task structure (Hampton et al., 2006). This flexibility is vital in social 

cognition, where a model of the preferences and intentions of another individual needs to 

be decoupled from the physical and perceptual reality of a subject’s own internal state 

(Mitchell, 2009; Nicolle et al., 2012). Traditionally, it has been suggested that such 

computations occur in distinct circuitries, where a ventral sector of the mPFC encoding 

subjective stimulus values (Boorman et al., 2009; O’Doherty, 2004; Plassmann et al., 2007) 

is complemented by a dorsal sector representing the mental states of others (Behrens et al., 

2008, 2009; Frith and Frith, 2010; Yoshida et al., 2010). However, this notion is challenged 

by an observation that a dorsal-ventral axis can be better understood in terms of executed 

versus modelled choices (Nicolle et al., 2012). The latter observation supports the idea that 

the very same area encodes subjective value irrespective of the frame of reference, a notion 

strongly supported by our current observation that a behavioural shift towards the value of 

a novel agent is mirrored by an increase in neural overlap. 

Irrespective of the exact nature of the observed plasticity, the underlying mechanism 

would seem to necessitate an overlap in neural populations encoding both a novel other, self 

and familiar other. How exactly might the brain calculates discounting preferences with 

neural populations that are prone to the observed shifts in preference? Theoretical studies 

suggest an agent's overall preferences might arise out of a summation over a distributed set 

of discounting units (Kurth-Nelson and Redish, 2009). This is consistent with recordings in 

rat orbitofrontal cortex demonstrating a distributed encoding of inter-temporal choice 

parameters across a neuronal population (Roesch et al., 2006). Similar gradients of discount 

factors have also been found in the human striatum (Tanaka et al., 2004) and medial 

prefrontal cortex (Wang et al., 2014). This suggests that some neuronal assemblies may 

represent a preference for fast discounting, favouring smaller-sooner returns, while others 

favour slow discounting. The discounting preference of each agent would be represented by 

population codes, implementing sets of weights over these discounting assemblies. The 

prediction errors a subject perceives when the novel other’s choices differ from what they 
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would have chosen for themselves could in principle change the weights within this pool, 

resulting in altered populations codes.  

The fact that a common brain region is recruited when computing preferences for self 

and other might suggest that people initially draw on self-representations to make inferences 

about another person and only construct a novel representation through learning. Such a 

mechanism has been observed when constructing a representation for a novel good from a 

simultaneous activation of familiar components (Barron et al., 2013). However, this theory 

makes opposite neural predictions as it predicts repetition suppression at the beginning of 

the experiment as subjects draw on the same representation to choose for self and other. In 

this scenario a separate representation for a novel other is built over time and would predict 

disappearance of repetition suppression. Instead, we observe an increase in repetition 

suppression across time, an effect reminiscent of an increase in similarity between 

representations observed when subjects repeatedly evoke independent memories (Barron et 

al., 2013). Importantly, we can demonstrate this plasticity is not solely a neuronal 

phenomenon but also has profound behavioural consequences.  

Note that subjects grow increasingly familiar with the novel other’s preferences as the 

task progresses, whereas familiarity remains constant for the familiar other in the sense that 

there is no new learning in relation to this other. Since psychological constructs such as 

familiarity, but also similarity and physical proximity, have previously been demonstrated to 

upregulate mPFC activity (Jenkins et al., 2008; Krienen et al., 2010; Mitchell et al., 2006; 

Tamir and Mitchell, 2011), this raises the question whether an increase in familiarity might 

drive the plasticity effect. Importantly, our data is not consistent with such an account. First, 

activity for familiar and novel other does not differ in mPFC, not even at the beginning of 

the experiment, suggesting that the mPFC in our task does not respond to familiarity per se. 

Secondly, a mediation analysis suggests that it is a striatal surprise signal, the very opposite 

of familiarity, that drives the plasticity effect, which in turn drives the behavioural shift.  

In conclusion, my data details a neuronal mechanism by which personal traits are directly 

susceptible to social influence. Such plasticity might be one of the key features underlying 

learning, because it allows for an integration of past experience when one has to extract 

information from novel samples. More broadly these findings pave the way for further 

studies of human social interactions at a more mechanistic level.  
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4.6 Supplementary Figures 

 

Supplementary Figure 4.1 MPFC activity for self, other and value. A Activity for self, novel and 
familiar other over blocks in the mPFC. A repeated measures ANOVA with within-subject factors 
“block” and “agent” showed that activity differed over blocks (F2,52 = 13.21, P < 0.001) and between 
agents (F2,52 = 4.19, P = 0.05). Furthermore, we found a block x agent interaction (F4,104 = 3.09, P = 
0.02). Post-hoc tests revealed that activity in block 1 was different from activity in blocks 2 and 3 (P 
= 0.005 and P < 0.001, respectively), but activity in blocks 2 and 3 did not differ (P = 0.88). Activity 
between familiar and novel other did not differ (P = 1.0), suggesting that the plasticity effect we 
report cannot be explained by differences in novelty/familiarity for the two agents. Parameter 
estimates were extracted from ROI shown in Figure 4.4 (see inset). B Overlap between self > other 
contrast and mPFC plasticity. Mean activity on self trials was higher than on other trials in left lateral 
parietal cortex (P < 0.001, peak t26 = 6.26, peak [-39, -79, 34]) and in the mPFC (P < 0.001, peak t26 
= 6.08, peak [9, 41, -5]). Activity in the mPFC overlapped with the region showing an increase in 
suppression between self and novel, controlled for by an increase in suppression between self and 
familiar as depicted in Figure 4.4. The opposite contrast (other > self) only revealed activity in the 
visual cortex (P < 0.001, peak t26 = 8.83, peak [0, -94, 7], not depicted). C Subjective value coding on 
probe trials and mPFC plasticity. Subjective value was encoded in left primary motor cortex (P < 
0.001, peak t26 = 9.54, peak [-36, -25, 55]), in right parietal cortex (P < 0.001, peak t26 = 5.04, peak 
[54 -16 22]), in Brodmann area 10 (P = 0.031, peak t26 = 4.37, peak [-18, 62,7]) and in mPFC (P = 
0.055, peak t26 = 4.26, peak [9, 44, 10]). Activity in the mPFC overlapped with the region showing an 
increase in suppression between self and novel, controlled for by an increase in suppression between 
self and familiar as depicted in Figure 4.4. Results are reported at a cluster-defining threshold of P < 
0.01 uncorrected combined with a family-wise-error (FWE) corrected significance level of P < 0.05. 
All post-hoc tests were Bonferroni-corrected for multiple comparisons. a.u., arbitrary units. 
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Supplementary Figure 4.2 Repetition suppression in visual areas A ROI used to interrogate 
plasticity effects in visual regions (thresholded at P < 0.001 uncorrected for visualization). It was 
defined from a contrast indexing a main effect to any visual event in all three blocks. B Visual areas 
displayed significantly less activity when the agent from a preceding trial was repeated than when a 
different agent preceded a trial (F3,104 = 14.25, P < 0.0001, block 1 only). C Suppression increased 
over blocks with no difference between conditions (F3,104 = 0.37, P = 0.78). D The difference in 
mean activity on same-agent-preceding trials versus different-agent-preceding trials did not change 
over blocks (F2,78 = 0.32, P = 0.73). SS: self-preceded-by-self, NN: novel-preceded-by-novel, FF: 
familiar-preceded-by-familiar, SN: novel-preceded-by-self, NS: self-preceded-by-novel, SF: familiar-
preceded-by-self, FS: self-preceded-by-familiar, NF: familiar-preceded-by-novel, FN: novel-
preceded-by-familiar. a.u., arbitrary units. 
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Supplementary Figure 4.3 Response time analyses. A Response times for self, novel and familiar 
other probe trials over blocks. A repeated measures ANOVA with within-subject factors “block” 
and “agent” showed different response times between blocks (F2,52 = 21.28, P < 0.001), agents (F2,52 
= 19.8, P < 0.001) as well as a block x agent interaction (F4,104 = 2.88, P = 0.03). Post-hoc tests reveal 
differences between all blocks (blocks 1/2: P = 0.002, blocks 1/3: P < 0.001, blocks 2/3: P = 0.04). 
Furthermore, subjects respond faster for self than for other (P < 0.001 for self/novel and 
self/familiar). Importantly, we found no significant difference in response times for novel and 
familiar other (P = 0.29), confirming that there is no novelty/familiarity effect. B To test for 
behavioural suppression effects that are in line with the neural suppression effects, we performed a 
repeated measures ANOVA with Greenhouse-Geisser correction with within subject factors “block” 
and “suppression condition” (SS/NN/FF, SN/NS, SF/FS, FN/NF) on subjects’ response times on 
probe trials. We found a main effect of block (F1.4,37.5 = 21.3, P < 0.001), a main effect of condition 
(F2.3,60.6 = 41.7, P < 0.001), and a block x condition interaction (F4.5,118.8 = 4.5, P = 0.001). Post-hoc 
paired tests revealed that SS/NN/FF differed from all other conditions (P < 0.001), but SN/NS, 
SF/FS and FN/NF did not differ from each other (all comparisons P = 1.0). This emphasizes that 
the neural suppression effects between self and novel, and between self and familiar, respectively, 
cannot simply be explained by faster processing speed. C Correlation between response time 
facilitation for the novel other (RT novel block 1 – RT novel block 3) – (RT familiar block 1 – RT 
familiar block 3) and [SN-SF]1-3 plasticity effect in mPFC (ROI from Figure 4.4A). Response time 
facilitation, a crude index of increasing familiarity, shows a trend towards a negative correlation with 
the neural plasticity effect (r = -0.35, P = 0.07). This is in line with an observation that the opposite 
of familiarity, namely surprise, is a better predictor of mPFC plasticity. D Correlation between 
response time facilitation for the novel other and behavioural discount rate shift of self towards the 
novel other (r = -0.15, P = 0.4). All post-hoc tests were Bonferroni-corrected for multiple 
comparisons. SS: self-preceded-by-self, NN: novel-preceded-by-novel, FF: familiar-preceded-by-
familiar, SN: novel-preceded-by-self, NS: self-preceded-by-novel, SF: familiar-preceded-by-self, FS: 
self-preceded-by-familiar, NF: familiar-preceded-by-novel, FN: novel-preceded-by-familiar. a.u., 
arbitrary units. 
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Supplementary Figure 4.4 Relationship between [FN-SN]1-3 plasticity and shift in discount 
rate. A Partial correlation between the change in suppression between familiar and novel other 
controlled for by the change in suppression between self and novel other and the shift of subjects’ 
own discount rate towards the novel other. B Partial correlation between the change in suppression 
between self and novel other controlled for by the change in suppression between self and familiar 
other and the shift of subjects’ estimate of the familiar other’s discount rate towards the novel other. 
Parameter estimates in A and B were extracted from the mPFC ROI shown in Figure 4.4. To account 
for the correlation between subjects’ own shift in discount rate and the shift in their estimate of the 
familiar other’s discount rate, we performed partial correlations, i.e. the familiar shift was removed 
from both signals in A and the self shift was removed from both signals in B. These analyses indicate 
that the change of familiar-to-novel suppression versus the change in self-to-novel suppression 
predicted a shift in subjects’ estimate of the familiar other’s discount rate (partial correlation, r = 0.40, 
P = 0.05, B) but not the shift in subjects’ own discount rate (partial correlation, r = -0.01, P = 0.97, 
A). This emphasizes the relationship between increasing neuronal similarity between two agents’ 
value representations and increasing behavioural similarity, as depicted in Figure 4.5. However, note 
that these data are merely suggestive, as removal of the rightmost data point in B affects the 
significance of the result. a.u., arbitrary units. 
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Supplementary Figure 4.5 Mediation path diagram for discount rate shift as predicted from 
the mPFC plasticity signal. The mPFC plasticity did not predict the striatal surprise about the 
other´s choice (path a, p = 0.054), and the mediator (striatal surprise) did not predict the shift of 
subjects’ own discount rate toward the discount rate of the novel other (path b, controlled for the 
mPFC plasticity signal, p = 0.2). There was also no significant mediation effect (path ab, p = 0.17), 
demonstrating that striatal surprise does not formally mediate the relationship between mPFC 
plasticity and the shift in discount rate. However, the direct path between the mPFC plasticity signal 
and the shift in discount rate, controlled for both mediators, was highly significant (path c’, p = 
0.0007). The lines are labeled with path coefficients (SEs). 
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5.1 Abstract 

The hippocampal-entorhinal system encodes a map of the relationships between 

landmarks in space that is used in spatial navigation. Goal-directed behaviour outside of 

spatial navigation similarly requires a neural representation of the relationship between 

objects, events and other types of information, and such abstract forms of relational 

knowledge rely on the same neural system. It is not known whether such abstract information 

can profit from organisational principles that govern spatial relationships. Here, we use 

human fMRI adaptation to show that the entorhinal cortex can represent metric relationships 

between abstract objects. These metrics enable us to reconstruct a simple map-like 

knowledge structure directly from the entorhinal BOLD signal in a situation where 

relationships are non-spatial rather than spatial, discrete rather than continuous and 

unavailable to conscious awareness.  

5.2 Introduction 

Animals efficiently extract abstract relationships between landmarks, events and other 

types of conceptual information, often from limited experience. Knowing such regularities 

can help us act in an environment, because the relationships between items that have never 

been experienced together can easily be computed and exploited for making novel inference. 

In physical space, spatially tuned cells in the hippocampal-entorhinal system have precise 

place (O’Keefe and Dostrovsky, 1971) and grid (Hafting et al., 2005) codes that may form 

the neural basis of a ‘cognitive map’ (O’Keefe and Nadel, 1978). It is likely that the particular 

form of these representations enables rapid computations of critical features of spatial 

relationships such as distances and vector paths (Bush et al., 2015; Stemmler et al., 2015). 

The potential for such rapid online computations embedded into the neuronal 

representations may explain how animals can find novel paths through space (McNaughton 

et al., 2006; Mittelstaedt and Mittelstaedt, 1980) or rapidly reroute when obstacles are 

introduced (Alvernhe et al., 2011) or removed (Alvernhe et al., 2008).  Indeed, in humans, 

signals that encode distance metrics between landmarks (Howard et al., 2014; Morgan et al., 

2011), and directions to goals (Chadwick et al., 2015) can be read out directly from fMRI 

data in entorhinal cortex.  
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The hippocampal-entorhinal system can also encode a metric of non-spatial relationships 

if these are directly analogous to physical space. For example, the hippocampus encodes the 

relationship between stimuli varying along a one-dimensional continuous scale such as time 

(Ezzyat and Davachi, 2014) as well as the angles between locations in an abstract two-

dimensional stimulus space, where both stimulus dimensions vary along a continuous scale 

(Tavares et al., 2015). In the entorhinal cortex, a hexagonally-symmetric code can be 

observed when humans navigate two-dimensional conceptual knowledge, suggesting that 

grid cells may provide a relational code for non-spatial relational information varying along 

two continuous, abstract dimensions (Constantinescu et al.). However, most relational 

problems that are of fundamental importance to memory and cognition cannot be mapped 

onto one or two continuous axes. Instead, relationships between stimuli are often high-

dimensional, discrete rather than continuous, and unavailable to self-reported awareness. For 

example, transitive inference, an essential component of intelligent reasoning across species 

and cognitive domains, typically requires a model of the discrete relationships between 

stimuli in our environment (Tervo et al., 2016).  

Notably, the hippocampus also supports the formation of associations between non-

spatial and discrete stimuli across arbitrary stimulus dimensions, such as temporal co-

occurrence (Schapiro et al., 2012, 2013) or social rank (Kumaran et al., 2012) and organizes 

behaviourally relevant stimulus categories in a hierarchy (McKenzie et al., 2014). The 

hippocampus also generalizes over individual episodes (Komorowski et al., 2013) and 

combines newly formed associations between discrete stimuli to enable transitive inference 

(Collin et al., 2015; Heckers et al., 2004; Horner et al., 2015; Preston et al., 2004; Schlichting 

et al., 2015), similar to the computation of novel paths in physical space. Associations can 

also directly influence behaviour in novel decision making situations by allowing value to 

spread across associated stimulus representations (Wimmer and Shohamy, 2012). 

While the hippocampal-entorhinal system therefore clearly forms relational codes for 

discrete events which enables cognitive flexibility across non-spatial domains, it is unknown 

what metric underlies this organization and whether the computations are the result of an 

explicit map-like representation of abstract relationships where distances between discrete 

stimuli are preserved. If the representation of non-spatial relational information relies on the 

same neural algorithms as the representation of physical space (Buzsáki and Moser, 2013), 

then non-spatial and discrete relational information might share the neural codes organizing 

spatial relationships in a map and non-spatial relationships could profit from the same 
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organizational principles that govern physical space. Notably, a map-like representation of 

abstract relational knowledge would also provide new constraints on the computations that 

the hippocampal-entorhinal system is likely to perform in non-spatial reasoning.   

Here, we explicitly tested this notion using a functional magnetic resonance imaging 

(fMRI) adaptation paradigm that allowed us to quantify the relationships between neuronal 

object representations in a neuronal representational space following an implicit learning 

paradigm. We presented human participants with sequences of objects where stimulus 

transitions were drawn from random walks along a graph structure. Within entorhinal cortex, 

a map-like organisation of the relationships between object representations could be 

extracted from functional magnetic resonance imaging (fMRI) adaptation data acquired on 

the subsequent day. This suggests that the brain automatically organizes abstract relational 

information in a map even if the relationships between objects are non-spatial rather than 

spatial, discrete rather than continuous and unavailable to conscious awareness. 

5.3 Methods 

5.3.1 Subjects  

23 volunteers (aged 18-31, mean age ± std 23.5 ± 3.7 years, 15 males) with normal or 

corrected-to-normal vision and no history of neurological or psychiatric disorder participated 

in this experiment. All subjects gave written informed consent and the study was approved 

by the University College London Hospitals Ethics Committee. The study took place at the 

Wellcome Trust Centre for Neuroimaging. Subjects were naïve to the purpose of the 

experiment.  

5.3.2 Stimuli and task 

31 coloured and shaded object images which were similar in terms of their familiarity and 

complexity were selected from the “Snodgrass and Vanderwart ‘Like’ Objects’ picture set 

(http://wiki.cnbc.cmu.edu/Objects, Rossion and Pourtois, 2004). For each subject, a subset 

of 12 objects was chosen and randomly assigned to the 12 nodes of the graph shown in 

Figure 5.1A. On day 1, subjects were exposed to objects sequences generated from a random 

walk on the graph, where only objects that were directly connected to an object by a link 

could follow a presentation of this object. To avoid local repetitions we constrained 

http://wiki.cnbc.cmu.edu/Objects
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sequences such that at least 3 objects had to occur between any two presentations of the 

same object. Each object was randomly presented in one of two orientations, which were 

mirror images of each other.  

 

Figure 5.1 Experimental design. A Graph structure, used to generate stimulus sequences on day 
1.  Trial transitions were drawn from random walks along the graph. B Objects on reduced graph, 
presented to subjects in the scanner on day 2. Trial transitions were random. In both sessions, 
participants performed simple behavioural cover tasks. 

Before the start of the experiment, subjects were shown the entire set of 12 stimuli and 

instructed to remember which of two buttons to press for a particular object orientation. 

During the actual training, subjects were instructed to press the button associated with the 

stimulus orientation while watching the objects sequences as quickly and accurately as 

possible. Visual feedback after each button press indicated whether a response was correct. 

Key assignment was counterbalanced across subjects. Subjects learnt to perform the task 

quickly and accurately (Supplementary Figure 5.1). Stimuli were presented for 2 s and each 

experimental block consisted of 133 object presentations. Subjects performed this 

experiment for 12 blocks in total. Between blocks (ca. every 5 min), they were free to take 

self-paced breaks. 

On the next day, subjects were presented with object sequences in the scanner. Only the 

7 objects corresponding to the locations illustrated in Figure 5.1B were presented to reduce 

the total number of stimulus-stimulus transitions and thereby increase statistical power for 
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our key question of interest. Furthermore, stimulus transitions did not follow the graph 

structure, but were instead randomized with a constraint that each of the 42 possible object 

transitions occurred exactly 10 times per block (objects were never repeated).  

The fMRI experiment consisted of 421 items per run and 3 experimental runs. Stimuli 

were presented for 1 s, with a jittered inter-trial interval (ITI) generated from a truncated 

Poisson distribution with a mean of 2s. While observing the object sequences subjects 

performed a cover task of infrequently reporting by button press whether a little grey patch 

had occurred on a preceding trial. The patch was present on a randomly selected 50% of the 

objects. Trials on which subjects had to report the existence of a grey patch were signalled 

by a green cross during the inter-stimulus-interval instead of the standard white cross. The 

cross was green exactly once after each of the 42 possible transitions, i.e. in 10% of the total 

number of trials. In 50% of those cases, a patch had been present on the preceding trial. 

Each correct button press was rewarded with £0.10 paid out in addition to a £33 show-up 

fee to ensure that subjects attended to the stimuli. Subjects received a brief training on this 

task before they performed it in the scanner. Key assignment was counterbalanced across 

subjects. Subjects performed the cover task very well (correct performance rate across 

subjects: 94% ± 3%, mean ± s.e.m.) confirming that they paid attention to the presented 

objects throughout the duration of the scan.  

5.3.3 fMRI data acquisition and pre-processing 

Visual stimuli were projected onto a screen via a computer monitor. Subjects indicated 

their choice using an MRI-compatible button box. 

MRI data was acquired using a 32-channel head coil on a 3 Tesla Allegra scanner (Siemens, 

Erlangen, Germany). A T2*-weighted echo-planar (EPI) sequence was used to collect 43 

transverse slices (ascending order) of 2 mm thickness with 1-mm gap and in-plane resolution 

of 3x3 mm, a repetition time of 3.01 s and an echo time of 70 ms. Slices were tilted by 30° 

relative to the rostro-caudal axis and a local z-shim with a moment of -0.4mT/m was applied 

to the OFC region (Weiskopf et al. 2006). The first five volumes of each block were discarded 

to allow for scanner equilibration. After the experimental sessions, a T1-weighted anatomical 

scan with 1x1x1 mm resolution was acquired. In addition, a whole-brain field map with dual 

echo-time images (TE1 = 10 ms, TE2 = 14.76 ms, resolution 3x3x3 mm) was obtained to 

measure and later correct for geometric distortions due to susceptibility-induced field 

inhomogeneities.  
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We performed slice time correction, corrected for signal-bias and realigned functional 

scans to the first volume in the sequence using a six-parameter rigid body transformation to 

correct for motion. Images were then spatially normalized by warping subject-specific images 

to an MNI reference brain, and smoothed using an 8 mm full-width at half maximum 

Gaussian kernel. All pre-processing steps were performed with SPM12 (Wellcome Trust 

Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm).   

5.3.4 fMRI data analysis 

We implemented two event-related general linear models (GLM) to analyse the fMRI 

data. The first GLM contained separate onset regressors for each of the 7 objects with a 

patch, and without a patch. Each onset regressor was accompanied by a parametric regressor 

indicating the distance between the object on trial t and the preceding object on trial t-1 on 

the graph presented in Figure 5.1B (distance 1, 2 or 3). Furthermore, a button press regressor 

was included as a regressor of no interest. Trials associated with a button press, and the two 

subsequent trials were not included in the main regressors to avoid button-press related 

artefacts. All regressors were convolved with a canonical hemodynamic response function. 

Because of the sensitivity of the BOLD signal to motion and physiological noise, we included 

six motion regressors obtained during realignment as well as ten regressors for cardiac phase, 

six for respiratory phase and one for respiratory volume extracted with an in-house 

developed Matlab toolbox as nuisance regressors (Hutton et al., 2011). Models for cardiac 

and respiratory phase and their aliased harmonics were based on RETROICOR (Glover et 

al., 2000). Sessions were modelled separately within the GLM.  

In the second GLM, all 42 possible object transitions (object 1 preceded by object 2; 

object 1 preceded by object 3, …, object 7 preceded by object 6) were modelled separately 

for patch trials and no-patch trials. Furthermore, button presses were included as a regressor 

of no interest. All regressors were convolved with a canonical hemodynamic response 

function. Again, motion and physiological noise were regressed out by including the six 

motion regressors obtained during realignment as well as ten regressors for cardiac phase, 

six for respiratory phase and one for respiratory volume as nuisance regressors(Hutton et al., 

2011). 

To investigate whether activity scales with distance on the graph in a whole-brain analysis, 

we assessed the effect of the parametric distance modulator for the non-patch trials in GLM 

1. The contrast images of all subjects from the first level were analysed as a second-level 

http://www.fil.ion.ucl.ac.uk/spm
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random effects analysis. We report our results in the entorhinal cortex, as this was our a priori 

region of interest, at a cluster-defining statistical threshold of p < 0.001 uncorrected, 

combined with small volume correction (SVC) for multiple comparisons (peak-level family-

wise error (FWE) corrected at p < 0.05). For the SVC procedure we used two different 

anatomical masks. The first mask consisted of the entorhinal cortex and subiculum alone 

and was received with thanks from Martin Chadwick (Chadwick et al., 2015, Supplementary 

Figure 5.2A). The second mask also contained other medial temporal lobe regions implicated 

in encoding physical space and comprised hippocampus,  entorhinal cortex and 

parahippocampal cortex as defined according to the maximum probability tissue labels 

provided by Neuromorphometrics, Inc (Supplementary Figure 5.2B). Activations in other 

brain regions were only considered significant at a level of P < 0.001 uncorrected if they 

survived whole brain FWE correction at the cluster level (P < 0.05). While no areas survived 

this stringent correction for multiple comparisons, other regions are reported in the 

Supplementary Material at a threshold of P < 0.01 uncorrected for multiple comparisons for 

completeness (Supplementary Figure 5.3).  

To independently test a distance-dependent scaling of activity within entorhinal cortex we 

defined two different regions of interest (ROIs) based on GLM 2. The first region of interest 

was defined on the basis of decreased activity in transitions where the preceding object was 

directly connected with the current object (e.g. regressors corresponding to transition 1-2, 6-

4 or 5-7, see Supplementary Figure 5.1C) relative to all other transitions (e.g. regressors 

corresponding to transition 4-2, 7,4 or 1-7, i.e. [non-connected - connected]). This contrast 

revealed that clusters in bilateral entorhinal cortex show more adaptation if a preceding 

object is connected with a currently presented object, relative to a situation where the 

preceding objects is two or three links away (green, Figure 5.2B, and Supplementary Figure 

5.3C). This defined a region of interest (thresholded at a p-value of 0.01) from which we then 

extracted parameter estimates for each of the 42 no-patch transitions and tested for an 

orthogonal distance effect, namely whether activity differed for transitions with distance 2 

relative to transitions of distance 3 using a two-sided t-test.  

In a second, independent, test we defined a bilateral entorhinal ROI based on the 

following contrast: [transitions with 3 links between the relevant objects] - [transitions with 

2 links between the relevant objects] for non-patch trials. This contrast is orthogonal to the 

first contrast, and identified brain regions that responded more strongly on a trial if the 

preceding object was 3 links, rather than 2 links away (red, Figure 5.2B and Supplementary 
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Figure 5.3). Again, we extracted parameter estimates for each of the 42 non-patch onset 

regressors from this ROI, and performed an orthogonal test for distant-dependent scaling 

by investigating whether activity in this region was also significantly different for connected 

vs. non-connected objects (e.g. transition 1-2, 6-4 or 5-7 versus transition 4-2, 7,4 or 1-7, 

Supplementary Figure 5.1C).  

Note the distance-dependent scaling effects cannot be explained by object-specific 

differences in activity within these ROIs. While the mean activity for different objects differs 

slightly, but non-significantly (Supplementary Figure 5.4A,C,E), removing these main effects 

by subtracting the mean activity for each object before performing the above described 

analyses does not alter the results (Supplementary Figure 5.4B,D,F). 

In a further independent test of a distance-dependent scaling of activity in the entorhinal 

cortex, we extracted parameter estimates from a region of interest defined based on an 

independent study investigating the representation of a geocentric goal direction in the 

entorhinal/subicular region (Chadwick et al., 2015). Specifically, we extracted parameter 

estimates for the 42 non-patch transitions from the peak voxel reported in his study (MNI 

coordinates: [−20, −25, −24 ]). This definition of a region of interest was non-biased, and 

allowed us to test directly test for a distance-dependent scaling of activity. We first performed 

a one-way ANOVA on the parameter estimates sorted according to distance (Figure 5.3E). 

To investigate whether information is organized with respect to the distance relationship or 

with respect to the average time that passed between the occurrence of two objects during 

training, we performed a multiple linear regression. In this regression analysis, we included 

one regressor denoting the distance between object pairs (1, 2 and 3) and second regressor 

accounting for the number of objects that had occurred between any pair of objects 𝑖 and 𝑗 

during training. Since the duration of object presentations and the ITI during training were 

constant, this measure was directly proportional to the time elapsed between the occurrence 

of the two objects. The dependent variable in the regression analysis was the neural activity 

for the 42 non-patch transition regressors extracted from this independently defined peak 

voxel (Figure 5.3A). To test for the directionality of the distance effect in the entorhinal 

cortex, we exploited the fact that subjects were not exposed to object transitions in the two 

directions (e.g. 5 followed by 3 vs. 3 followed by 5) equally often. In fact, across subjects 

there was a large variability in the absolute difference between the number of times one 

direction vs. the other direction were experienced during training (Figure 5.3B). To test for 

non-directionality in the neural signature, a feature of a map-like structure, we converted the 
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number of times each transition was experienced into a distance measure for each individual 

subject according to the following equation: 

 𝑑 = 1 −  
c

1 + cmax
 (5.1) 

Here, d denotes the length of the shortest path between two connected objects. It is 

computed based on the number of times this particular transition was experienced during 

training (c) relative to the number of times the transition that was visited most often during 

training was experienced (cmax). The length of the path between objects that were two or 

three links away was then computed as the single-source shortest path between these objects 

(by adding the pathlengths for connected objects linking these two objects and choosing the 

shortest one). To compute the ‘symmetric shortest path measure’, the directional path-length 

measures (e.g. 5-2 and 2-5) were averaged. The directional, and the symmetric shortest path 

measures were used as regressors to predict the neural signal extracted from the peak voxel 

(Figure 5.3C). 

To visualize the representation of the graph structure in the entorhinal cortex, we 

performed multi-dimensional scaling (MDS) on the neural activity extracted from the same 

peak voxel. MDS arranges objects spatially such that the distances between them in space 

correspond to their similarities as defined by the distance matrix as well as possible. Here, 

we estimated the configuration of objects in two dimensions using the corresponding inbuilt 

matlab function. Specifically, MDS was performed on a matrix denoting the mean neural 

activity across subjects for each pair of transitions. For example, element 2-5 in the matrix 

corresponded to the average activity across subjects on trials where object 5 was preceded 

by object 2 and element 5-2 corresponded to the average activity across subjects on trials 

where object 2 was preceded by object 5. Because neural activity scales with distance, this 

matrix effectively corresponds to a distance or similarity matrix. Note that multi-dimensional 

scaling can only be performed on symmetric matrices with positive entries. We therefore 

normalized the matrix by subtracting the minimum value of the matrix and adding 1, and 

then symmetrized it by averaging the top and the bottom triangles.  

To test for a specificity in the distance effect, we also extracted parameter estimates from 

an ROI located in the visual cortex defined based on a main effect of object onset across 

blocks (thresholded at t > 6) and performed the same analyses as in the entorhinal cortex 

(Supplementary Figure 5.3F).  
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5.4 Results  

We first exposed 23 human participants to object sequences whose stimulus transitions, 

unbeknownst to them, were determined by a random walk in a graph (Figure 5.1A). Subjects 

performed a behavioural cover task, in which they learned to associate a random stimulus 

orientation with a button press. In the task instructions, any reference to a sequence or an 

underlying structure was avoided. After the fMRI experiment subjects were debriefed and 

none reported any explicit knowledge of structure in the task. To test whether this exposure 

to object sequences induced implicit knowledge about the graph, we scanned the subjects on 

a subsequent day using fMRI while exposing them to a subset of the same objects presented 

in a random order (only a reduced graph was presented to increase statistical power, Figure 

5.1B). In 1/10th of the fMRI trials, subjects performed an unrelated cover task, reporting 

whether a grey patch was present on the screen. Neither accuracy nor reaction time in this 

task depended on the object on screen or the transition structure (Supplementary Figure 5.1).  

We exploited fMRI adaptation (Grill-Spector et al., 2006) to investigate the 

representational similarity for different objects on the graph. We reasoned that in regions 

encoding a map-like representation of the overall task structure, the degree of similarity in 

neural representation, and therefore the fMRI adaptation (Kourtzi and Kanwisher, 2001), 

should decrease as a function of distance between items on the graph. Based on this 

reasoning we first looked for brain regions whose fMRI response to each object increased as 

a linear function of the graph-distance of the preceding item. We focused our analysis on the 

hippocampal-entorhinal system, as this medial temporal lobe region is considered the 

substrate for encoding maps of space.  

This adaptation analysis revealed a peak bilaterally in the entorhinal cortex (Figure 5.2A, 

family-wise error-corrected at peak level within a bilateral entorhinal cortex/subiculum mask, 

left P = 0.014, peak t22= 3.78, [-18, -19, -22] and right P = 0.006, peak t22 = 4.75, [24, -25, -

22]. A right, but not the left, peak also survived SVC for a larger region of interest (ROI) 

comprising the hippocampus, parahippocampal cortex and entorhinal cortex, left P = 0.058 

and right P = 0.026, see ROIs in Supplementary Figure 5.2).  
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Figure 5.2 fMRI adaptation in the entorhinal cortex decreases with distance on the graph. A 
Whole-brain analysis showing a decrease in fMRI adaptation with graph distance in the entorhinal 
cortex, thresholded at P < 0.01, uncorrected for visualization. B Within entorhinal cortex, green 
indicates greater suppression if the preceding stimulus was a neighbour relative to a stimulus two or 
three links away. Red indicates greater suppression if a preceding stimulus was two links away than 
three links away. The depicted areas were used as regions of interest for analyses in C (green) and D 
(red). C Parameter estimates for link 2 vs link 3 transitions extracted from the green entorhinal ROI 
in B. Other brain areas do not show this increase in activity with distance (Supplementary Figure 5.3). 
D Parameter estimates extracted from the red entorhinal ROI in B, sorted according to whether 
objects were connected on the graph or not. E Parameter estimates extracted from the peak MNI 
coordinate reported in Chadwick et al. (2015), [−20, −25, −24] and sorted according to distance. 
Error bars show mean and s.e.m.; a.u., arbitrary units. 

To confirm the statistical robustness of the effect, and to test whether it reflected a gradual 

increase with distance, we separated the effect into two orthogonal components. These 

components comprised the difference between connected links (length 1) and all other 

transitions (lengths 2,3; Figure 5.2B, green), and the difference between transitions of length 

2 and those of length 3 (Figure 5.2B, red). These two independent contrasts were used to 

define ROIs bilaterally in overlapping regions of the entorhinal cortex (both thresholded at 

p < 0.01 uncorrected; contrast 1: left peak t22= 3.71; [-21, -22, -25] and right peak t22= 3.99; 
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[21, -28, -22], contrast 2: left peak t22= 3.21, [-12, -16, -25] and right peak t22= 4.04, [21 -19 -

28]). Because of their statistical independence, we could use the ROI from one contrast to 

extract data for the corollary test (t22 = 2.27, p = 0.03 for length 2 vs. length 3 in ROI 1, 

Figure 5.2C; and t22= 2.21, P = 0.04 for connected vs. all other links in ROI 2, Figure 5.2D). 

This pair of tests suggest that the fMRI adaptation faithfully represents the link distance. 

These tests obviate questions of multiple comparisons, because in each case the data is 

selected from one contrast, and an orthogonal contrast was used for the test statistic. 

To further demonstrate this within a single test, we used a peak location taken from an 

independent study investigating spatial maps (Chadwick et al., 2015). Extracting data from 

this coordinate (ROI 3) revealed a linear effect of graph distance (Figure 5.2E, F2,44 = 10.04, 

p < 0.001), and correspondingly a significant difference between distances of lengths 1 and 

3 (t22 = 3.71, P = 0.001) and lengths 2 and 3 (t22 = 3.19, P = 0.004), but not between distances 

of lengths 1 and 2 (t22 = 1.67, p = 0.11).     

Although this distance effect is suggestive of a map-like organisation, it might also merely 

reflect the temporal proximity between two objects during training. In a direct comparison 

of the temporal versus distance relationship between pairs of objects, the number of links 

(t22 = 3.29, P = 0.003), but not time (t22 = 1.27, P = 0.22) explained the independently 

extracted neural signal (paired t-test: t22 = 2.52, P = 0.02, Figure 5.3A). Furthermore, 

relationships between items arranged in a map-like structure are non-directional. Our 

subjects were not constrained to experience each pair of transitions an equal number of times 

(Figure 5.3B). Based upon this we could test whether the fMRI signal was better predicted 

by the true or symmetrized distance between any two objects. We constructed a measure of 

the shortest path between each pair of objects according to the actual number of times each 

transition was experienced by a subject during training (Online Methods). When allowing 

this measure to compete with its symmetrized self in a linear model, it was the symmetrized 

version alone that predicted the fMRI suppression effect (Figure 5.3C, t22 = 2.66, P = 0.01 

and t22 = -1.61, P = 0.12).  
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Figure 5.3 Relational information is organized as a map. A Linear regression on neural activity 
with number of links and average time between two objects during training as regressors, t22 = 2.52, 
P = 0.02. B Absolute difference in the number of times a transition was visited in one vs. the other 
direction (e.g. 5 preceded by 1 vs. 1 preceded by 5) for all subjects. C Multiple linear regression on 
neural activity with the shortest path between objects, and the symmetrized shortest path between 
objects as regressors. D 7x7 matrix representing the average fMRI signal in response to an object 
depending on which other object preceded, averaged across subjects and symmetrized. This matrix 
was used for the MDS visualized in E. E Visualization of the localization of the object representations 
in a 2-dimensional space according to multiple-dimensional scaling. Lines indicate transitions 
experienced during training. All analyses were performed on data extracted from the peak MNI 
coordinate reported in Chadwick et al. (2015), [−20, −25, −24]. Error bars show mean and s.e.m.; 
a.u., arbitrary units. 
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In order to test whether these map-like features are a consequence of a map-like 

organisation, we organised the signal into a 7x7 matrix with each matrix element reflecting 

the mean fMRI response across subjects to transitions between the corresponding pairs of 

objects (Figure 5.3D). For example, element [2,7] in this matrix is the average response across 

all subjects when they see object 7 on the graph preceded by object 2. Because the signal is 

suppressed for nearby objects, this matrix is analogous to a distance matrix. When we applied 

multidimensional scaling to visualise the most faithful 2-dimensional representation of 

distances in this matrix, the graph structure of our experimental map was recovered despite 

the subjects’ professed ignorance of any such organisation (Figure 5.3E). Notably, the data 

were extracted from an independent ROI taken from an experiment investigating maps in 

allocentric physical space (Chadwick et al., 2015).  

5.5 Discussion 

The hippocampal-entorhinal system is engaged when an animal navigates in a physical 

environment and acquires flexible knowledge about spatial relationships. In mammals, the 

hippocampal-entorhinal system contributes to spatial navigation by mapping spatial 

relationships in situations where knowledge is physical, continuous and consciously available 

(Chadwick et al., 2015; Derdikman and Moser, 2010; Howard et al., 2014; Spiers and Maguire, 

2007). Here, we use a statistical learning paradigm to demonstrate the entorhinal cortex also 

efficiently extracts statistical regularities in a non-spatial task where the relationships between 

items are discrete, and organizes this non-spatial relational knowledge in an abstract relational 

map, suggesting the hippocampal-entorhinal system creates metric representations of 

discrete relationships that are completely unlike relationships in physical space (Eichenbaum 

and Cohen, 2014). These results add to the notion that the hippocampal formation maps 

experiences across a wide range of different dimensions, thereby supporting flexible 

behaviour across many domains of life (Schiller et al., 2015). 

Using models of the environmental structure to enable transitive inferences is an essential 

component of intelligent reasoning across species and cognitive domains (Tervo et al., 2016). 

For example, rats use spatial knowledge to rapidly integrate new spatial information (Tse et 

al., 2007), songbirds can detect the violation of artificial grammar rules (Abe and Watanabe, 

2011), and many species can infer social relationships between conspecifics (Bond et al., 

2003; Grosenick et al., 2007; Kumaran et al., 2012; Paz-Y-Miño C et al., 2004). Here, we 
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demonstrate that this cognitive flexibility is underpinned by a metric organization of the 

relationships between non-spatial stimuli. In physical space, the precise metric between 

landmarks provided by entorhinal grid cells enables the rapid and flexible computation of 

distances and novel paths through the environment (Bush et al., 2015; Stemmler et al., 2015). 

Our results suggest that the navigation through an abstract concept space between discrete 

experiences benefits from a very similar mapping of relationships, even in situations where 

these are discrete, non-spatial and unavailable to self-reported awareness. A map of abstract 

relationships, where distances between associative states are accurately reflected 

independently from their behavioural relevance, is very useful in situations where learned 

relationships can inform novel inference.  

It is worth noting that in situations where a map is used for guiding behaviours that 

maximize future rewards, planning can be facilitated by additionally encoding the task-

relevant aspects of states or transitions in the map. For example, if a state has previously 

been paired with a reward, it can be beneficial to reflect in the map itself that this state and 

all the transitions leading to it are more valuable than other, equidistant transitions. Encoding 

this information directly in the neural representation of the world structure would be 

computationally efficient, as the value of a state or a transition does not need to be computed 

explicitly when the map is later used for planning a trajectory. Indeed, in the reinforcement 

learning literature, it has been proposed that state representations are inherently prospective, 

such that states that make similar predictions about future rewards have a similar neural 

representation (e.g. ‘successor representation’, Dayan, 1993). Such an account would result 

in a very different kind of distance metric from the one observed here, because states that 

make similar predictions about the future are representationally more similar than equidistant 

states of lesser value (Stachenfeld et al., 2014).  

In physical space, it is well established that experience and behavioural relevance influence 

place cell firing. For example, place cells encode prospective information about the animal’s 

trajectory in the immediate future (Ainge et al., 2007; Ferbinteanu and Shapiro, 2003) and 

differentiate between identical paths in space if the required action at the end of the path 

differs (Wood et al., 2000). Furthermore, the concentration of place cells is particularly high 

around reward locations (Hok et al., 2007; Hollup et al., 2001), a phenomenon which aids 

memory recall (Dupret et al., 2010). The organization of the spatial cognitive map with 

respect to behavioural relevance is presumably mediated via the input the hippocampus 

receives from a wide range of other brain areas that are active during learning, including input 
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from sensory cortices and dopamine projections from the midbrain. For example, value 

information is propagated from a rewarded location backwards along an experienced 

trajectory by simultaneous reverse replay of spatial sequential activity patterns and a VTA 

prediction error signal during non-exploratory wake periods immediately after spatial 

experience (Gomperts et al., 2015). It is conceivable that similar mechanisms are at play for 

abstract relational maps, resulting in a direct encoding of behavioural relevance within the 

map representation. It remains unclear whether a warped map representing behavioural 

relevance as well as map representing associative distance co-exist in the brain and interact 

to guide decision making.   

It also remains unclear how exactly the relational map aids goal-directed behaviour. One 

intriguing hypothesis is one whereby the hippocampal-entorhinal system stores an abstract 

cognitive map of the world, and orbitofrontal cortex (OFC) represents an animal’s current 

location within this space and guides goal-directed decision making (Wilson et al., 2014). 

OFC is critical for encoding stimulus-reward associations (Klein-Flügge et al., 2013a) and for 

credit assignment, whereby an outcome is specifically attributed to the relevant choice 

(Walton et al., 2010). If an association between stimuli and rewards has to be updated flexibly, 

OFC activity modulates the strength of an association between stimuli and outcomes that is 

stored in the hippocampus (Boorman et al., 2016). OFC is thus critical for identifying the 

currently relevant state of the world, associating it with reward and using this knowledge to 

guide behaviour. It is particularly well suited for assigning a stimulus or an action to an 

outcome through its access to multisensory and emotional information, memories and 

rewards. Direct access to a model representation stored in the hippocampus may be driven 

by the strong anatomical connections between the two anatomical structures (Carmichael 

and Price, 1995).  

In our experiment, we found no evidence for a representation of the relational structure 

in prefrontal cortex. This may be related to the fact that training in our task was implicit and 

occurred while participants were performing an independent cover task. Subjects were not 

made aware of structure in the object sequence and the structure was irrelevant for 

behaviour. This setting is reminiscent of the latent learning experiments performed by Tolman 

in the 20th century (Tolman and Honzik, 1930), where animals constructed a ‘cognitive map’ 

of the environment even in the absence of reinforcement. This map can then be used to 

enable rapid goal-directed learning when a reward is later introduced (Tolman, 1948). Future 

research will be needed to investigate how relational information mapped in the 
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hippocampal-entorhinal system is manipulated in prefrontal cortex in situations where the 

map is useful for guiding goal-directed behaviour. 

We specifically find a map-like representation in the entorhinal cortex. The most abundant 

cell type in medial entorhinal cortex are grid cells, characterized by very regularly spaced 

triangular firing fields (Hafting et al., 2005). In physical space, grid cells represent a context-

independent spatial metric for path integration and vector navigation (Bush et al., 2014). Our 

findings suggest that grid cells can also represent distances or vectors between non-spatial 

and discrete, arbitrary representational states. A recent theoretical analysis (Dordek et al., 

2016) and my own simulations in Chapter 6 suggest that this distance-dependent modulation 

of representational similarity may be the consequence of grid cells encoding the covariance 

structure of an environment, in a situation where the hippocampus proper encodes individual 

experiences. However, it is also conceivable that a plasticity induced between neighbouring 

stimuli on the graph due to their repeated temporal co-occurrence results in a decrease in 

representational similarity with distance (Chapter 6). Due to the stimulus randomization 

during the scanning procedure the only difference between trials was the association of a 

stimulus with the preceding stimulus during training. The distance effect we observe can 

therefore not result from visual differences or pre-existing associations between objects.  

Maps are well established in the entorhinal cortex in humans and rodents for spatial 

situations where knowledge is physical, continuous and consciously available (Chadwick et 

al., 2015; Howard et al., 2014). Here, we demonstrate the entorhinal cortex contains complex 

maps in situations where knowledge is abstract, discrete and not accessible to self-reported 

awareness. Such an organization of relational information might be the basis for an animal’s 

ability to navigate through an abstract concept space and perform flexible computations 

without direct experience. 
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5.6 Supplementary Figures 

 

Supplementary Figure 5.1 Task performance. A Reaction times and B performance on the 
orientation judgment cover task performed during training on day 1 for each of the twelve blocks1. 
C Graph structure indicating the object position. D Response time (F6,132 = 0.68, p = 0.67) and E 
performance (F6,132 = 0.56, p = 0.77) on the patch detection cover task performed during the fMRI 
experiment does not differ for the different object locations. F Response times on the patch detection 
cover task does not depend on the distance between objects on the graph (F2,44 = 0.46, p = 0.63). 
Error bars show mean and s.e.m.; a.u., arbitrary units 
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Supplementary Figure 5.2 Anatomically defined regions of interest used for small-volume 
correction. A Mask comprising bilateral entorhinal cortex and subiculum, received with thanks from 
Martin Chadwick (Chadwick et al., 2015). B Mask comprising bilateral entorhinal cortex, 
hippocampus and parahippocampal cortex. Regions were defined using the maximum probability 
tissue labels provided by Neuromorphometrics, Inc (http://Neuromorphometrics.com) 
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Supplementary Figure 5.3 Distance-dependent scaling of neural activity is specific to the 
entorhinal cortex. A All areas displaying a decrease in fMRI adaptation with graph distance. A 
cluster in subgenual cortex did not survive whole-brain correction for multiple comparisons (punc = 
0.0008, pFWE = 0.99, peak t22 = 3.58 [3, 23, -10]). B All areas displaying suppression for connected 
stimuli relative to non-connected stimuli on the graph. In addition to the entorhinal clusters reported 
in the main text, a cluster in orbitofrontal cortex (OFC, peak t22 = 2.93, [30, 41, -10]) and subgenual 
cortex (peak t22 = 3.33, [0, 23, -7]) were used to define ROIs to test distance-dependent scaling, see 
D,E. C All areas displaying greater suppression if a preceding stimulus was two links away than three 
links away. No areas outside the hippocampal-entorhinal system showed this effect. D Parameter 
estimates for link 2 vs link 3 transitions extracted from the orbitofrontal cortex ROI in B. The 
difference is not significant (t22 = 0.84, p = 0.41). E Parameter estimates for link 2 vs link 3 transitions 
extracted from the subgenual cortex ROI in B. The difference is not significant (t22 = 1.29, p = 0.21). 
F Activity in visual areas does not change with distance between items on the graph (F2,44 = 0.74, p 
= 0.49). Parameter estimates in F were extracted from an ROI defined from a contrast indexing a 
main effect to any visual event in all three blocks (see inset), averaged across subjects. A-C are 
thresholded at p < 0.01 for visualization. Error bars show mean and s.e.m.; a.u., arbitrary units. 
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Supplementary Figure 5.4 The distance-dependent scaling cannot be driven by a main effect 
of object position. Position-specific activity in the ROI defined according to A a connected < non-
connected contrast (ROI 1, Figure 5.2B, green, F6,132 = 0.88, p = 0.5), B a link 2 < link 3 contrast 
(ROI 2, Figure 5.2B, red, F6,132 = 1.96, p = 0.08) and E the peak coordinate in Chadwick et al. (2015), 
(ROI 3, F6,132 = 1.9, p = 0.09). The tests reported in Figure 5.2C-E are also significant if performed 
after removing object-specific activity from the neural data. This was achieved by subtracting the 
mean activity for each object before testing for B a difference in activity for link 2 vs. link 3 transitions 

(t22 = 2.10, p = 0.048), D a difference in activity for connected vs. non-connected stimuli in ROI 2 
(t22 = 2.39, p = 0.03) or F a distance effect in ROI 3 (F2,44 = 6.68, p = 0.003).. Error bars show mean 
and s.e.m.; a.u., arbitrary units 
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6.1 Abstract 

Goal-directed behaviour requires a neural representation of the associations between 

objects, events and other types of information. In Chapter 5, I demonstrate that such non-

spatial and discrete relational information is encoded as a map in human entorhinal cortex. 

However, the mechanism underlying the formation of such a map-like representation for 

discrete information remains unclear. Here, I propose two mechanisms that can account for 

a decrease in representational similarity with associative distance. Firstly, a map representing 

information about the distance between elements may emerge in a simple Hopfield network 

with auto-associative attractors and local Hebbian plasticity between pairs of associated 

objects. Secondly, I propose a framework, whereby grid cell firing patterns and a distance-

dependent scaling of representational similarity can result directly from a simple 

eigendecomposition of place cell activity. While both mechanisms separately account for the 

distance-dependent scaling of neural similarity, they are not mutually exclusive and may act 

in concert to encode complex associative structures in the brain.  

6.2 Introduction 

The hippocampal-entorhinal system encodes a cognitive map of space that is used in 

spatial navigation (O’Keefe and Nadel, 1978). The neural substrate of a spatial cognitive map 

includes specialized cell types such as hippocampal ‘place cells’, whose firing is precisely 

localized in space (Ekstrom et al., 2003; O’Keefe and Nadel, 1978) and entorhinal ‘grid cells’ 

with hexagonally arranged firing fields (Hafting et al., 2005; Jacobs et al., 2013). These neural 

codes are well established in rodents and humans for spatial situations where knowledge is 

physical, continuous and consciously available (Chadwick et al., 2015; Howard et al., 2014; 

Spiers and Maguire, 2007). In Chapter 5 I demonstrate a map-like organisation can also be 

extracted from fMRI responses in entorhinal cortex for relationships which are non-spatial 

rather than spatial, discrete rather than continuous and unavailable to self-reported 

awareness. This suggests that the hippocampal-entorhinal system also implicitly organizes 

abstract relational knowledge in a map. Such a representational structure facilitates the 

computation of relationships between items that have never been directly experienced 

together, thereby enabling flexible behaviours such as novel inference. However, the 

mechanisms underlying the formation of a map for discrete relationships remain unclear.  
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Here, I propose two mechanisms potentially underlying the formation of a map-like 

organization of abstract relational knowledge. Firstly, the map could be the consequence of 

pairwise plasticity between the representations of objects that are neighbours on the graph. 

It is well established that the neural mechanisms underlying the association of pairs of stimuli 

involve an increase in similarity of the respective stimulus representations. For example, in 

the human medial temporal lobes (MTL) the similarity of stimulus representations increases 

for stimuli that were frequently seen in close temporal succession relative to stimuli that 

rarely co-occurred (Schapiro et al., 2012). Similarly, after repeated exposure to the same 

stimulus sequence, neurons in macaque anterior ventral temporal lobes respond similarly to 

stimuli that were neighbours in the sequence (Miyashita, 1988). This suggests that the 

temporal co-occurrence of stimuli results in the formation of an association, or an increase 

in similarity of respective neural representations. Such an account is consistent with the 

notion that the hippocampus represents an auto-associative attractor network, where 

relational information is directly stored in the synaptic weight matrix. Mechanistically, such 

an association could be achieved by Hebbian plasticity, whereby connectivity between pairs 

of neurons forming the respective stimulus representations is modulated in an activity-

dependent manner (Hebb, 1949) through LTP (Bliss and Lømo, 1973). Hippocampal CA3 

contains strong and largely random, excitatory recurrent connections from other CA3 

neurons. In combination with a very high sensitivity to long-term potentiation (LTP), the 

divergent and convergent loops in CA3 make this substructure ideal for forming auto-

associative memories, and for recovering previously stored patterns from partial cues. It is 

conceivable that global knowledge about the relationship between non-associated objects 

emerges as a global consequence of pairwise plasticity between temporally co-occuring 

stimuli.   

One of the first models for the associative nature of memory are Hopfield network 

models (Hopfield, 1982). Hopfield networks are recurrent neural networks which can act as 

auto-associative attractors and thereby recover a stored memory pattern from a corrupted 

memory cue. The attractors are created by updating synaptic weights between pairs of model 

neurons according to the same Hebbian learning rule that is likely to underlie the formation 

of associations in the hippocampus (Hebb, 1949). However, while traditional Hopfield 

networks can successfully recover individual memory representations, they fail to account 

for the correlation between associated stimuli. Because of the auto-associative nature of the 

network, the states to which the network converges are uncorrelated if memories stored in 

this network are uncorrelated. Nevertheless, associations can be modelled by adding a 
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pairwise plasticity term between memory patterns to the auto-associative term (Griniasty et 

al., 1993). This modulation of a typical Hopfield network model has successfully reproduced 

the increased representational similarity for neighbouring stimuli in a sequence of visual 

stimuli (Miyashita, 1988). Here, I investigated the consequences of such pair-wise plasticity 

for the representation and the emergence of global knowledge about a complex structure 

formed by multiple association pairs. 

While this manipulation successfully reproduces the distance-dependent scaling of 

representational similarity, a second mechanism could underpin the map-like formation of 

relational information in the entorhinal cortex reported in Chapter 5. It has traditionally been 

thought that grid cells reside upstream from hippocampal place cells, and a linear 

combination of multiple grid cells with various spatial frequencies and random phases could 

underlie the formation of place fields in the hippocampus (Fuhs and Touretzky, 2006; 

McNaughton et al., 2006; O’Keefe and Burgess, 2005). However, recent evidence from 

hippocampal lesion studies (Bonnevie et al., 2013) as well as the observation that place cells 

develop before grid cells (Langston et al., 2010; Wills et al., 2010) suggest that feedback 

projections from hippocampal place cells might contribute to the formation of grid cells. 

Here, I propose that grid cells may perform an eigendecomposition of place cell activity and 

thereby represent a compressed representation of the environment (Dordek et al., 2016; 

Stachenfeld et al., 2014), which can be used for guiding goal-directed behaviour. Strikingly, 

the eigenvectors resulting from an eigendecomposition of simulated place cell activity during 

a trial sequence in which discrete locations on a graph are visited in random order resembles 

the hexagonal firing fields observed in entorhinal grid cells during navigation in physical 

space. Furthermore, the activity pattern of these model grid cells across multiple spatial scales 

correlates with distance measures, thereby providing a potential explanation for the distance-

dependent scaling observed in the entorhinal cortex as described in Chapter 5.   

While the two mechanisms we propose are not directly related to one another, it is 

possible that variants of both accounts exist in parallel in the hippocampal formation, each 

contributing to the encoding of a complex associative structure. 
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6.3 Methods 

6.3.1 Hopfield network with pairwise plasticity 

I set up a fully connected Hopfield network consisting of 6400 neurons (Figure 6.1A) and 

generated twelve random pattern vectors 𝑥⃗µ, where µ = 1,2, … ,12, with −1 ≤ 𝑥𝑖 ≤ 1. The 

(symmetric) weight matrix 𝑊, denoting the connection strength between all pairs of neurons, 

was defined as: 

         𝑤𝑖,𝑗 =  
1

𝑁
∑ (𝑥𝑖

µ
𝑥𝑗

µ
+ 𝑎 ∑ 𝑥𝑖

µ
𝑥𝑗

𝜈
𝜈 )µ , with 𝑤𝑖,𝑖 = 0 (6.1) 

The auto-associative term 𝑥𝑖
µ

𝑥𝑗
µ
 results in the storage of a memory pattern µ. Note that it 

is accompanied by a plasticity term between a pattern µ and all its neighbours on the graph 

ν, namely 𝑥𝑖
µ

𝑥𝑗
𝜈 (Figure 6.1B), weighed by a parameter 𝑎. This term introduces pairwise 

association between neighbouring patterns on the graph. In the simulations without pairwise 

associations (Figure 6.3), 𝑎 was set to 0, in all other simulations 𝑎 was set to 0.1.  

 

Figure 6.1 Schematic depiction of the architecture of the complete, undirected Hopfield 

network. A Network architecture. The connection strength between pairs of neurons 𝒙𝒊 and 𝒙𝒋 is 

given by the synaptic weight 𝒘𝒊,𝒋. Note the actual network consisted of 6400 neurons rather than 8 

as depicted here. B Graph structure formed by 12 memory patterns. Plasticity was introduced 
between neighbouring patterns on the graph, as depicted for pattern pµ and its neighbours. Note this 
is the same structure used in the fMRI experiment, Chapter 5.  

To recall a pattern of activation, the network was initialized with a cue or network state 

defined as one of the patterns µ plus noise, and bounded between -1 and 1, i.e.  

 𝑥𝑖 = tanh (𝑥𝑖
µ

+ 𝑁(0,1)) (6.2) 
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The activity of each neuron was then iteratively updated. To this end, the input to each 

neuron 𝑥𝑖  was computed as the sum of the activity of all other neurons 𝑥𝑗  multiplied by the 

synaptic weight 𝑤𝑖,𝑗 between neurons 𝑥𝑖 and all other neurons 𝑥𝑗 . Again, activity was 

bounded between -1 and 1. This term was weighed with a factor 𝑑𝑡 (here: 0.1) and added to 

the current state of the neuron 𝑥𝑖 , weighed by 1 − 𝑑𝑡:  

 

𝑥𝑖 = (1 − 𝑑𝑡)𝑥𝑖 + 𝑑𝑡 ∗ tanh (∑ 𝑤𝑖,𝑗𝑥𝑗

𝑗

) (6.3) 

For each pattern we performed 20 rounds of simulations, in which the network was 

initialized with a novel cue. The network’s state was assessed at each iteration, and the 

simulation ended after 500 iterations. 

To probe memory recollection, we correlated the network states across iterations with the 

12 original memory patterns. To investigate distance effects in the network, a neural similarity 

measure was defined between the network states initialized with different memory cues. This 

similarity measure corresponded to the average correlation between network states at each 

iteration, averaged across the 500 iteration steps. The resulting neural similarity measures 

between pairs of memory cues could subsequently be sorted according to the distance 

between any two memories on the graph.  

To extract the Euclidian distance between objects on the graph multi-dimensional scaling 

(MDS) was performed on a matrix denoting the number of links between all pairs of 

memories. MDS arranges objects spatially such that the distances between them in space 

approximate their similarities as defined by a distance matrix. From the resulting spatial 

arrangement, a Euclidian measure could be extracted, which was used for the correlation 

analysis in Figure 6.5. Crucially, the Euclidian distance measure varied within groups of link 

distances, i.e. the Euclidian distance resulting from MDS is not the same for all memories 

that are 1 link away from each other. Therefore, we could correlate the Euclidian distance 

measure between memories belonging to the same group of link distances (all memories that 

are 1 link, 2 links, 3 links or 4 links away from each other) with the neural similarity measure 

between the corresponding network states. To more directly test whether shortest path or 

Euclidian distance explain the structure in the neural similarity measures between network 

states, a multiple linear regression was performed with the number of links and the Euclidian 
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distance between two objects as regressors. These analyses were performed separately for 

each of the 20 simulations and averaged across simulations.  

Furthermore, we performed MDS directly on the neural similarity measure, averaged 

across 20 simulations, to visualize the relationship between network states in an abstract 

memory space. More specifically, we performed MDS on a matrix denoting 1 minus the 

mean correlation between mean network states across iterations and simulations for each 

memory pair. For example, element 2-5 in the matrix corresponded to 1 minus the average 

correlation between the average network states for patterns 2 and 5. Because the correlation 

between network states scales with distance, this matrix effectively corresponds to a distance 

or similarity matrix. Note that MDS can only be performed on symmetric matrices with 

positive entries. We therefore normalized the matrix by subtracting the minimum value of 

the matrix and adding 1.  

6.3.2 Eigendecomposition of place cell activity 

In a separate model, 1000 place fields were randomly placed in a quadratic space (Figure 

6.2A). Activity of each place cell was simulated based on a multivariate normal distribution 

with the mean µ set to the centre of the place field and covariance σ corresponding to the 

identity matrix (Figure 6.2C). The graph structure was composed of 75 memories arranged 

in a hexagonal fashion, whereby each memory had six equidistant neighbours (Figure 6.2B). 

During a simulated training session, locations corresponding to a node on the graph (Figure 

6.2B) were visited in random order, with the only constraint that the next location in a 

sequence had to be a direct neighbour of the current location on the graph. In total, the 

sequence consisted of 10,000 trials. On each trial, the activity of each of the 1000 place cells 

was estimated (see visualized trajectory in Figure 6.2B). Note that each place cell typically 

fired in response to multiple stimuli due to the size of the place field (Figure 6.2C).  

Subsequently, a principal component analysis (PCA) was performed on the cell x trial 

matrix (Figure 6.2D) and the principal components were projected back into a 2D space. 

The first 81 components are depicted in Figure 6.7.   

A principal component analysis is a linear transformation which projects a high-

dimensional dataset onto a set of orthogonal ‘principal components’, sorted according to the 

amount of variance they explain in the data. In many situations (e.g. if many of the original 

variables are correlated), the number of principal components needed to explain the variance 

is smaller than the dimensionality of the original data. This allows for the dimensionality of 
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the data to be reduced by representing data in terms of their loading onto the principal 

components.  

 

Figure 6.2 Simulated place fields. A Peak location of 1000 randomly placed place fields. The yellow 
dot indicates the location of the place field visualized in C. B Locations of discrete objects in this 
space forming the graph. These discrete locations are the only ones visited during the simulation. The 
black line indicates an exemplary trajectory through this space. C Place field of one exemplary 
simulated place cell. Colour coding indicates simulated firing rate. Note the cell’s firing rate decreases 
with distance from the centre of the place cell. Due to the size of a place field, each place cell responds 
to multiple locations. Superimposed is the object graph, indicating the discrete object locations in this 
space in white. D Segment of the place cell x trial matrix, indicating each cell’s firing rate as different 
locations are visited during the simulation. Cells are sorted according to their peak firing rate. 
Locations on the graph are visualized for trials t = 50, 100, 150, 200 and 250 (bottom). 

Principal components of a matrix 𝐴 can be found by performing an eigenvalue 

decomposition and thereby identifying the eigenvectors and eigenvalues of the matrix. 

Eigenvectors of a matrix 𝐴 are those vectors 𝑥 whose direction does not change if they are 

multiplied by 𝐴, i.e.: 
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 𝐴𝑥 = λ𝑥 (6.4) 

Because an eigenvector’s length is normalized, an eigenvector only describes a direction. 

However, each eigenvector 𝑥 has a corresponding eigenvalue λ, indicating how much 

variance the eigenvector captures.  

One of the advantages of describing a matrix in terms of its eigenvectors and eigenvalues 

is the fact that 𝐴𝑛 has the same eigenvectors and eigenvalues as 𝐴 and can readily be 

computed as: 

 𝐴𝑛 = 𝑥λ𝑛𝑥−1 (6.5) 

In a situation where 𝐴 describes an adjacency matrix, 𝐴𝑛 can be understood as a 

representation of the number of paths of length 𝑛 between element 𝑖 and element 𝑗 of the 

matrix. The number of paths between two elements, in turn, is a direct correlate of the 

distance between two elements on a graph: More paths exist between two elements the closer 

they are located to each other on the graph. Eigenvectors and eigenvalues may therefore be 

used for rapidly computing possible future states, simply by scaling the weights or 

eigenvalues (Muller et al., in review).   

To compare the pattern similarity for different stimuli on the graph, we set up activity 

vectors [𝑣 1, 𝑣 2, 𝑣 3, 𝑣 4] for each location 𝑣, with 𝑣 i corresponding to the coefficient of 

component i derived from the PCA at location 𝑣. Two patterns 𝑣 and z can then be 

compared by computing the angle Θ between the two corresponding activity vectors.  

 cos  Θ =
𝑣 · z

||𝑣||||𝑧||
 (6.6) 

 where cos  Θ = 1 if the two vectors are perfectly aligned, and cos  Θ = 0  if the two 

vectors are orthogonal. Note this measure directly corresponds to the normalized dot 

product or correlation coefficient. Angles between stimulus pairs were then sorted according 

to the distance between the two stimuli on the graph to assess a distance-dependent scaling 

of representational similarity. 
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6.4 Results 

6.4.1 A memory pattern can be retrieved from a partial cue in an auto-associative 
Hopfield network 

To examine whether global knowledge about a structure can emerge from local plasticity 

between stimulus-stimulus association pairs, we set up a complete and undirected Hopfield 

network model (Hopfield, 1982) consisting of 6400 nodes (or “model neurons”, Figure 6.1). 

I entered 12 memories in the network, by setting all nodes to a specific, but randomly chosen, 

value. To store these patterns, auto-associative attractors were created by updating the 

network’s weights according to a Hebbian plasticity rule, where the connection strength 

between nodes 𝑥𝑖 and 𝑥𝑗 was set to the summed product of the pre- and post-synaptic activity 

for each memory. The network can then retrieve a memory from partial information, i.e. a 

cue which resembles one of the stored memories (Figure 6.4A-C). However, since synaptic 

strength in this basic Hopfield network depends exclusively on memory patterns themselves, 

uncorrelated stimuli lead to uncorrelated final attractor states (Figure 6.4D) and sorting the 

correlation between final attractor states according to distance does not reveal a distance 

dependent decrease in representational similarity (Figure 6.4E). 
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Figure 6.3 The network retrieves a memory from a partial cue. A Correlation between network 
state and memory patterns if the network is initialized with a cue that resembles pattern 1 at time 
points t = 25 (A), t = 150 (B) and t = 500 (C). Inset in A demonstrates that the cue most resembles 
the stored memory pattern 1 with a mean similarity between the initial cue and memory pattern 1 of 
r = 0.27. Note that the network recalls the cued memory and stably encodes it. D Correlation between 
network states when initialized with cues 1-12 and network state when initialized with cue 1, averaged 
across all time points. E Sorting of correlation between correlation of network states according to 
distance between memories on the graph, averaged across all time points. Results are averaged over 
20 independent simulations per pattern. Error bars show the standard deviation.  

6.4.2 Pairwise plasticity between neighbouring patterns leads to distance-
dependent scaling of representational similarity 

Neurophysiological studies suggest that a temporal contiguity between neighbouring 

objects in an object sequence leads to an increase in similarity of underlying neural 

representations (Miyashita, 1988). To investigate whether such local plasticity between pairs 

of objects might have consequences for the representation of a structure formed by multiple 

stimulus-stimulus association pairs, we designed a complex graph composed of multiple 

pairwise associations between memories (Figure 6.1B). To form stimulus-stimulus 

association pairs between neighbouring memories on the graph, a plasticity term was added 

to the synaptic weight matrix for each pair (Griniasty et al., 1993). 
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Figure 6.4 Plasticity between neighbouring stimuli on the graph induces correlations 
between network states. A Correlation between network state and memory patterns if the network 
is initialized with a cue that most resembles pattern 1 at time points t = 25 (A), t = 150 (B) and t = 
500 (C). Inset in A demonstrates that the cue most resembles the stored memory pattern 1 with a 
mean similarity between the initial cue and memory pattern 1 of r = 0.27. Note that the network 
initially recalls the cued memory (A), but then the correlation with other patterns increases (B) and 
ultimately the network collapses (C). D Correlation between network states when initialized with cues 
1-12 and network state when initialized with cue 1, averaged across all time points. E Sorting of 
correlation between correlation of network states according to distance between memories on the 
graph, averaged across all time points. The correlation between network states decreases with the 
shortest path between memories on the graph. Results are averaged over 20 independent simulations 
per pattern. Error bars show the standard deviation. See also Supplementary Figure 6.1Error! 
Reference source not found..  

While the network state that results from feeding in a particular cue (Figure 6.4A inset) 

bears greatest similarity to the most similar memory pattern initially (Figure 6.4A), this simple 

manipulation induces a correlation between the network states for different memory cues, 

visible after 150 iterations (Figure 6.4B). Ultimately, the network collapses and the network 

state after feeding in different cues cannot be differentiated (Figure 6.4C, Supplementary 

Figure 6.1). This is a consequence of an increasing similarity of a network state with all other 

memory cues (Figure 6.4D). Importantly, across all iterations, the correlation between 

network states for different cues decreases with the number of links between memories on 

the graph (Figure 6.4E), suggesting that a global knowledge about the relationship between 

different memories arises from storing local associations.  
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Figure 6.5 Euclidian distances between memories on the graph predict variance over and 
above the shortest path between memories. A Within each cluster defined by the number of links 
between memories on the graph, Euclidian distance correlated with the neural similarity of the 
corresponding network states, averaged across all iterations. B Multiple linear regression on 
correlation between network states. The number of links and the Euclidian distance between 
memories on the graph were included as regressors competing for variance. Only the Euclidian 
distance significantly predicted the neural similarity between network states, averaged across all 
iterations. C The network structure can be recovered from the neural similarity measures between 
network states for different memory cues. Plotted is a two-dimensional representation of 1 minus the 
correlation matrix, as generated by MDS. Results in A-C are averaged over 20 simulations per pattern. 
Error bars show the standard deviation.; a.u., arbitrary units. 

A key feature of a map-like representation of the relationships between landmarks in 

physical space is the encoding of real-world distances. Similarly, Euclidian distances between 

discrete memories in an abstract memory space provides a more fine-grained metric of a 

relationship than the number of links between two memories. To test whether variance in 

neural similarity is explained by the Euclidian distance between items on the graph over and 

above the number of links between them, we performed two-dimensional multidimensional 

scaling on a matrix denoting the shortest path between any two pairs on the graph to estimate 

the Euclidian distance between two memories on the graph if the distance matrix were to be 
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mapped into a 2-dimensional space. I correlated this Euclidian distance measure with the 

correlation between network states between different cues. Euclidian distance correlated 

negatively with representational similarity within groups of patterns that are equally far away 

from each other in terms of number of links, but where the Euclidian distance varied (Dist 

1: r = -0.40, P = 0.006, Dist 2: r = -0.37, P = 0.007, Dist 3: r = -0.35, P = 0.05, Figure 6.5A). 

I confirmed this observation in a multiple linear regression which included the number of 

links (t19 = 2.37, P = 0.01) and Euclidian distance (t19 = 5.86, P < 0.001) as regressors (Figure 

6.5B). This demonstrates that Euclidian distance explains variance over and above the 

number of links between items, suggesting that simple pairwise plasticity between 

neighbouring items on a graph results in a representation in which Euclidian distances 

between items are respected.  

In order to test whether these map-like features are a consequence of a map-like 

organisation, I organised the correlation between network states into a 7x7 matrix with each 

matrix element reflecting the average correlation between pairs of network states across 

simulations. Because the correlation is higher for nearby objects, this matrix is analogous to 

an inverse distance matrix. When I applied MDS to visualise the most faithful 2-dimensional 

representation of this matrix after subtracting it from 1, the graph structure of our 

experimental map was recovered (Figure 6.5C).  

In summary, global knowledge about the discrete relationships between items emerges 

through increases in representational similarity for pairwise associations in a simple Hopfield 

network. This knowledge has essential features of a ‘cognitive map’ (O’Keefe and Nadel, 

1978), in that Euclidian distances between items are preserved. However, because 

relationships between memories are encoded within the representation of a memory itself, 

the representation is unstable and the network ultimately collapses. 
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6.4.3 An eigendecomposition of the resulting activity patterns reveals grid cell-like 
activity 

 

Figure 6.6 Distance-dependent scaling of representational similarity in a large associative 
graph structure. A Graph structure composed of 75 independent memories. In direct analogy to 
the smaller graph, pairwise plasticity was introduced between neighbouring items on the graph to 
model local Hebbian plasticity between neighbouring neural representations. B Correlation between 
network states sorted by distance. In independent runs the network was initialized with cues taken 
from one of the 75 stored memories. The correlation between the final network states for different 
cues decreases with the shortest path between memories on the graph. Results are averaged over 20 
simulations per pattern. Error bars show the standard deviation. 

The same analyses in a much bigger graph composed of 75 independent memories (Figure 

6.6A) reveals that the representational similarity between network states decays exponentially 

with distance (Figure 6.6B). Due to its size, this graph allows for testing an alternative 

explanation for the distance-dependent scaling of fMRI adaptation observed in Chapter 5. It 

has been hypothesized that the hexagonal firing pattern of entorhinal grid cells could be the 

consequence of the computations grid cells perform on place cell inputs. More specifically, 

it has been suggested that the characteristic six-fold symmetry of entorhinal grid cell firing 

fields is the consequence of an eigendecomposition of place cell activity (Dordek et al., 2016; 

Stachenfeld et al., 2014). To investigate what such a spectral decomposition would look like 

in a situation where the relationships between stimuli are discrete, I simulated the activity of 

1000 randomly located place cells, each modelled as 2D Gaussian distributions (Figure 

6.2A,C), as the discrete locations on the large graph were visited in a random order (Figure 
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6.2B). Subsequently, I performed a principal component analysis on the resulting [neuron x 

trial] matrix.  

 

Figure 6.7 Eigendecomposition of the task structure. A principal component analysis was 
performed to extract the covariance structure. The panel shows the first 81 eigenvectors.  

To aid an interpretation of the eigenvectors in terms of spatial activity, I projected the 

PCA eigenvectors back onto the place cell space. While the first few eigenvectors largely 

divide the space spanned by the graph structure into two or more compartments, some of 

the high frequency eigenvectors resemble the striking six-fold symmetry observed in 

entorhinal grid cells (Figure 6.7, e.g. components 19 and 74). Notably, no hexagonal 

symmetry emerges in situations where the size of the modelled place fields does not span 

multiple stimuli on the graph (Supplementary Figure 6.2), suggesting that the simultaneous 
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activation of the same place fields for different stimuli introduces a covariance between 

neighbouring locations on the graph which is extracted by entorhinal grid cells.  

In the brain, grid cells are arranged in discrete modules, each characterized by cells with 

the same grid scale and grid orientation, but a different grid phase (Stensola et al., 2012). The 

grid field size increases in discrete steps along the dorsoventral axis (Stensola et al., 2012), 

corresponding to a posterior-anterior axis in humans (Strange et al., 2014) As a result, grid 

cells with large fields predominate in ventral MEC, while grid cells with small fields are 

localized more dorsally. While activity for different locations in space across the entorhinal 

cortex as a whole is decorrelated due to the orthogonal nature of the principle components, 

activity for different locations within sub-sections of MEC is likely to be correlated due to 

this non-uniform distribution of grid cells along the dorsoventral axis. This correlation 

should be particularly prominent in ventral MEC, where grid fields are large and 

neighbouring stimuli on the graph lie within the same grid field.  

To test whether this results in a correlation between neural patterns that scales with 

distance between stimuli on the graph for grid cells with low spatial frequencies, I defined a 

neural activity vector [𝑣 1, 𝑣 2, 𝑣 3, 𝑣 4] for each location 𝑣 on the graph, where 𝑣 i corresponds 

to the coefficient of component i at location 𝑣. I then compared activity patterns at different 

locations by computing cos Θ between the corresponding activity vectors. This measure is 

directly analogous to a correlation measure, and it approaches 1 the more similar two neural 

patterns are, and 0 if two patterns are orthogonal. Critically, the size of this similarity measure 

between pairs of objects decreased with distance on the graph (Figure 6.8), similar to the 

decrease in representational similarity with distance observed in human entorhinal cortex, 

Chapter 5. This suggests that the decrease in representational similarity of neural patterns 

with distance on the graph does not require pairwise plasticity between associated patterns 

on the graph, but could instead be a direct consequence of an eigendecomposition of place 

cell activity, which also reveals a striking hexagonal firing field pattern.    
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Figure 6.8 Distance-dependence of correlation between activity vectors across the first 4 
principal components. Activity across the first four principal components was computed for each 
location in space, and the correlation is plotted for pairs of items as a function of distance between 
them on the graph. 

6.5 Discussion 

Global knowledge about an abstract graph structure formed by associative links is stored 

in the hippocampal-entorhinal system as a cognitive map (Chapter 5). Here, we present two 

simple models that can account for map-like representation of this associative structure. 

According to a simple Hopfield network a cognitive map can emerge from increases in 

representational similarity for pairwise associations between neighbouring memories on the 

graph. The model constitutes a simple implementation of a mechanism by which the brain 

might store the experience-dependent statistical relationships between objects, events or 

other types of information in our environment directly within the representation of a 

memory itself. It is also conceivable that the cognitive map encoding distances in physical 

space might arise from the same principle of pairwise associations between nearby locations 

in space.  

In this model, an increase in representational similarity is achieved by an activity-

dependent change in activity, or Hebbian plasticity. The physiological implementation of the 

Hebbian concept (“what fires together, wires together”), namely LTP, is induced in 

hippocampal area CA1 by learning (Whitlock et al., 2006), and its maintenance is critical for 
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storing spatial memories (Pastalkova et al., 2006). However, it is important to note that the 

model does not address the question how the synaptic structure is learned. Instead, the 

synaptic matrix is explicitly modified to reflect the correlation between neighbouring patterns 

on the graph. Various learning mechanisms are conceivable, including a scenario where the 

network is successively presented with stimuli generated according to a random walk on the 

graph, in line with the situation the human participants face in the fMRI experiment 

presented in Chapter 5. Each individual state is then learnt during the time spent in an 

attractor, and learning of associations occurs by applying Hebbian plasticity to a combination 

of pre-synaptic activity that represents a  preceding pattern and post-synaptic activity that 

represents a current pattern (Griniasty et al., 1993).  

Behaviourally, the change in representational similarity with distance might underlie the 

phenomenon of priming (Griniasty et al., 1993). Priming constitutes an implicit and 

nonconscious form of memory where stimulus processing becomes more efficient if a 

stimulus is repeated, or if a related probe stimulus is presented  before a test stimulus (Tulving 

and Schacter, 1990). Priming has been observed across many cognitive domains, for example 

in visual (Roediger and McDermott, 1993) or auditory (Schacter and Church, 1992) tasks. It 

has been hypothesized that it reflects the representational similarity of neuronal attractors, 

or their proximity in a neuronal state space (Griniasty et al., 1993). Transitions between 

similar attractors are faster than transitions between attractors that are very dissimilar because 

fewer neurons need to change their activity profile. It is also consistent with the view that 

transition times vary with distance on the graph because of a variation of representational 

similarity with distance. As a consequence, attractors that are easier to reach from a given 

point are more likely to be visited next in a sequence. This also allows for multiple attractors 

to be chained, leading to a ‘cell assembly sequence’, or a progression from one cognitive state 

to the next. Such a cell assembly sequence could be the basis of complex cognitive processes, 

such as memory recall, planning or decision making and it can result in behavioural patterns 

that are strongly influenced by the statistical regularities of the environment. Notably, a 

difference in representational similarity as modelled in this network could also explain the 

prominent novelty response in the hippocampus (Strange et al., 2005b). The neural 

representation of a novel stimulus that has never been associated with other stimuli because 

will be maximally different from other stimulus representations. 

However, it is also important to note that the Hopfield network presented here is overly 

simplified and cannot be considered biologically plausible. Through the pairwise associations 
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between stored memory patterns, the relationships between different memories are directly 

encoded within the memory representation itself. This results not only in a corruption of 

each individual memory, but it also leads to network instability, such that the network 

collapses after a finite number of iterations. As a consequence, recollection performance for 

the original memories that are stored in the network decreases as the patterns converge. One 

reason for the instability of this network is that the plasticity modelled here reflects excitatory 

connections between neurons alone. In the brain, excitatory connections are precisely 

balanced by inhibitory connections to stabilize a representation and prevent runaway 

excitability (Okun and Lampl, 2008). More recently, excitatory-inhibitory Hopfield networks 

have been developed which reflect these biological constraints and which could be used to 

more accurately describe the processes in the brain (Amarimber and Amari, 1972). Despite 

these constraints, the network allows for inferring that a very basic principle of cortical 

processing, namely activity-dependent plasticity between associated memories, is sufficient 

to account for a neural signature of a global associative structure. It is also worth noting that 

the distance-dependence of representational similarity in the network persists throughout all 

iterations, even if the differences in the network states ultimately become very small.  

However, it might be argued that it could be more useful to store memories themselves 

separately from the relationships between them. To explore this idea further it is worth 

having a closer look at the relationship between hippocampal place cells and entorhinal grid 

cells. Whereas hippocampal place cells are characterized by precisely defined firing fields 

(O’Keefe and Dostrovsky, 1971), entorhinal grid cells are active at multiple spatial locations, 

because of their hexagonally arranged firing fields (Hafting et al., 2005). Anatomically, grid 

cells can be found in superficial and deep layers of the entorhinal cortex, and they process 

inputs to, and outputs from, the hippocampus (Sargolini et al., 2006). Furthermore, the 

entorhinal cortex contains head direction and border cells, and it is ideally placed to integrate 

spatial information with inputs it receives from neocortical areas (Hafting et al., 2005). It has 

therefore traditionally been assumed that MEC neurons project information about spatial 

location, direction and distance to place cells, with hippocampal place fields constituting a 

‘read-out’ of entorhinal grid cells. Indeed, a linear combination of multiple grid cells with 

various spatial frequencies and random phases could provide a precise estimate of an animal’s 

location, suggesting that grid cell activity could constitute a basis set that can be combined 

linearly to generate place fields in the hippocampus (O'Keefe & Burgess 2005, Fuhs & 

Touretzky 2006, McNaughton et al. 2006). A place field in this setting emerges at the location 

where most grid cells are in phase.  
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However, recent evidence is inconsistent with the notion that place cells are downstream 

read-outs of grid cell activity. Size and shape of place cell firing fields are mostly unaffected 

by the absence of grid cell inputs (Hales et al., 2014; Koenig et al., 2011) whereas inactivating 

the hippocampus leads to a loss of hexagonal grid cell firing (Bonnevie et al., 2013). 

Furthermore, place cells mature before grid cells during development (Langston et al., 2010; 

Wills et al., 2010) and the development of grid cells coincides with an increased accuracy of 

place cell activity (Muessig et al., 2015). As a consequence, it has been suggested that grid 

cells might integrate place field activity (Krupic et al., 2014), for example by performing a 

spectral decomposition of hippocampal place cell activity (Dordek et al., 2016; Stachenfeld 

et al., 2014). Such a computation would allow the covariance structure to be extracted from 

the environment, enabling efficient encoding of relational information. Here, we 

demonstrate that an eigenvectordecomposition cannot only account for the characteristic 

hexagonal symmetry of grid cell firing, but it also serves as an explanation for the distance-

dependent scaling of neural similarity observed in the fMRI experiment. Note that in this 

model no pairwise plasticity or other information about associations is introduced explicitly, 

the covariance structure is a direct consequence of place fields that span multiple locations 

on the graph. Indeed, if place fields are too small, the eigenvectors display no periodicity. 

This model is therefore consistent with a notion whereby place cells encode individual 

episodes, and grid cells encode the covariance structure between those experiences – a model 

which could apply both in physical space and in an abstract concept space.  

Critically, grid cells are organized in discrete modules, each characterized by a collection 

of cells whose grid fields are identical in size and orientation, but different in phase (Stensola 

et al., 2012). The size of grid fields increases in discrete steps along the dorso-ventral axis, 

with an increase by a factor of 1.4 from one module to the next. Theoretical analyses 

demonstrate that this organization maximizes the spatial resolution (Mathis et al., 2012). 

Across grid cells, each location in space is associated with a unique activity pattern, which 

allows the animal’s precise location in space to be decoded (Moser et al., 2014). However, 

the modularization along the dorsoventral axis results in a non-uniform distribution of grid 

cell frequencies that could explain the distance-dependent scaling of activity in areas of the 

entorhinal cortex with large entorhinal grid field sizes.  

 

In conclusion, we describe two mechanisms which could underlie the emergence of global 

knowledge about a structure. In a first model, we introduce local pairwise associations which 
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results in a decrease of representational similarity with distance across the structure as a 

whole. In a second model, we propose that the grid cell structure observed in the entorhinal 

cortex can result from an eigenvaluedecomposition of place cell firing. Both accounts can 

explain the distance-dependent scaling of fMRI adaptation observed in Chapter 5, and future 

experiments will be needed to understand the precise mechanisms underlying the brain’s 

remarkable ability to extract structure from sensory experiences.  
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6.6 Supplementary Figures  

Supplementary Figure 6.1 
Network dynamics. A Graph 
structure. The colour coding 
visualizes the distance between any 
stimulus and stimulus no. 1 coloured 
in green. B Correlation between 
memory 1 and the network state as a 
function of the number of iterations, 
plotted for initializations with cues 1 
– 12. The network initially 
approaches the network state 
corresponding to memory 1 if 
initialized with cue 1, but then the 
similarity between the network state 
and pattern 1 decreases. During the 
same time period, the correlation 
between the network state and 
pattern 1 increases if the network was 
initialized with one of the other cues, 
albeit with a much slower time 
constant, Ultimately, the correalation 
between the network state if 
initialized with cue 1 and the actual 
memory pattern 1 is no higher than 
the correlation between memory 
pattern 1 and the network state if 
initiailized with any other cue, 
demonstrating that the network 
collapses after a finite number of 
iterations. Results are averaged over 
20 independent simulations per 
pattern. Graphs are coloured as a 
function of the distance between 
initialization cue and pattern 1, as 
indicated in A. C Correlation 
between the network state if 
initialized with cue 1 and the network 
state if initialized with cues 1 – 12 as 
a function of the number of 
iterations. All network states become 
more and more similar to the state 
the network reaches if initialized with 
pattern 1. Results are averaged over 
20 independent simulations per 
pattern. Graphs are coloured as a 
function of the distance between 
initialization cue and pattern 1, as 
indicated in A. D Multiple linear 

regression with shortest path and Euclidian distance as regressors as a function of iteration. Despite 
the fact that the network states become more and more similar, both regressor are still significant at 
time point 500 (t19 = 1.78, P = 0.046 and t19 = 3.44, P = 0.001 respectively) suggesting that the 
structure remains encoded in the network even if specific memories become blurred. 
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Supplementary Figure 6.2 Eigendecomposition of place cell activity for small place fields. A 
Place field of one exemplary simulated place cell. Colour coding indicates simulated firing rate. Note 
the size of the place field is substantially smaller than the size of the place field in Figure 6.2, and each 
place cell responds to maximally one location on the graph. The graph structure is superimposed. B 
Eigendecomposition of place field activity in response to locations on the graph visited in random 
order. The panels show the first 81 eigenvectors. Note the triangular lattice structure characteristic 
for entorhinal grid cells does not emerge in this situation.    
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7.1 Aim 

When making decisions it is of critical importance to know which actions to take when. 

The human brain solves this problem by assigning value to the potential courses of action 

and choosing the one that leads to the highest expected reward. This strategy requires an 

adequate model of our environment, which needs to be flexibly adjusted in light of new 

information. If events are not consistent with the internal model of the world, the model 

needs to be modified or replaced by a more appropriate one. 

This thesis uses representational techniques in combination with computational 

modelling to understand how such internal models are represented in the brain, and how 

model updates can influence our behaviour. More specifically, the work investigates how 

representations that can support goal-directed behaviour are formed and represented in the 

hippocampal-entorhinal system (Chapters 5-6) and how learning about another person’s 

preferences induces plasticity in value computations and thereby influences decision making 

(Chapters 3-4). In this final chapter, I conclude by briefly discussing the general implications 

of these findings for our understanding of information processing in the brain, with a special 

focus on prediction-error driven learning from experience. 

7.2 Updating models of the world in social decision making 

In Chapter 3, I demonstrated that learning about the preferences of another individual in 

an intertemporal choice paradigm leads to social influence, whereby subjects own 

preferences shift towards those of the interaction partner. Control experiments demonstrate 

this behavioural change in preference is driven by learning about the other and cannot be 

explained by executing a choice per se. Learning in this context can be modelled by a Bayesian 

learning algorithm that updates prior expectations about the other’s preferences whenever 

new information is encountered. The Bayesian model can also be used to make predictions 

of neural activity associated with learning, such as prediction errors participants experience 

when receiving feedback about the other’s choice.  

In Chapter 4, I demonstrate that such a prediction error signal is represented in various 

brain areas, including ventral striatum. I present evidence that this striatal signal drives a 

mPFC plasticity effect, whereby the neural value representations for self and other become 

more similar as subjects learn about the other’s preferences. The degree of mPFC plasticity 
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predicts how much subjects’ own preferences change, suggesting that inter-individual 

differences in the malleability of subjective preferences might be the result of a striatal 

prediction error signal driving mPFC plasticity. This demonstrates that a learning-induced 

plasticity in a valuation network can underlie social influence in decision making.  

Prediction errors in this context can be thought of in two ways. Firstly, prediction errors 

can arise when the other’s true choice is different from the choice a subject predicted the 

other would make. This ‘other-regarding’ prediction error can have an important function as 

a teaching signal for updating a model about the other’s values. Secondly, prediction errors 

can arise when the other’s preferences diverge from subjects’ own values, i.e. in a situation 

where the subject would have made a different choice for themselves given the same context. 

This ‘self-regarding’ prediction error might be more relevant for influencing subjects’ own 

preferences, and it is indeed this prediction error that is represented in ventral striatum and 

that drives plasticity in the prefrontal cortex.  

A distinction between ‘other-regarding’ and self-regarding’ prediction errors is reported 

across a range of social neuroscience studies. When subjects rate the attractiveness of faces 

before and after learning about the opinions of others, striatal activity elicited while observing 

the others’ choices predicts the degree of conformity (Klucharev et al., 2009). When subjects 

assigned to the role of an ‘investor’ and a ‘trustee’ interact repeatedly in a trust game, activity 

in the trustee’s caudate nucleus displays a prediction error-like signal correlating with the 

amount of money the investor invests. In line with a widely observed shift of a dopaminergic 

prediction error signal from the time of a reward to the time of the CS, this signal is initially 

seen at the time when investment is revealed, but occurs before the time the investment has 

been made in later rounds of the game, suggesting that the trustee has constructed a model 

of the investor’s behaviour (King-Casas et al., 2005). Consistent with the notion of a ‘self-

regarding’ prediction error, however, this signal does not drive learning about the investor’s 

behaviour, but instead signals the trustee’s response to the investor’s choice. Striatal activity 

is increased in situations where the trustee returns larger amounts of money relative to 

situations where he returns smaller amounts of money. Overall, these studies are in line with 

the observation in this thesis that striatal prediction errors in social contexts signal relevance 

for updating one’s own behavioural policy. 

The observation of a plasticity in one’s own value representation has implications for our 

understanding of the organizational structure of mPFC. Our data are not consistent with an 

account whereby subjects use their own representation in order to simulate other people’s 
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preferences. If subjects had used their own representation to choose on behalf of the novel 

other throughout the experiment, we would not expect any changes in the overlap between 

self and the novel other, and therefore no change in repetition suppression between the two 

agents. If instead a novel representation would be constructed from the representation of 

self (Barron et al., 2013) we would expect a decrease in repetition suppression between self 

and novel other over the course of the experiment. Crucially, neither of these accounts are 

consistent with the increase in suppression we observe, which can only be explained by an 

increased recruitment of one overlapping population of neurons.  

 

Figure 7.1 Schematic representation of the phenomenon underlying an increase in repetition 
suppression with learning. A Increase in suppression due to an increase in overlap between 
separate representations computing value for self and other in mPFC. B Increase in suppression due 
to a change in valuation for self in an agent-independent encoding of subjective value.  

It is conceivable that value computations for self and other are performed within distinct 

populations of neurons, whose overlap increases due to prediction-error induced plasticity 

(Figure 7.1A). However, the effect could perhaps be explained even more parsimoniously if 

one assumes an agent-independent encoding of subjective value in mPFC (Nicolle et al., 

2012), whereby the neural mechanisms involved in computing value for self and other are 

shared (Figure 7.1B). Subjective value could for example emerge from population codes 

computing a weighted sum over a distributed set of discounting units, each favouring a 
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certain discount rate (Kurth-Nelson and Redish, 2009). Such distributed encoding for 

different reward values in intertemporal choice has been observed in rat OFC (Roesch et al., 

2006) and human mPFC (Wang et al., 2014). Learning-induced prediction errors could then 

act on the weights of the discounting units and an increase in overlap of the neural value 

representations for self and other would be directly related to a more similar subjective value 

computation (Figure 7.1B).  

It has long been a matter of debate whether our remarkable social abilities are due to 

specially evolved brain regions, uniquely involved in social information processing (Amodio 

and Frith, 2006; Saxe, 2006), or whether the mechanisms underlying the computation of our 

own behaviour underlies our ability to infer other people’s internal mental states. The notion 

of an agent-independent encoding of subjective value in mPFC is attractive, because it speaks 

to the idea that the same mechanisms that underlie the computation of our own goals and 

values could be used to model the goals and preferences of others (Buckner and Carroll, 

2007; Mitchell, 2009). 

7.3 Representing the structure of the world 

In Chapter 5, I show that the implicit exposure to an environment whose statistical 

transitions were determined by an underlying relational structure results in the formation of 

an abstract map in the hippocampal-entorhinal system. This suggests that the brain makes 

inferences about hidden structure in sensory data, and organizes this information in a map 

reminiscent of those maps supporting navigation in physical space. These studies address a 

fundamental question in neuroscience, namely whether the hippocampal-entorhinal system 

primarily computes spatial information or whether the same computations act on non-spatial 

knowledge (Buzsáki and Moser, 2013; Eichenbaum and Cohen, 2014; Tavares et al., 2015). 

Our findings suggests that a map is created within the hippocampal formation even in 

situations where relationships are non-spatial rather than spatial, discrete rather than 

continuous, and unavailable to conscious awareness. In physical space, the metric 

representation of relationships between landmarks allows for rapidly and flexibly computing 

distances and paths through space (Bush et al., 2015; Stemmler et al., 2015), enabling rapid 

rerouting when obstacles are introduced (Alvernhe et al., 2011) or removed (Alvernhe et al., 

2008). Representing abstract relational knowledge using the same neural code greatly 

facilitates learning new problems in a complex world, and storing information in a map allows 
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for computing the relationships between items that have never been experienced together to 

facilitate decision making. However, it remains unclear how exactly such a relational map 

aids goal-directed behaviour.  

One intriguing hypothesis proposes the hippocampal-entorhinal system stores an abstract 

cognitive map of the world, and orbitofrontal cortex (OFC) represents an animal’s current 

location within this space (Wilson et al., 2014). OFC is critical for encoding stimulus-reward 

associations (Klein-Flügge et al., 2013b) and lesions in OFC lead to subtle impairments in 

specific decision making tasks such as reversal learning or devaluation paradigms. In reversal 

learning tasks animals initially learn to associate one of two stimuli or actions with a reward. 

After a number of trials the contingencies between a choice and a reward changes. OFC-

lesioned animals have no difficulty in learning the initial task contingencies, but they are 

impaired in updating the contingencies after reversals (Butter, 1969). In devaluation 

paradigms, an animal’s propensity to work for a reward is tested in a situation where the 

incentive value of the reward has been devalued. Unless animals are overtrained on the task 

they are typically sensitive to the devaluation procedure and stop working for the reward. 

OFC-lesioned animals do not display this sensitivity to reinforcer devaluation and continue 

working for a devalued reward (Gallagher et al., 1999). Successful performance on both types 

of tasks requires accurate credit assignment, whereby an outcome is specifically attributed to 

the relevant choice to guide behaviour (Walton et al., 2010). In other words, OFC encodes 

the currently relevant state of the world in order to guide adaptive decision making. A recent 

fMRI experiment in humans corroborates this hypothesis by demonstrating that an internal 

model of the association strength between stimuli and outcomes is stored in the 

hippocampus, but updated through OFC activity in situations where the association between 

stimuli and outcomes has to be updated flexibly (Boorman et al., 2016). This suggests that 

OFC does not encode a model of the entire task space per se, but instead represent only the 

behaviourally relevant state. OFC is particularly well suited for assigning a stimulus or an 

action to an outcome because its subdivisions are widely connected to brain areas processing 

multisensory and emotional information, memories and rewards (Kahnt et al., 2012). Direct 

access to a model representation stored in the hippocampus may be driven by the strong 

anatomical connections between the two anatomical structures (Carmichael and Price, 1995). 

However, understanding precisely how interactions between prefrontal cortex and 

hippocampus enable model-based behaviour is an important question for future research.  



General Discussion 

177 
 

In the experiments reported in this thesis, I found no evidence for a representation of the 

relational structure in prefrontal cortex. It is conceivable that the reason for this is the 

incidental nature of the task. The entorhinal map I observe might be the consequence of 

latent learning, whereby animals construct a ‘cognitive map’ of the environment even in the 

absence of reinforcement (Tolman and Honzik, 1930). This map can then be used to enable 

rapid goal-directed learning when a reward is later introduced (Tolman, 1948). Future 

research should investigate whether elements of the relational map are represented in 

prefrontal cortex in situations where the map is useful for guiding goal-directed behaviour. 

Another question these results raise is one addressing how exactly the brain knows which 

structure to represent in light of the large number of possible representations of the statistical 

relationships between elements in the environment. In Chapter 6, I demonstrate that in this 

specific situation the distance-dependence and the map-like representations of relational 

information can be reproduced by a simple Hopfield network with pairwise Hebbian 

plasticity between neighbouring stimulus representations, suggesting associative plasticity 

alone could lead to the formation of a map. As outlined in the discussion, however, the 

simultaneous representation of a memory and its relationship with other memories is 

instable, ultimately resulting to a corrupted memory trace and a collapsed network. 

A more efficient way of encoding information across experiences would be to reduce the 

dimensionality of the data by extracting the dimensions capturing most of the variance in the 

data. This is particularly relevant for the relationships between objects, events and other types 

of knowledge, which are not confined to a 2-dimensional space like the relationships between 

landmarks in physical space. In Chapter 6, I introduce a simple model of the relationship 

between place coding in the hippocampus and grid cells in entorhinal cortex, demonstrating 

that the typical hexagonal arrangement of grid cell firing could be explained by a covariance 

computation of hippocampal outputs. Critically, this relationship also results in a similar 

distance-dependent scaling of representational similarity, like the effect observed in the 

entorhinal cortex. The structure participants were trained on in the experimental Chapter 5 

does not allow for differentiating between these two distinct accounts, and a higher-

dimensional structure where the 2-dimensional topology is broken would need to be used to 

investigate this question. Importantly, such experiments might also provide new insights into 

computations performed by hippocampal place cells and entorhinal grid cells relevant for 

navigating physical space as it is currently still a matter of debate how place cells and grid 

cells encode 3-dimensional space. While whole-cell recordings of place cells reveal uniform 
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and nearly isotropic encoding of 3D space in bats flying freely in a volumetric space (Yartsev 

and Ulanovsky, 2013), place cells and grid cells in rats exploring 3-dimensional structures 

seem insensitive to the third dimension (Hayman et al., 2011).  

7.4 Learning-induced acquisition and updating of world 
models  

A crucial aspect of learning about the world involves deciding when to modify an existing 

model, and when to form a new model of the environment (Gershman and Niv, 2010). The 

first set of studies reported  in this thesis (Chapters 3-4) could be performed by modifying 

an existing model of an ‘unknown’ other person’s preferences, which is updated in light of 

new incoming information about the other’s choices. In the second set of experiments 

(Chapters 5-6), subjects constructed a completely novel representation of the relational 

structure of the environment. Under which conditions is it better to update an existing 

predictive model of the world, and when should a novel model be built?   

While the question when to build a novel model has been underexplored, the issue of 

when to update an existing model of the world is comparably well understood. According to 

a ‘predictive coding’ theory of brain function, the statistics of the environment determine 

when to modify an existing representation of the world. ‘Predictive coding’ theorizes that the 

brain constantly compares incoming sensory information to signals that are predicted based 

upon our current model of the world. Events that are inconsistent with our world model 

elicit prediction errors (Friston, 2010), which are useful teaching signals because they can 

reflect a change in the environment and a need to update or replace our model in order to 

improve prediction of future events (O’Reilly et al., 2013). Changes in the representation of 

the brain’s model of the world are putatively driven by prediction error signals computed in 

VTA and substantia nigra, which directly influence memory-based models of the world by 

influencing hippocampal activity. Hippocampal and dopaminergic midbrain systems are 

intricately linked in a functional loop (Lisman and Grace, 2005) and the hippocampus itself 

receives significant dopaminergic innervation (Gasbarri et al., 1997) which influences long-

term potentiation in CA1 (Morris et al., 2003). Information also flows in the other direction, 

whereby a hippocampal novelty signal is carried to the VTA resulting in a novelty-dependent 

dopamine release (Legault and Wise, 2001). More generally, the principle of ‘predictive 
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coding’ thus also applies to models of memory function (Henson and Gagnepain, 2010) and 

human memory is well adapted to the statistics of the environment (Steyvers et al., 2006). 

It has been suggested that a sequence of negative prediction errors, repeatedly elicited by 

the absence of predicted rewards as a consequence of altered statistics of the environment, 

can signal the necessity to create a novel world model (Redish et al., 2007). Gershman et al. 

(2010) extended this idea in a model of latent cause inference, whereby an animal constantly 

tries to predict the underlying causes of sensory data that are hidden from observation. 

Structure learning in this context is based on a generative model of the environment, and an 

animal needs to combine prior beliefs about how observations were generated with evidence 

provided by actual observations to infer the latent causes. Depending on the statistical 

structure of the environment and the size of the prediction errors, a model of the world is 

then either updated, or replaced (Gershman et al., 2014). 

These observations are consistent with the phenomenon of remapping of cognitive maps 

(Muller and Kubie, 1987; Wilson and McNaughton, 1993). When an animal is exposed to an 

environment which gradually morphs from a square box to a circular box, place cells 

gradually change their firing fields (Leutgeb et al., 2005). This manipulation presumably 

introduces only small prediction errors, resulting in a gradual update of the model of the 

world. If, however, morphs are presented at random rather than in consecutive order, the 

cognitive map abruptly and coherently changes its representation from a circle-like to a 

squarelike attractor state (Wills et al., 2005), suggesting that the animal fundamentally updates 

its belief about the current state of the world. This phenomenon also addresses the 

fundamental distinction between pattern completion and pattern separation, which needs to 

trade off situations where a new memory is encoded, or an old memory is retrieved. The 

properties of the hippocampus minimize the trade-off posed by assigning an activity pattern 

to an existing memory or a new memory (O’Reilly and McClelland, 1994). How precisely the 

brain trades off the decision to update an existing model of the world, or to construct a new 

one is an important question for future research.  

7.5 Conclusion 

In this thesis, I present a series of studies investigating the neural mechanisms underlying 

learning, memory formation and choice. Using fMRI repetition suppression and 

computational modelling, I demonstrate (1) how prediction errors induced by learning about 
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the environment result in plasticity in a value computation network. This plasticity can 

account for a malleability of subjective preferences. Furthermore, I show (2) how 

associations between objects in the world are combined into a model of the world and stored 

in the hippocampal-entorhinal system as a cognitive map. Such maps can form the basis of 

goal-directed behaviour, because they allow for inferring relationships without direct 

experience. Both sets of studies demonstrate how information is represented and updated at 

the level of neural representations, providing a bridge between representational codes and 

cognitive computations.  
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