

Biomarkers of subclinical inflammation and increases in glycaemia, insulin resistance and beta-cell function in non-diabetic individuals: the Whitehall II study

Journal:	European Journal of Endocrinology
Manuscript ID	EJE-16-0528.R1
mstype:	Clinical Study
Date Submitted by the Author:	n/a
Complete List of Authors:	Herder, Christian; Deutsches Diabetes-Zentrum Leibniz-Zentrum fur Diabetes-Forschung, Institute for Clinical Diabetology Faerch, Kristine; Steno Diabetes Centre, Clinical Epidemiology Carstensen-Kirberg, Maren; Deutsches Diabetes-Zentrum Leibniz-Zentrum fur Diabetes-Forschung, Institute for Clinical Diabetology Lowe, Gordon; University of Glasgow, Institute of Cardiovascular and Medical Sciences Haapakoski, Rita; University College London, Department of Epidemiology and Public Health Witte, Daniel; Aarhus Universitet, Department of Public Health Brunner, Eric; University College London, Department of Epidemiology and Public Health Roden, Michael; Deutsches Diabetes-Zentrum Leibniz-Zentrum fur Diabetes-Forschung, Institute for Clinical Diabetology Tabák, Ádám; University College London, Department of Epidemiology and Public Health Kivimaki, Mika; University College London, Epidemiology and Public Health Vistisen, Dorte; Steno Diabetes Center AS, Clinical Epidemiology
Keywords:	Biomarker, Diabetes Mellitus, Cytokines, Insulin

SCHOLARONE™ Manuscripts

1	EJE-16-0528 revision 1 (original article)
2	
3	Biomarkers of subclinical inflammation and increases in glycaemia, insulin resistance
4	and beta-cell function in non-diabetic individuals: the Whitehall II study
5	
6	Short title: Inflammation and glucose metabolism
7	
8	Christian Herder ^{1,2} , Kristine Færch ³ , Maren Carstensen-Kirberg ^{1,2} , Gordon D. Lowe ⁴ , Rita
9	Haapakoski ⁵ , Daniel R. Witte ^{5,6} , Eric J. Brunner ⁵ , Michael Roden ^{1,2,8} , Adam G. Tabák ^{5,9} ,
10	Mika Kivimäki ⁵ , Dorte Vistisen ³
11	
12	¹ Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes
13	Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany; ² German Center
14	for Diabetes Research, München-Neuherberg, Germany; ³ Steno Diabetes Center A/S,
15	Gentofte, Denmark; ⁴ Institute of Cardiovascular and Medical Sciences, University of
16	Glasgow, Glasgow, UK; ⁵ Department of Epidemiology and Public Health, University College
17	London, London, UK; ⁶ Department of Public Health, Aarhus University, Aarhus, Denmark;
18	⁷ Danish Diabetes Academy, Odense, Denmark; ⁸ Department of Endocrinology and
19	Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany;
20	⁹ First Department of Medicine, Semmelweis University, Faculty of Medicine, Budapest,
21	Hungary.
22	
23	Keywords: subclinical inflammation, cytokines, adiponectin, insulin resistance, prediabetes,
24	cohort
25	
26	Corresponding author:

27	Dr. Christian Herder MSc, Institute for Clinical Diabetology, German Diabetes Center, Auf'm
28	Hennekamp 65, 40225 Düsseldorf, Germany. Phone: +49 211 3382 647. Fax: +49 211 3382
29	603.
30	Email: christian.herder@ddz.uni-duesseldorf.de
31	
32	
33	Word count: 5806 (incl. title page, acknowledgements, funding, author contributions and
34	references)
35	

Abstract

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

36

Objective: Higher systemic levels of proinflammatory biomarkers and low adiponectin are associated with increased risk for type 2 diabetes, but their associations with changes in glycaemic deterioration before onset of diabetes are poorly understood. We aimed to study whether inflammation-related biomarkers associated with 5-year changes in glucose and insulin, HbA1c, insulin sensitivity and beta-cell function before the diagnosis of type 2 diabetes and whether these associations may be bidirectional. Design and Methods: We used multiple repeat measures (17,891 person-examinations from 7,683 non-diabetic participants) from the Whitehall II study to assess whether circulating high-sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), IL-1 receptor antagonist (IL-1Ra) and adiponectin associated with subsequent changes in glycaemia, insulin, insulin resistance and beta-cell function (based on oral glucose tolerance tests). We examined bidirectionality by testing if parameters of glucose metabolism at baseline associated with changes in inflammation-related biomarkers. Results: Higher hsCRP and IL-6 were associated with increases in fasting insulin, insulin resistance and, for IL-6, with beta-cell function after adjustment for confounders. Higher adiponectin associated with decreases in fasting glucose, HbA1c, fasting insulin, insulin resistance and beta-cell function. The reverse approach showed that 2-hour glucose and insulin sensitivity associated in opposite directions with changes in IL-1Ra. Fasting insulin and insulin resistance showed inverse associations with changes in adiponectin. Conclusions: Subclinical inflammation associated with development of increased glycaemia, insulin resistance and beta-cell function in non-diabetic individuals. These findings are consistent with the hypothesis that inflammation-related processes may increase insulin resistance and lead to a compensatory upregulation of beta-cell function.

Introduction

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

62

Biomarkers of subclinical inflammation are associated with incident type 2 diabetes (1,2), but prospective data on glycaemic deterioration before the onset of diabetes are scarce. Crosssectional studies suggest differential time-courses for changes in biomarkers of subclinical inflammation before type 2 diabetes. Regarding circulating C-reactive protein (CRP), for example, higher levels were observed in prediabetes (i.e. impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT)) compared to normal glucose tolerance (NGT), whereas only minor differences in CRP levels were observed between people with prediabetes and type 2 diabetes (3). In contrast, systemic levels of interleukin (IL)-6 or IL-18 seemed to be similar in individuals with NGT and prediabetes, but higher in those with type 2 diabetes compared to those with prediabetes (3,4). Thus, different biomarkers of subclinical inflammation are related to early versus late stages of glycaemic deterioration, but little is known about the underlying pathophysiology (5). If subclinical inflammation influences early deterioration of glycaemic control, biomarkers of subclinical inflammation should be associated with development of prediabetes, when individuals with NGT are followed-up longitudinally. To date two small studies have failed to provide evidence for an association of proinflammatory cytokines or adiponectin with incident IFG or IGT (6,7). An alternative approach with higher statistical power is to investigate whether baseline levels of biomarkers of subclinical inflammation are associated with subsequent changes in measures of glucose metabolism (8,9). In this study, we adopted that latter approach to examine whether biomarkers of subclinical inflammation are associated with 5-year changes in glucose and insulin levels, HbA_{1c}, insulin sensitivity and beta-cell function before the diagnosis of type 2 diabetes in a large populationbased cohort. The study was based on three 5-year observation cycles, which were combined by means of a mixed model (10). Since there is evidence for an impact of hyperglycaemia and

hyperinsulinaemia on subclinical inflammation and hypoadiponectinaemia (11,12), we also considered a potentially bidirectional relationship by investigating to what extent markers of glucose metabolism may also be associated with changes in biomarkers of subclinical inflammation.

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

88

89

90

91

Materials and Methods

Study participants, procedures and measurements

Participants are from the Whitehall II Study, an occupational cohort of 10,308 British civil servants (6,896 men and 3,412 women aged 35-55 years) of mainly white ethnicity recruited between 1985 and 1988 (phase 1) (13). The UK NHS Health Research Authority London-Harrow ethics committee reviewed and approved the study. Written informed consent was obtained from each participant at each examination phase. The study was conducted according to the principles of the Helsinki Declaration. The cohort has been followed at eight subsequent phases, 2.5 years apart. All study phases included a questionnaire, and every second phase (5 years apart) also included a clinical health examination (phases 1, 3, 5, 7, and 9). Phase 3 (1991–1993) was the first phase with an oral glucose tolerance test (OGTT), therefore phase 1 was not used. In the Whitehall II cohort 8,815 participated at phase 3 (1991–1993); 7.870 at phase 5 (1997–1999); 6.967 at phase 7 (2002–2004); and 6.761 at phase 9 (2007–2009) with the same individual participating in several phases. During followup, participants were censored if they died, were lost to follow-up or developed diabetes. Anthropometric, demographic, clinical and lifestyle characteristics are summarised in Table 1. At phases 3, 5, 7, and 9 a standard 2-hour 75 g OGTT was performed in the morning after an overnight fast (≥8 hours of fasting). For around one third of the examinations, the OGTT was administered in the afternoon after a light fat-free breakfast (≥5 hours of fasting). These examinations were not considered in this study. Diabetes was diagnosed by a doctor outside the study or at screening by OGTT. Screen-detected diabetes was ascertained throughout

114	follow-up by OGTTs administered every 5 years and defined according to the OGTT criteria
115	defined by the World Health Organization (14).
116	Information on smoking habits (never/ex/current), alcohol consumption (units per week) and
117	physical activity (hours per week of mild, moderate and vigorous physical activity) were
118	collected using a self-administered questionnaire (15).
119	Plasma glucose, serum insulin, HbA1c and serum lipids were measured as described
120	previously (16,17). Insulin sensitivity and beta-cell function were estimated based on fasting
121	plasma glucose and serum insulin using the homeostasis model assessment for insulin
122	resistance (HOMA-IR) and beta-cell function (HOMA-β). In addition, whole-body insulin
123	sensitivity was assessed using the insulin sensitivity index (ISI ₀₋₁₂₀) based on fasting and 2-
124	hour values of glucose and insulin (18).
125	High-sensitivity CRP (hsCRP) was measured using a high-sensitivity immunonephelometric
126	assay, IL-6 was measured using a high-sensitivity ELISA assay, IL-1 receptor antagonist (IL-
127	1Ra) and total adiponectin were measured with Quantikine ELISA kits (R&D Systems,
128	Wiesbaden, Germany) in a diabetes case-cohort sample (19,20).
129	
130	Statistical analysis
131	Statistical analyses were performed in R version 3.1.3 (The R Foundation for Statistical
132	Computing) and SAS version 9.2 (SAS Institute, Cary, NC, USA).
133	In the main analysis the following outcomes were studied: fasting plasma glucose, 2-hour
134	plasma glucose, HbA $_{1c}$, fasting and 2-hour serum insulin, HOMA-IR, HOMA- β and ISI $_{0-120}$.
135	We excluded 10,529 (36.5%) person-examinations for which the participant had been fasting
136	for <8 hours (OGTTs administered in the afternoon). Outcomes with a skewed distribution
137	(fasting and 2-hour insulin, HOMA-IR, HOMA- β and ISI ₀₋₁₂₀) were log-transformed prior to
138	analysis.

139	The following biomarkers of subclinical inflammation were included as exposures: high-
140	sensitivity (hs)CRP, IL-6, IL-1 receptor antagonist (IL-1Ra) and adiponectin (all Log2
141	transformed prior to analysis). As adiponectin and IL-1Ra were measured only in a case-
142	cohort subsample nested within the Whitehall II study (19,20), analyses were restricted to the
143	subcohort with these measurements. We excluded 412 (2.3%) person-examinations with
144	hsCRP >10 mg/l as indicator of acute infections.
145	Up to a total of 17,891 person-examinations for 7,683 non-diabetic participants were analysed
146	(8,303 person-examinations for 2,965 participants in the subcohort). We studied the
147	associations of baseline levels of inflammation-related biomarkers and 5-year follow-up
148	levels of the different outcomes, including the baseline level of the outcome as a covariate.
149	The main analysis is based on all available data after the aforementioned exclusions and
150	provides effect estimates per doubling in baseline levels of the respective biomarker. In
151	addition, we used the subset of the population for whom all four biomarkers were available at
152	the same time-points to calculate regression coefficients that were standardised per 1-SD
153	difference in the Log of the biomarker to allow direct comparisons of effect sizes between the
154	exposure variables.
155	All analyses were adjusted for age, sex, study phase and baseline value of the outcome
156	studied (model 1). We further adjusted the analyses for other variables in a successive
157	manner:
158	- model 2, further adjustment for baseline BMI;
159	- model 3, further adjustment for baseline lifestyle factors (smoking, physical activity, alcohol
160	intake) and lipids (triacylglycerols, HDL-C, LDL-C);
161	- model 4, further adjustment for 5-year change in BMI after baseline.
162	To compare the estimated associations across models 1-4 for a given outcome and exposure,
163	we used a complete-case approach, limiting the analyses to data with complete information on
164	all covariates in model 4. Except for HbA _{1c} , which was only measured at phases 7 and 9, the

same individual may contribute with more than one observation to the analyses. To account
for the likely correlation of repeated measurements within the same participant, we used
mixed-effects models with a random intercept and a random slope for time. For HbA_{1c} , a
standard linear model was used. In a sensitivity analysis, we further tested whether the
associations were changed when using waist circumference instead of BMI.
In the reverse approach, we interchanged exposures and outcomes and studied the
associations of the baseline levels of glycaemia, insulin, insulin sensitivity and beta-cell
function with 5-year changes in inflammation-related biomarkers. These analyses were
performed using the same methods and models as described above.
A two-sided 5% level of significance was adjusted for multiple testing with the method of
Benjamini and Hochberg (21). This method controls the false discovery rate and is considered
more powerful than the more simple Bonferroni adjustment of the error rate, because the risk
of false negative results is lower with the Benjamini-Hochberg method.
Results
Results
Associations between biomarkers of inflammation at baseline and 5-year changes in
glycaemia, insulin, insulin sensitivity and beta-cell function
Higher systemic concentrations of hcCDD II 6 and II 1Do ware associated with higher
Higher systemic concentrations of hsCRP, IL-6 and IL-1Ra were associated with higher
changes in fasting and 2-hour glucose and fasting and 2-hour insulin, but not HbA _{1c} , whereas
changes in fasting and 2-hour glucose and fasting and 2-hour insulin, but not HbA _{1c} , whereas
changes in fasting and 2-hour glucose and fasting and 2-hour insulin, but not HbA_{1c} , whereas adiponectin was inversely associated with all these five outcomes (Table 2, model 1). After
changes in fasting and 2-hour glucose and fasting and 2-hour insulin, but not HbA_{1c} , whereas adiponectin was inversely associated with all these five outcomes (Table 2, model 1). After adjustment for baseline BMI, lipids, lifestyle factors and change in BMI, the positive
changes in fasting and 2-hour glucose and fasting and 2-hour insulin, but not HbA_{1c} , whereas adiponectin was inversely associated with all these five outcomes (Table 2, model 1). After adjustment for baseline BMI, lipids, lifestyle factors and change in BMI, the positive associations of hsCRP and IL-6 with fasting insulin and the inverse associations between

resistance (i.e. increase in HOMA-IR and decrease in $ISI_{0,120}$) and beta-cell function, while

191	baseline adiponectin showed inverse associations (Table 2, model 1). Effect sizes were
192	attenuated by adjustment for the aforementioned covariables, but the associations of hsCRP,
193	IL-6 and adiponectin with changes in HOMA-IR and the associations of IL-6 and adiponectin
194	with HOMA- β remained significant in the final model (model 4). Associations with $ISI_{0,120}$
195	lost statistical significance after adjustment.
196	To compare effect sizes between exposures, we standardised our estimates per 1 population
197	SD of one Log unit of the concentrations of the four biomarkers of subclinical inflammation
198	(Fig. 1; Supplementary Tables 1 and 2). Effect sizes were similar for hsCRP, IL-6 and IL-
199	1Ra, but of larger magnitude (and in the opposite direction) for adiponectin.
200	We substituted BMI with waist circumference in a sensitivity analysis. In general this
201	changed little (<10%) of the effect estimates in Table 2 (data not shown). Some effect
202	estimates showed greater changes (≥10%), but these were only observed for non-significant
203	associations.
204	
205	Associations of glycaemia, insulin, insulin sensitivity and beta-cell function at baseline
206	with 5-year changes in biomarkers of inflammation
207	When interchanging exposures and outcomes, we observed fewer significant associations
208	(Fig. 2). None of the measures of glycaemia was associated with changes in hsCRP, IL-6, IL-
209	1Ra or adiponectin when further adjusting for 5-year change in BMI after baseline (fully
210	adjusted model), except an inverse association between 2-hr glucose and IL-1Ra
211	(Supplementary Tables 3 and 4). Fasting insulin and HOMA-IR showed inverse associations
212	with changes in adiponectin in the fully adjusted models, but neither insulin levels nor

214

215

(Supplementary Tables 3 and 4).

HOMA-IR were related to changes in hsCRP, IL-6 or IL-1Ra (Supplementary Tables 3 and

4). High baseline levels of ISI_{0,120} were positively associated with increases in IL-1Ra

Discussion

This study examined the temporal relationship between biomarkers of subclinical inflammation and changes in glucose metabolism before the diagnosis of type 2 diabetes using repeat data. Baseline levels of hsCRP and IL-6 were positively associated with subsequent increases in fasting insulin, HOMA-IR and beta-cell function, while adiponectin was inversely associated with future changes in fasting glucose, HbA_{1c}, fasting insulin, HOMA-IR and beta-cell function. In the reverse analysis, baseline fasting insulin and HOMA-IR were associated with decreases in adiponectin, while 2-hour glucose and ISI_{0.120} showed associations with changes in IL-1Ra.

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

217

218

219

220

221

222

223

224

225

Subclinical inflammation and glycaemia

Serum hsCRP, IL-6 and IL-1Ra were associated with 5-year increases in fasting and 2-hour glucose in age and sex-adjusted models, but further adjustment attenuated these associations to non-significance with BMI being the most important confounder. In contrast, adiponectin levels showed an independent inverse association with fasting glucose, but not with 2-hour glucose. These data are novel and may point towards a specific role of adiponectin in the early deterioration of glycaemia. Fasting glucose levels are mainly determined by hepatic glucose production, whereas increased 2-hour glucose mainly reflects peripheral glucose uptake (22). Adiponectin receptors (ADIPOR)-1 and 2 are expressed on both hepatocytes and skeletal muscle cells with ADIPOR2 being the predominant receptor in the liver and ADIPOR1 the predominant receptor in skeletal muscle (23). Therefore, it can be speculated that ADIPOR2-mediated signaling and downstream effects on peroxisome proliferator-activated receptor-α and regulation of glucose uptake, fatty acid oxidation, oxidative stress and inflammation may mediate the observed association between adiponectin and deterioration of fasting glycaemia in our study. Importantly, chronically decreased adiponectin levels are indicators of adipose

tissue dysfunction and not only related to increased risk of type 2 diabetes, but also to diabetic

complications (1,2,24,25). With respect to HbA_{1c}, we observed an inverse association between adiponectin and increases in HbA_{1c}, but no associations of the other three biomarkers. Based on the findings for fasting glucose, associations may have been expected for all four biomarkers at least for the age and sex-adjusted model. However, this discrepancy may be due to the fact that glucose levels are only weak determinants of HbA_{1c} in non-diabetic individuals (26). Furthermore, the sample size for the HbA_{1c} analysis was smaller than that for other glycaemic traits. Our data are only partly in line with previous observations in the KORA study showing a positive association between hsCRP and 7-year changes in HbA_{1c}, but no association between adiponectin and HbA_{1c} (9). There are no obvious differences in baseline characteristics between the two studies, so the relevance of subclinical inflammation for HbA_{1c} levels in non-diabetic individuals merits further studies.

Subclinical inflammation and insulin resistance

Our study revealed consistent associations between all four biomarkers and fasting insulin and HOMA-IR, although the associations of IL-1Ra were not independent of 5-year changes in BMI. In contrast, for 2-hour insulin and IS₀₋₁₂₀, which were based on post-load measures, associations with hsCRP, IL-6 and adiponectin were only found in the initial regression models, but not after full adjustment.

So far, only one previous study employed a comparable design and found that high hsCRP levels were associated with increases in HOMA-IR in a young non-diabetic population (8). Thus, the use of a more comprehensive assessment of subclinical inflammation and dynamic measures of insulin resistance represents an extension of the current literature. Our observations for changes in fasting insulin and HOMA-IR complemented and corroborated our findings for fasting glucose and pointed towards an association between subclinical

inflammation and hepatic rather than peripheral insulin resistance in non-diabetic individuals. Associations were weaker for changes in IL-1Ra. IL-1Ra levels are considered as indicators of IL-1 β -mediated processes. IL-1 β has been demonstrated to induce insulin resistance in hepatocytes (27). Therefore, an association between IL-1Ra and hepatic insulin resistance is plausible.

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

269

270

271

272

273

Subclinical inflammation and beta-cell function

This is apparently the first study to show that higher hsCRP, IL-6 and IL-1Ra and lower adiponectin at baseline are associated with 5-year increases in beta-cell function assessed in the fasting state. After full adjustment, high IL-6 levels and low adiponectin levels remained associated with increases in fasting beta-cell function. Although an increase in beta-cell function does not seem intuitively related to an increased risk of type 2 diabetes, our findings have to be seen in context of the aforementioned associations with worsening fasting glycaemia and increased insulin resistance. The associations of IL-6 and adiponectin with increases in beta-cell function were most likely a consequence of their associations with increased insulin resistance. In other words, increases in HOMA-IR in our non-diabetic study sample may reflect a compensatory upregulation of insulin secretion in response to decreases in insulin action, which was still sufficient to maintain glucose levels. However, our data are also in line with the alternative hypothesis that biomarkers of subclinical inflammation have a direct impact on beta-cell function. At least IL-6 has been reported to stimulate insulin secretion through an incretin-mediated mechanism in experimental models of diabetes (28). The interpretation of our findings regarding beta-cell function would have been facilitated by the investigation of associations between subclinical inflammation and changes in the disposition index. Unfortunately, the assessment of dynamic beta-cell function is not possible with the available data in the Whitehall II cohort.

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Bidirectionality in temporal associations between subclinical inflammation and markers of glucose metabolism Our study is unique because our design allowed us to assess the potential bidirectionality in the associations of subclinical inflammation and glucose metabolism. Reversing our initial analysis led to two main results: First, fasting insulin and HOMA-IR were associated with decreases in adiponectin. Second, 2-hour glucose showed inverse and ISI₀₋₁₂₀ showed direct associations with changes in IL-1Ra. It has been proposed that hypoadiponectinaemia in obesity and type 2 diabetes may be a consequence rather than a cause of insulin resistance (12). The regulation of adiponectin is still poorly understood in humans, so we cannot draw firm conclusions. However, the results are consistent with our previous observations of continuous and faster decrease in adiponectin levels preceding the development of type 2 diabetes compared to healthy adults (20). Our study suggests that adiponectin and insulin resistance are linked in a bidirectional way with potential deleterious consequences for the regulation of glucose metabolism. The associations between 2-hour glucose, ISI₀₋₁₂₀ and changes in IL-1Ra point towards a potential link between peripheral insulin action and regulation of IL-1Ra. Such a link is plausible given the fact that the release of both IL-1β and IL-1Ra after exercise is part of normal skeletal muscle physiology (29). However, it is currently unclear how impairments in

313 314

315

316

317

318

319

320

From a pathophysiological point-of-view, any bidirectionality in the relationship between

muscle insulin sensitivity could influence circulating levels of both proteins.

subclinical inflammation and insulin resistance could reflect a positive feed-back loop,

potentially fueling a vicious cycle resulting in progressive worsening of glycaemic control.

Our finding of a limited degree of bidirectionality consequently argues in favour of a

deleterious impact of hypoadiponectinaemia and subclinical inflammation in the development

of dysglycaemia.

Strengths and limitations

Strengths of our study are its large sample size and the analysis of quantitative traits entailing
a larger statistical power than the analysis of a dichotomous outcome (e.g. prediabetes).
Further strengths are the use of multiple measures of glucose metabolism reflecting different
pathophysiological aspects and the availability of repeat data from up to four study phases,
which allowed us to assess potential bidirectional relationships. Moreover, we adjusted for
baseline BMI and its 5-year changes and thus demonstrated that associations were not solely
mediated by obesity.
One limitation is the observational design that provides evidence for temporal, but not for
causal relationships. Moreover, HOMA-IR and ${\rm ISI}_{0\text{-}120}$ correlate only moderately well with
the euglycaemic-hyperinsulinaemic clamp (30), but clamp measurements were not available.
Thus, our assessment of insulin resistance was less precise than the gold standard, and we had
to rely on indirect estimates to compare hepatic versus peripheral insulin resistance. HOMA- β
can only be used to estimate fasting beta-cell function, and our study did not include dynamic
assessments of beta-cell function. This limits the precision of the measurmenent, and we
could not examine beta-cell function relative to insulin sensitivity using the disposition index.
We used a complete case approach in our analyses. The fraction of missingness of hsCRP and
IL-6 in the cohort was around 5% and between 10-15% for IL-1Ra and adiponectin in the
subcohort. Therefore, and because we are studying associations, the effect of any potential
non-randomness of the missing data for biomarkers of subclinical inflammation is considered
negligible.
A final limitation of our study is the selection of four biomarkers, which left out others that
also merit further research. We focused on hsCRP, IL-6, IL-1Ra and adiponectin as pro- and
anti-inflammatory biomarkers because of their well established associations with incident
type 2 diabetes in prospective studies (1.2.31). Based on experimental data and other

epidemiological studies, cytokines such as IL-1 β (32-34), tumour necrosis factor (TNF)- α (35,36) and transforming growth factor (TGF)- β (37,38) and chemokines such as monocyte chemoattractant protein-1/chemokine (C-C motif) ligand 2 (MCP-1/CCL2) (39,40) undoubtedly represent interesting candidates because of their impact on insulin sensitivity and/or beta-cell function. However, circulating levels of IL-1 β are below the limit of detection for a large proportion of individuals in population-based studies with currently available assays, and experimental data on TNF α and insulin resistance do not appear to be translated into an association between circulating levels of this protein and risk of type 2 diabetes in cohort studies (41,42). Data on most other inflammation-related biomarkers and incident type 2 diabetes are based on only one or very few cohorts, so that further studies on their relevance both for early deterioration of glucose metabolism and for the manifestation of type 2 diabetes would be important.

Conclusion

Our study demonstrates multiple associations between baseline levels of biomarkers of subclinical inflammation and subsequent 5-year changes in glycaemia, insulin resistance and beta-cell function in a large population-based cohort of non-diabetic individuals. These findings are consistent with the hypothesis that subclinical inflammation may increase hepatic insulin resistance and upregulate beta-cell function. We observed less consistent evidence for a bidirectionality in these temporal relationships, suggesting that low-grade inflammation precedes insulin resistance rather than vice versa.

Author	contrib	ution	statement	
Author	comtru		Statement	

C Herder, K Færch, E J Brunner, A G Tabak, M Kivimäki and D Vistisen contributed to the study concept and design. C Herder, M Carstensen-Kirberg, G D Lowe, R Haapakoski, D R Witte, E J Brunner, M Roden, A G Tabak and M Kivimäki contributed data. C Herder, K Færch and D Vistisen planned the statistical analysis. D Vistisen conducted the statistical analysis. C Herder and D Vistisen drafted the paper. All authors contributed to, critically revised and approved the final version of the manuscript.

Acknowledgements

We thank all of the participating civil service departments and their welfare, personnel, and establishment officers; the British Occupational Health and Safety Agency; the British Council of Civil Service Unions; all participating civil servants in the Whitehall II study; and all members of the Whitehall II study team. The Whitehall II Study team comprises research scientists, statisticians, study coordinators, nurses, data managers, administrative assistants and data entry staff, who make the study possible. Whitehall II data, protocols, and other metadata are available to bona fide researchers for research purposes. Please refer to the Whitehall II data sharing policy at http://www.ucl.ac.uk/whitehallII/data-sharing.

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

-			
1)	ico	เอรา	IVO

D Vistisen and K Færch are employed by Steno Diabetes Center, a research hospital working in the Danish National Health Service and owned by Novo Nordisk A/S. Steno Diabetes Center receives part of its core funding from unrestricted grants from the Novo Nordisk Foundation and Novo Nordisk A/S. M Kivimäki reports grants from the Medical Research Council (K013351), the British Heart Foundation (RG/13/2/30098) and the US National Institutes of Health (R01 HL036310, R01AG013196), during the conduct of the study. All other authors declare that there is no duality of interest associated with their contribution to this manuscript. This work was funded by the German Federal Ministry of Health; the Ministry of Innovation, Science, Research and Technology, North Rhine-Westphalia; the German Center for Diabetes Research, and the Novo Nordisk Foundation. The UK Medical Research Council, British Heart Foundation, and the US National Institutes of Health (R01HL36310, R01AG013196) have supported collection of data in the Whitehall II Study. D R Witte is supported by the Danish Diabetes Academy, which is funded by an unrestricted grant from the Novo Nordisk Foundation. The funders of the study had no role in study design, data collection, analysis, interpretation, or writing of the report.

407

406

References

410

- 1. Wang X, Bao W, Liu J, Ouyang YY, Wang D, Rong S, Xiao X, Shan ZL, Zhang Y, Yao P
- & Liu LG. Inflammatory markers and risk of type 2 diabetes: a systematic review and meta-
- 413 analysis. *Diabetes Care* 2013 **36** 166-175.
- 2. Herder C, Carstensen M & Ouwens DM. Anti-inflammatory cytokines and risk of type 2
- diabetes. Diabetes, Obesity and Metabolism 2013 15 (Suppl 3) 39-50.
- 3. Grossmann V, Schmitt VH, Zeller T, Panova-Noeva M, Schulz A, Laubert-Reh D, Juenger
- C, Schnabel RB, Abt TG, Laskowski R, Wiltink J, Schulz E, Blankenberg S, Lackner KJ,
- 418 Münzel T & Wild PS. Profile of the immune and inflammatory response in individuals with
- prediabetes and type 2 diabetes. *Diabetes Care* 2015 **38** 1356-64.
- 420 4. Herder C, Haastert B, Müller-Scholze S, Koenig W, Thorand B, Holle R, Wichmann HE,
- Scherbaum WA, Martin S & Kolb H. Association of systemic chemokine concentrations with
- impaired glucose tolerance and type 2 diabetes: results from the Cooperative Health Research
- 423 in the Region of Augsburg Survey S4 (KORA S4). Diabetes 2005 54 (Suppl 2) S11-S17.
- 5. Tabák AG, Herder C, Rathmann W, Brunner EJ & Kivimäki M. Prediabetes: a high-risk
- state for diabetes development. *Lancet* 2012 **379** 2279-2290.
- 426 6. Daimon M, Oizumi T, Saitoh T, Kameda W, Hirata A, Yamaguchi H, Ohnuma H, Igarashi
- 427 M, Tominaga M, Kato T & Funagata study. Decreased serum levels of adiponectin are a risk
- factor for the progression to type 2 diabetes in the Japanese population: the Funagata study.
- 429 Diabetes Care 2003 **26** 2015-2020.
- 430 7. Donahue RP, Stranges S, Rejman K, Rafalson LB, Dmochowski J & Trevisan M. Elevated
- 431 cystatin C concentration and progression to pre-diabetes: the Western New York study.
- 432 *Diabetes Care* 2007 **30** 1724-1729.
- 8. Park K, Steffes M, Lee DH, Himes JH & Jacobs DR Jr. Association of inflammation with
- worsening HOMA-insulin resistance. *Diabetologia* 2009 **52** 2337-2344.

- 9. Klüppelholz B, Thorand B, Koenig W, de Las Heras Gala T, Meisinger C, Huth C, Giani
- 436 G, Franks PW, Roden M, Rathmann W, Peters A & Herder C. Association of subclinical
- 437 inflammation with deterioration of glycaemia before the diagnosis of type 2 diabetes: the
- 438 KORA S4/F4 study. *Diabetologia* 2015 **58** 2269-2277.
- 439 10. Brunner EJ, Shipley MJ, Britton AR, Stansfeld SA, Heuschmann PU, Rudd AG, Wolfe
- 440 CD, Singh-Manoux A & Kivimaki M. Depressive disorder, coronary heart disease, and
- stroke: dose-response and reverse causation effects in the Whitehall II cohort study. European
- Journal of Preventive Cardiology 2014 **21** 340-346.
- 11. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism.
- 444 Diabetes 2005 **54** 1615-1625.
- 12. Cook JR & Semple RK. Hypoadiponectinemia cause or consequence of human "insulin
- resistance"? *Journal of Clinical Endocrinology & Metabolism* 2010 **95** 1544-1554.
- 13. Marmot M & Brunner E. Cohort profile: the Whitehall II study. *International Journal of*
- 448 *Epidemiology* 2005 **34** 251-256.
- 449 14. Alberti KG & Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and
- 450 its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of
- a WHO consultation. *Diabetic Medicine* 1998 **15** 539-553.
- 452 15. Stringhini S, Batty GD, Bovet P, Shipley MJ, Marmot MG, Kumari M, Tabak AG &
- 453 Kivimäki M. Association of lifecourse socioeconomic status with chronic inflammation and
- 454 type 2 diabetes risk: the Whitehall II prospective cohort study. PLoS Medicine 2013 10
- 455 e1001479.
- 456 16. Tabák AG, Jokela M, Akbaraly TN, Brunner EJ, Kivimäki M & Witte DR. Trajectories of
- 457 glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an
- analysis from the Whitehall II study. *Lancet* 2009 **37** 2215-2221.
- 459 17. Færch K, Witte DR, Tabák AG, Perreault L, Herder C, Brunner EJ, Kivimäki M &
- Vistisen D. Trajectories of cardiometabolic risk factors before diagnosis of three subtypes of

- 461 type 2 diabetes: a post-hoc analysis of the longitudinal Whitehall II cohort study. Lancet
- 462 *Diabetes & Endocrinology* 2013 **1** 43-51.
- 463 18. Gutt M, Davis CL, Spitzer SB, Llabre MM, Kumar M, Czarnecki EM, Schneiderman N,
- Skyler JS & Marks JB. Validation of the insulin sensitivity index (ISI0,120): comparison with
- other measures. *Diabetes Research & Clinical Practice* 2000 **47** 177-184.
- 19. Carstensen M, Herder C, Kivimäki M, Jokela M, Roden M, Shipley MJ, Witte DR,
- 467 Brunner EJ & Tabák AG. Accelerated increase in serum interleukin-1 receptor antagonist
- starts 6 years before diagnosis of type 2 diabetes: Whitehall II prospective cohort study.
- 469 Diabetes 2010 **59** 1222-1227.
- 470 20. Tabák AG, Carstensen M, Witte DR, Brunner EJ, Shipley MJ, Jokela M, Roden M,
- 471 Kivimäki M & Herder C. Adiponectin trajectories before type 2 diabetes diagnosis: Whitehall
- 472 II study. *Diabetes Care* 2012 **35** 2540-2547.
- 473 21. Benjamini Y & Hochberg Y. Controlling the false discovery rate a practical and
- 474 powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B
- 475 *(Statistical Methodology)* 1995 **57** 289-300.
- 476 22. Abdul-Ghani MA, Tripathy D & DeFronzo RA. Contributions of beta-cell dysfunction
- and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting
- 478 glucose. *Diabetes Care* 2006 **29** 1130-1139.
- 479 23. Ye R & Scherer PE. Adiponectin, driver or passenger on the road to insulin sensitivity?
- 480 *Molecular Metabolism* 2013 **2** 133-141.
- 481 24. Kaptoge S, Seshasai SR, Gao P, Freitag DF, Butterworth AS, Borglykke A, Di
- 482 Angelantonio E, Gudnason V, Rumley A, Lowe GD, Jørgensen T & Danesh J. Inflammatory
- 483 cytokines and risk of coronary heart disease: new prospective study and updated meta-
- analysis. *European Heart Journal* 2014 **35** 578-589.

- 485 25. Herder C, Bongaerts BW, Rathmann W, Heier M, Kowall B, Koenig W, Thorand B,
- 486 Roden M, Meisinger C & Ziegler D. Association of subclinical inflammation with
- polyneuropathy in the older population: KORA F4 study. *Diabetes Care* 2013 **36** 3663-3670.
- 488 26. Fizelova M, Stančáková A, Lorenzo C, Haffner SM, Cederberg H, Kuusisto J & Laakso
- 489 M. Glycated hemoglobin levels are mostly dependent on nonglycemic parameters in 9398
- 490 Finnish men without diabetes. Journal of Clinical Endocrinology & Metabolism 2015 100
- 491 1989-1996.
- 492 27. Nov O, Kohl A, Lewis EC, Bashan N, Dvir I, Ben-Shlomo S, Fishman S, Wueest S,
- Konrad D & Rudich A. Interleukin-1beta may mediate insulin resistance in liver-derived cells
- 494 in response to adipocyte inflammation. *Endocrinology* 2010 **151** 4247-4256.
- 495 28. Ellingsgaard H, Hauselmann I, Schuler B, Habib AM, Baggio LL, Meier DT, Eppler E,
- Bouzakri K, Wueest S, Muller YD, Hansen AM, Reinecke M, Konrad D, Gassmann M,
- Reimann F, Halban PA, Gromada J, Drucker DJ, Gribble FM, Ehses JA & Donath MY.
- 498 Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from
- 499 L cells and alpha cells. *Nature Medicine* 2011 **17** 1481-1489.
- 29. Ostrowski K, Rohde T, Asp S, Schjerling P, Pedersen BK. Pro- and anti-inflammatory
- 501 cytokine balance in strenuous exercise in humans. Journal of Physiology 1999 515 (Pt 1)
- 502 287-291.
- 503 30. Simonson DC. Surrogate measures of insulin resistance: does one size fit all?
- 504 *Diabetologia* 2015 **58** 207-210
- 31. Li S, Shin HJ, Ding EL, van Dam RM. Adiponectin levels and risk of type 2 diabetes: a
- systematic review and meta-analysis. *Journal of the American Medical Association* 2009 **302**
- 507 **179-188**
- 32. Maedler K, Sergeev P, Ris F, Oberholzer J, Joller-Jemelka HI, Spinas GA, Kaiser N,
- Halban PA, Donath MY. Glucose-induced beta cell production of IL-1beta contributes to
- glucotoxicity in human pancreatic islets. *Journal of Clinical Investigation* 2002 **110** 851-860

- 33. Jager J, Grémeaux T, Cormont M, Le Marchand-Brustel Y, Tanti JF. Interleukin-1beta-
- induced insulin resistance in adipocytes through down-regulation of insulin receptor
- substrate-1 expression. *Endocrinology* 2007 **148** 241-251
- 34. Böni-Schnetzler M, Donath MY. Increased IL-1β activation, the culprit not only for
- defective insulin secretion but also for insulin resistance? *Cell Research* 2011 **21** 995-997
- 35. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis
- factor-alpha: direct role in obesity-linked insulin resistance. *Science* 1993 **259** 87-91
- 36. Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM. Tumor necrosis factor alpha
- inhibits signaling from the insulin receptor. *Proceedings of the National Academy of Sciences*
- of the United States of America 1994 **91** 4854-4858
- 37. Herder C, Zierer A, Koenig W, Roden M, Meisinger C, Thorand B. Transforming growth
- factor-beta1 and incident type 2 diabetes: results from the MONICA/KORA case-cohort
- study, 1984-2002. *Diabetes Care* 2009 **32** 1921-1923
- 38. Böhm A, Hoffmann C, Irmler M, Schneeweiss P, Schnauder G, Sailer C, Schmid V,
- 525 Hudemann J. Machann J. Schick F. Beckers J. Hrabě de Angelis M. Staiger H. Fritsche A.
- Stefan N, Nieß AM, Häring HU, Weigert C. TGFβ contributes to impaired exercise response
- by suppression of mitochondrial key regulators in skeletal muscle. *Diabetes* 2016 Jun 29. pii:
- db151723. [Epub ahead of print]
- 39. Sell H, Dietze-Schroeder D, Kaiser U, Eckel J. Monocyte chemotactic protein-1 is a
- 530 potential player in the negative cross-talk between adipose tissue and skeletal muscle.
- 531 *Endocrinology* 2006 **147** 2458-2467
- 40. Herder C, Baumert J, Thorand B, Koenig W, de Jager W, Meisinger C, Illig T, Martin S,
- Kolb H. Chemokines as risk factors for type 2 diabetes: results from the MONICA/KORA
- Augsburg study, 1984-2002. *Diabetologia* 2006 **49** 921-929
- 535 41. Spranger J, Kroke A, Möhlig M, Hoffmann K, Bergmann MM, Ristow M, Boeing H,
- Pfeiffer AF. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the

537	prospective population-based European Prospective Investigation into Cancer and Nutrition
538	(EPIC)-Potsdam Study. Diabetes 2003 52 812-817
539	42. Marques-Vidal P, Schmid R, Bochud M, Bastardot F, von Känel R, Paccaud F, Glaus J,
540	Preisig M, Waeber G, Vollenweider P. Adipocytokines, hepatic and inflammatory biomarkers
541	and incidence of type 2 diabetes: the CoLaus study. PLoS One 2012 7 e51768
542	

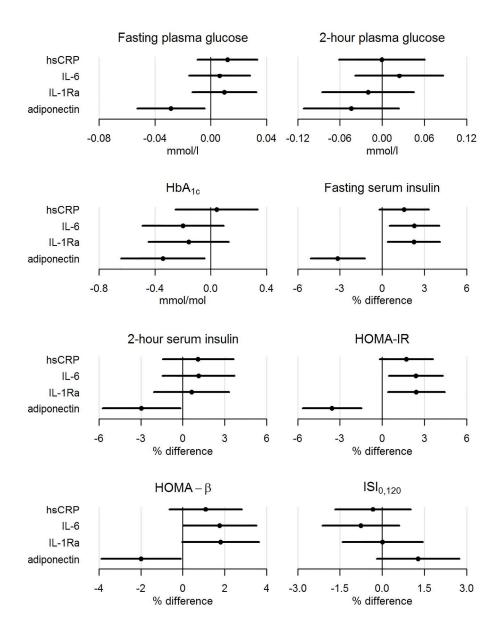
Figure 1 Effect of one population standard deviation difference in the Log of the immune marker at baseline (hsCRP, IL-6, IL-1RA, adiponectin) on subsequent 5-year changes in markers of glucose regulation. The associations are adjusted for baseline age, sex, study phase, BMI, smoking, physical activity, alcohol intake, triacylglycerols, HDL-C and LDL-C and baseline value of the outcome.

Figure 2 Effect of a difference in baseline glycaemia, insulin sensitivity or beta-cell function on subsequent 5-year changes in immune markers (hsCRP, IL-6, IL-1RA, adiponectin). The associations are adjusted for baseline age, sex, study phase, BMI, smoking, physical activity, alcohol intake, triacylglycerols, HDL-C and LDL-C and baseline value of the outcome.

Table 1 Characteristics of the study population at each study phase

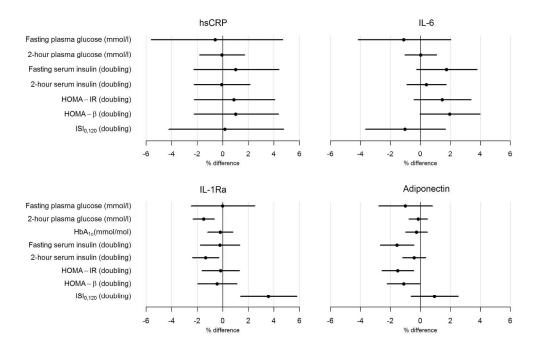
	Phase 3 (1991-	Phase 5 (1997-	Phase 7 (2002-	Phase 9 (2007-
Variable	1993)	1999)	2004)	2009)
n	5310	4310	4498	3773
Men (%)	69.1 (67.8;70.3)	71.6 (70.3;73.0)	73.3 (71.9;74.5)	72.9 (71.4;74.3)
White ethnicity (%)	90.5 (89.7;91.3)	91.9 (91.1;92.7)	92.8 (92.0;93.5)	93.1 (92.2;93.8)
Age (years)	49.4 (6.0)	55.1 (5.9)	60.6 (5.9)	65.4 (5.9)
BMI (kg/m ²)	25.3 (3.7)	26.1 (3.9)	26.6 (4.2)	26.6 (4.3)
Waist circumference (cm)	85.7 (11.6)	90.5 (11.6)	93.3 (11.9)	94.4 (11.9)
Total cholesterol (mmol/l)	6.5 (1.2)	5.9 (1.1)	5.8 (1.0)	5.3 (1.1)
HDL cholesterol (mmol/l)	1.4 (0.4)	1.5 (0.4)	1.6 (0.4)	1.6 (0.4)
LDL cholesterol (mmol/l)	4.4 (1.0)	3.9 (0.9)	3.6 (0.9)	3.2 (1.0)
Triacylglycerols (mmol/l)	1.5 (1.1)	1.3 (0.9)	1.3 (0.9)	1.2 (0.7)
Systolic blood pressure (mmHg)	120.4 (13.6)	122.2 (16.3)	127.7 (16.8)	125.3 (15.9)
Diastolic blood pressure (mmHg)	79.7 (9.5)	77.3 (10.4)	74.5 (10.5)	71.5 (10.0)
Fasting plasma glucose (mmol/l)	5.3 (0.7)	5.2 (0.7)	5.3 (0.8)	5.2 (0.6)
2-hour plasma glucose (mmol/l)	5.3 (1.9)	5.9 (1.8)	6.3 (1.9)	6.4 (1.9)
HbA _{1c} (%)	- //	-	5.3 (0.5)	5.6 (0.4)
HbA _{1c} (mmol/mol)	-	-	39.1 (5.9)	43.8 (5.3)
Fasting serum insulin (pmol/l)	5.7 (3.7;8.9)	7.0 (4.9;10.2)	7.0 (4.7;10.7)	6.6 (4.3;10.2)
2-hour serum insulin (pmol/l)	33.0 (18.5;56.5)	32.6 (19.8;53.2)	37.8 (23.3;63.7)	41.3 (25.6;69.1)
HOMA-IR	1.3 (0.8;2.1)	1.6 (1.1;2.4)	1.6 (1.1;2.6)	1.5 (1.0;2.4)
НОМА-β	67.1 (44.4;100.8)	92.0 (65.1;131.3)	80.0 (55.2;118.9)	82.2 (55.7;120)
ISI ₀₋₁₂₀	40.7 (31.5;53.3)	38.1 (29.8;48.9)	34.4 (26.4;44.5)	33.6 (25.5;43.6)
hsCRP (mg/dl)	0.9 (0.4;1.8)	1.0 (0.5;2.0)	1.2 (0.6;2.4)	-
IL-6 (pg/ml)	1.4 (1.0;2.0)	1.4 (1.0;2.0)	1.7 (1.2;2.4)	-
IL-1Ra (pg/ml) ^a	0.2 (0.2;0.3)	0.3 (0.3;0.4)	0.3 (0.3;0.4)	0.3 (0.3;0.4)
Adiponectin (μg/ml) ^a	8.7 (6.4;12.4)	8.6 (6.2;12.2)	8.3 (6.0;11.7)	8.5 (5.6;13.4)
Family history of diabetes (%)	11.2 (10.4;12.1)	10.3 (9.4;11.3)	10.0 (9.1;10.9)	9.6 (8.7;10.6)
Current smoker (%)	13.7 (12.8;14.7)	10.4 (9.5;11.3)	8.4 (7.6;9.3)	5.7 (5.0;6.5)
Moderate to vigorous exercise (hours/week)	2.0 (1.0;5.0)	11.5 (4.5;20.0)	12.0 (4.5;20.5)	-
Alcohol intake (units/week)	6.0 (2.0;14.0)	10.0 (3.0;20.0)	9.0 (3.0;18.0)	7.0 (2.0;16.0)
Antihypertensive treatment (%)	7.3 (6.6;8.0)	11.3 (10.3;12.2)	22.2 (21;23.4)	33.0 (31.5;34.5)
Lipid-lowering treatment (%)	0.8 (0.6;1.1)	2.8 (2.4;3.4)	10.0 (9.2;11.0)	29.1 (27.6;30.6)

³ Data are means (SD), medians (25th;75th percentiles) or proportions (95% CI).


^{4 &}lt;sup>a</sup>Subsample (*n*=2636).

- Table 2 Effects (with 95% CI) of a doubling in the inflammatory marker at baseline on 5-year changes in glycaemia, insulin, insulin sensitivity and
- 2 beta-cell function

			hsCRP			IL-6			IL-1Ra		Adiponectin			
Outcome	Model	n	Estimate	P	n	Estimate	P	n	Estimate	P	n	Estimate	P	
Fasting glucose														
(mmol/l)	1	6716	0.02 (0.01;0.03)	< 0.001	6525	0.02 (0.00;0.04)	0.027	3651	0.05 (0.02;0.08)	0.004	3651	-0.05 (-0.08;-0.02)	<0.001	
	2	6716	0.01 (0.00;0.02)	0.044	6525	0.01 (-0.01;0.03)	0.336	3651	0.03 (-0.01;0.06)	0.132	3651	-0.04 (-0.07;-0.01)	0.003	
	3	6716	0.01 (0.00;0.02)	0.139	6525	0.00 (-0.02;0.02)	0.778	3651	0.02 (-0.02;0.05)	0.353	3651	-0.04 (-0.07;-0.01)	0.020	
	4	6716	0.01 (0.00;0.02)	0.208	6525	0.00 (-0.02;0.02)	0.968	3651	0.01 (-0.03;0.05)	0.591	3651	-0.04 (-0.07;-0.01)	0.011	
2-h glucose						10.								
(mmol/l)	1	6033	0.08 (0.05;0.10)	<0.001	6029	0.08 (0.03;0.13)	0.003	3479	0.11 (0.01;0.20)	0.027	3479	-0.13 (-0.21;-0.05)	0.001	
	2	6033	0.04 (0.01;0.07)	0.004	6029	0.03 (-0.02;0.08)	0.292	3479	0.00 (-0.10;0.10)	0.998	3479	-0.09 (-0.17;-0.01)	0.035	
	3	6033	0.03 (0.00;0.06)	0.028	6029	0.01 (-0.04;0.07)	0.661	3479	-0.03 (-0.14;0.07)	0.509	3479	-0.07 (-0.16;0.02)	0.135	
	4	6033	0.03 (0.00;0.06)	0.044	6029	0.01 (-0.05;0.06)	0.806	3479	-0.05 (-0.16;0.05)	0.309	3479	-0.07 (-0.16;0.02)	0.109	
HbA _{1c}														
(mmol/mol)	1	2535	0.06 (-0.05;0.16)	0.285	2363	-0.11 (-0.31;0.08)	0.263	1190	-0.01 (-0.42;0.40)	0.961	1190	-0.53 (-0.88;-0.18)	0.003	
	2	2535	0.02 (-0.09;0.14)	0.712	2363	-0.16 (-0.36;0.04)	0.120	1190	-0.10 (-0.55;0.34)	0.648	1190	-0.52 (-0.88;-0.16)	0.005	
	3	2535	0.01 (-0.11;0.12)	0.904	2363	-0.17 (-0.38;0.04)	0.107	1190	-0.23 (-0.69;0.23)	0.325	1190	-0.45 (-0.84;-0.06)	0.026	
	4	2535	-0.01 (-0.12;0.11)	0.874	2363	-0.22 (-0.42;-0.02)	0.033	1190	-0.28 (-0.73;0.18)	0.238	1190	-0.44 (-0.83;-0.05)	0.028	
Fasting insulin														
(% diff.)	1	6186	2.5 (1.7;3.3)	<0.001	6177	4.8 (3.2;6.4)	<0.001	3617	7.2 (4.3;10.2)	<0.001	3617	-5.6 (-7.8;-3.3)	<0.001	
	2	6186	1.4 (0.6;2.3)	0.001	6177	3.4 (1.8;5.0)	<0.001	3617	4.9 (1.9;7.9)	0.001	3617	-4.8 (-7.0;-2.6)	<0.001	
	3	6186	1.1 (0.3;2.0)	0.010	6177	2.7 (1.2;4.4)	<0.001	3617	4.0 (1.0;7.1)	0.009	3617	-4.1 (-6.5;-1.7)	0.001	
	4	6186	0.9 (0.1;1.7)	0.024	6177	2.2 (0.7;3.7)	0.003	3617	2.4 (-0.4;5.3)	0.094	3617	-4.6 (-6.8;-2.3)	<0.001	


2-h insulin (%													
diff.)	1	5951	2.4 (1.3;3.5)	<0.001	5946	2.5 (0.4;4.8)	0.021	3428	4.0 (0.0;8.1)	0.050	3428	-5.1 (-8.2;-1.8)	0.002
	2	5951	1.7 (0.5;3.0)	0.005	5946	1.5 (-0.7;3.8)	0.188	3428	2.0 (-2.2;6.4)	0.349	3428	-4.4 (-7.6;-1.1)	0.010
	3	5951	1.4 (0.2;2.6)	0.028	5946	0.9 (-1.4;3.2)	0.457	3428	1.0 (-3.3;5.4)	0.667	3428	-3.8 (-7.2;-0.2)	0.038
	4	5951	1.2 (0.0;2.4)	0.057	5946	0.5 (-1.7;2.7)	0.681	3428	-0.6 (-4.7;3.7)	0.791	3428	-4.0 (-7.4;-0.6)	0.024
HOMA-IR (%	1	6168	2.7 (1.8;3.6)	<0.001	6159	5.0 (3.3;6.7)	<0.001	3612	7.9 (4.7;11.1)	<0.001	3612	-6.2 (-8.6;-3.8)	<0.001
diff.)													
	2	6168	1.5 (0.6;2.5)	0.001	6159	3.5 (1.8;5.2)	<0.001	3612	5.3 (2.1;8.7)	0.001	3612	-5.4 (-7.8;-3.0)	<0.001
	3	6168	1.2 (0.3;2.2)	0.010	6159	2.7 (1.0;4.5)	0.002	3612	4.3 (1.0;7.7)	0.010	3612	-4.6 (-7.2;-2.0)	<0.001
	4	6168	1.0 (0.1;1.9)	0.025	6159	2.2 (0.6;3.8)	0.008	3612	2.6 (-0.5;5.7)	0.096	3612	-5.2 (-7.5;-2.7)	<0.001
НОМА-β (%	1	6164	2.1 (1.3;2.9)	<0.001	6155	4.3 (2.7;5.8)	<0.001	3611	5.3 (2.5;8.2)	<0.001	3611	-3.9 (-6.1;-1.7)	< 0.001
diff.)													
	2	6164	1.1 (0.3;2.0)	0.009	6155	3.0 (1.5;4.6)	<0.001	3611	3.7 (0.8;6.7)	0.012	3611	-3.3 (-5.5;-1.0)	0.005
	3	6164	1.0 (0.1;1.8)	0.031	6155	2.6 (1.0;4.2)	0.001	3611	3.2 (0.2;6.3)	0.036	3611	-2.7 (-5.0;-0.2)	0.032
	4	6164	0.8 (0.0;1.6)	0.064	6155	2.2 (0.7;3.8)	0.005	3611	2.0 (-0.8;5.0)	0.163	3611	-3.0 (-5.3;-0.7)	0.012
ISI0-120 (%	1	5800	-1.6 (-2.2;-1.0)	<0.001	5793	-1.9 (-3.1;-0.8)	<0.001	3419	-2.5 (-4.5;-0.5)	0.015	3419	2.9 (1.1;4.7)	0.002
diff.)													
	2	5800	-1.0 (-1.6;-0.3)	0.003	5793	-1.0 (-2.2;0.2)	0.090	3419	-0.6 (-2.8;1.6)	0.596	3419	2.1 (0.3;4.0)	0.023
	3	5800	-0.8 (-1.4;-0.1)	0.022	5793	-0.6 (-1.8;0.6)	0.320	3419	0.0 (-2.2;2.4)	0.970	3419	1.8 (-0.2;3.7)	0.075
	4	5800	-0.7 (-1.3;0.0)	0.046	5793	-0.4 (-1.6;0.8)	0.519	3419	0.9 (-1.4;3.1)	0.457	3419	1.9 (0.0;3.9)	0.049

- *n*: number of person-examinations used in the particular analysis. *P*: *P* value for the test of the effect being equal to zero. Values in bold print
- 5 indicate significant associations after adjustment for multiple testing (128 tests) with the method of Benjamini and Hochberg.
- Model 1: Adjusted for baseline age, sex, study phase and baseline value of the outcome.
- 7 Model 2: Further adjustment for baseline BMI.
- 8 Model 3: Further adjustment for baseline smoking, physical activity, alcohol intake, triacylglycerols, HDL-C and LDL-C.
- 9 Model 4: Further adjustment for 5-year change in BMI after baseline.

Effect of one population standard deviation difference in the Log of the immune marker at baseline (hsCRP, IL-6, IL-1RA, adiponectin) on subsequent 5-year changes in markers of glucose regulation. The associations are adjusted for baseline age, sex, study phase, BMI, smoking, physical activity, alcohol intake, triacylglycerols, HDL-C and LDL-C and baseline value of the outcome.

159x213mm (600 x 600 DPI)

Effect of a difference in baseline glycaemia, insulin sensitivity or beta-cell function on subsequent 5-year changes in immune markers (hsCRP, IL-6, IL-1RA, adiponectin). The associations are adjusted for baseline age, sex, study phase, BMI, smoking, physical activity, alcohol intake, triacylglycerols, HDL-C and baseline value of the outcome.

126x84mm (600 x 600 DPI)

Supplementary Table 1 Effects (with 95% CI) of a <u>standard deviation</u> increase in Log of the inflammatory marker at baseline on 5-year changes in glycaemia and insulin.

Fasting plasma glucose (mmol/l) 1 2	3589 3589 3589 3589 3589	Estimate 0.03 (0.01;0.05) 0.02 (-0.01;0.04) 0.01 (-0.01;0.03) 0.01 (-0.01;0.03)	P 0.004 0.143 0.274	3589 3589	Estimate 0.02 (0.00;0.04) 0.01 (-0.01;0.03)	P 0.036	n 3589	Estimate 0.03 (0.01;0.05)	P 0.005	<i>n</i> 3589	Estimate -0.04 (-0.06;-0.02)	P <0.001
glucose (mmol/l) 1	3589 3589	0.02 (-0.01;0.04) 0.01 (-0.01;0.03)	0.143		` ' '		3589	0.03 (0.01;0.05)	0.005	3589	-0.04 (-0.06:-0.02)	<0.001
,	3589 3589	0.02 (-0.01;0.04) 0.01 (-0.01;0.03)	0.143		` ' '		3589	0.03 (0.01;0.05)	0.005	3589	-0.04 (-0.06:-0.02)	<0.001
2	3589	0.01 (-0.01;0.03)		3589	0.01 (-0.01;0.03)						212 1 (2100, 0102)	\U.UU1
		` '	0.274			0.264	3589	0.02 (-0.01;0.04)	0.160	3589	-0.03 (-0.05;-0.01)	0.004
3	3589	0.01 (0.01:0.02)		3589	0.01 (-0.02;0.03)	0.572	3589	0.01 (-0.01;0.03)	0.406	3589	-0.03 (-0.05;0.00)	0.020
4		0.01 (-0.01,0.03)	0.326	3589	0.00 (-0.02;0.03)	0.670	3589	0.01 (-0.02;0.03)	0.640	3589	-0.03 (-0.05;-0.01)	0.011
2-hour plasma												
glucose (mmol/l) 1	3421	0.08 (0.02;0.13)	0.005	3421	0.08 (0.02;0.14)	0.006	3421	0.07 (0.01;0.12)	0.028	3421	-0.09 (-0.16;-0.03)	0.003
2	3421	0.02 (-0.04;0.08)	0.468	3421	0.04 (-0.02;0.10)	0.169	3421	0.00 (-0.06;0.06)	0.959	3421	-0.06 (-0.12;0.00)	0.058
3	3421	0.00 (-0.06;0.06)	0.981	3421	0.02 (-0.04;0.09)	0.452	3421	-0.02 (-0.09;0.04)	0.541	3421	-0.04 (-0.11;0.02)	0.205
4	3421	-0.01 (-0.07;0.05)	0.853	3421	0.02 (-0.04;0.08)	0.512	3421	-0.03 (-0.10;0.03)	0.343	3421	-0.05 (-0.11;0.02)	0.166
HbA _{1c} (mmol/mol) 1	1184	0.10 (-0.17;0.37)	0.463	1184	-0.13 (-0.4;0.14)	0.335	1184	-0.02 (-0.27;0.24)	0.889	1184	-0.40 (-0.67;-0.14)	0.003
2	1184	0.06 (-0.23;0.35)	0.681	1184	-0.20 (-0.48;0.09)	0.178	1184	-0.08 (-0.36;0.20)	0.574	1184	-0.40 (-0.67;-0.12)	0.005
3	1184	0.04 (-0.25;0.34)	0.780	1184	-0.20(-0.49;0.09)	0.183	1184	-0.16 (-0.45;0.13)	0.282	1184	-0.34 (-0.64;-0.04)	0.025
4	1184	0.03 (-0.27;0.32)	0.860	1184	-0.24 (-0.53;0.05)	0.102	1184	-0.18 (-0.47;0.10)	0.213	1184	-0.33 (-0.63;-0.04)	0.028
Fasting insulin (%												
diff.)	3555	3.2 (1.6;4.9)	< 0.001	3555	3.8 (2.1;5.6)	< 0.001	3555	4.2 (2.5;6.0)	< 0.001	3555	-4.2 (-5.9;-2.5)	< 0.001
2	3555	1.8 (0.0;3.5)	0.046	3555	2.8 (1.0;4.6)	0.002	3555	2.8 (0.9;4.7)	0.003	3555	-3.6 (-5.4;-1.9)	< 0.001
3	3555	1.6 (-0.2;3.4)	0.083	3555	2.3 (0.5;4.1)	0.012	3555	2.3 (0.4;4.2)	0.018	3555	-3.1 (-5.0;-1.2)	0.001
4	3555	1.3 (-0.4;2.9)	0.136	3555	2.0 (0.3;3.7)	0.021	3555	1.3 (-0.4;3.1)	0.138	3555	-3.5 (-5.2;-1.7)	<0.001

2-hour insulin (%													
diff.)	1	3371	2.8 (0.5;5.2)	0.018	3371	2.6 (0.1;5.2)	0.039	3371	2.5 (0.0;5.0)	0.048	3371	-3.9 (-6.3;-1.4)	0.003
	2	3371	1.8 (-0.7;4.3)	0.170	3371	1.8 (-0.7;4.4)	0.167	3371	1.3 (-1.4;4.0)	0.344	3371	-3.3 (-5.8;-0.8)	0.011
	3	3371	1.1 (-1.4;3.7)	0.400	3371	1.1 (-1.5;3.8)	0.395	3371	0.6 (-2.1;3.4)	0.654	3371	-2.9 (-5.6;-0.2)	0.037
	4	3371	0.7 (-1.8:3.3)	0.579	3371	0.9 (-1.6:3.5)	0.501	3371	-0.3 (-2.9:2.4)	0.840	3371	-3.1 (-5.7:-0.5)	0.022

n: the number of person-examinations used in the particular analysis. P: P value for the test of the effect being equal to zero. Values in bold print indicate significant associations after adjustment for multiple testing (128 tests) with the method of Benjamini and Hochberg.

Model 1: adjusted for baseline age, sex, study phase and baseline value of the outcome

Model 2: further adjustment for baseline BMI

Model 3: further adjustment for baseline smoking, physical activity, alcohol intake, triacylglycerols, HDL-C and LDL-C

Model 4: further adjustment for 5-year change in BMI after baseline

Supplementary Table 2 Effects (with 95% CI) of a <u>standard deviation</u> increase in Log of the inflammatory marker at baseline on 5-year changes in insulin sensitivity and beta-cell function.

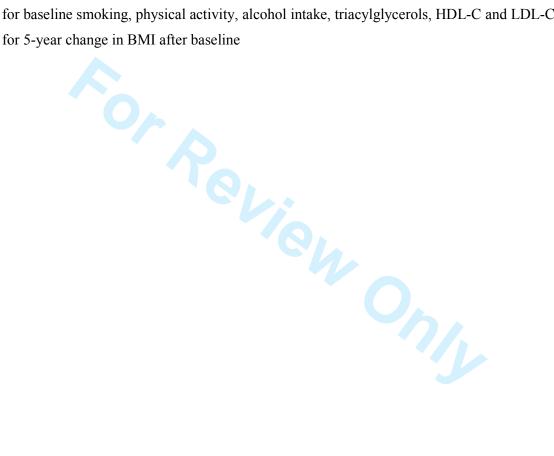
			hsCRP			IL-6			IL-1Ra		Adiponectin				
Outcome	Model	n	Estimate	P	n	Estimate	P	n	Estimate	P	n	Estimate	P		
HOMA-IR (% diff.)	1	3550	3.6 (1.8;5.4)	<0.001	3550	4.2 (2.2;6.1)	<0.001	3550	4.6 (2.7;6.6)	<0.001	3550	-4.7 (-6.5;-2.8)	<0.001		
	2	3550	2.0 (0.1;3.9)	0.040	3550	3.0 (1.1;5.0)	0.002	3550	3.0 (1.0;5.1)	0.003	3550	-4.1 (-5.9;-2.2)	< 0.001		
	3	3550	1.7 (-0.2;3.7)	0.078	3550	2.4 (0.5;4.4)	0.015	3550	2.4 (0.4;4.5)	0.019	3550	-3.5 (-5.5;-1.5)	< 0.001		
	4	3550	1.4 (-0.4;3.2)	0.133	3550	2.1 (0.2;3.9)	0.027	3550	1.4 (-0.5;3.4)	0.141	3550	-3.9 (-5.8;-2.0)	<0.001		
HOMA-β (% diff.)	1	3549	2.2 (0.6;3.9)	0.008	3549	2.8 (1.1;4.5)	0.001	3549	3.1 (1.4;4.9)	< 0.001	3549	-2.9 (-4.6;-1.2)	0.001		
	2	3549	1.2 (-0.6;2.9)	0.186	3549	2.0 (0.3;3.8)	0.022	3549	2.1 (0.3;4.0)	0.021	3549	-2.4 (-4.2;-0.7)	0.006		
	3	3549	1.1 (-0.6;2.9)	0.218	3549	1.8 (0.0;3.6)	0.049	3549	1.8 (0.0;3.7)	0.055	3549	-2.0 (-3.8;-0.1)	0.039		
	4	3549	0.9 (-0.8;2.6)	0.311	3549	1.5 (-0.2;3.3)	0.076	3549	1.2 (-0.6;3.0)	0.209	3549	-2.3 (-4.0;-0.4)	0.015		
ISI ₀₋₁₂₀ (% diff.)	1	3363	-1.8 (-3.0;-0.6)	0.003	3363	-1.9 (-3.2;-0.7)	0.003	3363	-1.6 (-2.8;-0.3)	0.016	3363	2.1 (0.7;3.5)	0.003		
	2	3363	-0.7 (-2.0;0.6)	0.264	3363	-1.2 (-2.5;0.1)	0.080	3363	-0.4 (-1.8;1.0)	0.592	3363	1.5 (0.1;2.9)	0.030		
	3	3363	-0.3 (-1.7;1.0)	0.631	3363	-0.8 (-2.1;0.6)	0.273	3363	0.0 (-1.4;1.4)	0.987	3363	1.3 (-0.2;2.8)	0.090		
	4	3363	-0.1 (-1.4;1.2)	0.853	3363	-0.6 (-1.9;0.7)	0.359	3363	0.5 (-0.9;1.9)	0.494	3363	1.4 (0.0;2.9)	0.058		

n: the number of person-examinations used in the particular analysis. P: P value for the test of the effect being equal to zero. Values in bold print indicate significant associations after adjustment for multiple testing (128 tests) with the method of Benjamini and Hochberg.

Model 1: adjusted for baseline age, sex, study phase and baseline value of the outcome

Model 2: further adjustment for baseline BMI

Model 3: further adjustment for baseline smoking, physical activity, alcohol intake, triacylglycerols, HDL-C and LDL-C

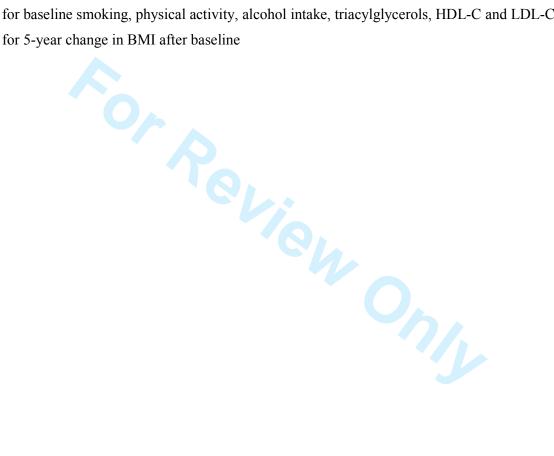

Model 4: further adjustment for 5-year change in BMI after baseline

Supplementary Table 3 Effects (with 95% CI) of a difference in glycaemia and insulin on 5-year changes in the inflammatory marker (% difference)

		Fasting	plasma glucose ((mmol/l)	2-hour	2-hour plasma glucose (mmol/l)			IbA _{1c} (mmol/n	nol)	Fasti	ng insulin (dou	bling)	2-hour insulin (doubling)		
Outcome	Model	n	Estimate	P	n	Estimate	P	n	Estimate	P	n	Estimate	P	n	Estimate	P
hsCRP (% diff.)	1	4043	2.0 (-3.1;7.3)	0.457	3954	0.3 (-1.4;2.1)	0.707		NA		3919	4.6 (1.7;7.7)	0.002	3911	1.2 (-0.9;3.3)	0.270
	2	4043	-1.2 (-6.1;4.1)	0.658	3954	-0.3 (-2.0;1.5)	0.760		NA		3919	0.9 (-2.3;4.1)	0.587	3911	-0.3 (-2.4;1.8)	0.767
	3	4043	-0.6 (-5.6;4.7)	0.823	3954	-0.1 (-1.8;1.7)	0.937		NA		3919	1.0 (-2.3;4.4)	0.550	3911	-0.1 (-2.2;2.1)	0.944
	4	4043	-0.2 (-5.1;4.9)	0.944	3954	0.4 (-1.3;2.1)	0.659		NA		3919	1.3 (-1.9;4.5)	0.443	3911	0.4 (-1.7;2.5)	0.738
IL-6 (% diff.)	1	3946	0.7 (-2.3;3.9)	0.637	3867	0.3 (-0.7;1.4)	0.559		NA		3821	4.3 (2.5;6.1)	<0.001	3828	1.3 (0.0;2.5)	0.045
	2	3946	-1.4 (-4.4;1.7)	0.371	3867	-0.2 (-1.2;0.9)	0.734		NA		3821	1.8 (-0.1;3.8)	0.063	3828	0.2 (-1.0;1.5)	0.745
	3	3946	-1.1 (-4.2;2.0)	0.482	3867	0.0 (-1.0;1.1)	0.965		NA		3821	1.7 (-0.2;3.8)	0.087	3828	0.4 (-0.9;1.7)	0.547
	4	3946	-1.0 (-4.0;2.1)	0.530	3867	0.1 (-0.9;1.2)	0.794		NA		3821	1.8 (-0.2;3.8)	0.072	3828	0.5 (-0.8;1.8)	0.433
IL-1Ra (% diff.)	1	2632	0.7 (-1.7;3.2)	0.563	2587	-1.3 (-2.1;-0.5)	0.001	242	0.0 (-1.0;0.9)	0.949	2632	1.0 (-0.4;2.4)	0.155	2563	-1.0 (-1.9;0.0)	0.054
	2	2632	-0.2 (-2.7;2.3)	0.867	2587	-1.5 (-2.3;-0.7)	< 0.001	242	-0.1 (-1.1;0.9)	0.848	2632	-0.1 (-1.6;1.4)	0.859	2563	-1.3 (-2.3;-0.3)	0.009
	3	2632	0.0 (-2.5;2.5)	0.992	2587	-1.5 (-2.3;-0.7)	< 0.001	242	-0.2 (-1.2;0.8)	0.694	2632	-0.2 (-1.8;1.3)	0.773	2563	-1.3 (-2.4;-0.3)	0.012
	4	2632	0.3 (-2.0;2.8)	0.780	2587	-1.2 (-2.0;-0.4)	0.004	242	-0.1 (-1.0;0.9)	0.898	2632	0.2 (-1.3;1.7)	0.791	2563	-0.9 (-1.9;0.1)	0.073
Adiponectin (% diff.)	1	2631	-0.9 (-2.7;0.9)	0.311	2586	-0.1 (-0.7;0.5)	0.635	242	-0.2 (-0.9;0.5)	0.519	2631	-1.3 (-2.3;-0.3)	0.009	2562	-0.5 (-1.2;0.3)	0.207
	2	2631	-0.9 (-2.7;0.9)	0.314	2586	-0.1 (-0.7;0.5)	0.650	242	-0.3 (-1.0;0.4)	0.438	2631	-1.6 (-2.6;-0.5)	0.005	2562	-0.5 (-1.2;0.3)	0.223
	3	2631	-1.0 (-2.8;0.8)	0.274	2586	-0.1 (-0.8;0.5)	0.644	242	-0.3 (-1.0;0.5)	0.482	2631	-1.6 (-2.7;-0.4)	0.007	2562	-0.4 (-1.2;0.4)	0.286
	4	2631	-1.3 (-3.0;0.4)	0.125	2586	-0.4 (-1.0;0.2)	0.177	242	-0.4 (-1.1;0.3)	0.284	2631	-1.9 (-2.9;-0.8)	<0.001	2562	-0.8 (-1.5;0.0)	0.039

n: the number of person-examinations used in the particular analysis. *P*: *P* value for the test of the effect being equal to zero. Values in bold print indicate significant associations after adjustment for multiple testing (128 tests) with the method of Benjamini and Hochberg.

- Model 1: adjusted for baseline age, sex, study phase and baseline value of the outcome
- Model 2: further adjustment for baseline BMI
- Model 3: further adjustment for baseline smoking, physical activity, alcohol intake, triacylglycerols, HDL-C and LDL-C
- Model 4: further adjustment for 5-year change in BMI after baseline



Supplementary Table 4 Effects (with 95% CI) of a difference in insulin sensitivity or beta-cell function on 5-year changes in the inflammatory marker (% difference)

		F	IOMA-IR (doubl	ing)	H	OMA-β (doub	ling)	ISI_{0-120} (doubling)				
Outcome	Model	n	Estimate	P	n	Estimate	P	n	Estimate	P		
hsCRP (% diff.)	1	3909	4.3 (1.5;7.2)	0.003	3908	4.2 (1.2;7.3)	0.006	3777	-2.0(-6.1;2.2)	0.340		
	2	3909	0.7 (-2.3;3.8)	0.646	3908	1.1 (-2.0;4.3)	0.505	3777	0.8(-3.5;5.2)	0.726		
	3	3909	0.9 (-2.2;4.1)	0.586	3908	1.0 (-2.2;4.4)	0.548	3777	0.2(-4.2;4.8)	0.941		
	4	3909	1.1 (-1.9;4.2)	0.462	3908	1.2 (-2;4.4)	0.466	3777	-0.9(-5.1;3.5)	0.671		
IL-6 (% diff.)	1	3811	3.9 (2.2;5.6)	< 0.001	3810	4.3 (2.5;6.1)	<0.001	3691	-2.6(-5;-0.1)	0.043		
	2	3811	1.5 (-0.3;3.4)	0.105	3810	2.1 (0.2;4.1)	0.029	3691	-0.5(-3;2.1)	0.727		
	3	3811	1.5 (-0.4;3.4)	0.129	3810	2.0 (0.0;4.0)	0.053	3691	-1.0(-3.7;1.7)	0.452		
	4	3811	1.5 (-0.3;3.4)	0.108	3810	2.0 (0.0;4.0)	0.046	3691	-1.3(-3.9;1.3)	0.327		
IL-1Ra (% diff.)	1	2629	1.0 (-0.3;2.3)	0.139	2629	0.7 (-0.7;2.1)	0.348	2559	2.6(0.6;4.7)	0.012		
	2	2629	-0.1 (-1.5;1.3)	0.880	2629	-0.3 (-1.7;1.2)	0.725	2559	3.5(1.4;5.6)	<0.001		
	3	2629	-0.2 (-1.6;1.3)	0.822	2629	-0.4 (-2.0;1.1)	0.569	2559	3.6(1.4;5.8)	0.001		
	4	2629	0.3 (-1.2;1.7)	0.728	2629	-0.1 (-1.6;1.4)	0.887	2559	2.6(0.5;4.8)	0.013		
Adiponectin (% diff.)	1	2628	-1.3 (-2.2;-0.3)	0.008	2628	-1.1 (-2.1;-0.1)	0.038	2558	1.0(-0.5;2.5)	0.192		
	2	2628	-1.5 (-2.5;-0.5)	0.004	2628	-1.2 (-2.2;-0.1)	0.031	2558	1.0(-0.5;2.5)	0.207		
	3	2628	-1.5 (-2.6;-0.4)	0.006	2628	-1.1 (-2.2;0.0)	0.050	2558	0.9(-0.6;2.5)	0.238		
	4	2628	-1.8 (-2.8;-0.8)	<0.001	2628	-1.4 (-2.4;-0.3)	0.012	2558	1.7(0.2;3.2)	0.023		

n: the number of person-examinations used in the particular analysis. *P P* value for the test of the effect being equal to zero. Values in bold print indicate significant associations after adjustment for multiple testing (128 tests) with the method of Benjamini and Hochberg.

- Model 1: adjusted for baseline age, sex, study phase and baseline value of the outcome
- Model 2: further adjustment for baseline BMI
- Model 3: further adjustment for baseline smoking, physical activity, alcohol intake, triacylglycerols, HDL-C and LDL-C
- Model 4: further adjustment for 5-year change in BMI after baseline

