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Abstract

Background: Magnetic Resonance Imaging scanners have become ubiquitous in hospitals and high-field systems (greater
than 3 Tesla) are becoming increasingly common. In light of recent European Union moves to limit high-field exposure for
those working with MRI scanners, we have evaluated the potential for detrimental cellular effects via nanomagnetic
actuation of endogenous iron oxides in the body.

Methodology: Theoretical models and experimental data on the composition and magnetic properties of endogenous iron
oxides in human tissue were used to analyze the forces on iron oxide particles.

Principal Finding and Conclusions: Results show that, even at 9.4 Tesla, forces on these particles are unlikely to disrupt
normal cellular function via nanomagnetic actuation.
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Introduction

With the advent of advanced, high-field scanners for Magnetic

Resonance Imaging (MRI), issues relating to the safety of these

devices have recently been raised [1–3]. The European Union

(EU) had recently proposed new safety standards for MRI which

initially included limiting exposure to static magnetic fields to 2

Telsa (T). These have since been reconsidered. Most MRI units

currently in use expose patients to fields of 1 to 1.5 T, however,

newer clinical systems employ 3T magnets. In addition, 7 T

whole-body scanners are becoming increasingly common for

research use, exposing both patients and operators to high fields

and, importantly, high field gradients.

The UK National Radiological Protection Board evaluated

studies related to MRI safety and recommended sustained

exposure limits for workers of 200 mT with 2 T being the ceiling

for instantaneous, whole body exposure and exposure in the limbs

is limited to 5 T [4]. These limits are based mainly on worker and

patient reports of vertigo, nausea, metallic taste and phosphenes

rather than on known biophysical mechanisms. However, the

report also noted ‘‘the paucity of data on health effects of static

magnetic fields’’. The International Commission on Non-ionizing

Radiation Protection are currently updating their guidelines on

static magnetic field exposure, with a report due this year.

As field strength increases, it is necessary to evaluate the potential

for interactions with human physiological processes. A recent study

concluded that differences in the magnetic susceptibility between

vestibular organs and surrounding fluid, as well as induced currents in

vestibular hair cells, may be responsible for reports of vertigo-like

sensations in subjects undergoing MR imaging in 7T research

scanners [5]. Though this is an important study, the authors conclude

that it is not likely that such effects would harmful.

In this study, we have taken a different approach and have

evaluated the potential physiological effects of forces generated by

high-field scanners on magnetic iron oxides, which are common in

the brain and other organs [6,7]. In 1992, biogenic magnetite

(Fe3O4), a ferrimagnetic iron oxide, was discovered in the human

brain [6] and studies since then have shown elevated levels of

biogenic magnetite with both aging and Alzheimer’s disease [8–

11]. As the magnetic susceptibility of magnetite is more than two

orders of magnitude higher than that of ferrihydrite (the form in

which most iron in the body is stored within the ferritin protein) or

goethite-like hemosiderin [12], its interactions with strong, static

field gradients within the MR scanner merit investigation.

Both theoretical and experimental studies have shown that, under

certain conditions, forces on biogenic magnetite particles have the

potential to disrupt or alter the normal functioning of cellular ion

channels [13–15]. This can lead to downstream effects on protein

production and cell function [16,17]. Therefore, we have investigated

the forces acting on biogenic magnetite particles in the body under the

field and gradient conditions present in a 7T whole body scanner and

a 9.4T small-bore research scanner with the aim of determining the

threshold for effects on cellular ion channels.

Methods

Field profiles for a 7 T, 900 mm bore magnet and a 9.4 T

magnet provided by the magnet manufacturers were used for the
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force calculations. Figure 1 shows the on-axis variation of Bz, dBz/

dz and the product of field and gradient Bz6dBz/dz with z-co-

ordinate for the two different magnets. The field profile data was

then fed into a theoretical model to calculate the force on biogenic

magnetite (Fe3O4) in the body based on both high-field and low-

field susceptibility conditions as the subject is moved into the

magnet [18,19].

For conditions of low-field susceptibility (for magnetite, this is in

fields below ,200 mT), the following equation was used to model

the forces acting on these magnetic iron oxides:

F~mo+ m Hð Þ

where F is the force on the particle, mo is the magnetic permeability

of free space, m is the induced magnetic moment on the particle

and H is the magnetic field strength. For conditions of high-field

susceptibility at which the magnetic particles would be saturated,

forces were calculated according to:

Fsat~moms+ +wmj j

where ms is the intrinsic magnetic dipole moment, wm is the

magnetic scalar potential. In both cases the force scales with

particle size, since the particle magnetisation m = V M, where V

is the volume of the particle, and M is the volumetric

magnetisation.

Forces were calculated for both the 7T whole body scanner and

a 9.4T small-bore system for magnetite particle sizes of 100 nm

and 500 nm diameter. Though most biogenic magnetite particles

observed in magnetic extracts from brain tissue are smaller than

this, particles in this size range have occasionally been observed

[20]. Therefore, these particle sizes represent a ‘‘worst case

scenario’’ for forces acting on naturally occurring magnetic iron

compounds in the body.

It is also worth noting that, as can be seen from the

above equations, in the absence of a field gradient, no force

will be exerted on the particles. The gradient is therefore

critical to the generation of the forces on these biogenic iron

oxides.

Results and Discussion

Most mechanosensitive ion channels operate close to the limits

of thermal energy at body temperature (kT) and can be activated

by applying direct forces of only a few picoNewtons [21,22].

Applying such forces directly to the channel itself or via membrane

deformation can disrupt the normal function of the channel,

potentially forcing it open in response to the applied force [13].

Such a disruption can result in the over or under-expression of

important proteins as well as osmotic stress due to changes in

internal ionic concentrations. These effects can be potentially

dangerous to the cell.

Figure 2 shows the variation with axial position of the force

experienced by 100 and 500 nm particles positioned on axis in the

7 and 9.4 T magnets. The negative sign indicates that the force is

directed into the magnet as would be expected for paramagnetic

material. The force peaks close to where the product of Bz and

dBz/dz is largest.

Theoretical evaluation of the forces acting on 100 nm particles

for both the 7T whole body scanner and the 9.4T research scanner

reveals that any forces induced on the most magnetic iron

compounds in the body would fall well short of the threshold for

channel activation/disruption (Figure 2a). In the case of 500 nm

biogenic magnetite particles, the 9.4T scanner produces forces

very near this threshold (Figure 2b). However, in order to activate/

disrupt ion channel functioning at this level of force, the particle

would have to be directly coupled to the channel itself – even then

it would fall just short of the activation threshold. Though this is a

Figure 1. Magnetic field parameters for 7 T and 9.4 T MRI
Scanners. Plots showing (1): Bz Tð Þ; (2): dBz=dz T=mð Þ; (3):
BzdBz=dz T2

�
m

� �
for the 7 T (top) and 9.4 T (bottom) MRI scanners.

doi:10.1371/journal.pone.0005431.g001

Figure 2. Force Plots. Plot of theoretical axial force on biogenic
magnetite nanoparticles vs. axis position relative to the magnet centre
for (a) 100 nm diameter magnetite particles and (b) 500 nm magnetite
particles positioned on axis. Negative values indicate that the force is
directed into the magnet.
doi:10.1371/journal.pone.0005431.g002
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small-bore research scanner not meant for human imaging, 9.4 T

scanners have been used to image the human head [23,24].

As the availability of high-field MR scanners increases, it is

important to evaluate the potential effects of these fields on various

aspects of human physiology. A recent study by Atkinson et al.

[24] examined cognitive performance and vital signs on patients

exposed to a 9.4T field and determined these were not affected.

The group concluded that these data suggest 9.4T imaging does

not pose a health risk, although the parameters evaluated would

only show an effect if it was an acute response to the field rather

than a long-term response due to changes in cell function or

general physiology.

After evaluating the fundamental physiological effects of high-

field MRI on iron compounds in this study, it is apparent that even

very high-field scanners will not likely initiate magnetic nanopar-

ticle-mediated ion channel activation, even via relatively large

magnetite particles. It is important to note that superparamagnetic

iron oxides (SPIOs) are also used as contrast agents for MRI. As

these particles are generally smaller than a few tens of nanometers,

it is clear that forces acting on such particles will also fall well

below the threshold of ion channel activation. Therefore, from a

standpoint of iron oxide-mediated actuation of cellular bioeffects,

MRI, even at very high fields and gradients, appears to present no

discernable safety issues in our models. Experimental studies of

longer duration and using varied in vitro and ex vivo models are

needed to confirm the safety suggested by our theoretical results.
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