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Supplemental Text 

Text S1. Definitions of network metrics 

Network strength. For a network (graph) G with N nodes and K edges, we calculated the 

strength of G as:  
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where S(i) is the sum of the edge weights wij linking to node i. The strength of a network 

is the average of the strength across all of the nodes in the network.  

Small-world properties. Small-world network parameters (clustering coefficient, Cp and 

shortest path length, Lp) were originally proposed by Watts and Strogatz 1. In this study, 

we investigated the small-world properties of the weighted brain networks.  

The clustering coefficient of a node i, C(i), which was defined as the likelihood of 

whether the neighborhoods were connected with each other or not, was computed as 

follows 2: 
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where ki is the degree of node i and w  is the weight of edge, which is scaled by the 

largest weight of the network. The clustering coefficient is zero if the nodes are isolated 

or have just one connection, i.e., ki = 0 or ki = 1. The clustering coefficient, Cp, of a 

network is the average of the clustering coefficient over all nodes and indicates the extent 

of the local interconnectivity or cliquishness in a network 1. 

The path length between any pair of nodes (e.g., node i and node j) is defined as the 
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sum of the edge lengths along this path. For weighted networks, the length of each edge 

was assigned by computing the reciprocal of the edge weight, 1/wij. The shortest path 

length, Lij, is defined as the length of the path for node i and node j with the shortest 

length. The shortest path length of a network was computed as follows: 
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where N is the number of nodes in the network. The Lp of a network quantifies the ability 

for information to propagate in parallel.  

To examine the small-world properties, the clustering coefficient, Cp, and the 

shortest path length, Lp, of the brain networks were compared with those of random 

networks. In this study, we generated 100 matched random networks, which had the same 

number of nodes, edges, and degree distribution as the real networks 3. Of note, we 

retained the weight of each edge during the randomization procedure such that the weight 

distribution of the network was preserved. Furthermore, we computed the normalized Lp, 
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mean Lp and the mean Cp of 100 matched random networks, respectively. Importantly, 

two parameters correct the differences in the edge number and degree distribution of the 

networks across individuals. A real network would be considered small-world if 1   

and 1   1. Thus, a small-world network not only has a higher local interconnectivity, 

but it also has an approximately equivalent shortest path length compared with random 

networks. These two measurements can be summarized into a simple quantitative metric, 
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small-worldness, /   , which is typically greater than 1 for small-world networks 4. 

Network efficiency. The global efficiency of G measures the global efficiency of the 

parallel information transfer in the network 5, which can be computed as: 
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where Lij is the shortest path length between node i and node j in G.  

The local efficiency of G reveals how much the network is fault tolerant and shows 

how efficient the communication is among the first neighbors of the node i when it is 

removed. The local efficiency of a graph is defined as:  
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where Gi denotes the subgraph composed of the nearest neighbors of node i.  

Regional nodal characteristics. To determine the nodal (regional) characteristics of the 

brain networks, we computed the nodal efficiency, Enodal(i), which is defined as 6: 
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where Lij is the shortest path length between node i and node j in G. Enodal(i) measures the 

average shortest path length between a given node i and all of the other nodes in the 

network. 
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Table S1. Cortical and subcortical regions of interest defined in the study 

Index Regions Abbr. Index Regions Abbr. 

(1,2) Precental gyrus PreCG (47,48) Lingual gyrus LING 

(3,4) Superior frontal gyrus, 

dorsolateral 

SFGdor (49,50) Superior occipital gyrus SOG 

(5,6) Superior frontal gyrus, orbital part ORBsup (51,52) Middle occipital gyrus MOG 

(7,8) Middle frontal gyrus MFG (53,54) Inferior occipital gyrus IOG 

(9, 10) Middle frontal gyrus, orbital part ORBmid (55,56) Fusiform gyrus FFG 

(11,12) Inferior frontal gyrus, opercular 

part 

IFGoperc (57,58) Postcentral gyrus PoCG 

(13,14) Inferior frontal gyrus, triangular 

part 

IFGtriang (59,60) Superior parietal gyrus SPG 

(15,16) Inferior frontal gyrus, orbital part ORBinf (61,62) Inferior parietal, but 

supramarginal and angular gyri 

IPL 

(17,18) Rolandic operculum ROL (63,64) Supramarginal gyrus SMG 

(19,20) Supplementary motor area SMA (65,66) Angular gyrus ANG 

(21,22) Olfactory cortex OLF (67,68) Precuneus PCUN 

(23,24) Superior frontal gyrus, medial SFGmed (69,70) Paracentral lobule PCL 

(25,26) Superior frontal gyrus, medial 

orbital 

ORBsupmed (71,72) Caudate nucleus CAU 

(27,28) Gyrus rectus REC (73,74) Lenticular nucleus, putamen PUT 

(29,30) Insula INS (75,76) Lenticular nucleus, pallidum PAL 

(31,32) Anterior cingulate and 

paracingulate gyri 

ACG (77,78) Thalamus THA 

(33,34) Median cingulate and 

paracingulate gyri 

DCG (79,80) Heschl gyrus HES 

(35,36) Posterior cingulate gyrus PCG (81,82) Superior temporal gyrus STG 

(37,38) Hippocampus HIP (83,84) Temporal pole: superior 

temporal gyrus 

TPOsup 

(39,40) Parahippocampal gyrus PHG (85,86) Middle temporal gyrus MTG 

(41,42) Amygdala AMYG (87,88) Temporal pole: middle 

temporal gyrus 

TPOmid 

(43,44) Calcarine fissure and surrounding 

cortex 

CAL (89,90) Inferior temporal gyrus ITG 

(45,46) Cuneus CUN    

Note: The regions are listed in terms of a prior template of an AAL-atlas (Tzourio-Mazoyer et al., 2002). 

 


