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Abstract 

We investigated lateral solid mixing in gas-fluidized beds using CFD and DEM. We ran 3D CFD 

simulations, comparing the results with those formerly obtained in 2D CFD simulations. We observed 

that the frictional stress model affects the numerical results. This was also observed in 2D simulations, 

but in 3D simulations the effect is less pronounced. The 3D simulations described the lateral solid 

mixing process more accurately than the 2D simulations, simulation dimensionality being an 

important factor. To analyse further the role of frictional stress models, we ran 3D DEM simulations, 

employing the soft-sphere approach to model the particle-particle contact forces. The simulation 

results agreed reasonably well with the empirical data, but their accuracy depended on the values used 

for the collision parameters; also, the 3D CFD simulations matched the empirical data more closely. 

Altogether, we concluded that the simulation dimensionality plays the dominant role in predicting 

lateral solid mixing accurately. 
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1.0 Introduction 

Gas-fluidized beds are widely used in industrial processes involving physical or chemical operations. 

To be efficient and safe, several of these processes require that particles be well mixed. Good mixing 

promotes intimate contact among particles and between the particles and the fluid, enhancing heat and 

mass transfer. Therefore, to design and operate fluidized beds efficiently, one should understand well 

the dynamics of solid mixing. 

To investigate solid mixing in these systems, researchers often focus on axial and lateral mixing. The 

latter, in particular, is useful in assessing the performance of large-scale fluidized bed reactors (Grace, 

1981). Researchers have used different experimental and theoretical methods to study the process of 

lateral solid mixing. They often quantify its rate using a lateral dispersion coefficient (   ). There are 

several studies aimed at investigating the influence of geometry (Liu & Chen, 2010; Xiao et al., 

1998), operating conditions (Bellgardt et al., 1985; Chirone et al., 2004; Lim & Agarwal, 1994; 

Pallarès et al., 2007) and particle properties (Pallarès & Johnsson, 2006; Salam et al., 1987; Xiang et 

al., 1987) on lateral solid mixing in fluidized beds. Despite these investigations, the understanding of 

how these parameters affect the dispersion coefficient is still quite limited, because the mechanisms 

governing the solid mixing process are complex. 

A rapid increase in computational power has made it possible to investigate multiphase flows in fluid 

beds numerically. Two modelling approaches are used: Eulerian-Eulerian and Eulerian-Lagrangian. In 

the former, averaged equations of motion describe the fluid and the solid as interpenetrating continua 

(Lettieri & Mazzei, 2009), while in the latter the motion of each particle is tracked and one solves the 

average equation of motion solely for the fluid phase (van der Hoef et al., 2008). In this work, we 

employed both modelling approaches to investigate lateral solid mixing. For the Eulerian-Lagrangian 

simulations, we used the Discrete Element Modelling (DEM) approach. 

Studies on numerical simulations of lateral solid mixing in gas-fluidized beds are still limited. To the 

best of our knowledge, numerical works on lateral solid dispersion in these systems have only been 
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conducted by Liu & Chen (2010) and Farzaneh et al. (2011). The former used Eulerian-Eulerian 

simulations to investigate the influence of bed width and superficial gas velocity on lateral mixing, 

while the latter employed Eulerian-Lagrangian simulations to examine the influence of bed height and 

superficial gas velocity. In our previous work, we investigated the influence of design parameters and 

operational conditions adopting a 2D Eulerian-Eulerian modelling approach (Oke et al., 2014). We 

quantified the rate at which solids mix laterally via a lateral dispersion coefficient (   ). For all the 

cases considered, the numerical results overestimated the empirical data. We identified two possible 

causes. The first relates to the 2D nature of our simulations, while the second relates to how the solid-

phase frictional stress is modelled constitutively. We investigated this aspect using different frictional 

stress models and changing the solid volume fraction value      at which the bed is assumed to enter 

the frictional flow regime. Some frictional models resulted to be more accurate, but the overprediction 

was not eliminated. This work attempts to address these problems. 

To begin, we addressed the issue of dimensionality. We ran 3D simulations considering the same 

powder, the same computational setup and the same simulation cases employed in our former 2D 

simulations. This allowed us to see how simulation dimensionality affects the numerical results. We 

also investigated the frictional stress modelling issue using DEM simulations. These offer a simpler 

way of describing the rheology of the solid phase. This is because we no longer need to model the 

solid stress, since the solid phase is not described as a continuum. Finally, we compared the results of 

the Eulerian-Eulerian and Eulerian-Lagrangian simulations. 

2.0 Lateral dispersion coefficient – Definition and estimation 

Sometimes one may want to estimate how quickly solids spread axially and laterally in the bed. To do 

this, researchers often resort to axial and lateral dispersion coefficients; these are effective diffusivities 

relating to the times which solids take to spread axially and laterally over a given distance in the bed. 

Recently, researchers have made considerable effort to investigate lateral dispersion coefficients more 

closely; this is because earlier studies (Avidan and Yerushalmi, 1985; Lewis et al., 1962; May,1956) 

concentrated mainly on axial dispersion coefficients. Notwithstanding, lateral dispersion is essential in 
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the design and operation of large-scale beds, the coefficient quantifying it being a key input parameter 

in many models for fluid bed reactors. 

Most researchers define     by means of an equation analogous to Fick’s law of molecular diffusion 

(Borodulya et al., 1982; Liu & Chen, 2010; Oke et al., 2015; Shi & Fan, 1984), thus writing: 

                                                                                        
                                                                               

where   is the void-free solid density,     is the lateral dispersion coefficient,   is the time and   is 

the spatial coordinate associated with the horizontal direction along which lateral mixing takes place. 

This equation, as said, defines the dispersion coefficient. 

Consider a bed in which the concentration of solid depends on the time and on the spatial coordinates, 

so that             . The concentration in Eq. 1 is averaged over the vertical direction (associated 

with the spatial coordinate    and one horizontal direction (associated with the spatial coordinate  ); 

in other words, it is averaged over the vertical plane   . The mean concentration   is thus a function 

merely of    and of the spatial coordinate  . For a given system, by matching the actual concentration 

function        , which one can determine either experimentally or numerically, with the analytical 

solution of Eq. 1, one can obtain the value of the lateral dispersion coefficient. We should bear in 

mind that, unlike molecular diffusion coefficients,     is not just a function of the particle properties, 

but depends on the system geometry and on the operating conditions. 

In this work, we considered a bed divided into two equal compartments: one extending from     to 

      and one extending from       to    , where   is the width of the bed in the   direction. 

The particles occupying them differed only in colour (in particular, having same size and density). We 

placed red particles in the left compartment and blue particles in the other.            and        are 

the concentrations of one kind of particles, say the red ones, which are regarded as tracer particles. So, 

the initial conditions characterizing this setup are: 

                                                                                                               

The boundary conditions assigned are: 
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The compartments were separated by a removable wall. At    , we fluidized the system, waiting for 

it to reach pseudo-stationary conditions (the system reached this state within three real-time seconds). 

Subsequently, we removed the wall, letting red and blue particles spread through the bed, and we 

calculated the void-free concentration            of red particles. We then divided the bed in a 

number of vertical layers (obtained by slicing the bed with imaginary planes parallel to the    plane) 

and calculated the mean value of    in each layer using the relation: 

                                                                        
 

  
             
  

                                                           

where    is the volume of each layer (all layers were identical). The next step was solving Eq. 1 with 

the conditions given in Eqs. 2 and 3. For this system the analytical solution, reported by Hirama et al. 

(1975), is: 

                                     
          

  
 

 

 
 

 

 
 

 

 
    

  

 
 

 

   

      
 

 
          

 

      
                  

Here we have reported explicitly the dependence of the analytical solution   on the parameter    . To 

estimate     we then matched the profiles          and            . To do this, we defined: 

                                                                                         
                                                              

The task of determining     reduced to finding the value of     that minimizes   in Eq. 6. This gave 

the value of the lateral dispersion coefficient for the system under investigation. 

We would like to emphasize that the parameter     in Eq. 1 is different from the coefficient appearing 

in the original Fick’s law. In the latter the parameter is molecular diffusivity, which is constant for a 

solute in a given solvent. Fick’s law relates to the diffusion of molecules generated by their random 

motion. The lateral dispersion coefficient, conversely, is affected by various competing mechanisms. 

These, as experimental evidence reveals, include bubble break-up at the upper surface of the bed and 

subsequent ejection of particles into the freeboard, wake transport and drifting of emulsion owing to 
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the passage of bubbles. The lateral dispersion coefficient is thus affected by many variables, among 

which we find bubble size and velocity, particle size and density as well as fluid density and viscosity. 

Shi & Fan (1984) reported that lateral mixing is also affected by gross particle circulation, this in turn 

depending on bed height and superficial gas velocity. Determining     is thus quite challenging. 

3.0 Eulerian-Eulerian model 

The governing equations in this modelling approach consist of averaged balance equations for mass 

and linear momentum written for the fluid and for two solid phases (red and blue particles). We do not 

report these equations, since their formulation is standard and can be found in the literature (Oke et 

al., 2014; Tagliaferri et al., 2013). The equations are unclosed; the fluid-particle interaction force, the 

effective stress tensor of the fluid and particle phases and the particle-particle interaction force need to 

be expressed constitutively. These constitutive equations can be found in Oke et al. (2014). 

4.0 DEM model 

The DEM model tracks each particle using Newton’s second law of dynamics; the motion of the fluid 

phase is described using the averaged equations of motion (the same adopted in the Eulerian-Eulerian 

model). In modelling particle-particle interactions, one can regard the particles either as hard spheres 

or as soft spheres. In this work, we used the soft-sphere model because it can handle dense granular 

flows, where particles interact through multiple and sustained contacts. 

The soft-sphere model was proposed by Cundall & Strack (1979). In this framework, particles are 

allowed to overlap slightly at the collision points, where the amount of overlap is directly proportional 

to the amount of deformation at the contact point. The forces are then determined by relating them to 

the deformation at the contact point with an appropriate constitutive model (van Wachem & Almstedt, 

2003). The soft-sphere model allows for multiple as well as enduring contacts; the net contact force at 

any time is given by the sum of all the pair-wise interactions occurring at that time. The governing 

equations of the model are reported in the next sections. 
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4.1 Equations of motion 

The motion of every particle is described by Newton’s second law: 

                                    

   

  
   

  
 
                                 

 

                                

where    is the particle mass,    is the particle velocity,    is the local undisturbed fluid velocity, g is 

the gravitational acceleration,    is the particle volume,    is the fluid pressure gradient,   is the 

particle volume fraction,       and       are the normal and tangential components of the contact force 

    exerted by particle   on particle   and    is the interphase momentum transfer coefficient. Other 

force contributions, such as the virtual mass and lift forces, are neglected. We used the expression of 

Mazzei & Lettieri (2007) to close the interphase momentum transfer coefficient. 

The evolution of the angular momentum of each particle is described by: 

                                                               
   

  
                                                                  (8) 

where iI  is the moment of inertia of the particle,    is the rotational velocity,     is the unit vector 

joining the centre of particle   to that of particle   and    is the radius of particle  . By integrating the 

equations of motion, using the Verlet algorithm (Mallouppas & van Wachem, 2013), we obtained the 

evolution in time of the particle positions and velocities. 

4.2 Contact force 

In this work, particle collisions were modelled using the soft-sphere approach proposed by Cundall & 

Strack (1979), using the contact models of Tsuji et al. (1992) for the normal forces and Mindlin & 

Deresiewicz (1953) for the tangential forces. 

When particle   is in contact with particle  , the normal contact force       acting on particle   is given 

by the contribution of a Hertzian elastic repulsion and a visco-elastic damping: 

                                                                      
                                    (9) 
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where    is the material stiffness constant and    determines the amount of damping (Mindlin & 

Deresiewicz, 1953). Moreover, letting    and    denote the position vectors of the centres of particles 

i and j, respectively, it is: 

                                                    ;                         (10) 

The expression for the tangential component of the contact force depends on whether particles   and   

slide on each other (kinetic friction) or not (static friction). If there is no-slip in the contact point, the 

Mindlin & Deresiewicz (1953) model is used, including a tangential dampening: 

                                                                                                     (11) 

where   ,   ,    and     are the material stiffness, the displacement, the damping coefficient and the 

unit vector, all in the tangential direction. It is emphasised that the model for the tangential forces is 

determined in an incremental fashion, where the change in the tangential force is determined by the 

change in tangential overlap and tangential overlap direction during each time step. For further detail, 

see van Wachem et al. (2015). If at a time step the cumulative tangential force exceeds the coulomb 

slip force, i.g.,                 , where   is the friction coefficient, particles   and   begin to slide and 

the tangential force is clipped to this value and replaced by: 

                                                 (12) 

4.3 Material stiffness 

For two spheres of equal size, the normal material stiffness constant is given by the following 

expression obtained from the Hertian contact theory (Johnson, 1987): 

                                                                            
      

      
  
                                                                           

where    is the Young modulus and    is the Possion ratio of particle  . In the case of contact between 

a sphere and a wall, letting    and    denote the Young modulus and Poisson ratio of the wall,    is 

given by the following relation: 
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The relation for calculating the tangential material stiffness constant was derived by Mindlin (1949) 

and Mindlin & Deresiewicz (1953) and reads: 

                                                                            
       

    
  

                                                                          

where    is the shear modulus of particle  . This is related to the Young modulus    and to the Poisson 

ratio    as follows: 

                                                                               
  

       
                                                                             

For the case of contact between a particle and the wall, Tsuji et al. (1992) provides the following 

expression for calculating the tangential material stiffness constant: 

                                                                              
      

    
  

                                                                          

4.4 Damping coefficient 

Following van Wachem et al. (2010), we used the following expressions for the damping coefficients, 

describing the inelastic nature of the material due to its visco-elastic properties: 

                                                           
   

   ;                
   

                                    (18) 

For collisions between particles   and  , it is: 

                                                                                  
     

       
                                                                        

For collisions between particle   and the wall,      , where   is a parameter that depends on the 

coefficient of restitution  . This dependence is well defined by Tsuji et al. (1992). 

The application of realistic values for the Young’s modulus will lead to very high values of    and 

  .  Therefore, very often unrealistic values for the Young’s modulus are employed, otherwise the 

integration time step required in the simulation becomes impractically small (Gera et al., 1998; 
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Kaneko et al., 1999; Kawaguchi et al., 1998; Mikami et al., 1998; Rhodes et al., 2001; Rong et al., 

1999; Tian et al., 2007). Albeit this value reduces the computational effort considerably, there is a risk 

that the accuracy of the simulation results might be affected (Di Renzo & Di Maio, 2004). All these 

aspects have been examined in this work and will be discussed in the Section 7. 

5.0 Boundary and initial conditions 

In the 3D CFD simulations, no-slip boundary conditions were applied on all the walls of the system 

and on the partition plate (when present) for all phases. These wall boundary conditions were used as 

well in the DEM simulations for the fluid phase (for the particles no boundary conditions are needed 

on walls). In the 2D CFD simulations front and back wall effects were neglected (because these walls 

were not accounted for, owing to the simulation dimensionality). At the bottom of the bed, a uniform 

inlet fluid velocity was specified. At the domain upper boundary, the pressure was set to 10E5 Pa.  

In all the CFD simulations, in its initial state the bed was fixed and made up of a uniform powder with 

volume fraction equal to 0.60 (so, the voidage was set everywhere to 0.40) and the fluid was stagnant. 

In all the DEM simulations, the same initial conditions were used, with the particles packed randomly. 

6.0 Numerical schemes and techniques 

To run the Eulerian-Eulerian simulations, we employed the commercial CFD code Fluent 12.1 (by 

Ansys). The governing and constitutive equations were implemented in the multi-fluid model of the 

package, which is based on an Eulerian description of the flow. We used the pressure-based solver, 

which is recommended for low-speed incompressible flows. To convert scalar transport equations into 

algebraic equations that can be solved numerically, the code employs a finite-volume discretization 

scheme. We discretized in space through a second-order upwind scheme and in time through a first-

order implicit scheme. To couple pressure and velocity, we used the SIMPLE (Simultaneous Solution 

of Non-linearly Coupled Equations) algorithm of Lo (1989); the code does not allow other coupling 

algorithms for Eulerian multiphase calculations. At each time step, we employed a maximum of 250 

iterations to compute the flow variables. Setting the tolerance to 10E-5, we attained convergence 
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within the iteration limit. The time step was set to 10E-3 s, and under-relaxation factors of 0.20 were 

used for all the variables. The computational grid was uniform with square (in 2D) and cubic (in 3D) 

cells of 5 mm side (this is the same mesh used in the 2D simulations reported in Oke et al., 2014). To 

post-process and visualize the results of the simulations we used the data analysis software included in 

the Ansys 12.1 package. 

The setup just described (as well as the balance and constitutive equations) is the same as that used by 

Oke et al. (2014). This ensures that the simulations of this work are consistent with those previously 

conducted, so that comparing their results is meaningful. 

To run the Eulerian-Lagrangian simulations, we used the in-house DEM code MultiFlow developed 

by Professor Berend van Wachem at Imperial College London (http://www.multiflow.org/). The code 

tracks the properties of individual particles and of the fluid at the particle location. It achieves this by 

determining (by interpolation) the Eulerian properties of the fluid at the center of the particle and by 

creating a particle mesh which is used to generate collision-neighbour finding lists. The particle mesh 

(whose sole purpose, as said, is to find the nearest neighbours of each particle) is a fictitious uniform 

Cartesian mesh with call size equal to 1.5 times the particle diameter. Similar to the Eulerian-Eulerian 

simulations, the discretization of the Eulerian fluid-phase equation of motion is conducted via a finite 

volume approach, combined with a second-order accurate central difference scheme for the advection 

terms and a second-order accurate, three-point backward Euler discretization scheme for the temporal 

term. The pressure-velocity coupling is done in a fully-coupled framework, using one outer iteration 

per time-step (van Wachem et al., 2007). The governing and constitutive equations for the particles 

reported in Section 4 were already included in the package. To post-process and visualize the results 

of the simulations we used ParaView, an open-source, multi-platform visualization and data analysis 

application (http://www.paraview.org/).  

 

 

http://www.multiflow.org/
http://www.paraview.org/
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7.0 Results and discussions 

As discussed above, one of the aims of the present work is to investigate the influence of simulation 

dimensionality on the numerical prediction of    . We believe that the overestimation of the latter in 

our previous work (Oke et al., 2014) is partly due to the 2D nature of our simulations; hence, we ran 

simulations in 3D using the Eulerian-Eulerian model, adopting the same computational setup used in 

our 2D simulations. The geometry employed is also the same as the one used in the latter simulations, 

except that this is three-dimensional. 

7.1 Eulerian-Eulerian simulations - 2D versus 3D  

From the solid volume fraction spatial profiles obtained numerically, we calculated the void-free mass 

fraction           and concentration         of solid phase   in each layer: 

                                                                   
        

  
  

        

               
                                              

We ran simulations at various superficial gas velocities, keeping the minimum fluidization bed height 

at 5.23 cm, bed width at 0.6 m, and bed depth at 5 cm. These dimensions are those of the system 

investigated experimentally by Shi & Fan (1984), whose data we used to validate our numerical 

results. We fitted the void-free mass fraction profiles obtained from our simulations with those 

obtained from Eq. 5 using the least square regression method, as reported above. The values of     

obtained at a superficial gas velocity of 0.87 m/s at different computational times for 2D and 3D 

simulations are reported in Figure 1. In the latter we observe that     values initially increase and then 

attain a stable value. The initial increase in     values can be attributed to the sudden removal of the 

partition wall separating the two regions in the fluidized bed. This disturbs the system, resulting in 

unsteady values of    . Nevertheless, the value of     stabilizes after the system reaches a new 

pseudo-stationary condition. In Figure 2, we report the profiles of void-free mass fraction obtained 

from Eq. 5 and those obtained numerically at t = 5.0 s at the superficial gas velocity of 0.87 m/s (4.35 

   ) for both 2D and 3D simulations. Similar profiles were obtained at other times and superficial 
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gas velocities. Figure 2 shows that the concentration varies in time faster in the 2D simulations. This 

happens for two reasons. The first is that in the 3D simulations the movement of the solid and the gas 

is restrained by the front and back walls. These are not accounted for in the 2D simulations. So, the 

lateral movement of the particles is slower in 3D simulations. This effect, however, is expected to be 

much reduced in large fluidized beds, in which wall effects are negligible. The second reason has to 

do with the dimensionality of the simulation and is always important. In 3D fluidized beds, the lateral 

motion of the solid has, we may say, two degrees of freedom, since the bubble-induced particle lateral 

motion develops on a horizontal plane. In 2D fluidized beds, in contrast, solely one degree of freedom 

is present, since the bubble-induced particle lateral motion can only develop along a horizontal line. 

This implies that lateral solid dispersion, and in turn the rate of change of the particle concentration, is 

overestimated in 2D fluidized beds (Norouzi et al., 2011). There is a good match between analytical 

and numerical profiles of void-free mass fraction reported in Figure 2, confirming that we can indeed 

employ Eq. 5 to model the lateral dispersion process. 

The snapshots of solid-1 concentration are reported in Figures 3A and 3B, which refer to the 2D and 

3D simulations, respectively, and to a superficial gas velocity of 0.87 m/s. The figures show how the 

tracer particles placed at the left of the removable partition wall spread to the right. We observe that 

the movement of solids in the 2D simulation is faster than that in the 3D simulation. This, as 

mentioned, is consistent with the profiles reported in Figure 2. 

To investigate the role of frictional solid stress models on our numerical predictions, we ran the 

simulations considering the cases reported in Table 2, using the parameter and operational conditions 

reported in Table 1. The maximum particle packing was set to 0.63. This value is consistent with the 

maximum particle packing characterizing the DEM simulations. In these simulations, the particles are 

spherical and of equal size. For these kinds of system, the maximum packing usually has a density of 

about 63%. Song et al. (2008) predicted analytically that it cannot exceed a value of 63.4%. The 

restitution coefficient was set to 0.90, the same value used in the DEM simulations. Finally, the angle 

of internal friction was set to 30
o
 (the default value in Fluent 12.1). The sine of the angle of internal 
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friction features in the constitutive equation for the frictional solid viscosity (Schaeffer, 1987). The 

contribution of this term, however, is not dominant. For many powders the angle of internal friction 

ranges between 20
 o

 and 40
 o

, so that the value of its sine is always unity. What dictate the order of 

magnitude of the frictional solid viscosity are the frictional solid pressure and the second invariant of 

the rate of deformation tensor. 

We tested different frictional pressure and viscosity models, changing the solid volume fraction value 

at which the bed enters the frictional flow regime (    ) and observing the effects of such variations 

on lateral dispersion. Figure 4 (A-E) shows the variation of the lateral dispersion coefficient with 

superficial gas velocity for cases 1 to 5. The values of     are compared with the empirical data of Shi 

& Fan (1984). We see that     increases as the superficial gas velocity is increased. This is true for 

both 2D and 3D simulations, but, in all the cases considered, the 2D simulations clearly overestimate 

   , the values being significantly higher than those given by the 3D simulations. The relative 

percentage errors for the 2D and 3D simulations are also reported in Figure 4 for all cases. Bègis & 

Balzer (1997) and Bègis et al. (1998) reported significant differences between the fluidization 

dynamics predicted by 2D and 3D simulations. To explain this, Xie et al. (2008) carried out a budget 

analysis of the governing differential equations, evaluating each term appearing in them. Their 

analysis revealed that the difference between the results of the 2D and 3D simulations is caused by the 

additional terms present in the three-dimensional equations of change. The difference, according to 

Xie et al. (2008), increases as the superficial gas velocity increases. This can explain why, in Figure 4, 

the difference between the 2D and 3D simulation results increases as the superficial gas velocity 

increases. Figure 4 reveals that, in all the cases investigated, the 3D results are reasonably good and 

agree with the empirical data better than the 2D results. 

Figure 4 shows that the results of the 2D simulations are appreciably affected by the model used for 

the frictional solid stress (frictional pressure and frictional shear viscosity) and by the value ascribed 

to     . The reasons for this were discussed in Oke et al. (2014) and so will not be repeated here. The 

results of the 3D simulations are far less sensitive to the frictional solid stress model. In both 2D and 
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3D simulations, we see that lowering the value of      or using the constitutive model of Johnson & 

Jackson (1987) instead of the kinetic theory of granular flow (KTGF) model for the frictional pressure 

results into lower values of the lateral dispersion coefficient. As explained in Passalacqua & Marmo 

(2009) and in Oke et al. (2014), this is because the model of Johnson & Jackson (1987) yields larger 

solid pressure than the KTGF model, given the same solid concentration, whilst lowering the value of 

     introduces this effect sooner, that is, at lower powder compaction. Larger solid pressures in turn 

result into smaller bubbles, reduced solid recirculation and reduced solid dispersion. This trend is also 

found in the 3D simulations, but the effect is less significant. For instance, for a fluid velocity of 1.17 

m/s, the difference in the     value between Cases 1 and 5 is 1.9 E-3 m
2
/s for the 2D simulations, but 

reduces to 0.3 E-3 m
2
/s for the 3D simulations.  

From this study, we conclude that the simulation dimensionality plays the dominant role in predicting 

    accurately. The frictional stress model does not seem to play as critical a role - as long as the third 

dimension is accounted for. The Eulerian-Eulerian models adopted in this work proved to be capable 

of predicting quite well the value of the lateral dispersion coefficient. 

7.2 DEM simulations  

This section investigates the capability of the Eulerian-Lagrangian modelling approach to estimate 

lateral dispersion coefficients; the intent is comparing its performance with that of Eulerian-Eulerian 

models. In the former approach, as stated, the closure problem for the frictional solid stress no longer 

arises, since we do not model the solid as a continuum.  

We would like to point out that the powder and the bed geometry used in this second part of the work, 

which involves DEM simulations, are different from those considered in the CFD simulations above. 

This is because of the limitations imposed by the DEM modelling approach. The simulations needed 

to treat the same geometry and powder considered in the CFD simulations are far too expensive for 

our computational resources, requiring about 13 million more particles than those used in the DEM 

simulations that we were able to run. Because our aim is comparing the performance of the Eulerian-
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Eulerian and Eulerian-Lagrangian modelling approaches, we simulated a new geometry and powder. 

We studied the powder investigated experimentally by Grakhovskii (1968), which has a bigger mean 

size than that employed previously. The parameters used in our simulations, in particular the bed 

height and the superficial gas velocities, were chosen to replicate the work of the author. 

Nevertheless, the depth and the width of the bed used in our simulations are smaller than those of 

Grakhovskii (he used a bed of depth 100 mm and width 1000 mm).  This is, once again, because of 

the huge computational cost we would have incurred if we had employed the real dimensions of the 

bed investigated by Grakhovskii. In Table 3, we summarize the powder properties and the bed 

dimensions employed in our simulations. 

To estimate the     values, we used the same procedure as in the Eulerian-Eulerian simulations. The 

results of DEM simulations provide the position of each particle at any given time. This allowed us to 

determine the radial void-free concentration profiles in the bed. By matching these profiles with those 

obtained analytically from Eq. 5, we calculated the     values at different operational conditions. We 

report in Figure 5 the concentration profiles for a superficial gas velocity of 1.9 m/s; the values of the 

other parameters are those shown in Table 3. The profile given by the 3D CFD simulation is also 

included for completeness. We observe a good match between the numerical and analytical profiles. 

These refer to a time          but similar results were obtained at other times and superficial gas 

velocities.  Figure 5 suggests that mixing is slower in DEM simulations. The reason for this is closely 

linked to the values assigned to the collision parameters. We will discuss this aspect in the following 

paragraphs. 

We should note that the accuracy of the simulations depends on the values assigned to the parameters 

appearing in the model (i.e., restitution coefficient, particle-particle friction coefficient and stiffness 

constant); therefore, care has to be taken when choosing them. The coefficient of restitution accounts 

for the kinetic energy dissipated when particles collide. The energy that is lost is accounted for by the 

contact damping force included in the DEM model through the dashpot model. It is customary to base 

the damping coefficient on the collisional properties of the particles, in particular the restitution 
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coefficient e. Nevertheless, we should note that the latter is neither a material property nor a constant. 

Its value depends, among other parameters, on the relative impact velocity of the colliding particles 

(Kuwabara & Kono, 1987). However, the variation of the restitution coefficient is negligible, except 

at very high impact velocities (usually 10 m/s and above) (Labous et al., 1997). So, the value of   is 

normally taken to be constant in DEM simulations. The typical value employed in the literature is 

0.90, and therefore in this work we employed this value (which was also used in the Eulerian-Eulerian 

simulations). Unlike the coefficient of restitution, the friction coefficient and the material stiffness 

constants depend on the material properties. The friction coefficient is an empirical parameter whose 

value depends on many factors, including particle shape, particle size and surface texture, whilst the 

material stiffness constants depend on the Young’s modulus and Poisson’s ratio of the material. Since 

we do not have the empirical values for these parameters (even if we did, we could not have used 

them, because the simulations would have been too computationally expensive), we performed a 

parametric study to determine how the values assigned to them influence the simulation results. 

To see how friction coefficient and stiffness affect the numerical predictions of    , we carried out a 

sensitivity analysis on them using the values of parameters reported in Table 3 as a reference case. We 

began by considering the effect of the friction coefficient. This parameter may affect significantly the 

fluidized bed dynamics in DEM simulations. Cleary et al. (1998) carried out a sensitivity analysis on 

it, studying the effect that its value has on the solid mixing rates in a ball mill. They reported that the 

mixing rate increased as the friction coefficient decreased. To investigate the influence of the friction 

coefficient on lateral solid mixing, we performed simulations using different values of   in the range 

commonly used in DEM simulations of fluidized beds, keeping the restitution coefficient at 0.90, the 

superficial gas velocity at 2.66 m/s (3.5 umf – an intermediate value in the velocity range investigated 

experimentally by Grakhovskii) and the normal material stiffness constant    at 40,977 N/m
3/2

. The 

value of     was obtained via Eq. 22. The snapshots of the bed, obtained using the reference 

conditions in Table 3 at a superficial gas velocity of 2.66 m/s, at different computational times, are 

reported in Figure 6. The latter shows the lateral spread of particles. This is similar to what we 
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observed in the CFD simulations described in the previous section. Figure 7 shows that     reduces as 

the friction coefficient increases. This is consistent with the findings of Cleary et al. (1998) and was 

expected. When the friction coefficient rises, the sustained particle-particle interactions become more 

pronounced and the gross particle circulation in the bed (induced by the bubbles) is curtailed. This 

results in a reduction of the dispersion coefficient. Its order of magnitude, however, remains the same. 

The results of the simulations did not evidence a marked effect of the friction coefficient value on the 

bubbling behaviour of the bed.   

Generally, the value of material stiffness constants should as well be carefully chosen, since it affects 

the integration time step significantly: the higher the stiffness, the smaller the necessary integration 

time step. This is because higher stiffness results in shorter collision times. Stiffness also influences 

interparticle overlap during collisions; generally, small stiffness leads to large interparticle overlap. 

Stiffness values must be chosen in such a way as to attain a balance between accuracy and 

computational efficiency. A large stiffness value, even if it may yield more accurate results, does 

reduce the computational efficiency dramatically. On the other hand, when stiffness values are 

impractically small, the accuracy of the simulations could be compromised. Therefore, it requires 

careful judgement on the modeller’s part to strike a reasonable balance between accuracy and 

efficiency. To investigate the effect of material stiffness on the lateral dispersion coefficient, we 

conducted a sensitivity analysis on it, using the parameters reported in Table 3 as a reference case. We 

ran simulations at different stiffness values, keeping the coefficient of restitution at 0.90, the friction 

coefficient at 0.20 and the superficial gas velocity at 2.66 m/s. Figure 8 reports how     changes with 

stiffness. We can see that     decreases slowly initially, and then more rapidly, as stiffness increases. 

However, the order of magnitude of      remains unchanged. Also in this case we observed that, for 

the range of values considered, the stiffness constant did not affect markedly the bubbling behaviour 

of the bed. 

We investigated how the bed thickness (i.e. the bed depth in the z-direction) influences the     values, 

because we could not simulate directly the experimental system, adopting the real value of bed depth 
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(100 mm), owing to the enormous computational resources required. Hence, we decided to investigate 

how the choice of bed depth value affects the numerical prediction of      In the literature, the effect 

of the bed thickness has mainly been studied with respect to the minimum fluidization velocity. It was 

observed that the latter increases as the bed thickness decreases (Caicedo et al., 2002; Kathuria & 

Saxena, 1987; Sanchez-Delgado et al., 2011; Saxena & Vadivel, 1988). This is because, as the bed 

depth reduces, the effect of wall friction becomes more pronounced, limiting the movement of the 

particles. For this same reason, we believed that the bed thickness would affect our numerical results. 

Indeed, studies have shown that bed thickness does affect bubble size, shape, velocity and expansion; 

these are important parameters that strongly influence solid mixing in fluid beds (Cranfield & Geldart, 

1974; Geldart, 1970; Geldart & Cranfield, 1972; Glicksman & McAndrews, 1985; Rowe & Everett, 

1972). To investigate the effect of bed thickness, we ran simulations at different superficial fluid 

velocities, using geometries of depths       and      , where    is the particle diameter, and (in a 

third case) periodic walls  at 10     (imposing periodic boundary conditions at the front and back 

walls of the vessel). The values of the simulation parameters were those shown in Table 3. Figure 9 

reports how     changes with the superficial gas velocity for the various bed depths examined. We 

note that     reduces as the depth of the bed is decreased, as expected. The simulations run with 

periodic boundary condition give higher values of     than those with rigid walls, because the walls 

do not constrain the bed dynamics. Since the depth of the bed considerably affects solid dispersion, in 

the simulations one should employ the correct dimension (the same as that of the real system 

investigated experimentally). If doing so is not feasible (for instance because the number of particles 

to be tracked would be too large), then one has to keep in mind that simulating a narrower bed may 

affect the simulation results, leading to lower dispersion coefficient values, as seen in Figure 9. 

 

The results presented in these paragraphs reveal that DEM simulations are able to estimate the rate of 

lateral solid mixing in fluidized beds, but the accuracy of this modelling approach, as we have seen, 

depends on the values chosen for the simulation parameters. So, even if we are not faced with the 

problem of constitutively expressing the frictional solid stress, as we are in the Eulerian-Eulerian 
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simulations, we are still faced with the challenge of assigning appropriate values to the simulation 

parameters. To overcome this issue, one needs to estimate the parameters experimentally, but doing so 

is extremely time-consuming, and, as pointed out before, employing the empirical values in the 

simulations would require enormous computational resources; this, in particular, is true for the 

material stiffness constants. In the next section, we compare the DEM simulation results with the 

experimental ones and with those obtained from the Eulerian-Eulerian simulations. 

7.3 DEM versus CFD simulations 

We ran simulations in CFD using the same powder, geometry and operational conditions employed in 

the DEM simulations. Table 4 reports the simulation parameters and the powder properties used in the 

CFD simulations. In the DEM ones, we considered two stiffness values: 40,977 N/m
3/2 

and 409,772 

N/m
3/2

. For each, we ran simulations at various superficial gas velocities, keeping the other parameters 

constant (the values are those reported in Table 3). Figure 10 reports how     changes with superficial 

gas velocity. We observe that     increases with superficial gas velocity; this is expected because an 

increase in the latter induces more bubbling, which makes the rate of lateral solid mixing rise. The     

values calculated at 40,977 N/m
3/2 

are larger than those calculated at 409,772 N/m
3/2

. This is true for 

all the superficial gas velocities considered and agrees with what Figure 8 reports.  

In the CFD simulations we considered Cases 1 and 5 reported in Table 2. The void-free mass fraction 

profile for Case 1 obtained at a superficial gas velocity of 1.9 m/s is reported in Figure 5. In Figure 10, 

it is interesting to note that the     values obtained in Case 5 are lower than those obtained in Case 1. 

The trend is the same as that observed in the previous CFD simulations reported above. The figure 

also shows that the CFD simulations predict the     values better than the DEM simulations, although 

the empirical data are still slightly overestimated. The predictions of the DEM simulations are fairly 

accurate, the order of magnitude of the results matching that of the empirical data. This reveals that 

DEM simulations are equally capable of estimating      accurately, provided one assigns appropriate 

values to the collision parameters. 
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8.0 Conclusions 

In this article, we extended our previous work on the numerical simulations of lateral solid mixing in 

gas-fluidized beds (Oke et al., 2014). In the latter, our numerical results overestimated the empirical 

ones. We attributed this to the 2D nature of our simulations and to the frictional stress models used. In 

this paper we addressed these problems. We examined the influence of simulation dimensionality. We 

ran CFD simulations in 3D at different superficial gas velocities, considering the same powder and the 

same geometry as those employed in our 2D simulations. Our results showed that the 3D simulations 

predict     better. We also noticed that the effects of frictional stress models, while still present in the 

3D simulations, are less significant than in the 2D simulations. Hence, we concluded that simulation 

dimensionality plays the dominant role in the overestimation of    . After, we tested the capability of 

DEM simulations to predict      The DEM results agreed reasonably well with empirical results. The 

simulation results revealed that the accuracy of numerical predictions depends on the values assigned 

to the collision parameters; in particular, the restitution coefficients, friction coefficients and stiffness. 

To conclude, we compared the results obtained from the DEM (i.e. Eulerian-Lagrangian) and the CFD 

(i.e., Eulerian-Eulerian) simulations. We observed that both modelling approaches predicted     fairly 

accurately. Nevertheless, CFD simulations yielded slightly better results.  
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Parameters Value 

Vessel height  0.35 m 

Bed depth (thickness) 0.05 m 

Bed Width 0.60 m 

Superficial gas velocity 0.87 – 1.17     

Particle diameter 491    

Particle density 2620       

Minimum fluidization velocity 0.20 m/s 

Angle of internal friction 30
o
 

Restitution coefficient 0.90 

Maximum particle packing 0.63 

Bed height 0.05 m 

Computational cell 0.005   

Time-step 0.001   

 

Table 1: CFD simulation parameters for Powder 1. 
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 Frictional               

Pressure Model 

Frictional              

Viscosity Model 

Frictional                

Packing Limit 

 

Cases KTGF J & J Schaffer J & J 0.50 0.61 

 

1 X  X   X 

2 X  X  X  

3 X   X  X 

4 X   X X  

5  X  X X  

 

Table 2: Summary of simulation cases.  

 

Table 2



Conditions of particle 

Particle shape  Spherical 

Diameter 3 mm 

Density 1000 kg/m
3
 

Material stiffness  40,977 N/m
3/2

 

Restitution coefficient 0.90 

Friction coefficient 0.2 

Poisson ratio 0.33 

Minimum fluidization velocity 0.76 m/s 

Number 29,470 

Conditions of gas 
Density 1.2 kg/ m

3
 

Viscosity  1.7 × 10
-5 

Ns /
 
m

3
 

Simulation conditions 
Bed height  60 mm 

Bed width 200 mm 

Bed depth 60 mm (that is, 20 dp) 

Superficial gas velocity 1.9 – 2.66 m/s 

Particle time-step 10
-6 

s 

Total simulated time 10 s 

 

Table 3: DEM simulation parameters for Powder 2. 
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Conditions of particle 

Diameter 3 mm 

Density 1000 kg/m
3
 

Minimum fluidization velocity 0.76 m/s 

Angle of internal friction 30
o
 

Restitution coefficient 0.90 

Maximum particle packing 0.63 

Conditions of gas 
Density 1.2 kg/ m

3
 

Viscosity  1.7 × 10
-5 

Ns /
 
m

3
 

Simulation conditions 
Bed height  60 mm 

Bed width 200 mm 

Bed depth 60 mm 

Superficial gas velocity 1.9 – 2.66 m/s 

 

Table 4: CFD simulation parameters for Powder 2. 
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