1 2 3	Pre-dialy n	rsis and post-d atriuretic pep	ialysis tide and	hydration statu d survival in hae	s and N-terminal pro-brain emodialysis patents
4					
5				2 Audreau Dave	
0 7	Kamonwan Ta	angvoraphonikci		, Andrew Daver	nport FRCP
8	¹ Eaculty of M	edicine Mahas	arakha	m University N	Nahasarakham Thailand
9	² UCL Centre	for Nephrology	/ Rova	Free Hospital.	University College London
10	Medical Scho	ol, London NW	3 2PF,	UK	e
11		.,			
12	Kamonwan Ta	ngvoraphonkch	ai	kamonwan.tang	voraphonkchai@nhs.net
13	Andrew Dave	nport		andrewdavenpo	ort@nhs.uk
14					
15					
16	Address for a	correspondenc	e		
17	Andrew Dave	nport		andrewdavenpo	ort@nhs.net
18					
19			_		
20	contact	andrewdavenp	ort@n	hs.net	
21	UCL Centre f	or Nephrology	, Royal	Free Hospital, U	University College London
22	Medical Scho	ol, Rowland Hil	l Stree	et, London NW3	2PF
23	tel 44-20	/4/2645/	tax	44-20/31/859	71
24					
23 26	chart title	change in hisi	mnadar	aca hydration in	dax fallowing harmodialycic
20	Short the	chunge in Dioi	mpeuur	ice nyururion in	dex tonowing naemoularysis
28					
29	kev words	bioimpedance		haemodialvsis	over hydration
30	extrac	cellular water	intrace	ellular water b	prain natriuretic peptide
31					
32					
33					
34					
35	word count	abstract	237		
36		body	2338		
37		figures	2		
38		tables	4		
39		references	34		
40					
41	Funding	Royal Free Ho	ospital		

42 Neither author has any conflict of interest

43 <u>Abstract</u>

44 Background

45	Many dialysis centres have no formal program for assessing and adjusting
46	post-haemodialysis (HD) target weight. Apart from clinical assessment, there
47	are bioimpedance devices and natriuretic peptides which could potentially aid
48	clinical management. We wished to determine whether pre or post HD
49	bioimpedance assessment of extracellular water ECW), or N terminal probrain
50	natriuretic peptide (NT-proBNP) affected patient outcomes.
51	Methods
52	Multi-frequency bioimpedance assessments (MFBIA) were made pre and
53	post the midweek dialysis session along with post dialysis NT-proBNP
54	measurement.
55	<u>Results</u>
56	Data from 362 patients, median age of 63 (50-76) years, 59.7% male,
57	41.2% Caucasoid, with a median dialysis vintage of 31.4 (13.5-61.7) months were
58	available for review. During a median follow up of 49.6(21.9-50.2) months there
59	were 110 (30.4%) deaths. Patients who died had significant increased ECW, as $\%$
60	overhydrated both pre 6.6 (5.8-7.6)% vs survivors 5.1 (4-6.6)%, and post HD 5.1
61	(4-6.6)% vs 0.5 (-1-2.2.0, p<0.001, respectively, and higher NT-proBNP (325
62	(122-791) vs 102 (48-342) pmol/l, p=0.002. Using an adjusted Cox model only
63	pre-HD ECW over-hydration remained an independent factor associated with
64	mortality (% over hydration: hazard ratio 1.15, 95% limits 1.03-1.28, p=0.013),
65	with a receiver operator curve (ROC) value of 0.7.

66	Summary
67	ECW excess is associated with increased mortality for HD patients, with
68	the strongest association being with ECW excess pre dialysis, although these
69	patients also had increased ECW post-dialysis. Future trials are required to
70	determine whether achieving euvolaemia as determined by bioimpedance
71	improves patient survival.
72	
73	
74	
75	
76	
77	
78	
79	
80	
81	
82	
83	
84	
85	
86	
87	
88	

89 Introduction

Despite the advances in haemodialysis technology over the last 50 years 90 91 [1], and widespread use with more than 2 million patients now receiving 92 treatment world-wide, survival has not equally improved. In the UK, the 93 expected lifespan for patients starting dialysis aged 40 to 49 years of age is 94 approximately 10 years and 5 years for those aged 60 to 69 years of age [2] 95 Not only are these substantially worse than those for the general population [3], 96 but also worse than for some of the more common solid organ malignancies [4]. 97 Prospective multicentre randomised controlled trials have failed to 98 demonstrate that increasing small solute clearances (urea) [5], or increasing 99 membrane flux have improved survival [6]. Solute clearance is only one part of 100 the dialysis prescription, as dialysis should also restore hydration status and 101 sodium balance. Patients who are consistently more than 2 kg above their post-102 dialysis target weight are at increased risk for mortality [7]. In most centres 103 determining volume status and the post dialysis target weight depends upon 104 physical examination and blood pressure review [8]. More recently the 105 introduction of bioimpedance techniques [9] as established that many 106 haemodialysis patients are chronically volume overloaded, and that volume 107 overload is an independent risk factor for mortality [10]. Volume overload also 108 increases the release of natriuretic peptides from the heart, such as N terminal 109 probrain natriuretic peptide (NT-proBNP) [11]. Both bioimpedance measurements 110 of volume overload and plasma NT-proBNP have been reported to be associated 111 with increased risk of mortality for haemodialysis patients [10,12].

112	As it is unclear as to whether the association between increased
113	mortality risk and volume overload is related to increased hydration status pre-
114	dialysis [10] or those who remain overhydrated post-dialysis [7], we reviewed
115	the outcomes of patients who had corresponding pre- and post-dialysis
116	bioimpedance measurements along with post dialysis NT-proBNP measurements.
117	
118	Methods
119	We included all established adult dialysis outpatients who had
120	corresponding pre and post mid-week dialysis session bioimpedance
121	measurements recorded along with a post session NT-proBNP measurement
122	dialysing in our kidney dialysis centres January 2011-December 2011. Patients
123	who did not have an established target were excluded; including those who had
124	been discharged from hospital within the previous 90 days and patients who had
125	been established on dialysis for < 90 days. Patients who could not stand to be
126	weighed, and those with pacemakers were also excluded.
127	Patients used either Fresenius 4008H/5008 or BBraun Dialogue+ $^{\textcircled{B}}$
128	dialysis machines with integrated blood pressure monitors (Fresenius Bad
129	Homburg, Germany and BBraun, Melsungen, Germany), polysulfone dialyzers
130	(Nipro Corporation, Osaka, Japan)[13], with ultrapure quality dialysis water and
131	we used single bolus low molecular weight heparin anticoagulation (Tinzaparin,
132	Leo Laboratories, Princes Risborough, UK) [14].
133	Blood pressure and dialysis session parameters were recorded in the

134 renal department password protected electronic data base, along with patient

demographics and medical records. Patient co-morbidity was graded according to
the Stoke-Davies co-morbidity score [15].

137 Multi-frequency bio-electrical impedance assessments (MF-BIA) were 138 standardized by taking measurements pre and 20-30 minutes post-dialysis session, using an eight-electrode MF-BIA device (Biospace In body 720, Seoul, 139 140 South Korea)[16,17]. Patients with pacemakers or implantable defibrillators and 141 amputees were excluded from study. Relative extracellular water volume (ECW) 142 excess termed extracellular water over hydration was estimated according to the method recommended by the European Society for Parenteral and Enteral 143 144 Nutrition (ESPN) [18]. 145 Serum biochemistry samples were analysed with a standard multi-channel biochemical analyzer (Roche Integra, Roche diagnostics, Lewes, UK), using the 146 147 bromocresol green method for albumin determination, NT-proBNP was measured 148 by immunoassay (ECLIA Roche Diagnostics, GMBH, Mannhein, Germany), with an inter assay coefficient of variation 1.3% [19], and a sensitive C reactive protein 149 150 assay (<0.5 mg/L) as used by the UK National Amyloid service[20], and β 2 151 microglobulin measured by rate nephelometry (Image 800 analyser, Beckman 152 Coulter, High Wycombe, UK) [21]. Standard blood tests were taken after the 153 pre-dialysis bioimpedance measurement and prior to starting the midweek 154 dialysis session and NT-proBNP measured post dialysis prior to the post-dialysis 155 bioimpedance measurement.

156

158 Statistical analysis

159	Data with a normal distribution was presented as mean \pm SD, while non-
160	normally distributed data was presented as median and interquartile range.
161	Student's t test and the Mann Whitney U test were used for intergroup
162	comparisons respectively, with correction for multiple testing as appropriate by
163	Bonferroni or Dunn's correction respectively. For further analysis data which
164	was not normally distributed was log transformed as appropriate. Pearson's rank
165	correlation was performed for univariate analysis to select significant variables
166	and those with p<0.1 which were then entered into a multivariate ${\sf Cox}$
167	proportional hazard model to examine hazard function of each variable. Pre and
168	post dialysis extracellular to total body water and percent over-hydration were
169	analysed in separate model due to high correlation among variables. The
170	predictive values of all significant variables were then compared by ROC curves
171	with AUC calculation. SPSS Statistics version 23 (University of Chicago, Illinois,
172	USA) was used for statistical analysis. A p-value <0.05 was taken as achieving
173	statistical significance.
174	
175	Ethics

We audited the results of pre and post haemodialysis bioimpedance
measurements obtained during routine clinical practice to determine whether
bioimpedance derived hydration status was associated with an increased
mortality. Patient specific data was anonymised. Ethical approval fulfilled UK
NHS clinical service development and audit (UK NHS guidelines for clinical audit

and service development (http://www.hra.nhs.uk/documents /2013/09/ definingresearch.pdf)).

183

202

184 Results

185	Records of 362 patients were available for review with a median age of
186	63 (50-76) years, with 59.7% being male, 41.2% Caucasoid, and a median dialysis
187	vintage of 31.4 (13.5-61.7) months. In terms of co-morbidity 36.7% had
188	diabetes, 81.5% hypertension, 25.7% had cardiac disease and 27.3% were Davies
189	co-morbidity grade 0, 58.6% grade 1 and 14.1% grade 2. The majority of patients
190	dialysed with an arterio-venous fistula (71.3%), and 37.6% of patients were
191	treated by haemodiafiltration and 63.4% by high flux haemodialysis. The median
192	follow-up time was 49.6 (21.9-50.2) months during which there were 110 (30.4%)
193	deaths. The total number of patients scheduled for dialysis was 465; 103
194	patients were excluded from analysis due to inability to stand to be weighed (14
195	due to amputations, 4 severe stroke and 4 stretcher cases), pacemakers (12),
196	recent starters on the haemodialysis program (31), recent discharge from
197	hospital (15) and non-attendance for dialysis due to holiday and hospital in-
198	patient admission (13), missing post dialysis bioimpedance results (7), and no NT-
199	proBNP measurement (3).
200	We compared the demographics of patients who died during follow up
201	with those who survived, as expected survivors were younger, weighed more,

with less co-morbidity, lower CRP, and higher serum albumin and haemoglobin

203	(table 1). Survivors also had lower extracellular water (ECW) to total body water
204	(TBW) ratios both re and post-dialysis (Figure 1), and also less ECW for their
205	intracellular water (ICW), expressed as percentage, termed over hydration, and
206	lower NT-proBNP values (table 1). We used $\beta 2$ microglobulin as a surrogate for
207	residual renal function, and found no difference between groups.
208	We found no difference in mortality between those treated by
209	haemodialysis compared to haemodiafiltration. Similarly there was no difference
210	in hydration status, either pre-dialysis (haemodialysis 5.8(4.3-6.7) vs
211	haemodiafiltration 5.8(4.2-7.1) % over hydration) or post dialysis (1.1 (-0.5 -2.8)
212	vs 1.3 (-06-3.1) % over hydration), respectively. However the haemodiafiltration
213	group had a higher haemoglobin (11.8(11.0-12.5) vs 11.2(10.1-12.3) g/dL),p=0.02;
214	serum albumin 41.0 (40-44) vs 41.0 (38-43) g/l, p=0.034, and lower CRP (4(2-8)
215	vs 5(2-14.3)mg/L),p=0.013, and NT-proBNP pmol/L (106(48-321) vs 200 (71-
216	538)),p=0.012, respectively .
217	Univariate analysis was then undertaken to determine which factors were
218	associated with mortality (table 2). A Cox model showed that Davies co-
219	morbidity grade, log CRP, and pre-dialysis ECW excess, either as pre dialysis
220	ECW/TBW or as percentage over hydration, were independently predictive of
221	mortality. Whilst greater pre dialysis weight and serum albumin were found to
222	be significantly protective factors (tables 3 and 4). However ECW excess post-
223	dialysis, was not associated with mortality, whether assessed by ECW/TBW
224	ratio or percentage over hydration (p = 0.424 and 0.383 respectively).

Receiver operating curves (ROC) for mortality were plotted (figure 2), showing in descending order the area under the curve (AUC) was greatest for pre dialysis ECW/TBW, 0.70 (p <0.001), percentage over hydration pre-dialysis 0.697 (p <0.001), Davies co-morbidity grade 0.689 (p <0.001); post dialysis Log NT-proBNP 0.616 (p = 0.001), and Log CRP 0.607 (p = 0.002), respectively.

231 Discussion

232 Mortality for kidney dialysis patients remains high [2]. Studies have failed to show that increasing urea clearance (Kt/V) increases survival [5]. 233 234 Similarly simply increasing dialyzer pore size to increase middle molecular 235 weight toxin clearance with high flux dialysis failed to demonstrate any significant survival advantage [6], although achieving high volume on-line 236 237 haemodiafiltration exchanges has recently been suggested to potentially 238 improve patient survival [22]. On the other hand there are several observational studies showing a strong association between increased inter-dialytic weight 239 240 gains [23], and ECW overload and mortality [10,24]. Despite the clear 241 association between ECW excess and mortality, most dialysis centres rely on 242 clinical assessment of patients and have no formalised policy of how to address 243 achieving post-dialysis target weights [8]. As not all haemodialysis patients with 244 an expanded ECW are hypertensive, and similarly pre-dialysis blood pressures 245 may equally not be lower in those who are dehydrated with a contracted ECW 246 [25,26], there is a clinical need to develop biomarkers and other measurements 247 to aid clinical decision making in determining post-dialysis target weight.

248	Bioimpedance devices have developed over the last twenty years from
249	simple frequency devices to multi-frequency and spectroscopy devices [6]
250	capable of measuring ECW and ICW. As there is no simple relationship between
251	patient anthropomorphometry and ECW, there have been debates as how best to
252	express ECW excess, so allowing interpatient comparisons [27], with some
253	authors simply expressing the ratio of ECW/TBW [28], whereas others have
254	estimated the amount of ECW to be expected from the measured ICW, and
255	then expressed the difference in ECW measured and that expected as a
256	measure of, or percentage over hydration [29].
257	Natriuretic peptides are increased in patients with heart failure, and
258	some reports have suggested an association with ECW excess and increasing
259	concentrations in dialysis patients [11], although others have reported no
260	association [30]. BNP is produced from a pre-prohormone precursor which is
261	cleaved to form N-terminal pro B-type natriuretic peptide, which is then split
262	into BNP 1-32 and NT-proBNP 1-76. Normally there are only small amounts of
263	intact BNP 1-32 in blood, and the major circulating forms of BNP are
264	degradation products which can be detected by different BNP assays to a
265	varying extent. To exclude any possible cross reactivity, and technical problems
266	due to the instability of BNP, we elected to measure the more stable NT-
267	proBNP. We also chose to measure NT-proBNP post the midweek dialysis
268	session, as previous reports have suggested that BNP values are relatively stable
269	during the latter half of the dialysis weekly schedule [31]. We did observe that
270	NT-proBNP values were lower in the haemo-diafiltration group, raising the

271 possibility that there may have been some removal during treatment, as it has a 272 molecular weight of 8.5 kD. However NT-proBNP is also influenced by 273 inflammation [32], and the haemodiafiltration group had higher haemoglobin and 274 albumin concentrations and lower CRP values. Although we found that the AUC on ROC for NT-proBNP was similar to that of CRP in terms of association with 275 mortality, this was not as high as for pre-dialysis over hydration. Although NT-276 277 proBNP is increased by ECW expansion, NT-proBNP may also be influenced by 278 cardiovascular co-morbidity counted as part of the Davies co-morbidity grade [15], and systemic inflammation linked to CRP [33]. 279

280 We did observe that pre-dialysis ECW excess, whether measured by 281 ECW/TBW ratio or percentage over hydration was independently associated with mortality in our cohort of patients, whereas there was no such association 282 283 with post-dialysis ECW excess. However those patients who died did have higher 284 levels of ECW than those who survived. This may suggest that patients with greater ECW excess are volume overloaded all through the dialysis week and 285 286 that they are even more volume overloaded prior to dialysis, or that being more 287 volume overloaded leads to higher ultrafiltration rates, which patients can not 288 readily tolerate, so that patients achieve similar net ultrafiltration during the 289 dialysis session, but then leave more volume overloaded. Several studies have 290 suggest that patients requiring higher ultrafiltration rates, a surrogate for 291 greater ECW overload are at increased risk of death [7].

As many dialysis centres do not have formal protocols or algorithms to assess and change patients' target weights we audited our own results of

294 measuring pre and post-dialysis bioimpedance measurements along with NT-295 proBNP, to help decide which if any of these could be a useful biomarker to help 296 in clinical decision making. We found that the pre dialysis ECW/TBW ratio and 297 percentage ECW over hydration measured by bio-impedance had the greatest 298 association with subsequent patient mortality compared to either post dialysis NT-proBNP or hydration status assessed by the ECW/TBW ratio or percentage 299 300 ECW over hydration. The association between pre dialysis ECW/TBW ratio and 301 percentage ECW over hydration and mortality remained after adjusting for 302 known risk factors including comorbidity index, serum albumin and CRP. Whereas 303 after adjustment, NT-proBNP was longer an independent factor associated with 304 mortality. From our study it would appear that volume assessment would best be served by a pre-dialysis bioimpedance measurement, dispensing with post-305 306 dialysis bioimpedance and NT-proBNP measurements. 307 Many studies have shown an association between volume status and

308 mortality for haemodialysis patients. However these have variously reported an 309 association between either pre-dialysis over hydration [23], or post dialysis over 310 hydration [7]. In the new era of bio-impedance measurements, studies have only 311 reported on pre-dialysis bioimpedance measurements [10, 12,24]. Our study is 312 the first to compare the effect of over hydration measured both pre and postdialysis. On multivariate analyses we noted an association between pre-dialysis 313 314 ECW excess and mortality, and although there was no statistical association 315 with either post-dialysis ECW excess or NT-proBNP, both were increased in 316 those who died. However our report is a retrospective observational study from

317	a single centre, which requires confirmation by other centres in prospective
318	trials to determine whether patient mortality is reduced by targeting a
319	reduction in pre-dialysis ECW expansion by adding bioimpedance measurements
320	to clinical assessments of volume status in haemodialysis patients.
321	
322	
323	
324	
325	
326	
327	
328	
329	
330	
331	
332	
333	
334	
335	
336	
337	
338	Neither author has any conflict of interest
339	Funding Royal Free Hospital, KT was awarded an ISN scholarship

340	Refer	ences
341	1.	Davenport A. Can advances in haemodialysis machine technology prevent
342		intradialytic hypotension? Semin Dial. 2009;22(3):231-6
343	2.	Steenkamp R, Rao A, Roderick P. UK Renal Registry 17th Annual Report:
344		Chapter 5 Survival and Cause of Death in UK Adult Patients on Renal
345		Replacement Therapy in 2013: National and Centre-specific Analyses.
346		Nephron. 2015;129 Suppl 1:99-129.
347	3.	Arias E. United States Life Tables, 2011. National vital statistics reports
348		: from the Centers for Disease Control and Prevention, National
349		Center for Health Statistics, National Vital Statistics System.
350		2015;64(11):1-63
351	4.	GBD 2013 Mortality and Causes of Death Collaborators. Global, regional,
352		and national age-sex specific all-cause and cause-specific mortality
353		for 240 causes of death, 1990-2013: a systematic analysis for the
354		Global Burden of Disease Study 2013. Lancet. 2015;385(9963):117-71
355	5.	Eknoyan G, Beck GJ, Cheung AK, Daugirdas JT, Greene T, Kusek JW, Allon
356		M, Bailey J, Delmez JA, Depner TA, Dwyer JT, Levey AS, Levin NW,
357		Milford E, Ornt DB, Rocco MV, Schulman G, Schwab SJ, Teehan BP,
358		Toto R; Haemodialysis (HEMO) Study Group. Effect of dialysis dose
359		and membrane flux in maintenance haemodialysis. N Engl J Med.
360		2002;347:2010-2019.
361	6.	Locatelli F, Martin-Malo A, Hannedouche T, Loureiro A, Papadimitriou M,
362		Wizemann V, Jacobson SH, Czekalski S, Ronco C, Vanholder R;
363		Membrane Permeability Outcome (MPO) Study Group. Effect of
364		membrane permeability on survival of haemodialysis patients. J Am
365		Soc Nephrol. 2009;20(3):645-54
366	7.	Flythe JE, Kshirsagar AV, Falk RJ, Brunelli SM. Associations of Post
367		haemodialysis Weights above and below Target Weight with All-Cause
368		and Cardiovascular Mortality. Clin J Am Soc Nephrol 2015;10(5):808-
369	_	16
370	8.	Dasgupta I, Farrington K, Davies SJ, Davenport A, Mitra S. UK National
371		Survey of Practice Patterns of Fluid Volume Management in
372		Haemodialysis Patients: A Need for Evidence. Blood Purif. 2016;
373	-	41(4):324-331
374	9.	Davies 5, Davenport A. The role of bioimpedance and biomarkers in
375		helping to aid clinical decision-making of volume assessments in
376	10	dialysis patients. Kidney Int. 2014;86(3):489-96.
377	10.	Wizemann V, Wabel P, Chamney P, Zaluska W, Moissi U, Rode C, et al. The
378		mortality risk of overhydration in haemodialysis patients. Nephrol Dial
379		Transplant.2009;24(5):15/4-9.
380	11.	Nongnuch A, Panorchan K, Davenport A. Predialysis N I proBNP predicts
381		magnitude of extracellular volume overload in haemodialysis patients.
382	40	Am J Nehrol. 2014;40(3):251-7
383	12.	. Paniagua R, Ventura MD, Avila-Diaz M, Hinojosa-Heredia H, Mendez-
384		Duran A, Cueto-Manzano A, et al. NI-proBNP, fluid volume overload

385	and dialysis modality are independent predictors of mortality in ESRD
386	patients. Nephrology, dialysis, transplantation : official publication of
387	the European Dialysis and Transplant Association - European Renal
388	Association. 2010;25(2):551-7.
389	13. Vernon K, Peasegood J, Riddell A, Davenport A. Dialyzers designed to
390	increase internal filtration do not result in significantly increased
391	platelet activation and thrombin generation. Nephron Clin Pract.
392	2011;117(4):c403-408
393	14. Davenport A. Low-molecular-weight heparin as an alternative
394	anticoagulant to unfractionated heparin for routine outpatient
395	haemodialysis treatments. Nephrology (Carlton). 2009;14(5):455-461
396	15. Davies SJ, Phillips L, Naish PF, Russell GI. Quantifying comorbidity in
397	peritoneal dialysis patients and its relationship to other predictors of
398	survival. Nephrol Dial Transplant 2002; 17: 1085-1092
399	16. Fürstenberg A, Davenport A. Comparison of multi-frequency bioelectrical
400	impedance analysis and dual-energy X-ray absorptiometry
401	assessments in outpatient haemodialysis patients. Am J Kidney Dis.
402	2011;57(1):123-129
403	17. Kumar S, Khosravi M, Massart A, Potluri M, Davenport A. Changes in
404	upper limb extracellular water content during haemodialysis
405	measured by multi-frequency bioimpedance. Int J Artif Organs.
406	2013;36(3):203-7
407	18. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM,
408	Heitmann BL, Kent-Smith L, Melchior JC, Pirlich M, Scharfetter H,
409	Schols AM, Pichard C; Composition of the ESPEN Working Group.
410	Bioelectrical impedance analysispart I: review of principles and
411	methods. Clin Nutr. 2004;23(5):1226-43
412	19. Davenport A. Changes in N-terminal pro-brain natriuretic peptide
413	correlate with fluid volume changes assessed by bioimpedance in
414	peritoneal dialysis patients. Am J Nephrol. 2012;36(4):371-6
415	20. Booth J, Pinney J, Davenport A. N-terminal proBNPmarker of cardiac
416	dysfunction, fluid overload, or malnutrition in hemodialysis patients?
417	Clin J Am Soc Nephrol 2010;5(6):1036-40
418	21. Oates T, Pinney JH, Davenport A. Haemodiafiltration versus high-flux
419	haemodialysis: Effects on phosphate control and erythropoietin
420	response. Am J Nephrol. 2011;33(1):70-5
421	22. Davenport A, Peters SA, Bots ML, Canaud B, Grooteman MP, Asci G,
422	Locatelli F, Maduell F, Morena M, Nubé MJ, Ok E, Torres F,
423	Woodward M, Blankestijn PJ. Higher convection volume exchange with
424	online hemodiafiltration is associated with survival advantage for
425	dialysis patients: the effect of adjustment for body size. Kidney Int.
426	2015 Sep 9. doi: 10.1038/ki.2015.264. PMID: 26352299
427	23. Kalantar-Zadeh K, Regidor DL, Kovesdy CP, Van Wyck D, Bunnapradist S,
428	Horwich TB, Fonarow GC. Fluid retention is associated with

429	cardiovascular mortality in patients undergoing long-term
430	haemodialysis. Circulation. 2009;119(5):671-9
431	24. Chazot C, Wabel P, Chamney P, Moissl U, Wieskotten S, Wizemann V.
432	Importance of normohydration for the long-term survival of
433	haemodialysis patients. Nephrol Dial Transplant. 2012;27(6):2404-10
434	25. Nongnuch A, Campbell N, Stern E, El-Kateb S, Fuentes L, Davenport A.
435	Increased postdialysis systolic blood pressure is associated with
436	extracellular overhydration in haemodialysis outpatients. Kidney Int.
437	2015;87(2):452-7.
438	26. Kumar S, Khosravi M, Massart A, Potluri M, Davenport A. Are serum to
439	dialysate sodium gradient and segmental bioimpedance volumes
440	associated with the fall in blood pressure with haemodialysis? Int J
441	Artif Organs. 2014;37(1):21-8.
442	27. Konings CJ, Kooman JP, Schonck M, van Kreel B, Heidendal GA, Cheriex EC,
443	van der Sande FM, Leunissen KM Influence of fluid status on
444	techniques used to assess body composition in peritoneal dialysis
445	patients. Perit Dial Int. 2003 ;23(2):184-190
446	28. Konings CJ, Kooman JP, Schonck M, Cox-Reijven PL, van Kreel B, Gladziwa
447	U, Wirtz J, Gerlag PG, Hoorntje SJ, Wolters J, Heidendal GA, van der
448	Sande FM, Leunissen KM. Assessment of fluid status in peritoneal
449	dialysis patients. Perit Dial Int. 2002;22(6):683-692
450	29. Chamney PW, Wabel P, Moissl UM, Müller MJ, Bosy-Westphal A, Korth O,
451	Fuller NJ. A whole-body model to distinguish excess fluid from the
452	hydration of major body tissues. Am J Clin Nutr. 2007;85(1):80-9
453	30. Argarwal R. B-type natriuretic peptide is not a volume marker among
454	patients on haemodialysis. Nephrol Dial Transplant. 2013;28(12):3082-
455	9
456	31. Sheen V, Bhalla V, Tulua-Tata A, Bhalla MA, Weiss D, Chiu A, Abdeen O,
457	Mullaney S, Maisel A. The use of B-type natriuretic peptide to assess
458	volume status in patients with end-stage renal disease. Am Heart J.
459	2007; 153: 244. e1-5
460	32. Kumar S, Khosravi M, Massart A, Davenport A. Is there a role for N-
461	terminal probrain-type natriuretic peptide in determining volume
462	status in haemodialysis patients? Nephron Clin Pract. 2012;122(1-
463	2):33-7
464	33. Jacobs LH, van der Kerkhof JJ, Mingels AM, Passos VL, Kleijnen VW,
465	Mazairac AH, van der Sande FM, Wodzig WK, Konings VW, Leunissen
466	KM, van Dieijen-Visser MP, Kooman JP. Inflammation over hydration
467	and cardiac biomarkers in haemodialysis patients: a longitudinal study.
468	Nephrol Dial Transplant 2010;25(1):243-8
469	34.Raimann JG, Zhu F, Wang J, Thijssen S, Kuhlmann MK, Kotanko P, et al.
470	Comparison of fluid volume estimates in chronic hemodialysis patients
471	by bioimpedance, direct isotopic, and dilution methods. Kidney
472	international. 2014;85(4):898-908
473	

476 by multi-frequency bioimpedance pre and post the md week dialysis session.

```
477 Values expressed as median (interquartile range). ***p<0.001
```

482	Figure 2. Receiver operating curve (ROC) for variables in Cox models. The area
483	under the curve (AUC) for the individual variables were in descending order: pre
484	dialysis extracellular to total body (ECW/TBW) 0.700 (p <0.001), percentage
485	over hydration pre-dialysis 0.697 (p <0.001), Davies co-morbidity grade 0.689 (p
486	<0.001); post dialysis Log NT-proBNP 0.616 (p = 0.001), and Log CRP 0.607 (p =
487	0.002), respectively.

- 519 Table 1. Baseline demographics of survivors and those who died during follow up.
- 520 Davies co-morbidity grade(Davies), Mean arterial blood pressure (MAP), pre-
- 521 dialysis (pre) and post-dialysis (post), C reactive protein (CRP), N terminal pro-
- 522 brain natriuretic peptide (NT-proBNP), single pool Kt/V (spKt/V). Data
- 523 expressed as mean ±SD, median (inter-quartile range) or percentage. P value
- 524 compared to deceased group.
- 525

Variable	Deceased	Survivors	P-Value
Patient number	110	252	
Age years	69.5 (59.3-77)	58.5 (46-71)	<0.001
Male (%)	62 (56.4%)	154 (61.1%)	0.416
Caucasoid (%)	51 (46.4%)	98 (38.9%)	0.202
Diabetic (%)	49 (44.5%)	84 (33.3%)	0.045
Vintage months	29 (12.4-72.7)	33.1 (14.3-58.8)	0.870
haemodiafiltration (%)	40 (36.4%)	96 (38.1%)	0.814
Hypertension (%)	88 (80%)	207 (82.1%)	0.660
Heart disease (%)	47 (42.7%)	46 (18.3%)	<0.001
Davies grade 0 (%)	12 (10.9%)	87 (34.5%)	
Davies grade 1 (%)	67 (60.9%)	145 (57.5%)	
Davies grade 2 (%)	31 (28.2%)	20 (7.9%)	<0.001
Arteriovenous fistula (%)	68 (61.8%)	190 (75.4%)	0.011
MAP pre mmHg	90.5 (81.9-107.2)	97.7 (85.6-108.8)	0.109
MAP post mmHg	87.3 (76.6-99.8)	89.5 (80-100.7)	0.317
Weight pre kg	65.1 (57.4-80)	72.3 (62.9-82.5)	0.005
Weight post kg	64.4 (56.4-78.6)	71 (61.2-81)	0.007
Ultrafiltration litres	1.6 (1-2.1)	1.7 (1.1-2.2)	0.160
Over hydration pre %	6.6 (5.8-7.6)	5.1 (4-6.6)	<0.001
Over hydration post %	2.4 (1.2-3.6)	0.5 (-1-2.2)	<0.001
NT-proBNP pmol/l	324.5 (121.5-790.5)	102 (47.8-341.5)	0.002
CRP, mg/L	7 (2-18.9)	4 (2-10)	0.003
Albumin, g/L	40 (38-42)	42 (40-44)	<0.001
Haemoglobin, g/dL	11.1 (10-12.1)	11.6 (10.6-12.5)	0.033
Serum urea pre, mmol/l	19.5 (16.2-22.4)	18.9 (15.8-22.9)	0.788
spKt/V	1.53 (1.22-1.81)	1.52 (1.29-1.79)	0.554
β2 microglobulin ug/l	32.9 (32.1-33.7)	28.9 (23.7-31.4)	0.165

527

528

- 530 Table 2. Univariate analysis of factors associated with mortality. Davies co-
- 531 morbidity grade (Davies), Mean arterial blood pressure (MAP), pre-dialysis (pre)
- and post-dialysis (post), C reactive protein (CRP), N terminal pro- brain
- 533 natriuretic peptide (NT-proBNP), single pool Kt/V (spKt/V).

Variable	R	P-	Variable	R	Ρ-
		value			value
Age	0.234	<0.001	%Over hydration pre	0.317	<0.001
Davies score	0.318	<0.001	%Over hydration post	0.330	<0.001
MAP pre	-0.086	0.104	Log NT-proBNP	0.166	0.002
MAP post	-0.041	0.434	Log CRP	0.157	0.003
Weight pre	-0.149	0.005	Haemoglobin	-0.090	0.089
Weight post	-0.142	0.007	Serum albumin	-0.211	<0.001
ECW/TBW pre	0.322	<0.001	spKt/V	-0.033	0.555
ECW/TBW post	0.332	<0.001	Ultrafiltration	-0.060	0.256

Table 3 Cox regression model for all-cause mortality, using pre-dialysis ratio of extracellular water (ECW) to total body water (TBW) as measurement of fluid

546 status. Davies co-morbidity grade (Davies), pre-dialysis (pre) and post-dialysis

547 (post), C reactive protein (CRP), N terminal pro- brain natriuretic peptide (NT-

548 proBNP). Hazard ratio (HR)

Variable	HR	Lower 95%	Upper 95% <i>C</i> I	Р-
		CI		value
Age	1.007	0.992	1.022	0.372
Davies grade	1.582	1.288	1.942	<0.001
Weight pre	0.982	0.968	0.997	0.016
ECW/TBW pre	2.7 x 10 ⁹	123	6.0 x 10 ¹⁵	0.012
Serum Albumin	0.935	0.885	0.988	0.017
Log CRP	1.974	1.974	2.894	<0.001
Log NT-proBNP	1.050	0.740	1.489	0.784

- 553 Table 4. Cox regression model for all-cause mortality, using pre-dialysis over
- 554 hydration % as measurement of fluid status. Davies co-morbidity grade(Davies),
- 555 pre-dialysis (pre) and post-dialysis (post), C reactive protein (CRP), N terminal
- 556 pro- brain natriuretic peptide (NT-proBNP). Hazard ratio (HR)

Variable	HR	Lower 95%	Upper 95%	<i>P</i> -value
		CI	CI	
Age	1.007	0.992	1.022	0.370
Davies grade	1.582	1.288	1.943	<0.001
Weight pre	0.982	0.968	0.997	0.016
% Over hydration pre	1.148	1.029	1.279	0.013
Serum Albumin	0.935	0.885	0.988	0.017
Log CRP	1.974	1.347	2.895	<0.001
Log NT-proBNP	1.050	0.740	1.489	0.786