Rational design of mutations that change the aggregation rate of a protein while maintaining its native structure and stability

Carlo Camilloni^{1,2,*}, Benedetta Maria Sala³, Pietro Sormanni¹, Riccardo Porcari⁴, Alessandra Corazza⁵, Matteo De Rosa³, Stefano Zanini⁵, Alberto Barbiroli⁶, Gennaro Esposito^{5,7}, Martino Bolognesi^{3,8}, Vittorio Bellotti⁴, Michele Vendruscolo¹ and Stefano Ricagno^{3,*}

¹Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK. ²Department of Chemistry and Institute for Advanced Study, Technische Universität München, Lichtenbergstraße 4, D-85748 Garching, Germany ³Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy. ⁴Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London NW3 2PF, UK ⁵Dipartimento di Scienze Mediche e Biologiche, Università di Udine, 33100 Udine, Italy. ⁶Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, 20133 Milano, Italy. ⁷Science and Math Division, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, UAE ⁸CIMAINA and CNR Istituto di Biofisica, c/o Dipartimento di Bioscienze, Università degli

CIMAINA and CNR Istituto al Biofisica, c/o Dipartimento al Bioscienze, Universita degli Studi di Milano, 20133 Milano, Italy.

*Corresponding authors: Carlo Camilloni, carlo.camilloni@ch.tum.de; Stefano Ricagno, stefano.ricagno@unimi.it

Supporting Figures and Tables

Figure S1: Convergence of the free-energy profiles along the four selected collective variables for the WT ensemble.

Figure S2: Convergence of the free-energy profiles along the four selected collective variables for the W60G ensemble.

Figure S3: Average backbone fluctuations for WT (red) and W60G (black) ensembles.

Table	S1:	Sequence	variability	through	vertebrates	in	seven	sites	relevant	for
aggreg	ation	l.								

Residue (WT)	Known Substitutions		
Y26	F/H/L/R		
Y63	H/K/N/Q		
L65	S/T		
Y67	F/H/Q/S/T		
N83	K/Q/R/S/T/V		
V85	D/E/G/I/L/M/N/S/T		
T86	A/G/K/N/Q/S		

List of the known sequence variability through vertebrates as in (Raimondi et al., 2011) for surface residues with largest change in aggregation propensity upon W60G mutation. Amino acids in bold are those selected in the design process (i.e. WT-V85E and W60G-N83V). The third designed mutation, W60G-Y63W, was not selected among the known substitutions.

Table S2: Data collection and refinement statistics.

Structure	β2mW60G-Y63W	β2mW60G-N83V	β2mV85E	
Beam Line	ID29 (ESRF)	ID29 (ESRF)	ID29 (ESRF)	
Space group	C 1 2 1	C 1 2 1	C 1 2 1	
Unit cell constants (Å)	a = 93.35, b = 29.09, $c = 44.41, \beta =$ 113.01°	a = 76.98, b = 28.91, c = 57.32, β = 128.57°	a = 88.58, b = 28.86, c = 87.72, β = 110.11°	
Resolution (Å)	25.11 – 1.49 (1.57 – 1.49)	25.75 – 1.70 (1.79 – 1.70)	27.71 – 1.75 (1.84 – 1.75)	
R _{merge} (%)	7.5 (22.0)	5.6 (20.1)	6.4 (32.3)	
Ι/σΙ	9.6 (4.5)	12.4 (5.0)	9.3 (2.9)	
Completeness (%)	95.8 (96.5)	96.7 (97.1)	97.0 (96.9)	
Multiplicity	3.3 (3.4)	3.5 (3.7)	3.7 (3.7)	
Unique reflections	17435 (2537)	10677 (1540)	20777 (3026)	
Refinement				
R _{work} (%)	16.9	17.6	18.3	
R _{free} (%)	23.0	22.5	23.2	
Number of atoms	961	992	1880	
Protein	820	894	1746	
Water	141	71	120	
Heteroatoms		27	14	
Ramachandran plot, <i>n</i> (%)				
Most favoured region	100	97.2	96.2	
Allowed region	0	2.8	3.3	
Ouliers	0	0	0.5	

 ${}^{a}R_{merge} = \Sigma_{hkl} \Sigma_{j} I_{hkl,j} - \langle I_{hkl} \rangle / \Sigma_{hkl} \Sigma_{j} I_{hkl,j}$ where I is the observed intensity and $\langle I \rangle$ is the average intensity.

 $^{b}R_{work} = \Sigma_{hkl}F_{o}$ - $F_{c}/\Sigma_{hkl}F_{o}$ for all data except 5–10%, which were used for the R_{free} calculation.

Values given in parenthesis refer to the high-resolution shell.

Fable S3: Structura	l similarities	between	β2m	variants.
----------------------------	----------------	---------	-----	-----------

	WT (mon)	WT (MHC)	W60G
W60G-Y63W	0.96Å/ 93 Cα	0.93Å/ 97 Cα	0.84Å/ 93 Cα
W60G-N83V	0.61Å/ 99 Cα	1.13Å/ 92 Cα	0.28Å/ 100 Cα
V85Eb	0.81Å/ 92 Cα	1.03Å/ 98 Cα	0.91Å/ 94 Cα

RMSD values calculated from the structural superposition of the three surface mutants (W60G-Y63W, W60G-N83V and V85E) with monomeric wt β 2m (PDB code 2YXF), displaying AB loop in open conformation; wt β 2m from an MHC class I complex (PDB code 2BSS), displaying AB loop in closed conformation; and with the structure of the W60G mutant (PDB code 2Z9T).