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Abstract 
Dynamic geometry software provides tools for students to construct and experiment 

with geometrical objects and relationships. On the basis of their experimentation, 

students make conjectures that can be tested with the tools available. In this paper, we 

explore the role of software tools in geometry problem solving and how these tools, in 

interaction with activities that embed the goals of teachers and students, mediate the 

problem solving process.  Through analysis of successful student responses, we show 

how dynamic software tools can not only scaffold the solution process but also help 

students move from argumentation to logical deduction. However, by reference to the 

work of less successful students, we illustrate how software tools that cannot be 

programmed to fit the goals of the students may prevent them from expressing their 

(correct) mathematical ideas and thus impede their problem solution.  

 

Introduction 

Dynamic geometry systems provide access to a variety of geometrical objects and relations 

with which users can interact in order to construct and manipulate new objects and relations. 

In this sense, microworlds based on dynamic geometry systems, including the software under 

discussion in this paper Cabri-Géomètre (henceforth called Cabri), are little different from 

other microworlds for exploring geometry. However, geometry microworlds do differ in the 

processes that govern construction and manipulation. In Cabri, users interact directly through 

the mouse with the tools provided by the system in order to build, manipulate and explore 

figures. As Laborde and Laborde (1995) have pointed out; "Cabri-Géomètre provides a 'real' 

model of the theoretical field of Euclidean geometry in which it is possible to handle in a 

physical sense the theoretical objects which appear as diagrams on the screen". The visual 

artefact produced by interaction with Cabri resembles the traditional representation of paper 

and pencil geometry. Yet, in contrast to paper and pencil representation, the visual output of 

Cabri is not a drawing of one instance of a geometry figure, but rather can be moved – or 

dragged – around the screen with its constructed properties preserved. Thus the system offers 

feedback that can be used to distinguish "diagrams drawn in an empirical way from diagrams 

resulting from the use of geometrical primitives" (Laborde and Laborde, 1995). This 

distinction between drawings that can be „messed up‟ and figures whose geometrical 
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properties are retained under dragging can be exploited as a window through which students 

can come to appreciate the theoretical aspects of geometry (for a discussion of messing up, 

see Healy, Höelzl, Hoyles & Noss, 1994, and of dragging more generally,  see Höelzl, 1996).  

 

The interactivity fostered by dynamic geometry systems is different from that in the best-

known microworlds that preceded them. For example, in the original Turtle Geometry 

microworld, interactions were entirely mediated by a symbolic language
i
. In order to produce 

geometrical designs on the computer screen, users have to write symbolic procedures to 

organise and execute the primitive objects of the system. Guided by the visual feedback 

resulting from their programming activity, users can edit or debug their symbolic 

constructions until they are satisfied with their final product. Any variables that define a 

turtle‟s drawings are controlled symbolically through the use of inputs to the programming 

code. 

 

The critical difference between programming environments and direct manipulation interfaces 

revolves around this emphasis in interaction on symbolic control in the former case, as 

opposed to visual control in the latter. For some, the necessary presence of the formal 

representation of a programming language was (and still is) a bonus (see diSessa, Hoyles & 

Noss, 1995 for an extended discussion). The programming language provides both a text on 

which to reflect and a means by which learners can communicate their problem solving 

strategies. Eisenberg (1995), for example, characterised a programming environment as 

"providing a rich linguistic medium in which students can develop their own domain-

orientated "vocabularies" " (p.179). Proponents of programming environments (for example, 

diSessa, 2000; Hoyles and Sutherland, 1989; Hoyles and Noss, 1992; Hoyles, Sutherland & 

Healy, 1992) claim that it is through these vocabularies that students come to express their 

mathematical ideas. For others, formal expression limits accessibility. For example, Laborde 

and Laborde (1995) have argued that the effort needed to follow the syntax of a system can be 

so overwhelming that geometrical problems are reduced to problems of language: it is only 

through direct manipulation that users can handle and change not only objects but also the 

relations between them. 

  

It is certainly true that with Cabri‟s drop down menus it is relatively easy to construct and 

explore complex geometrical figures. What is still open to question is the relationship of 
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learners' problem-solving strategies in Cabri with those of more expert mathematicians. 

Goldenberg and Cuoco (1997) have stressed the importance of recognising that the 

interactions with computer-based microworlds of those who already know the mathematics 

involved are not necessarily the same as those still coming to grips with the relevant concepts 

and processes. (Our use in this paper of the term learners or students is meant to denote the 

second set of users). Will students‟ use of Cabri tools help them to make transitions to and 

from theoretical constructs and their empirical manifestations? Or will students simply bypass 

mathematics and come to rely solely on empirical feedback to make judgements and solve 

problems? Or more troubling still, will the use of tools lead students down into mathematical 

cul-de-sacs from which they can neither progress nor backtrack?  

 

In this paper, we explore these questions by reference to students' use of software tools for 

geometrical problem solving. We take as a starting point a sociocultural position, which 

argues that the actions students perform together with the knowledge they construct are 

shaped by the tools used (see for example Cole and Wertsch, 1996; Wertsch 1998 and 

Bartolini Bussi; Mariotti, 1999). We also recognise the influence on learning of the activities 

within which the software tools are to be used, and the nature and content of the teacher 

interventions. Our aim in this paper is to examine in detail how student strategies for 

constructing, conjecturing about and proving geometrical relationships are mediated by Cabri 

tools. To achieve this aim, we present an analysis of students‟ work during one activity that 

formed part of a teaching sequence designed to help students, through Cabri use, to make 

connections between empirical and theoretical modes of working. To set the context for this 

analysis, we begin by describing the teaching sequence as a whole, its aims and an outline of 

its activities. We then present some of the potentials and pitfalls of using the software by 

reference to successful and less successful solution strategies in the final activity in the 

sequence. In theory, both successful and unsuccessful strategies made sense in terms of the 

mathematical demands of the task, and both involved students in attempting to capitalise on 

the possibilities afforded by the Cabri tools. In practice, however, only one strategy led to 

successful task completion. In the concluding sections, we discuss why this was the case and 

point to possible ways forward. 

 

Construction and deduction with dynamic geometry tools 



in. International Journal of Computers for Mathematical Learning (2001),, 6, 3, 235-256. 

 

4  

We have noted in our studies of students interacting in a range of microworlds that while 

constructing on the computer, some (although not all) students spontaneously provide 

justifications of their actions and explanations of why their actions would produce the 

outcomes they require (see for example, Healy and Hoyles, 1999). We also found that 

students generally want to explain why certain phenomena are observed on the computer 

screen, especially if visual feedback is surprising. A requirement to explain can also be 

institutionalised as part of the mathematics classroom culture, in a whole-class setting or as 

part of group work.  Our aim was to investigate the effects of trying to help the students make 

one further step; that is to devise classroom-based activities where students would not only be 

required explain the output of their activity, but also to use their explanations as bases for 

making logical deductions.  

 

Given that to construct on the computer requires explicit attention to the processes used, we 

hypothesised that explanations derived from computer interactions would be more readily  

formalisable into logical deductive chains of reasoning, than those arising from activities in 

which construction processes remain at an implicit level (for an earlier discussion of this 

approach, see Chazan and Yerushalmy, 1998). Our goal was therefore to design construction 

activities in which students had to attend to and make explicit the relationships they used in 

their constructions – the “given” properties and relationships – and distinguish these from 

properties that could be deduced as necessary, after observing their invariance on dragging in 

Cabri.  

 

To achieve this goal, we organised the computer activities into a teaching sequence 

comprising four phases. In the first phase, students were required to construct a geometrical 

figure with Cabri, identify and describe the properties and relations they had used in their 

constructions, use the computer tools to generate and test conjectures about further properties 

that might also be true, and finally make informal explanations of why they might be true. 

During this phase of work, the role of the teacher was to facilitate and prompt rather than to 

instruct. In the second phase, the teacher played a more directive role, bringing the students 

together to introduce them to writing proofs. Students were helped to organise the 

explanations they had generated during the computer activity into logical deductive chains. 

The third phase was essentially a repetition of the first phase with the added requirement to 

write a proof of one conjecture. In the final phase (the core of this paper), the students were 
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given a challenging problem, in which they were asked to construct a figure with Cabri using 

any of the tools with which they had become familiar, and identify, explain and prove any of 

its properties.  

 

The context of the teaching sequence 

To be effective in the classroom, it is almost self-evident that teaching must fit the curriculum 

context. The students who followed our teaching sequence had been introduced to an 

approach to proving prescribed in the statutory mathematics National Curriculum for England 

and Wales, in which emphasis is placed on engaging in proving in a range of contexts rather 

than on learning proofs in for example Euclidean Geometry. Thus students were used to 

engaging in activities involving conjecturing, experimenting and explaining (for a more 

detailed picture of this curriculum approach, see Hoyles, 1997).  

 

To examine the proof conceptions resulting from this approach, we conducted a nationwide 

survey of 2459 students (aged 14-15 years) of above-average attainment in mathematics
ii
. In 

brief, the results from this survey showed that the majority had developed considerable 

expertise in generating and organising data and in constructing and explaining conjectures, 

especially within the arithmetic/algebra domain. But, although most recognised that a proof 

required a general, analytic justification, only a few students could actually construct a valid 

deductive argument. The students also had considerable difficulties engaging with “formal 

proofs”
iii

: they found them hard to evaluate and difficult to construct
iv

. Having sketched the 

landscape of students‟ approaches to proof, we designed a teaching sequence, which would 

exploit the students‟ confidence in experimentation and informal explanation, and attempt to 

link these processes, through computer construction, with verification and logical argument.  

 

The teaching sequence was undertaken by six groups of six students from 3 different schools. 

The schools were located in the same area of London, one was mixed-sex, one girl-only and 

one-boy only.  The students were all aged between 14 and 15 years and identified by their 

teachers as high attainers (approximately representative of the top 20% in mathematics). None 

of the students had used Cabri before taking part in this work, nor did they have any prior 

experience of creating sequences of logically justified geometrical statements. The activities 

took place at their respective schools, over a period of six to eight weeks at the times allocated 

for mathematics lessons, but in a room where the six students were separated from the rest of 
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the class. It is not our intention here to present a complete analysis of the experiments (a 

summary of the results appears in Hoyles and Healy, 1999), but rather to focus on students‟ 

solution strategies in the final computer task, the angle bisectors construction. However, in 

order to make sense of student responses to this activity, we first summarise the activities in 

the previous phases of the sequence, and describe the Cabri tools to which the students had 

been introduced. 

 

All the computer-based activities were designed for use with Cabri I. Cabri II had been 

released, but we decided not to use it for three reasons: we were more familiar with the old 

version, not all the machines available for use within the schools could support Cabri II at that 

time, and most relevant here, the set of tools available in Cabri II for our purposes were 

significantly different from those of Cabri I. The first two issues we could have overcome, but 

the third ruled out the use of the newer version. Some of the Cabri I tools we intended to 

embed in our activities had changed radically and one had disappeared completely. Given that 

we were unable to modify or reprogram the new tools, we chose to structure our activities 

around the original Cabri I.
v
 

 

The construction and conjecturing phase  

In the first phase of the teaching sequence, we introduced the students to a set of tasks 

involving congruent triangles. Our aim was that students would discover the conditions for 

congruency by finding out whether or not pairs of triangles, one given and one constructed 

according to certain conditions (for example with equal sides, or with two equal angles and 

one pair of equal sides), remained exactly the same, or congruent, under dragging. The 

students opened a file containing a general Cabri triangle, ABC. They were then asked to find 

minimum sets of properties required to construct a triangle congruent to ABC. To help them 

specify the properties, we added two construction tools, or macros, to the Cabri construction 

menu. The first macro, compass, allowed a user to construct line segments equal in length 

to a given segment; the second, angle-carry, enabled them to do the same for angles. 

Hence triangle DEF in Figure 1 was constructed by using the compass tool to copy the 

lengths AC and CB and the angle-carry tool to copy the angle BĈA . 
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Figure 1: A triangle DEF constructed to preserve the lengths of two sides and one angle of triangle ABC 

 

Students could verify whether or not the second triangle, DEF, was always the same as the 

first under dragging and so could convince themselves that the two triangles were congruent 

or not.  In addition to the dragging test, students could make use of various other tools during 

their verification activities: they could ask for measures of any segments and angles to check 

invariant relationships, or they could use the Cabri tool, Check-property. We encouraged 

students to use this latter tool, as it required them to declare explicitly  their conjectured 

relationships between objects and to test whether visually-apparent properties (such as 

equality) were true in general. Additionally, we thought that by providing a counter-example 

to illustrate when conjectures were not true, the use of this tool would assist in the students in 

„seeing‟ important relationships. The Check-property tool is one of the tools that has 

changed with the advent of Cabri II; the counterexample feature has gone and properties are 

declared true only on the basis of specific cases.  

 

As well as verifying their constructions, we required students to identify explicitly the 

properties they had used to build their second triangle, and so wished to take advantage of the 

tools Cabri provided to facilitate communication. We conjectured on the basis of our Logo 

experience, that tools that described the construction process in linguistic terms would take on 

special significance when construction was achieved by a set of physical manipulations. Two 

tools were available in Cabri I, but not in Cabri II. First, a user could replay the entire 

construction process using the History tool, which included a step-by-step description of 

the macros used. For the congruent triangles tasks, this level of detail of steps in the macros 

turned out to obscure the pertinent triangle properties. Second, with the exposition tool, 

the user could display a symbolic description of the menu selections and mouse clicks used. 

Since this output closely matched what we required, we encouraged the students to use it as a 
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means to help them to reflect on their constructions and decide on the properties necessary 

and sufficient for congruency, (see Figure 2 for the description of the figure that appeared in 

Figure 1, given by the exposition tool).   

 

Figure 2: The procedure  used to create the triangles ABC and DEF 

 

In the second phase of the teaching sequence, the teacher (one of the authors) introduced the 

students to writing formal proofs. The students were brought together in a group away from 

the computers, and asked to share their explanations of what had happened on the computer. 

They were then shown how to organise these explanations into logical deductive chains of 

argument. The students then experimented with more Cabri construction tools, including 

parallel and perpendicular lines and angle bisectors, before working on the next set of 

constructing and conjecturing activities in phase three. These activities involved the 

construction, exploration and deduction of properties of familiar quadrilaterals (for example, 

parallelograms, rectangles, squares and rhombi). The students were asked to construct each 

quadrilateral and identify the properties that they had chosen to use in order to define it (what 

we called, the givens). Figure 3 shows how one student, Theo, described the construction of a 

rectangle and pulled out a subset of these constructions to identify its given properties
vi

. 
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Figure 3: Choosing the given properties of a rectangle construction 

 

 

Next, the students explored their Cabri quadrilateral by dragging, in order to isolate further 

properties that always appeared to hold true. Theo, for example, noted that the opposite sides 

of his rectangle were always of equal length. Finally, the students had to select one of the 

deduced properties (DPs) from their list, and write a proof to show how it could be deduced 

from the properties they had declared as their givens. Figure 4 presents Theo‟s argument in 

which he used his givens to prove congruency and then deduce the equality of opposite sides.  

 

 

Figure 4: A  proof to deduce that the opposites sides of a rectangle are of equal length 

  

 

After the first three phases of work, the students were comfortable using Cabri and were 

becoming accustomed to the requirements of the activities; that is to experiment, conjecture, 

explain and finally transform explanations into logical deductions. They then moved to the 

final problem solving phase, where we hoped they would bring together all their knowledge 

of the tools of Cabri to solve a new challenge.  

 

The problem-solving phase: the angle bisectors construction 

In the final activity in the teaching sequence, the angle bisectors construction, the students 

were again asked to construct a quadrilateral, but this time, the quadrilateral was one with 

which they were not familiar. Students were given a property of this unknown quadrilateral, 
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namely that the angle bisectors of two adjacent angles crossed at right angles, and asked to 

construct it. Their challenge was to discover other properties that also had to be true if the 

quadrilateral was to satisfy its initial conditions, by experimentation with any Cabri tools they 

wished, and then to put together a logical argument starting with the initial conditions and 

deducing these new properties. 

 

In the following sections, we present some of the students' strategies in response to this task to 

illustrate how interactions with the Cabri tools on some occasions facilitated transitions to and 

from conjectures to proofs (in the sense proposed by Garuti, Boero and Lemut, 1999), while 

on others served as obstacles to the development of promising ideas. 

 

Successful student responses: smooth transitions between creation, construction, 

conjecture and deduction  

  

We begin with a description of how two students successfully used the software to solve the 

challenge. This pair exploited a mixture of creation and construction tools to produce and 

explore the quadrilateral required, conjecture about the necessary geometrical relationships 

involved, verify their conjectures in particular cases, explain why they must be true in an 

informal way, and finally write a deductive proof based on their experimentation. 

 

Tim and Richard began by creating a quadrilateral ABCD consisting of 4 line segments 

arranged in no particular configuration. After labelling the four vertices, they added the angle 

bisectors of angles CB̂A  and BCD, and measured the angle where these two lines crossed. 

They then carefully dragged the vertices of the quadrilateral until this angle measured 90° (see 

Figure 5a). Thus the constraints of the required quadrilateral were not constructed but simply 

created “by eye”. At the moment at which the angle between the two bisectors measured 90°, 

the boys noticed that BA was parallel to CD, and they almost immediately conjectured, on the 

basis of this one example, that whenever the two angle bisectors were at right angles, BA 

must be parallel to CD. We might call this conjecture an abduction. Certainly, wanting to 

hypothesise a theorem to account for the figures on the screen guided the boys' activity, prior 

to their conjecture and also subsequent to it (see Arzarello, Micheletti, Olivero, & Robutti, 

1998 for a discussion of how abduction is generally used at the conjecturing stage with 

Cabri). To investigate further, Tim and Richard dragged the quadrilateral purposefully in 
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ways that both did and did not preserve – visually – the conjectured parallel property, noting 

the effect on the angle between the angle bisectors.  

 

The Check property tool, with which the boys were familiar from their earlier work, was 

then used in an attempt to obtain a computer verification for their conjecture. They made the 

angle bisectors cross at right angles by making the measure equal to 90, and then used the 

Check-property tool to test if BA and CD were parallel. The pair were disappointed and 

puzzled that the property that the two lines were parallel was declared not to be true in 

general. But the Cabri tool provided a justification for its judgement, by producing a 

counterexample that helped the boys to make sense of the feedback. In the counter-examples 

presented, the angle bisectors clearly did not cross at right angles, leading the boys to realise 

that the parallel property had been declared not true in general, because the given condition of 

90
º
 between the angle bisectors had not been kept invariant – as it had not been constructed. 

 

After this surprising incident, the boys became more confident that the two properties of 

perpendicularity of angle bisectors and parallelism of one pair of parallel sides mutually 

depended upon each other.
vii

  The final strategy used by this pair to verify their conjecture, 

was to construct a line parallel to CD passing through B. They found that whenever point A 

was dragged onto this parallel line, the two angle bisectors crossed at right angles, but if A 

was moved away from this line, the angle bisectors were no longer perpendicular.  

 

By this time the boys were convinced that the quadrilateral satisfying the given requirements 

had to be a trapezium and they stopped searching for confirming instances. They had 

formulated a conjecture, that, when in its written form, was phrased in the following 

conditional terms: whenever the lines are parallel the angle bisectors are perpendicular. In this 

formulation, the property to be deduced appears in the first part of the conditional statement, 

and the given property in the second part. However, with the properties under their physical 

control, the boys were able to appreciate the necessary and sufficient relationship between the 

two properties: they could drag their figure to make the angle bisectors perpendicular, or to 

make the sides parallel, thus investigating at the same time both their conjecture and its 

converse. 
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Tim and Richard knew that they had now to come up with a proof of their conjecture. They 

returned to manipulate the quadrilateral, but now with A always on the line parallel to CD. 

They measured several angles, and watched out for angles that stayed equal as they dragged 

the vertices. Thus, they were using measurement as a tool to help them identify a relationship, 

a property, that could be used as a link in the logical chain, between the given right angle 

between the angle bisectors, and the end point of parallel lines. The boys noticed that the 

angles where the angle bisector of angle CB̂A  cut the segments BA and CD were always the 

same and realised that if they could prove this, they would be able to conclude that the two 

line segments must be parallel (they were aware of alternate angles and parallel lines). In fact, 

this turned out to be more complicated than the boys first imagined as the angle bisector did 

not always cut the segment CD. They were unable to make more progress until the teacher 

intervened to suggest that they create a line through CD, which would always cut the angle 

bisector at some point, say H in Figure 5b. Tim and Richard made this addition to their 

construction and measured the relevant angles, AB̂H  and CĤB  as shown in Figure 5b.  

 

 

 

 

a: The Cabri figure in its original configuration  

 

b: The extended Cabri figure with two more angles 

measured 

  b: The  configuration of the Cabri figure with two more 

angles measured. 

Figure 5: Using measurement to help to identify an invariant to use in a proof 

  

The Cabri figure was subjected to no further manipulations while the pair concentrated on 

building an explanation as to why the two angles AB̂H  and CĤB  were always equal. They 

used the figure they had generated with its specific measurements as a generic example, to 

help them to formulate a general argument using their knowledge of the sum of the interior 

angles of a triangle, the equal angles generated by the angle bisectors and the perpendicularity 



in. International Journal of Computers for Mathematical Learning (2001),, 6, 3, 235-256. 

 

13  

of the angle bisectors. Richard‟s attempt to organise this argument into a deductive proof is 

presented in Figure 6. His written work shows how he used the scaffolding of particular 

numbers to formulate his proof, although the equality of the two numbers was used to identify 

a property that he recognised was generally true. 

 

 

 

Figure 6: Richards’ argument that side BA is parallel to side CD  

 

Tools to assist in “seeing” the necessary relationship 

Tim and Richard‟s strategy of mixing creation and construction tools to come up with a 

quadrilateral ABCD that could be dragged while satisfying the properties that we had 

specified was adopted by a number of other students. Not all of these students  however were 

so quick to see that the sides BA and CD were parallel when the angle bisectors were at right 

angles. We suggested to these students that they use Cabri tools to keep track of the locations 

of the vertices A and D that produced the required perpendicularity in the figure, to help them 

notice the required relationship.  

 

Some students used the locus tool so they could record a trace of the movement of the 

vertex as it was dragged – painstakingly – in a way that kept constant the 90° angle where the 

angle bisectors crossed. (Figure 7a). Although this strategy helped the students to determine 

the solution path for the chosen vertex, many still did not see the relationship between the 

sides of the resulting quadrilateral. They noticed that the locus of solutions was a line 

extending from CD, but not that this line was parallel to the opposite side, AB. Some students 

were able to find the path of vertices that produced perpendicularity by simply placing basic 

points at all the locations where this property was satisfied. This strategy had the advantage 

that multiple paths could be recorded and hence the relationship between the paths was more 



in. International Journal of Computers for Mathematical Learning (2001),, 6, 3, 235-256. 

 

14  

apparent (see Figure 7b). (The trace tool available in Cabri II that shows the locus of more 

than one point simultaneously would certainly have been helpful here).  

 

 

 

a: Creating a trace with the locus 

tool 

 

  b: Dropping basic points to trace two 

paths 

Figure 7: Two ways to help visualise the relationship between BA and CD 

 

Up to this point, we have considered only one way of setting up the original quadrilateral 

ABCD, where the given property of perpendicularity of angle bisectors was satisfied visually, 

rather than by construction. As we have indicated, this was the most common approach 

adopted by our students and is ideally suited to problem-solving with Cabri. In fact, all of the 

students who were successful in this task adopted this strategy of loosening a constraint, 

referred to as “letting go” by Love (1996), or “relaxing” by Goldenberg (1999). But not all the 

students opted for this approach, which was not altogether surprising since, after all, we had 

asked the students to construct the quadrilateral ABCD, and the meaning for construction that 

we had stressed earlier in the teaching sequence, was to ensure that a given property was 

invariant under dragging. We now turn to describe the work of students who did start from the 

construction of perpendicular angle bisectors, but in so doing came up against unexpected 

difficulties. 

 

Less successful student responses: constructing the givens and reaching an impasse  

Among the students who started by constructing the perpendicularity of the angle bisectors 

rather than creating it, we observed two different strategies. The first strategy was to 

conjecture that the given properties would be satisfied by a particular quadrilateral, say a 

parallelogram, and then to construct this quadrilateral. This seemed a promising approach, but 

in practice resulted in students experiencing two difficulties that were hard to overcome with 

the tools available. First, there was some confusion over which properties were given and 

which were to be deduced, since  students used the parallel property in their construction. 
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Second, it was hard to convince students who managed to finalise a construction of a 

particular quadrilateral, that they had not in fact found a complete solution. The students had 

yet to encounter the aesthetic of geometry, which specified that one has to find the most 

general solution to any problem in order to pinpoint a critical property in a proof. We tried to 

convince them that they should find the property of the parallelogram, which specifically 

related to the perpendicularity of the angle bisectors, by relaxing some its properties in turn 

using the tool, redefine an object. This turned out to be of rather little help, first as 

the functionality of the tool was not transparent and, second, since the students, in trying to 

use it, lost control of the problem and became demotivated.  

 

The second strategy followed closely how the problem was set, and involved using Cabri 

tools to construct the quadrilateral in such a way that the properties specified in the 

presentation of the problem were preserved under dragging. As the following story illustrates, 

this strategy came up against difficulties that the students could not predict.  

 

Emily and Carrie wanted to construct the quadrilateral as requested. They created a line (m), 

dragged it until it was horizontal and constructed a point X on the line. They added a second 

line (n) perpendicular to m and passing through point X, intending that these lines would 

serve as the angle bisectors in the construction. Next, they constructed a point (B) on line n as 

one vertex of the quadrilateral and created a line segment joining B to new free point A to 

serve as another vertex (see Figure 8a). For the second side of the quadrilateral, they wanted 

to construct a segment BC such that the angle CB̂X  would be equal to angle XB̂A  and C 

would be on line m. Emily remembered that they had already used an angle-carry tool to 

construct congruent angles in the first set of activities The figure in front of Emily and Carrie 

at this time contained 5 points, 2 lines and a line-segment, as displayed in Figure 8a. 
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a: The two angle bisectors and two sides 

 

b: An apparently correct construction of quadrilateral 

ABCD 

Figure 8: Constructing the quadrilateral around the angle bisectors 

 

Before selecting the angle-carry tool from the construction menu, Emily traced out the 

line with her finger on the screen that they were expecting to produce. Carrie activated the 

tool and clicked on A, B and X, but could not complete the construction since the macro did 

not allow her to click on the points X and B again. It is not possible to reselect the same point 

when executing a Cabri macro. We had predicted this would be a problem when we were 

devising the activities and had provided a second macro, angle-doubler, that would copy 

an angle in the way that was required for this problem. We had decided that this second macro 

should be introduced exactly at this point, when it was needed. What we had not anticipated 

was the reaction of the students.  

 

Emily did not understand why it was not possible to use a tool with which they were familiar 

and was frustrated that they were unable to reselect points. While Emily was bemoaning the 

limitation of macros with one of us, Carrie wanted to get on with the problem.  But she also 

rejected the new angle-doubler tool, and chose to abandon their attempted construction. 

She decided instead to use an existing point that she labelled C (one of the two that had been 

used to create the line m) as the third vertex, perhaps motivated by the fact that the segment 

BC more or less followed the visual trajectory suggested earlier by her partner. She created a 

fourth line segment to complete the quadrilateral by connecting C to a point D, again so that 

angle DĈX  looked more or less the same as the angle XĈB  (see Figure 8b). Since this figure 

resembled a trapezium, we (and, we suppose, Emily when she rejoined her partner) were not 

aware that the given condition that the two lines m and n should be angle bisectors had not 
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been constructed. It is a didactical problem to keep track of what students are doing when 

engaged in activities where tools can be direct manipulated, without careful attention at every 

step. The pair carried on exploring Carrie‟s construction oblivious to the fact that the equal 

angle property they had originally wanted to construct, was not satisfied.  

 

We were particularly concerned by this incident, as a promising approach ended in confusion, 

leaving us all feeling dissatisfied. Could this have been avoided? Would it have been possible 

for us, as experienced teachers, to write the macro in such a way that the same points could 

have been selected more than once? In order to consider more closely the relationship 

between tool design and student activity, we re-examine the macro construction in some 

detail. 

 

Redefining a macro 

The angle-carry macro that we had used was one of a collection of macros that came with 

the application when it was purchased. We had not constructed it ourselves, so our first step 

was to discover exactly how it had been built. We created the simple figure in which the angle 

CB̂A  was copied to DE creating a congruent angle, used the history tool to replay the 

construction
viii

 and noted, in the form of a Logo-like program, the intermediate constructions 

on which the macro was based (see Figure 9). Rewriting the procedure provided a means 

through which we could talk about the objects of the macro, and expressing initial objects as 

variables helped us to describe the different configurations of the actions we performed.  

 

 

 Copying an angle using angle-carry 

(ANGLE-CARRY A B C E D) 

ANGLE-CARRY P1 P2 P3 P4 P5 

MIDPOINT  P5  P1    =>(P6) 

SYMPOINT  P2 (P6)   =>(P7) 

MIDPOINT  P5  P3    =>(P8) 

SYMPOINT  P2 (P8)   =>(P9) 

BISECTOR (P9) P5 P4 =>(L1) 

SYMPOINT (P7)(L1)   =>(P10) 

LINE P5 (P10) 

 

A Logo-like procedure representing the macro 

(brackets indicate intermediate constructions) 

Figure 9: The angle-carry macro 

 

The original angle-carry macro was defined using five points as initial objects and a line as 

the final object – or in Logo terms, it needed five inputs and output a line. Now, although it is 
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not possible to click more than once on the same point when running a macro, it is possible 

that a macro will accept a point twice if one is creative about the choice of initial objects. We 

created a second macro, angle-carry2, in which the initial objects were three points and a 

line segment, but the final object was still the required line.  The intermediate constructions in 

history produced by this new macro were identical to that of the first version, but with the 

new macro it was now possible to create an angle using only three points, as long as at least 

two of them were joined by a line segment.  

 

One result of running this macro is shown in Figure 10a, where the angle CB̂A  is to be 

copied on CB. It was executed by first clicking on A, B and C, in that order, and then clicking 

on the line segment BC. Emily‟s problem appeared to have been solved. But sadly not 

necessarily. Figure 10b shows another result of using the same macro, with the objects 

selected in the exactly same order: A, B, C and then the line segment BC. Why is there a 

difference? The reason is that the order in which a line segment is originally created 

determines the order in which the points at its ends will be interpreted in the macro. In Figure 

10a, point C was created before point B, and this meant that when the macro was used it is 

equivalent to angle-carry A B C C B. In Figure 10b, B was created first so the functioning of 

the macro can be represented as angle-carry A B C B C
ix

. 

 

a: ANGLE-CARRY A B C C B 

 

b: ANGLE-CARRY A B C B C 

Figure 10: In the angle-carry2 macro the order of points is defined by the order in which the points of the 

line segment are created 

 

 

Cabri and the future 

Interacting with Cabri can help learners to explore, conjecture, construct and explain 

geometrical relationships, and can even provide them with a basis from which to build 

deductive proofs, as we have illustrated in the work of our successful students. Many of the 

strategies students used and the experimental stance that they adopted to challenging 
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problems were unimaginable before the advent of dynamic geometry systems. We have 

illustrated how the Cabri tools mediated students‟ problem-solving activities and shaped their 

developing conceptions. For example, as a result of their Cabri interactions, the students‟ 

understanding of given properties and their place in the proving process became closely 

interconnected with their appreciation of geometrical construction and the use of properties in 

any construction to define a Cabri figure.  We also showed how two students combined 

geometrically-based constructions with visual methods to come up with conjectures, to „see‟ 

how they might be explained, and finally, with the help of measuring tools, begin to formulate 

a proof. 

 

From all our observations of students‟ interaction with Cabri, we have become increasingly 

aware that the mediation of students‟ activities by the software is not necessarily positive for 

their engagement and for their learning (see also Jones, 1998). Students will not always 

follow the directions planned for them, however carefully we try to structure their activity. 

This is inevitable given the fact that, if we encourage experimentation, students will 

experiment and notice events not necessarily on the teacher's agenda. We have called this 

phenomenon the play paradox (see Noss & Hoyles, 1996). But this is not the only problem. 

As we have shown in the work of our less successful students, learners can also find 

themselves in a position where they are unable to use the tools they have in mind, even if they 

are convinced that their use would make sense mathematically, and they are familiar with how 

the tools should work.  

 

This points to the importance of the decisions made by those who design software tools and 

interfaces. We need to recognise how difficult it is for students to come to understand and 

accept the syntactic limitations of menu-driven macros, and that although they can add or 

remove tools from the menus in Cabri, it is not possible to modify existing tools according to 

their needs. This can be a hard lesson to learn when you are a learner yourself and unsure 

when faced with a problem if it is your knowledge that is at fault or the way the tools work 

(for a discussion of the same issue from  a Logo perspective, see Hoyles, 1996).  When using 

Cabri, students have to learn that only tools based on action can be added to the environment, 

as well as master more general heuristics of successful Cabri use. Even expert teachers cannot 

(or at least we do not know how to) build new tools that support different modes of verifying 

constructions or that offer new ways of communicating our physical actions upon the objects 
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of the system. Nor can expert teachers choose to interact with a symbolic language rather than 

through direct manipulation when it might be useful – as in the case of the angle-carry 

macro.  Clearly most users of Cabri will not wish to take advantage of this opportunity. But 

some will and, as we have hoped to show in this paper, for expert teachers (and students) it 

might help to avoid the frustration we have described. 

 

Cabri I offers considerable potential for exploring geometry. So does Cabri II and so will all 

the new versions that will undoubtedly come on stream
x
. But it is only natural, given any 

computer application, that users will always want just the tool that is not quite available, or 

become disconcerted by modifications to tools to which they have become accustomed or 

upset by the disappearance of tools they particularly valued. One way around this problem 

may be for Cabri, and any other dynamic geometry system, to have some programmable 

functionality; that is to integrate the complementary strengths of its direct manipulation 

interface with a programming capability, in the way envisaged by Eisenberg (1995), or 

instantiated in the vision of a computational medium as elaborated by diSessa (2000). What 

this might look like is clearly a matter for research, but perhaps there are already some clues 

to be found.  In thinking about the problems associated with the use of the angle-carry 

macro, we found it useful to create for ourselves, by using the history tool, a text which 

made explicit the Cabri manipulations that were involved as the steps of the macro 

construction. This description was not unlike the feedback from the exposition tool 

available in some versions of Cabri I. We found it invaluable not only in understanding the 

various constructions that defined its outcome, but also in illuminating why the macro did not 

always produce what we wanted on the screen. Had we been able to interact with a text like 

this, then we could have done more than understand the angle replication problem, we also 

could have resolved it by typing in the relevant inputs. Of course, we would not want to lose 

the existing ways of physically executing construction tools through direct manipulation of 

screen objects and menu items. What we think might be useful is to have an additional means 

of communicating with the system, so that, especially when physical actions do not have the 

results expected, students have access to a language which they can use to reflect upon what 

happened and why, to communicate their thinking and to initiate further actions.  

 

Returning to the particular problem of replicating angles encountered by our students, a 

question that remains is whether with access to different ways of building the equal angle 
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property, success on the angle bisectors task would no longer be limited to those who used a 

mixture of properties constructed with software tools and created by eye. Additionally, we do 

not know whether the transition to proof could have been made.  As it was, it seems almost 

paradoxical that of the two strategies, the one that might be described as less mathematical 

was associated with better results. Students had more success, on this particular challenge and 

with the particular tools they had available for use, when they found a way to avoid the need 

to build robust constructions. This goes to show, and this is our point, that solution strategies 

cannot be judged independently from the tool-set with which they are expressed.  It is also 

why we continue to be attracted by the vision of programmable software in which the tool-set 

allows the user flexibility in how to express their developing understandings.  

 

In the dynamic geometry we have in mind, rather than decreasing the emphasis on symbolic 

description that characterised Cabri I‟s transformation into Cabri II, a programmable Cabri 

might offer greater versatility in terms of the medium of interaction through which users 

could choose to communicate with the system and, at the same time, a wider opening of the 

window onto how users try to shape the system and the tools available for their purposes. 

This, we believe, could support a new web of connections between different representations 

of geometrical structures, and with these new resources, possibly new routes for learners to 

begin to make sense of the process of proving in mathematics. 
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i
   The past tense is used since newer versions of the Logo language and the microworlds constructed with them 

include aspects of direct manipulation. 

ii
  Both this survey and the teaching experiment described later were conducted as part of the research project, 

Justifying and Proving in School Mathematics, funded by the Economic and Social Research Council 

(ESRC), Grant Number R000236178. 

iii
  The term “formal proof” is intended to carry the same sense as suggested by Grenier (2000), that is to 

represent and communicate an argument as a succession of sentences, using conventional mathematical 

formulations,  showing how starting from assumptions (regarded as true) one can arrive logically at a 

conclusion. 

iv
  For a complete description of the survey and its analysis, see Healy and Hoyles 1998; for a discussion of the 

results in geometry, see Hoyles and Healy (in press), and for the results in algebra, see Healy and Hoyles 

(2000). 

v
  Clearly this is no longer an option. Cabri I is now very „out of date‟ and the benefits of some of the older 

tools are outweighed by the abundance of new tools. 

vi
  Strictly speaking, Theo used only one 90° angle as a given property, the other three right angles resulted from 

other aspects of the construction process. He overlooked the need to deduce the perpendicularity of the other 

three.  

vii
  We note that had Tim and Richard been interacting with Cabri II, the line segments would have been 

declared parallel if they happened to be horizontal or vertical when the check was applied. 

viii
  This investigation is possible with Cabri I, but would have been very difficult with Cabri II. From our point 

of view, it is a limitation of the new version that its history tool no longer records the procedure 

underlying a macro.  So if you have not constructed a macro for yourself it is difficult to identify exactly how 

it was built. 

ix
  Fortunately, this story has a happy ending. In Cabri II the angle-carry tool we wanted can be defined by using 

a new object in the place of the line segment – a ray which emanates from a given point in a given direction. 

It is still impossible to simply select the same object twice when applying a macro.  

x
   Cabri III was announced in CabriWorld (Laborde, 1999) 


