
1 

 

 

 

The interaction between emotion and 

economic decision-making 

 

 

Caroline Juliette Charpentier 

 

 

 

Prepared under the supervision of:  

Professor Jonathan P. Roiser and Dr. Tali Sharot 

 

 

 

 

 

 

 

Submitted for the degree of Doctor of Philosophy 

Institute of Cognitive Neuroscience 

University College London 

July 2016 

  



2 

 

Declaration 

I, Caroline Charpentier, confirm that the work presented in this thesis is my own. 

Where information has been derived from other sources, I confirm that this has been 

indicated in the thesis. 

 

  



3 

 

Abstract 

Emotions play an important role in daily life decisions. For example, we are likely to 

choose, judge, or evaluate things around us in different ways depending on whether 

we are feeling sad, anxious, or happy. Emotional reactions to life events and outcomes, 

such as winning an award, or getting a divorce, should also predict individuals’ 

subsequent decisions. However, the mechanisms by which such interactions between 

emotions and decisions unfold are still poorly understood. The aim of this thesis was 

two-fold: first, to characterize a computational model of how emotions are integrated 

into decisions; second, to provide a better understanding of the cognitive and neural 

mechanisms by which manipulating emotions can alter decisions.  

Following the general introduction and methods description, the first experimental 

chapter shows that integrating emotions (self-report feelings) in a computational 

model of decision-making could reliably predict people’s gambling choices, indicating 

a unique contribution of feelings to decisions. The second experimental chapter 

explores the influence of incidental emotional priming on gambling choice and the 

underlying neural mechanisms, using functional magnetic resonance imaging (fMRI). 

The findings suggest that how external emotions impact decisions, at both behavioural 

and neural levels, varied with individual differences in levels of trait anxiety. The third 

experimental chapter attempts to extend this finding by testing how risky decisions are 

altered in patients with clinical anxiety, relative to healthy controls; demonstrating a 

dissociation between sensitivity to risk, which was enhanced in anxiety, and sensitivity 

to monetary losses, which was not associated with anxiety.  

This thesis provides a more complete understanding of the complex interactions 

between emotions, mood and decision-making. In the final chapter the findings are 

discussed in light of influential theories in cognitive neuroscience and behavioural 

economics that posit a central role for emotions in determining the choices we make. 
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Chapter 1 General introduction 

1.1 Behavioural economics theories of decision-making under risk 

This section will first introduce the framework under which economic decision-

making was examined over the past few decades in the fields of behavioural economics 

and psychology. It will describe the models and theories that have been developed, 

with a specific focus on Prospect Theory, which will be used throughout the different 

chapters of this thesis.  

Economic decisions can be defined as any decision between two or more alternatives, 

whereby each alternative has to be evaluated by the decision-maker, who will then 

choose the option to which they assign the highest value. These decisions can 

encompass a large range of types of alternatives, including everyday goods, food 

items, investment products, monetary gambles, etc. In particular, many decisions we 

make on a daily basis involve some level of risk or uncertainty, in the sense that the 

exact outcome of the decision may not be known with certainty at the time of the 

decision. In economics, the distinction between risk and uncertainty emerged after 

seminal work by Frank Knight (Knight, 1921). Risk means that the probabilities of 

each possible outcome in the decision are fully known, such as decisions to flip a fair 

coin, or to buy a lottery ticket while knowing the total number of tickets being sold. In 

contrast, uncertainty means that the underlying probabilities are not fully known and 

the decision-maker has to assess them, such as when betting on the outcome of a sport 

event, or deciding on an investment with a variable return.  

The decisions used throughout this thesis involved monetary gambles and fall into the 

description of decisions made under risk, given that the probabilities of each possible 

outcome in the gambles were always made explicit to the participants. 
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1.1.1 Expected Utility Theory: a normative model 

1.1.1.1 Expected value maximization 

Historically, Pascal’s Wager in the 17th century laid the ground for decision theory to 

specify how the expected value of a risky decision option should be calculated. For 

example, for a risky gamble that offers 90% chance of winning £1 and 10% chance of 

winning £50, the expected value (EV) can be calculated as the sum of the products 

between each potential outcome value and its probability:  

EV = 0.9 * 1 + 0.1 * 50 = £5.9 

Let us imagine that a participant can choose between playing this gamble or receive a 

sure amount of £5. According to a theory of expected value maximization, a decision-

maker should choose the gamble given that its expected value is higher than the sure 

outcome of £5. However many people when faced with such a prospect would choose 

to receive the guaranteed £5. This is because, contrary to what expected value 

maximization theory would assume, most people do not have a neutral attitude towards 

risk. Instead most people are risk averse and would avoid a risky prospect in which 

their chances of earning less than the sure outcome are high (90% here) while their 

chances of earning more are low (only 10% here). Risk aversion explains many daily 

life behaviours, in particular decisions to purchase insurance. Yet, it is not accounted 

for by a decision rule that would only seek to maximize expected value. 

1.1.1.2 Expected utility hypothesis 

Daniel Bernoulli first offered an account of this problem in the 18th century with 

Expected Utility Theory (EUT; 1738, later translated in Bernoulli, 1954). In particular, 

EUT proposes that people do not evaluate prospects by their objective expected value, 

but instead attribute “utility” to them, in a way that does not vary linearly with value. 

The main assumption is that as the initial value or wealth of a person increases, the 

change in utility associated with a one-unit change in value will decrease, a 

phenomenon also referred to as decreasing marginal utility. For example, this can be 

illustrated in the observation that winning £100 will matter less to a “wealthy” person, 

who already has £10,000 in their pocket, than to a “poor” person, who only has £10 in 
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their pocket. Therefore, the change in utility associated with a change in value of 

+£100 will decrease with higher initial wealth. According to Bernoulli’s EUT, 

expected utility can be calculated as the product between the probability of an outcome 

and the utility of that outcome. The utility function is assumed to be concave, such that 

the increase in utility between any given value v and v+1 will be bigger than between 

v+1 and v+2. A logarithmic shape was first proposed for the utility function, taking 

into account this concavity and explaining risk aversion. To illustrate that, let us take 

a slightly simpler example than the one described above, for example a choice between 

winning £5 for sure and a gamble with 50% chance of winning £10 and 50% of 

winning nothing. According to expected value maximization theory, a decision-maker 

should be completely indifferent between these two options because their expected 

value is the same. EUT, in contrast, predicts than the utility associated with winning 

£5 will be larger than half (probability of winning = 50%) the utility of winning £10 

(Figure 1-1A), explaining why most people would choose the sure option in that case. 

1.1.1.3 Axiomatization of Expected Utility Theory 

It was not before the middle of the 20th century that Von Neumann and Morgenstern 

(VNM; 1947) provided an axiomatization of EUT (as well as its modern name; 

expected utility was called “moral expectation” by Bernoulli, to contrast with 

mathematical expectation), with necessary and sufficient conditions for the theory to 

hold and explain a decision-maker’s choices. VNM posit that such a utility function, 

the maximization of which would predict a rational agent’s decisions, exists provided 

that the agent’s preferences satisfy the following four axioms: 

- Completeness: for any two given options L and M, the agent has well-defined 

preferences, i.e. either prefers L, M, or is indifferent 

- Transitivity: the agent’s preferences are consistent across any three given 

options, i.e. if L is preferred over M and M preferred over N, then L should be 

preferred over N. 

- Continuity: preference for an intermediate option is equivalent to a 

probabilistic compound lottery between the better and worse options, i.e. given 

L ≤ M ≤ N, there is a probability p such that the agent is indifferent between M 

and the following lottery: p*L + (1-p)*N. 
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- Independence: an agent’s preference for an option over another should hold 

independently of the presence of a third option. This also implies substitution, 

or reduction of compound lotteries, such that if L is preferred over M, then any 

probability mixture p*L should be preferred over p*M. 

1.1.1.4 Violations of Expected Utility Theory 

However, several violations of these axioms were observed in the following years, 

making EUT a prescriptive or normative model (explaining what rational agents 

should do) rather than a descriptive model (actually explaining the way people 

behave). One of the first and main violations, which came from observing people’s 

decisions, was the certainty effect, also called Allais paradox (Allais, 1953). A 

variation of Allais’ example was given by Kahneman & Tversky (1979) to illustrate 

the violation. Participants were given the following two choice problems: 

- Problem 1: Choice between 80% chance of winning £4,000 (A) or £3,000 for 

sure (B). 

- Problem 2: Choice between 20% chance of winning £4,000 (C) or 25% chance 

of winning £3,000 (D). 

Most participants choose B over A, which implies that the utility they associate with 

winning £3,000 is greater than 0.8 times their utility of winning £4,000 [u(3,000) > 

0.8*u(4,000)]. However, when faced with problem 2, most participants choose C over 

D, which implies the opposite inequality [0.2*u(4,000) > 0.25*u(3,000), equivalent to 

u(3,000) < 0.8*u(4,000)]. This constitutes a violation of the substitution or 

independence axiom, in that Problem 2 corresponds to the same choice as Problem 1, 

with each option weighted by a 0.25 probability. This violation suggests that by 

removing the certainty of the sure option in Problem 1, reducing the probability of 

winning from 1 to 0.25 had a stronger effect on choice than a reduction from 0.8 to 

0.2. The certainty effect was also demonstrated for non-monetary outcomes. 

Another violation of EUT occurs when introducing negative prospects (potential 

losses) into the decision options. For example, if presented with Problem 1 described 

above, most people choose B; but if presented with the equivalent problem involving 

losses – i.e. choice between 80% chance of losing £4,000 (A) or losing £3,000 for sure 
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(B), most people choose A. This effect was named the reflection effect by Kahneman 

and Tversky (1979), indicating (i) that the reflection of prospects around zero reverses 

preferences and (ii) that certainty is not always desirable; instead, certainty is desirable 

for gains but aversive for losses. This results in risk-seeking in the loss domain 

(Fishburn and Kochenberger, 1979), an effect not accounted for by EUT. 

 

Figure 1-1. Expected Utility Theory (A) and Prospect Theory (B,C) models. A. 

Schematic representation of the utility function of EUT plotted as a function of 

objective value or wealth relative to an initial or total state of wealth v0. The function 

assumes decreasing marginal utility as value increases, and reflects risk aversion in 

choice, mainly by the fact that utility associated with a small, sure gain, will be higher 

than the probability-weighted utility of a risker, higher gain. B. Prospect Theory value 

function is plotted as a function of increase (gains) and decrease (losses) in value 

relative to a reference point. The S-shape reflects decreasing (absolute) marginal utility 

for both increasing losses and increasing gains, consistent with risk aversion for gains 

and risk seeking for losses. The stronger slope of the function in the loss compared to 

the gain domains [|V(-5)|>|V(+5)|] explains loss aversion. C. Prospect Theory 

probability weighting function associating actual and perceived probabilities of 

potential outcomes. People tend to overweigh small probabilities and underweigh high 

probabilities. 
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1.1.2 Prospect Theory: a descriptive model 

Prospect Theory (PT) was proposed by Kahneman and Tversky (1979) to address these 

violations and provide a descriptive theory of decision-making under risk, which is 

still used as one of the leading models of choice. In contrast to EUT, which is 

reference-independent and assumes that utility is applied to changes in wealth relative 

to an absolute total or initial wealth (v0 in Figure 1-1A), PT introduces the presence 

of a reference point, relative to which changes in value can be positive or negative, 

resulting in gains and losses, respectively. 

1.1.2.1 Value function 

Prospect Theory’s value function (Figure 1-1B) replaces the utility function from EUT 

and can be defined by the following properties: it is concave for gains and convex for 

losses; it is steepest near the reference point, with maximal sensitivity in the first units 

of gains and losses; and it is steeper in the loss than in the gain domain. Similar to the 

standard utility function of EUT, the concavity of the value function in the gain domain 

contributes to risk aversion for gains. On the other hand, its convexity in the loss 

domain will contribute to risk seeking for losses. This can be easily illustrated with the 

example of a choice between 50% chance of losing £10 or a sure loss of £5. The 

convexity of the function will result in the value of a £5-loss being more negative than 

half the value of a £10-loss, resulting in the risky option being preferred. Finally, the 

fact that the value function is steeper in the loss relative to the gain domain contributes 

to loss aversion; the tendency of most people to be more sensitive to losses relative to 

gains in their decisions (Kahneman et al., 1991; Tversky and Kahneman, 1991; Hardie 

et al., 1993). This is reflected in the function by the fact that the negative value of 

losing an amount is greater than the positive value of winning the same amount (see 

example in Figure 1-1B with ±£5). 

The parametrization of this value function was established later (Tversky and 

Kahneman, 1992), with a power function: 

      (Eq. 1-1) 
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where α and β represent the curvature of the function in the gain and loss domains, 

respectively, and λ represents the loss aversion coefficient. A decision-maker whose 

behaviour is consistent with Prospect Theory will exhibit α<1 (concavity and risk 

aversion for gains), β<1 (convexity and risk seeking for losses), and λ>1 (loss 

aversion). 

1.1.2.2 Probability weighting 

In addition to the value function, Prospect Theory assumes that during decision-

making the value of a possible outcome is not directly multiplied by its probability, 

but by a decision weight w(p). The relationship between actual probabilities and 

decision weights or perceived probabilities is illustrated in Figure 1-1C. This 

probability weighting function accounts for several violations of the substitution 

axiom of EUT such as the certainty effect (Allais, 1953; Kahneman and Tversky, 

1979). In particular, the examples described above suggest that people are more 

sensitive to changes in probabilities close to certainty (p=1 or p=0) than intermediate 

probabilities. This is reflected in the probability weighting function by a steeper slope 

for more extreme probabilities, close to 0 and 1, and an inflexion point around p=0.5. 

Similar to diminishing marginal utility, this function represents diminishing sensitivity 

to changes in probability as probability gets closer to intermediate values. This 

inverted S-shape results in low probabilities being overweighted and high probabilities 

underweighted. It can also explain the fourfold pattern of risk attitudes observed in 

several studies (Fishburn and Kochenberger, 1979; Kahneman and Tversky, 1979; 

Tversky and Kahneman, 1992), such that people exhibit risk aversion for gains and 

risk seeking for losses at intermediate to high probabilities (as described above), while 

at low probabilities the pattern is reversed with risk seeking for gains and risk aversion 

for losses. An example from Kahneman and Tversky (1979) illustrating the latter effect 

with low probabilities is that most people choose a 0.1% chance of winning £5,000 

over a sure gain of £5 (risk seeking for gains) but choose a sure loss of £5 over a 0.1% 

chance to lose £5,000 (risk aversion for losses). This is because the 0.1% probability 

is overestimated, making the gain gamble more attractive than it really is and the loss 

gamble less attractive than it really is.  
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The original formulation of Prospect Theory (Kahneman and Tversky, 1979) accounts 

for decisions made under risk with a maximum of two non-zero potential outcomes. 

The formulation published in 1992 (Tversky and Kahneman, 1992), Cumulative 

Prospect Theory, employs separate probability functions for gains and losses as well 

as cumulative decision weights – applying weights to the cumulative distribution 

function rather than to separate events. By doing so, the theory can also accommodate 

decisions under uncertainty (where the probabilities are unknown), as well as 

prospects with any finite number of potential outcomes. 

However, for the purpose of this thesis, given that all the gambling tasks involved 

decisions under risk (where probabilities are fully known) with a maximum of two 

non-zero potential outcomes, the original version of Prospect Theory was used. In 

addition, because the probabilities were never varied and all tasks used 50-50 gambles, 

I assumed a neutral probability weight – i.e. w(0.5)=0.5 – and did not model a 

probability weighting function. This is a common assumption in many studies focusing 

on loss and risk aversion rather than probability weighting and using 50-50 gambles 

(Tom et al., 2007; Sokol-Hessner et al., 2009, 2013; De Martino et al., 2010; Chib et 

al., 2012). 

1.1.3 Decision-making biases and phenomena explained by Prospect Theory 

In addition to risk and loss aversion, many decision-making biases can be explained 

by Prospect Theory, making it a good descriptive model of people’s decisions. A few 

examples will be described in this section. 

1.1.3.1 Framing effect 

Most normative models of economic decisions, including EUT, assume that decisions 

should not be influenced by how the options are described to the decision-maker. 

Prospect Theory, however, predicts that a decision option framed as a potential loss or 

a potential gain, even though the actual expected value is the same, will impact 

decisions differently. An example of the framing effect was reported by Tversky and 

Kahneman (1981), with the Asian disease example. Specifically, participants are told 

that the outbreak of an Asian disease is expected to kill 600 people and are asked to 

choose between two possible programmes to combat the disease. With programme A, 
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200 people will be saved; and with B, there is 1/3 probability that everyone will be 

saved and 2/3 probability to no one will be saved. When offered this choice, framed in 

terms of the number of people saved, most participants choose A over B. However 

when presented with the same choice framed in terms of losses – C (400 people will 

die) versus D (1/3 probability that nobody will die and 2/3 probability that everyone 

will die) – participants mostly select D over C. Tversky and Kahneman attribute this 

bias to the S-shape of the value function, inducing risk aversion (choice of the sure 

option to save 200 people) when options are framed in terms of gains and risk seeking 

(choice of the risky programme) when options are framed in terms of losses. The 

framing effect has also been demonstrated using monetary gambles  (Tversky and 

Kahneman, 1981; De Martino et al., 2006). In De Martino et al. (2006), participants 

received an initial endowment (e.g. £50) at the beginning of each trial and had to decide 

between a risky gamble and a sure option. The risky gamble always included a 

probability (p) to keep all the endowment and a probability (1-p) to lose it all; but 

depending on the context, the sure option was framed as a gain (e.g. keep £20) or as a 

loss (e.g. lose £30). Even though the value and final outcome in both cases were 

exactly the same, participants chose to gamble about 60% of the time in the loss frame 

and only 40% of the time in the gain frame; framing thus affected about 1/5 of 

decisions in that study. 

1.1.3.2 Endowment effect and status quo bias 

Prospect Theory can also be applied to riskless choice (Tversky and Kahneman, 1991) 

and account for several manifestations of behaviour that are thought to be driven by 

loss aversion, such as the endowment effect and the status quo bias. The endowment 

effect was first reported by Thaler (1980), who observed that people require more 

money to compensate for the loss of a good compared to the amount they would be 

willing to pay to purchase this same good. This effect was later tested in a series of 

experiments (Kahneman et al., 1990), showing that students endowed with a mug 

(worth $5) asked a price of about $7 to sell it, while another group of students not 

endowed with the mug were only willing to pay $3 to buy it. Similarly, people exhibit 

a strong preference for options that induce no change of their current situation relative 

to other options. This is known as the status quo bias and was first introduced by 

Samuelson and Zeckhauser (1988), who documented the bias using hypothetical daily 
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life decisions about jobs, investments, cars, etc, as well as a field study involving 

decisions about medical insurance plans. Experimental demonstrations came from 

Knetsch and Sinden (1984) and Knetsch (1989) who gave participants in their studies 

different compensation items (e.g. some participants were given a mug and others a 

chocolate bar). When offered the opportunity to trade their item with a member of the 

other group, approximately 90% declined and preferred to stick to their initial item. 

All the above effects can be explained by shifts in the value function reference point, 

which then induce preference reversals. In the framing effect, positively framing an 

option results in placing the reference point below the value of the option, while 

negatively framing the same option has the effect of shifting the reference point to a 

higher value than the value of that option. Therefore, the former is perceived as a gain 

and the latter as a loss. In the endowment effect, subjects endowed with the mug have 

a higher reference point than subjects without a mug; selling their mug is thus 

perceived as loss, which has to be compensated to a greater extent given loss aversion. 

Finally, in the status quo bias, each participant’s reference point is at the value of the 

object they own. When asked to trade that object against another, even though both 

objects may objectively have the exact same value, loss aversion implies that what will 

be lost in the trade will loom larger than what will be gained, hence the reluctance to 

trade. 

1.1.4 Neurobiological basis of risk and loss aversion in decision-making 

More recently, many studies have focused on characterizing the neurobiological basis 

economic decision-making under risk, in order to better understand how those biases 

arise in the brain. Human neuroimaging studies, using functional magnetic resonance 

imaging (fMRI), have addressed this question by having participants completing a 

variety of risky decision-making tasks in the MRI scanner, while recording blood 

oxygen level-dependent (BOLD) signal in their brain. Other studies have used 

pharmacology in both humans and animals, as well as direct neural recordings in 

rodents and non-human primates, in order to specifically examine the involvement of 

neurotransmitters such as dopamine in risk-taking. Despite providing insights into the 

involvement of brain systems in a cognitive process, these techniques are all 
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correlative, and therefore cannot give a definite answer as to whether these systems 

are causally involved. 

1.1.4.1 Human neuroimaging studies of decisions under risk in humans 

Looking at general financial risk-taking, Kuhnen and Knutson (2005) designed a task 

where participants had to make a choice between a safe bond (always worth $1) and 

one of two risky stocks. One stock was better than the other and subjects were informed 

of the underlying probably distributions but were not told which stock was the “good” 

one and which stock was the “bad” one. The fMRI results showed that pre-choice 

activity in the nucleus accumbens (NAcc) predicted subsequent risky choices (stock), 

while pre-choice activity in the anterior insula predicted subsequent risk averse choices 

(bond). In Christopoulos et al. (2009) participants completed a more explicit task in 

which they had to choose between a safe option (e.g. 50 points for sure) or a gamble 

with two equiprobable outcomes (e.g. 50% chance of winning 40 points and 50% 

chance of winning 60 points). The gamble could either be low risk (40-60) or high risk 

(10-90, reflecting higher variance), and the value of the sure option was dynamically 

adjusted across trials using a staircase procedure that took into account the 

participant’s previous choices, such that the utility of the safe option was closely 

matched to that of the gamble. This design allowed the authors to demonstrate (i) 

encoding of expected value or reward magnitude in the ventral striatum, (ii) encoding 

of objective risk during choice in the dorsal anterior cingulate cortex (dACC), and (iii) 

individual differences in risk aversion (calculated as the difference in certainty 

equivalent between low- and high-risk gambles) in the right inferior frontal gyrus 

(IFG).  

Using a similar design combined with a second experiment involving simple responses 

to visual stimuli associated with different levels of risk and reward values, Tobler et 

al. (2009) identified a cluster of activation in the lateral prefrontal cortex and suggested 

that this region integrated value and risk. Specifically, activity in this region tracked 

value across all participants and was modulated by risk differently depending on 

individual differences in risk attitudes: activity was enhanced by risk in risk-seeking 

participants and suppressed by risk in risk-averse participants, suggesting a possible 

tracking of utility. “Pure” value, independent of risk, was tracked in the ventral 



23 

 

striatum. These results are consistent with other studies that have examined the neural 

basis of decision values between non-risky options (Plassmann et al., 2007; Chib et 

al., 2009), e.g. goods or food items, suggesting that the utility or subjective value of 

these options is also encoded in parts of the prefrontal cortex (PFC), namely 

ventromedial (vmPFC) and dorsolateral (dlPFC). However, other studies suggest that 

the ventral striatum may also play a key role in integrating several decision variables 

in a subjective value signal rather than simply coding “pure” objective reward (Hsu et 

al., 2005; Preuschoff et al., 2006). For example, Preuschoff et al. (2006) found that the 

ventral striatum encoded both expected reward and risk (calculated as reward 

variance); however, the two signals were temporally distinct, with immediate encoding 

of reward and delayed encoding of risk, suggesting a sequential integration process 

before the decision is made. 

1.1.4.2 Human neuroimaging studies of loss processing and loss aversion 

Another set of studies has examined the neural basis of loss aversion, with the general 

hypothesis that, similar to potential losses being overweighted relative to potential 

gains, some brain systems may be more sensitive to potential losses than potential 

gains. This is exactly what Tom et al (2007) found in an influential study. Participants 

in this study had to make a series of decisions to accept or reject mixed gambles 

offering a 50% chance of winning and a 50% chance of losing. The win and loss 

amounts were varied parametrically and orthogonally such that their neural signature 

could be assessed independently. The authors found that a number of brain regions, 

including ventral striatum and vmPFC, responded to both increasing gains and 

decreasing losses (no region responded to increasing losses) and exhibited “neural loss 

aversion”, such that the response to decreasing losses was stronger than the response 

to increasing gains. In addition, this neural loss aversion estimate in the ventral 

striatum was correlated with behavioural loss aversion (λ parameter estimate) across 

participants. This study suggests that the ventral striatum may play an important role 

in representing utility or subjective value rather than simply coding for objective 

expected value or reward magnitude as suggested by some of the studies described 

above (Christopoulos et al., 2009; Tobler et al., 2009). In particular, it may constitute 

the neural signature of the steeper slope observed for losses relative to gains in 

Prospect Theory’s value function. Tom et al had also hypothesized that the amygdala 
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would be involved in loss aversion, given previous evidence of its role in processing 

losses and negative stimuli (Breiter et al., 2001; Kahn et al., 2002). Even though they 

failed to evidence such a role for the amygdala, subsequent studies did.  

A first strong piece of evidence came from a clinical neuropsychology study in which 

two patients with amygdala damage failed to exhibit any loss aversion on a similar 

task to the one used by Tom et al, suggesting that the amygdala is not only involved 

in, but also necessary for loss aversion (De Martino et al., 2010). In a recent fMRI 

study (Canessa et al., 2013), the authors replicated Tom et al’s finding by 

demonstrating stronger loss-related deactivations compared to gain-related activations 

(i.e. “neural loss aversion”) in the ventral striatum. They additionally demonstrated a 

role for the amygdala in specifically processing losses (independent of the processing 

of gains), as well as in tracking neural loss aversion in a way that correlated with 

individual differences in behavioural loss aversion. Furthermore, Canessa et al. (2013) 

also revealed some structural correlates of loss aversion, with increased grey matter 

volume of amygdalar and para-amygdalar nuclei in individuals with higher loss 

aversion.  

Finally, in another study (Sokol-Hessner et al., 2013), the authors specifically used 

Prospect Theory’s value function equation (Eq. 1-1 above) to generate each subject’s 

utility value associated with each decision from their individual parameter estimates, 

including loss aversion. They found a strong neural signature of decision utility in the 

bilateral striatum consistent with previous studies (Preuschoff et al., 2006; Tom et al., 

2007). They analysed the relationship between brain activity and individual 

differences in loss aversion at the time of outcome (instead of the time of decision, 

which was examined by previous studies) and found that the extent to which the 

amygdala responded to loss relative to gain outcomes also correlated with behavioural 

loss aversion. This role of the amygdala in loss aversion through the enhanced 

sensitivity to losses, relative to gains, both during decision and outcome stages is 

consistent with a general role for the amygdala in processing the value of affective and 

behaviourally relevant stimuli, which has been proposed by recent reviews (Morrison 

and Salzman, 2010; Pessoa and Adolphs, 2010; Ousdal et al., 2012). 
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1.1.4.3 Influence of dopamine on risk taking: evidence from pharmacology studies 

and dopamine neuron recordings 

Dopamine is a molecule released by a small number of neurons in the brain, and has 

been implicated in numerous functions. Dopaminergic neurons’ cell bodies are 

confined to only a few areas, mainly the substantia nigra and the ventral tegmental 

area, both part of the midbrain. These neurons project to several other brain areas, two 

of which are the ventral striatum and the prefrontal cortex. As described above, these 

regions have been implicated in economic decision-making, valuation processes, and 

risk-taking. It is therefore possible that dopaminergic transmission may play a role in 

these processes. 

To test this hypothesis, several studies have used pharmacological administration of 

levodopa (L-DOPA), a precursor of dopamine, in human subjects. Cools et al. (2003) 

found that Parkinson’s patients on L-DOPA exhibited increased impulsivity and delay 

aversion during gambling. More recently Rutledge et al. (2015) have examined the 

effect of L-DOPA administration in healthy volunteers on a gambling task analysed in 

a Prospect Theory framework combined with a Pavlovian approach-avoidance bias for 

gain relative to loss outcomes. They found that L-DOPA increased risky decisions 

involving potential gains, but not potential losses, and that this effect was best 

explained by a value-independent Pavlovian approach bias towards risky gains, rather 

than by an effect of L-DOPA on Prospect Theory parameters (λ, α, or β). Another 

recent study from the same group (Rigoli et al., 2016) demonstrated a very similar 

effect using a slightly different paradigm and behavioural model. Specifically, their 

task did not involve losses, only choices between a sure small gain, and a risky 50-50 

gamble between zero and a higher gain; it also included a context manipulation with 

overall option values varying between low-value context and high-value context 

blocks. Their model captured behaviour well by distinguishing between subjects’ 

general propensity to gamble, their sensitivity to reward variance (or risk), and the 

influence of context on their choices. Interestingly, L-DOPA only affected the general 

propensity to gamble, making subjects more likely to gamble overall, independent of 

risk or context, consistent with the effect observed in Rutledge et al. (2015). 



26 

 

Finally, animal studies have also provided evidence for a role of dopamine in risk-

taking and encoding of subjective value. In rodents, administration of the dopamine 

releaser amphetamine and stimulation of dopamine D1 and D2 receptors with receptor-

selective agonists (St. Onge and Floresco, 2009; Ferenczi et al., 2016), as well as 

electrical stimulation of midbrain dopamine neurons (Stopper et al., 2014), all increase 

risky decisions in the animals. Conversely, the blockade of these receptors and the 

suppression of phasic dopamine bursts induce risk aversion. Optogenetic stimulations 

of midbrain dopamine neurons have been shown to increase reward-seeking in rodents 

(Tsai et al., 2009; Witten et al., 2011; Ferenczi et al., 2016), whereas stimulation of 

D2 receptor-expressing cells in the nucleus accumbens, which are thought to detect 

pauses and dips in dopamine signalling, increased the animal’s sensitivity to past 

losses and reduced risk taking in subsequent choices (Zalocusky et al., 2016). This 

provides a causal role for dopamine transmission in controlling risk taking behaviour. 

Direct neural recording of midbrain dopamine neurons in monkeys demonstrated that 

dopamine responses scale with the marginal utility of reward (i.e. showing diminishing 

sensitivity to value) rather than objective reward value (Stauffer et al., 2014) and 

integrate the subjective value of the reward across multiple attributes, here reward 

magnitude, risk, and reward type (Lak et al., 2014).  

These studies suggest that the dopamine system, through its actions on a distributed 

network of regions, in particular the striatum, makes an important contribution to the 

representation of Prospect Theory’s value function, and resulting decision-making 

behaviours under risk.  

1.2 Emotions are integral to the decision-making process 

The preceding assessment of subjective valuation processes and economic decisions 

would not be complete without an overview of the role played by emotion and affect. 

For decades economists have ignored the roles played by emotions, mood, and 

affective states in economic decisions, which can strongly influence the way people 

evaluate prospects and choose between them. An extensive part of the literature has 

examined these roles of emotions during economic decisions, which can broadly be 

separated into integral and incidental influences, as discussed in the following two 

sections. 
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Firstly, integral emotions can be defined as emotions induced by the decision at hand, 

whether it be the value of potential payoffs, the risk, the presence of a potential loss, 

the effect of past outcomes, etc. It is important to note that emotion-related processes 

are referred to by different terms in the literature, such as “emotion”, “affect”, “mood”, 

or “feelings”. Throughout this thesis, I will follow the view of Phelps et al. (2014), 

recognizing that “emotion is not a unitary construct, but rather a compilation of 

component affective processes” (Phelps et al., 2014, p.265; see also Lerner et al., 

2015). “Affect” is most commonly used as a general term that refers to all of these 

component processes together. “Emotion” indicates an internal or external discrete 

reaction to an event, which is usually multifaceted and biologically mediated, and 

includes physiological responses, facial expressions, action tendencies (approach or 

avoid), bodily reactions, and subjective feelings. These emotional reactions can 

usually be measured and examined in the context of their influence on choice, for 

example. “Feeling” indicates a subjective component of emotion, which can be 

assessed by self-report questions asking people how they feel in a given context or in 

response to an event. “Mood”, in contrast, refers to feelings that are more diffuse and 

persist in time without the need for a triggering event. 

1.2.1 Somatic marker hypothesis 

One early theory of the integral role of emotional responses in economic decision-

making was proposed by Antonio Damasio and Antoine Bechara, as the somatic 

marker hypothesis (see Bechara and Damasio, 2005 for a review). Damasio and 

Bechara were among the first to suggest that instead of emotions interfering with 

decision-making by making people irrational, emotions may instead inform and be 

beneficial to decisions. The key idea behind the theory is that during choice, especially 

conflicting or difficult choice, bodily emotional reactions arise in response to 

pleasurable or aversive decision options, as well as thoughts and memories. These 

responses are encoded in the brain as “somatic markers”, somehow informing the brain 

of the emotional state of the body. These somatic markers then influence decisions by 

directing the decision-maker towards more advantageous options, an effect that can 

occur consciously or unconsciously. 
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Most of the experimental evidence for the theory came from the Iowa Gambling Task 

(IGT), first introduced in 1994 (Bechara et al., 1994), followed by several variants 

(Bechara et al., 2000). In the original task, participants are presented with four decks 

of cards labelled A, B, C and D, and have to pick a card from one of the decks on each 

trial. The decks are constructed such that A and B always win $100 (high-paying 

decks) and C and D (low-paying decks) always win $50; however, every so often some 

cards in each deck are associated with a monetary loss. The frequencies and 

magnitudes of losses vary across decks, causing high-paying decks A and B to have 

an overall long-term negative payoff (disadvantageous decks), and low-paying decks 

C and D a long-term positive payoff (advantageous decks). The other difference 

between decks is that losses in decks A and C are more frequent, but of smaller 

magnitude; while losses in decks B and D are less frequent but of much higher 

magnitude. These probabilities and payoffs asymmetries are not explicitly provided to 

participants, but must instead be learned over time. 

The first study using this task compared the performance of healthy volunteers with 

that of patients with vmPFC damage (Bechara et al., 1994). The authors found that 

while healthy volunteers were able to learn the underlying statistics of the task and 

select more cards from advantageous decks overall, vmPFC patients failed to show 

such an effect and consistently chose the high-paying but disadvantageous decks 

throughout, suggesting that their decisions are guided by immediate rewards rather 

than future losses. Following this result, Bechara et al’s hypothesis was that vmPFC 

may be the neural substrate of somatic markers and that when damaged, patients are 

not sensitive to the emotional reactions provoked by losses throughout the task and 

therefore cannot integrate this signal to guide their decisions towards advantageous 

decks. 

To test this hypothesis more precisely, Bechara et al directly measured emotional 

reactions in a subsequent set of studies by examining anticipatory skin conductance 

responses (SCRs) in healthy controls and patients with vmPFC (Bechara et al., 1997) 

or amygdala (Bechara et al., 1999) damage. They found that control subjects exhibited 

strong SCRs just before selecting a card; and these SCRs were stronger for bad than 

good decks, even before participants started exhibiting a preference for good decks in 

their choice behaviour. In contrasts, SCRs in patients with vmPFC and amygdala 
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damage were very low and did not differ for good and bad decks, suggesting an 

important role for these two areas in processing the emotional value of the decision 

options and in using them to guide decisions.  

However, in the following decade, many criticisms of the somatic marker hypothesis 

have emerged, mainly driven by potential confounds associated with the IGT (Maia 

and McClelland, 2004, 2005). In their first study (Maia and McClelland, 2004), the 

authors ran the IGT using more fine-grained methods to assess what participants know 

about the decks and about their own strategy at different time points throughout the 

task, and found that participants report reliable knowledge of the advantageous 

strategy before showing the effect behaviourally, suggesting that they know what they 

should do and implement it consciously. This contrasts with Bechara et al’s suggestion 

that emotional responses arise and are used to guide decisions outside of awareness. If 

Maia and McClelland’s claims are true, then the SCRs observed by Bechara et al could 

constitute a consequence of subjects consciously knowing that the bad decks are bad, 

rather than an unconscious signal that subsequently influences their behaviour (see 

also Dunn et al., 2006 for a review). 

In addition, the design of the task itself presents many confounds that could explain 

impairments in performance (Hinson et al., 2002; Sanfey et al., 2003; Dalgleish et al., 

2004; Fellows and Farah, 2005; Chiu and Lin, 2007; Lin et al., 2007; see Dunn et al., 

2006 for a review). Indeed, an increased propensity to choose the disadvantageous 

decks as observed in the patient populations, and also from a substantial proportion of 

healthy participants, could arise from deficits in reversal learning (Fellows and Farah, 

2005) or working memory (Hinson et al., 2002), from the use of a simple gain-stay-

lose-switch strategy (Chiu and Lin, 2007; Lin et al., 2007), from increased impulsivity 

and risk-taking (Sanfey et al., 2003), reduced sensitivity to losses/reduced loss 

aversion (Dalgleish et al., 2004), or simply from a lack of motivation (Barrash et al., 

2000). 

1.2.2 Risk as feelings hypothesis 

Loewenstein et al. (2001) proposed the “risk as feelings” hypothesis to account for the 

effect of emotions directly induced by the decision at hand and experienced at the time 
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of the decision. Specifically, the hypothesis makes a distinction between expected 

emotions, i.e. what one expects to feel later given the expected outcome of the 

decision, and current, immediate emotions, felt at the time of decision, which are more 

visceral reactions to having to make a decision. In the context of a risky decision for 

example, the level of risk can induce some negative emotions like anxiety or dread (or 

maybe some positive emotions like excitement for a risk-seeking individual). These 

emotions are unrelated to the outcome of the decision, but instead derive directly from 

the decision itself. 

Originally, most proposals have considered that such emotions induced by the 

decision, if any, would simply be a by-product or consequence of the decision, but 

would not impact the decision in return. Instead, the risk as feeling hypothesis proposes 

that this interaction is bidirectional: the decision generates feelings which in turn 

influence the decision; explaining, for example, why an individual who feels more 

anxious than another at the prospect of a risky decision will more likely to choose a 

safe option. 

In addition, the risk as feeling hypothesis argues that contrary to expected emotions, 

which usually inform and are beneficial to the decisions (as suggested by the somatic 

marker hypothesis), the immediate emotional reactions to the decision (e.g. risk-

induced fear) usually differ from the more cognitive evaluation of the decision and 

therefore tend to interfere with people’s behaviour and bias their decisions away from 

the rational course of action. Focusing mainly on the example of fear, Loewenstein et 

al. (2001) suggest that the following factors are key in making the emotional responses 

diverge from an objective cognitive evaluation: vividness of the fear response, 

dependent on past experience and mental imagery; insensitivity of fear responses to 

probabilities; learning differences varying with the type of risk, etc. 

In a recent review (Lerner et al., 2015), the risk as feelings hypothesis was integrated 

into a more complete model synthesising more recent finding in the literature on 

emotion-decision interactions. This model, called the emotion-imbued choice (EIC) 

model generally aims to describe “ways in which emotion permeates choice processes” 

(Lerner et al., 2015, p.814). The model is reproduced in Figure 1-2A. In particular it 

includes generic processes that form the basis of economic decision-making and come 
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from normative models such as expected value maximization or EUT (black arrows 

on Figure 1-2A). These reflect the fact that (i) several attributes of the decision 

options, such as potential payoffs, probabilities, delay, etc, are evaluated, compared, 

and the highest value option is chosen; and (ii) there are individual differences in this 

process based on people’s personality and preference (e.g. high sensation-seekers are 

likely to take more risks than low sensation-seekers).  

A first deviation from the normative models, but accounted for by models such as 

Prospect Theory or the somatic marker hypothesis, is shown by the green arrow. This 

represents the influence of emotions about expected potential outcomes on the 

decision. The main addition of the EIC model, as outlined in the risk as feeling 

hypothesis, is the presence and influence of current emotions, experienced 

immediately at the time of the decision. The red arrows show that these current 

emotions (i) are generated by the evaluation process itself and will in turn influence 

this evaluation and the subsequent decisions, (ii) can be influenced by the attributes of 

the decision options, by incidental influences and by individual differences, and (iii) 

reciprocally interact with expected emotions, such that someone anticipating a painful 

shock may experience fear now, and the current experience of fear may enhance the 

negative expected utility of the shock. 

1.2.3 Fear processing theory of loss aversion 

A similar theory has been proposed about the role of fear in loss aversion, but 

stemming more from neuroscientific findings (in contrast with the psychological 

explanation in the risk as feelings hypothesis). An account of loss aversion as an 

expression of fear (Camerer, 2005), has emerged given the numerous findings 

indicating a common neural and physiological basis to both fear processing and loss 

aversion/anticipation. 

With respect to fear processing, a network involving the amygdala, insula and striatum 

has repeatedly been identified. In a study by Phelps et al. (2001), responses in the 

amygdala and insula tracked the anticipation of an aversive outcome (an electric 

shock) relative to safe cues (no shock delivered), and correlated across subjects with 

SCRs, providing evidence for a neural and physiological signature of the expression 
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of fear. The same year, LeDoux and Gorman provided a model of fear processing 

involving the amygdala and the striatum (LeDoux and Gorman, 2001), mainly drawn 

from classical fear conditioning paradigm in animals, and depicted in Figure 1-2B. 

The model suggests that fear-arousing stimuli are processed in the lateral nucleus of 

the amygdala, which is also the area where the conditioned and unconditioned stimuli 

are integrated initially. Subsequent exposure to the conditioned stimulus will lead to a 

passive fear response such as freezing, through neurons in the central nucleus of the 

amygdala, which in turn activates brainstem centres responsible for the different 

components of the fear response (freezing, hormonal and autonomic responses). 

However, this model also adds the possibility of an active coping response, whereby, 

through activation of the basal nucleus of the amygdala and the striatum, the animal 

can learn to avoid the fear-arousing event in the future. Further work has confirmed 

that amygdala-striatal interactions also play a key role in the acquisition of avoidance 

responses in humans (Delgado et al., 2009). 

Interestingly, the anticipation of losses as well as loss aversion have been associated 

with very similar neural correlates. Responses in the amygdala and ventral striatum 

have been found to track the anticipation of monetary losses during risky decision-

making tasks (Kahn et al., 2002; Hahn et al., 2010; Canessa et al., 2013) and to reflect 

individual differences in loss aversion (Tom et al., 2007; Canessa et al., 2013; Sokol-

Hessner et al., 2013). In addition, as discussed above, De Martino et al. (2010) have 

provided causal evidence for a necessary role of the amygdala in loss aversion. 

Physiological responses consistent with the expression of fear have also been reported 

to correlate with loss aversion, such as SCRs, heart rate and pupil dilation (Sokol-

Hessner et al., 2009; Hochman and Yechiam, 2011). 

Taken together, the studies discussed above point towards the hypothesis that fear 

processing is likely an integral component of loss aversion. 
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Figure 1-2. Summary of models of integral emotional influences on choice. A. 

Emotion-imbued choice (EIC) model, drawing on the risk as feelings hypothesis, 

reproduced from Lerner et al. (2015). B. LeDoux’s model of fear processing, 

suggesting that amygdala-striatal interactions underlie active avoidance of aversive 

stimuli, and may be responsible for the integral effect of fear in loss averse choices. 

Reproduced from LeDoux and Gorman (2001). 

1.2.4 Emotion as a proxy for value / subjective utility 

Prospect Theory itself makes key assumptions about an integral role of emotions in 

choice. Although Prospect Theory was not directly derived by eliciting people’s 

feelings to predict choice, an implicit assumption of the theory is that subjective value 

or utility is a proxy for feelings, which in turn influence choice. Kahneman expresses 

this assumption in his book, Thinking, Fast and Slow, p.286: “…Humans described by 

Prospect Theory are guided by the immediate emotional impact of gains and losses” 

(Kahneman, 2011). He explains this assumption by the interaction between two 

opposing systems (System 1 and System 2) during the decision-making process. 

System 1 is the “emotional” system, fast and automatic and requiring no or very little 
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effort or voluntary control to operate. In contrast, the “cognitive” System 2 is more 

deliberative, reflective and slow and operates via the allocation of cognitive resources 

and effortful mental computations. 

Some early neuroimaging research has tried to separate these two systems in the brain, 

with regions such as the striatum, amygdala, medial PFC, OFC and insula proposed to 

constitute the “emotional” brain, and regions such as the dlPFC, rostral PFC, and 

posterior parietal cortex forming the “cognitive” brain (see Cohen, 2005 for a review 

applied to economic decisions). However more recent research indicates that there is 

no clear distinction between these two systems, and in particular, “no clear evidence 

for a unified system that drives emotion” (Phelps et al., 2014, p.265), suggesting that 

such a dual-systems view may not hold and that the interaction between emotion and 

decisions is much more intricate. In this review, Phelps et al argue that emotion per se  

has value, and as such can be encoded in value-related areas such as the vmPFC 

(Winecoff et al., 2013) and integrated during the decision-making process in the same 

manner as any other decision variable or attribute. This is consistent with Kahneman’s 

view that utility is a proxy for emotional associations with decision options. However, 

this hypothesis has never been empirically tested by explicitly measuring emotions; 

this is what I set out to do in the study presented in Chapter 3 of this thesis. 

In addition, this assumption that emotion is an integral component of choice suggests 

that changing emotion should influence decisions. A review of this literature 

examining the role of external, incidental, influences of emotions on decisions is 

presented in the next section. 

1.3 Incidental effect of emotions on decisions 

Previous research has shown that everyday decisions, such as consumption behaviour, 

indulgence, or assessing risk, are influenced by emotional states. In the laboratory, 

there are two major ways in which incidental emotions can be experimentally 

manipulated in order to study their effect on decision-making. The first type of 

methods includes mood induction procedures, whereby a relatively long-lasting 

affective state is induced in the participants who are then given a decision-making task 

to complete while in that state (see section 1.3.1). The second way includes more subtle 
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trial-by-trial emotional priming procedures, whereby an emotional stimulus is 

presented to the participant on each trial of the task prior to making a decision (see 

section 1.3.2). 

1.3.1 Mood and stress induction procedures 

1.3.1.1 Behavioural findings 

Stress is generally characterized by a short and specific physiological, neural and 

hormonal response to an event (McEwen, 2007) and may in that sense not fit the 

criteria for the definition of a mood state, which usually refers to a more long-lasting 

state than a response to a specific external event. However, I include in this section 

both effects of stress and other mood induction procedures together, as the methods 

used to study these effects are usually very similar: an induction procedure followed 

by the decision-making task. 

Mood induction procedures are varied and range from showing participants a short 

emotional film clip (Lerner et al., 2004; Han et al., 2012; Lee and Andrade, 2014), 

having them read some emotional scenarios either fictional (Raghunathan and Pham, 

1999) or from news report (Johnson and Tversky, 1983), or asking them to write about 

a past emotional event or about things that make them feel a given emotion (Lerner 

and Keltner, 2001; Yen and Chuang, 2008). Various stress induction procedures have 

also been used to induce fear and anxiety, including threat of shock (ToS), the Trier 

social stress test (TSST), and the cold pressor test (CPT). During the ToS paradigm 

(Schmitz and Grillon, 2012), subjects typically perform a cognitive task while either 

at risk of or safe from rare, but unpleasant, electric shocks. The TSST (Kirschbaum et 

al., 1993) has several variants but usually involves telling the participant that he/she 

will have to give a presentation and/or perform mental arithmetic in front of a panel of 

academic judges, followed by an anticipation phase and the actual test phase, often 

video recorded. Performance on a subsequent decision-making task is usually 

compared with performance of another group of subjects who perform a sham version 

of the TSST, in which they are asked to write a short essay or perform some arithmetic 

task on paper, but they don’t have to speak and there is no audience or video recording. 

In the CPT, participants have to submerge their non-dominant hand in a bucket of ice 

water (between 0 and 3°C) for 3 minutes, while control participants do the same with 
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a bucket of water at room temperature. Those methods have substantial differences: 

while ToS induces anticipatory anxiety and participants perform a decision-making 

task while at threat of receiving a shock at any moment (Engelmann et al., 2015; 

Robinson et al., 2015a, 2015b), the TSST and CPT are used because they induce a 

strong stress response, which can be measured physiologically by increased salivary 

cortisol and heart rate, and during which decision-making is measured (Lighthall et 

al., 2009; Mather et al., 2009; Porcelli and Delgado, 2009; Pabst et al., 2013; Buckert 

et al., 2014). Therefore, during ToS paradigms decisions are made under stress, 

whereas in TSST and CPT the decision-making task occurs during recovery from 

stress, after the stressful event is over. Because of this difference, these techniques may 

produce different effects on decision-making behaviour. 

A summary of studies that have used either mood or stress induction procedures 

described above to study their modulatory effect on decision-making under risk is 

presented in Table 1-1, with studies separated into those that used stress induction 

procedures such as ToS, CPT or TSST (Table 1-1A), negative mood induction (Table 

1-1B) and positive mood induction (Table 1-1C). In addition to the variability in the 

mood and stress induction procedures, the tasks used were also very different. Because 

the focus of this thesis is the examination of economic decisions in the framework of 

Prospect Theory’s value function, the last column of the table summarizes the effect 

implied by each study’s finding in terms of mood- or stress-induced changes in risk or 

loss aversion. Note, however, that many of these studies did not directly assess risk 

and loss aversion, and therefore the observed results could also be explained by other 

factors. 
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Table 1-1. Summary of effects of mood and stress induction on decision-making 

Study Task 
Mood induced 

(technique) 
Result 

Implied 

effect 

A. Stress/anticipatory anxiety induction 

(Lighthall et 

al., 2009) 
BART Stress (CPT) 

↑ risk in men 

↓ risk in women 
Depends on 

gender 

(Mather et al., 

2009) 
Driving task Stress (CPT) 

↓ risk in older adults 

(= in younger adults) 
↑ risk aversion 

(Porcelli and 

Delgado, 

2009) 

PGT (lotteries) Stress (CPT) 
↓ risk in gain domain 

↑ risk in loss domain 
↑ reflection 

effect 

(Putman et al., 

2010) 
PGT (lotteries)  

Stress 

(Administration 

of cortisol) 

↑ risk for high-risk 

gamble with large gain 

(= otherwise) 
↓ risk aversion 

(Clark et al., 

2012) 
PGT (lotteries) Fear (ToS) ↓ risk-taking ↑ risk aversion 

(Pabst et al., 

2013) 

GDT 

(modified 

version) 

Stress (TSST) 
↓ risk in loss domain 

(= in gain domain) 
↑ risk aversion 

(Buckert et al., 

2014) 
PGT (lotteries) Stress (TSST) 

↑ risk in gain domain 

(= in loss domain) 
↓ risk aversion 

(Robinson et 

al., 2015a) 
IGT Anxiety (ToS) 

↓ risk in low trait 

anxious 

↑ risk in high trait 

anxious 

Depends on 

trait anxiety 

(Robinson et 

al., 2015b) 

Framing 

effect; Delay 

discounting 

Anxiety (ToS) No effect No effect 

(Engelmann et 

al., 2015) 

PGT (50-50 

gambles vs 

safe option) 

Anxiety (ToS) No effect No effect 

B. Negative mood induction 

(Raghunathan 

and Pham, 

1999) 

One-shot 

gamble choice 

Anxiety (read 

scenario) 
↓ risk-taking ↑ risk aversion 

Sadness (read 

scenario) 
↑ risk-taking ↓ risk aversion 

(Lerner and 

Keltner, 2001) 

Risk 

perception task 

Fear (self-

description) 

↓ optimistic risk 

estimates 
↑ risk aversion 

Anger (self-

description) 

↑ optimistic risk 

estimates 
↓ risk aversion 

(Lerner et al., 

2004) 

Endowment 

effect (EE) 

Disgust  
(film clip) 

No EE (↓ selling 

prices) 
↓ loss aversion 

Sadness  

(film clip) 

Reverse EE (buying 

prices > selling prices) 
↓ loss aversion 

(Yen and 

Chuang, 2008) 

Status quo bias 

(3 choices) 

Sadness (self-

description) 
↓ status quo bias ↓ loss aversion 

(Han et al., 

2012) 
Status quo bias 

Disgust (film 

clip) 
↓ status quo bias ↓ loss aversion 

(Lee and 

Andrade, 

2014) 

Cash-out game 

(stock market 

simulation) 

Fear (film clip) ↓ risk-taking ↑ risk aversion 
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C. Positive mood induction 

(Isen et al., 

1988) 

PGT (mixed 

50-50 

gambles) 

Positive affect 
(giving bag of 

candy) 

↑ negative utility of 

losses (= for gains, no 

effect on risk) 
↑ loss aversion 

(Yen and 

Chuang, 2008) 

Status quo bias 

(3 choices) 

Happiness (self-

description) 
↑ status quo bias ↑ loss aversion 

(Lee and 

Andrade, 

2014) 

Cash-out game 

(stock market 

simulation) 

Excitement 

(task framing) 
↑ risk-taking ↓ risk aversion 

↑ means increased; ↓ decreased, = no effect. BART: Balloon Analogue Risk Task, 

PGT: Probabilistic Gambling Task, GDT: Game of Dice Task, IGT: Iowa Gambling 

Task. CPT: Cold Pressor Test, ToS: Threat of Shock, TSST: Trier Social Stressor Test.  

Instead of describing each study in detail, the main effects that seem to emerge from 

this literature on the influence of mood and stress on risky decisions are summarized 

below in four main points, although evidence is overall rather mixed.  

First, the induction of fear, stress or anticipatory anxiety tends to decrease people’s 

propensity to take risks (or increase risk aversion). This was found using a one-gamble 

shot game in a large sample (Raghunathan and Pham, 1999), a computer-based driving 

game (Mather et al., 2009), a cash-out game framed as a stock market simulation (Lee 

and Andrade, 2014), and probabilistic gambling tasks (Porcelli and Delgado, 2009; 

Clark et al., 2012). However, two recent studies, both using the ToS manipulation, 

failed to evidence any effect of anticipatory anxiety on the framing effect, temporal 

discounting (Robinson et al., 2015b), risk or loss aversion (Engelmann et al., 2015). 

Finally, a few studies reported more nuanced effects of fear or stress on risk-taking 

either due to individual differences based on trait anxiety level (Robinson et al., 

2015a), gender (Lighthall et al., 2009), or age (Mather et al., 2009), or differential 

effects in the gain and loss domains (Putman et al., 2010; Pabst et al., 2013; Buckert 

et al., 2014). A possible explanation of this fear-induced decrease in risk taking could 

come from a modulation of the perception of risk, such that when people are afraid or 

anxious they tend to overestimate the likelihood of negative events and underestimate 

the likelihood of positive events (Johnson and Tversky, 1983; Lerner and Keltner, 

2001), possibly resulting in increased risk aversion in choice. This effect also extends 

to real-life risky behaviour, such that participants induced with fear (through story 

telling) and general negative affect (continuous music listening) report a lower 
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inclination to engage in a range of hypothetical risky behaviours such as binge drinking 

or riding a bike without a helmet (Lindquist and Barrett, 2008). 

Second, there is much less evidence for an influence of positive affect on risk-taking 

than for negative affect. By framing their task as an exciting game to the participants, 

Lee and Andrade (2014) found that their original effect of fear in reducing risk taking 

was reversed, such that the excitement induced by the framing of the game resulted in 

an increase in risk taking. In an earlier study (Isen et al., 1988), inducing positive affect 

by giving participants a bag of candy before the start of the experiment had no effect 

on people’s sensitivity to gains and risk taking, leaving open the question of whether 

positive affect increases risk taking. Even though this question still needs 

investigating, it has important implications for the financial domain, since a recent 

study has suggested that excitement-induced increases in risk-taking could contribute 

to financial market bubbles (Andrade et al., 2016). 

Third, a small body of evidence using paradigms in which task performance is assumed 

to be driven by loss aversion seems to converge towards an effect of mood valence on 

loss aversion, but in the opposite direction from the effect on risk aversion, with 

positive affect increasing loss aversion and negative affect decreasing loss aversion. 

Using positive affect induction, Isen et al. (1988) found that subjects under positive 

affect were more sensitive to losses and exhibited a greater negative utility of high 

losses than subjects under neutral affect. Similarly, using a status quo bias task, Yen 

and Chuang (2008) found that the preference for the status quo option increased with 

happiness induction, but decreased with sadness induction, consistent with increased 

and decreased loss aversion, respectively. Finally, the endowment effect, which is also 

thought to result from loss aversion, was found to be eliminated following disgust 

induction, and even reversed following sadness induction (Lerner et al., 2004), 

consistent with reduced loss aversion. However, only one study to date has directly 

examined how loss aversion is affected by emotion induction, in this case anticipatory 

anxiety using ToS, and found no effect (Engelmann et al., 2015), possibly calling into 

question the interpretation of fear processing as an integral driver of loss aversion, as 

described in section 1.2.3 above. Instead a possible alternative could come from an 

emotion-induced shift in reference points. Positive affect induction may move 

someone’s reference point higher, making losses loom even larger, and vice versa for 
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negative affect induction. However, such an interpretation, taken alone, would also 

imply increased risk aversion following positive affect and increased risk-taking 

following negative affect, which does not seem supported by the current literature, 

suggesting that other processes are at play. 

Finally, a valence-driven dichotomy appears too simplistic, as several studies have 

demonstrated opposite effects of two emotions within the same valence on risk taking. 

Raghunathan and Pham (1999) found that while anxiety induction increased risk 

aversion, sadness induction in contrast increased risk seeking. Similarly, Lerner and 

Keltner (2001) induced fear and anger in separate groups of participants by asking 

them to describe three to five things, as well as the details of one particular situation, 

that make or has made them most afraid/angry. When examining optimistic risk 

estimates (the subjective perception of risk associated with positive events), they 

showed a fear-induced decrease and an anger-induced increase in optimistic risk 

estimates. A theory that could account for these effects is the appraisal-tendency 

framework (ATF; Lerner and Keltner, 2000, 2001; Lerner et al., 2015). Specifically, 

the “ATF posits that emotions predispose individuals to appraise the environment in 

specific ways toward similar functional ends” (Lerner et al., 2015, p.805). Different 

dimensions, such as certainty, pleasantness, or individual control, will influence the 

appraisal tendency attributed to the emotion and affect behaviour in a goal-directed 

manner. A dimension on which an emotion scores high will be more likely to influence 

behaviour by activating the corresponding appraisal tendency. For example the 

differential effect of fear and anger on risk-taking may be driven by the certainty 

dimension, which is high for anger and low for fear, inducing an appraisal tendency 

towards risk in angry individuals and away from risk in afraid individuals.  

1.3.1.2 Neuroimaging findings 

Only a handful of studies to date have attempted to examine the neural correlates of 

such mood effects on decision-making under risk. In the case of stress or anxiety, 

obvious candidate regions include the amygdala and striatum, which play an important 

role in adaptive fear responses (LeDoux and Gorman, 2001), as well as parts of the 

prefrontal cortex, such as the OFC, vmPFC, or dmPFC, whose activity and 
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connectivity with the amygdala have been shown to be modulated by stress (Arnsten, 

2009; Roozendaal et al., 2009; Robinson et al., 2012). 

In 2012, Lighthall et al adapted their version of the Balloon Analog Risk Task (BART) 

for fMRI. In this task, participants are required to inflate a balloon as much as possible 

but stop before it explodes. They thus face sequential choices where they have to 

decide whether to pump the balloon one more time (therefore gaining more money) or 

collect their current reward and moving to the next balloon. The behavioural findings 

from the original study (Lighthall et al., 2009) revealed no main effect of stress on risk 

taking but an exploratory post-hoc analysis demonstrated a gender difference in the 

effect of stress (induced by CPT) on risk taking: stress increased risk taking in men 

but decreased risk taking in women. In the fMRI version of the task (Lighthall et al., 

2012), which had to be adapted to fit the constraints of scanning, the authors failed to 

replicate their gender-by-stress interaction on risk-taking, with overall low risk-taking 

in all participant groups (stressed men, non-stressed men, stressed women, non-

stressed women). However, they found a post-hoc interaction on reward collection 

rates and decision times, such that male participants under stress made faster decisions 

and collected more rewards than non-stressed male participants, while female 

participants under stress made slower decisions and collected fewer rewards than non-

stressed female participants. These interactions were reflected in the activity of the 

insula and dorsal striatum (putamen) during decisions, such that stress increased 

activity in these regions for men but decreased it for women, potentially reflecting 

increased (decreased) motivation to cash out money and sensitivity to rewards in 

stressed male (female) participants.  

In a recent study (Engelmann et al., 2015), participants completed a gambling task in 

which they had to choose between a sure option and a risky 50-50 gamble. Stress was 

manipulated by having some blocks performed under threat of strong electric shocks, 

while other blocks were only associated with weak shocks. The authors did not find 

any effect of stress on gambling propensity, risk or loss aversion. However, stress 

induced significant task-related changes in the brain, namely a reduction in the 

tracking of expected subjective value and prediction of choice in the ventral striatum 

and vmPFC, as well as a reduction in connectivity between these two regions. These 

results suggest that even though choices were not affected, subjects may rely on 
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different processes when under stress, relying less on (complex) subjective value 

computations and maybe more on more simple heuristics, both strategies resulting in 

similar choices in the specific task used. 

Overall this absence of mood or stress induction behavioural effects when tested in 

fMRI may question the efficacy of these procedures in the MRI scanner, possibly due 

to the design constraints and the impossibility of adapting a mood induction procedure 

into a more flexible event-related design. In addition, except for the ToS manipulation, 

which can easily be implemented within subjects over different blocks, most studies 

described in this section had to employ between-subjects designs, where negative 

mood was typically induced in one group of participants, and positive or neutral mood 

in another. These procedures also raise the possibility that participants may easily infer 

the purpose of the experiment, and purposefully adapt their behaviour to fit with that 

purpose – known as the “good subject” effect in demand characteristics (Orne, 2009).  

1.3.2 Emotional priming techniques 

In order to address these issues, trial-by-trial emotional priming methods have also 

been used to examine emotional effects on economic decisions in a more controlled 

and automatic way. 

One technique that ensures emotional priming occurs outside of the participant’s 

awareness is subliminal priming, in which emotional pictures, such as faces portraying 

various emotions, are shown to the participant for a very short duration (usually less 

than 30ms). Even though participants do not consciously report the presence of faces, 

these are still processed in the brain, notably in the amygdala (Whalen, 1998; Morris 

et al., 1999), and can influence preference judgments of unrelated visual stimuli 

(Niedenthal, 1990; Murphy and Zajonc, 1993). In the context of consumer-related 

behaviour, Winkielman et al. (2005) found that priming thirsty participants with 

subliminal happy faces, relative to angry faces, made them pour and drink more 

beverage and increased their willingess to pay for the drink, suggesting a possible 

interaction between emotional priming and valuation processes. Another study found 

opposite effects of subliminal priming with guilt- and sadness-related words on 

indulgence and helping behaviour (Zemack-Rugar et al., 2007). Specifically guilt 



43 

 

priming decreased indulgence decisions (money allotted to purchasing a CD/DVD 

instead of school supply) and increased helping behaviour (time alloted to charity), 

while sadness priming had the reverse effect. However, there is no evidence to date 

about a possible effect of subliminal emotional primes on economic decision-making 

under risk. 

A few studies have examined this using supraliminal priming. Knutson et al. (2008) 

primed participants by showing them erotic pictures (positive primes), pictures of 

household appliances (neutral primes) or pictures of snakes and spiders (negative 

primes) for 2 seconds before having them choose between a high-risk (e.g. 50% chance 

to win and 50% chance to lose $10) and a low-risk (e.g. 50% chance to win and 50% 

chance to lose $1) gamble. Similar to some of the effects observed with positive affect 

induction above, participants chose the high-risk option more often when primed with 

positive pictures relative to neutral ones. However, negative primes had no effect on 

choice. In addition, participants performed this task during fMRI, and a conjunction 

analysis showed that the same voxels in the ventral striatum (nucleus accumbens) 

responded to both the presentation of positive (versus negative) primes and the 

anticipation of shifting to the high-risk option (versus shifting to the low-risk option). 

In addition, activity in the ventral striatum partially mediated the effect of positive 

primes on risk taking. This suggests a potential role for the ventral striatum in 

integrating emotional and risk signals into a decision variable. A few years later, a very 

similar priming paradigm was used in a financial investment task, in which subjects 

had to decide between investing in a safe bond or a risky stock (Kuhnen and Knutson, 

2011). Relative to neutral primes, negative pictures overall made people more risk 

averse (i.e. more likely to choose the safe bond), especially if their prior choice was 

already for the safe option. Overall, positive pictures did not have an effect on risky 

choice; however, they tended to make people more risk seeking in trials where their 

previous choice was already the risky stock. The authors speculated that the 

differences from the earlier study (Knutson et al., 2008) may have resulted from the 

use of more potent and arousing negative pictures in the second study. 

Using the framing effect task developed by De Martino et al. (2006), Cassotti et al. 

(2012) added an emotional priming procedure to study the effect of incidental 

emotions on the framing effect. Before each choice, participants were presented with 



44 

 

a picture from the International Affective Picture System database (IAPS; Lang et al., 

1997) for 5 seconds. A between-subjects design was used, such that a third of 

participants were primed with pleasant pictures, a third with unpleasant pictures, and 

a third were not primed (control group). Positive pictures abolished the framing effect, 

specifically by decreasing risk seeking in the loss frame, while negative pictures had 

no effect. However, the negative pictures did not distinguish between different 

emotions and consisted of a mix of fearful and sad images. These two emotions have 

been shown to have opposite effects on risk taking using mood induction in previous 

work (Raghunathan and Pham, 1999); it is therefore possible that the effects in Cassotti 

et al. (2012) cancelled each other out. 

At the time when the experiments in this thesis were planned, there was no evidence 

for a possible influence of incidental emotional primes on loss aversion, which is what 

I set out to examine in Chapter 4 of this thesis. However, a very recent study provided 

preliminary evidence that incidental fear cues, presented either during the decision or 

just before, increase monetary loss aversion (Schulreich et al., 2016). This result would 

be consistent with the hypothesis that loss aversion reflects the expression of fear 

(Camerer, 2005) and relies on fear processing systems in the brain (LeDoux and 

Gorman, 2001). Interestingly, this study may point towards some differences between 

effects of long-lasting mood induction procedures and of transient emotional primes. 

A transient fearful cue may trigger rapid fear processing and increase Pavlovian 

avoidance of losses (Seymour and Dolan, 2008; Ly et al., 2014); whereas a more long-

lasting change in mood may recruit different systems in the brain and possibly result 

in opposite effects on behaviour. 

In summary, trial-by-trial emotional priming methods have the advantage, relative to 

mood induction procedures, of being better adapted for event-related fMRI designs, as 

they allow for within-subjects manipulations, and are probably less susceptible to 

demand characteristics. One downside, however, is that the emotional experience is 

likely to be less intense and vivid than during a mood induction procedure. Even 

though the evidence for an effect of incidental emotional cues on risky decision-

making is still limited, and the low number of studies do not yet allow one to draw 

general conclusions on the specific components of emotion (valence, arousal, 
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certainty, etc) that may drive such effects, they help pave the way for some of the work 

presented in this thesis, as well as future investigations. 

1.4 Emotion and decision-making in anxiety 

Anxiety disorders constitute a major global heath burden (Beddington et al., 2008), 

and are characterized by negative emotional processing biases as well as decision-

making impairments (Hartley and Phelps, 2012; Robinson et al., 2013). Anxiety is 

therefore a relevant psychiatric construct to study in relation to this thesis given that 

the interaction between emotion and decision-making may vary with anxiety levels. In 

addition, studying emotion and decision-making processes in anxiety is important and 

could provide a better understanding of cognitive impairments in anxiety and potential 

insights into the development of psychological interventions. 

Anxiety can be examined in two ways: first as a vulnerability factor within healthy 

individuals, by studying individual difference in dispositional levels of anxiety or trait 

anxiety as measured by self-report questionnaires (Sandi and Richter-Levin, 2009; 

Bishop and Forster, 2013); and secondly as a clinical pathology, by comparing patients 

diagnosed with an anxiety disorder with healthy controls. This section examines the 

literature on emotional processing and decision-making in anxiety from both 

perspectives. 

1.4.1 Anxiety and disrupted emotional processing 

Anxiety states are sustained anticipatory responses to unpredictable threats, including 

affective, physiological and cognitive changes, and can in that sense de distinguished 

from fear, which encompasses responses to predictable threats (Grillon et al., 1991; 

Grillon, 2008; Davis et al., 2010). In many situations, anxiety defined as such is 

adaptive because it allows avoidance of potential threats in uncertain environments as 

well as increased vigilance and alertness. However, there are strong individual 

differences in the deployment of these harm-avoidance processes, with some people 

more prone to anxiety than others (high versus low level of dispositional anxiety). 

Clinical anxiety is thought to emerge through a dysregulation of such “adaptive” 

anxious response, whereby these harm-avoidance processes become permanent rather 
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than deployed in potentially threatening situations, and as a result start interfering with 

the patient’s daily life and ability to concentrate (Bishop and Forster, 2013; Robinson 

et al., 2013). 

Both dispositional and clinical anxiety have been associated with enhanced detection 

and processing of negative emotional information, particularly threat-related stimuli. 

In two similar studies (MacLeod et al., 1986; MacLeod and Mathews, 1988), subjects 

were presented with pairs of words, one threat-related and one neutral. On some trials 

a dot probe replaced one of the words, and subjects were instructed to press a button 

as quickly as possible when the probe appeared. High trait anxious individuals were 

faster to detect the probe when it replaced a threat word than a neutral word, while low 

trait anxious individuals showed no difference (MacLeod and Mathews, 1988). In 

MacLeod et al. (1986), the same effect was found between clinically anxious patients 

and healthy controls. This suggests an attentional bias towards threat-related stimuli in 

anxious individuals. Similarly, the same authors have demonstrated that unattended 

threat-related stimuli, presented outside the participants’ awareness, act as distractors 

and impair performance of anxious individuals, but not control, in a reaction time task 

(Mathews and MacLeod, 1986). This attentional bias towards threat was also 

demonstrated in younger anxious populations (children and adolescents), both clinical 

(Roy et al., 2008) and dispositional (Telzer et al., 2008), using angry (threatening) 

versus neutral faces. A meta-analysis of 172 studies confirmed the robustness of this 

threat-related attentional bias, both in different clinical anxiety disorders and high trait 

anxious individuals, with a medium effect size (Cohen’s d=0.45; Bar-Haim et al., 

2007; see also Cisler and Koster, 2010 for a review). Despite this specific threat-

induced facilitation effect on attention, it is important to note that anxiety is generally 

associated with attentional deficits, mainly poor attentional control and ability to 

flexibly allocate attention to relevant parts of changing environments (Derryberry and 

Reed, 2002; Eysenck et al., 2007). 

Neuroimaging studies have also provided converging evidence that anxious 

individuals exhibit increased neural responses, particularly in the amygdala and PFC, 

to fearful and angry faces. This has been shown both in high trait versus low trait 

anxious individuals (Etkin et al., 2004; Stein et al., 2007; Telzer et al., 2008), as well 

as in clinically anxious patients relative to non-anxious controls (Monk et al., 2006; 
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Blair et al., 2008). A recent study has also provided evidence of increased functional 

connectivity between the amygdala and dmPFC during processing of fearful versus 

happy faces in patients with anxiety relative to healthy controls (Robinson et al., 2014). 

Finally, anxiety is also associated with difficulties in regulating emotions; both 

implicitly, as demonstrated using a task that creates emotional conflict and requires 

adaptation to that conflict to perform accurately (Etkin et al., 2010; Etkin and 

Schatzberg, 2011), and in daily life, with difficulties in deploying cognitive reappraisal 

to regulate emotions (Farmer and Kashdan, 2012). Using fMRI, impairments in 

emotional conflict adaptation in anxious individuals were shown to be associated with 

reduced connectivity between the pregenual or ventral anterior cingulate cortex (ACC) 

and the amygdala, a mechanism thought to play a central role in emotion regulation, 

with ACC hypothesized to dampen the emotional response in the amygdala (Etkin et 

al., 2010; Etkin and Schatzberg, 2011). 

1.4.2 Anxiety and economic decision-making 

An early model of anxiety suggested that intolerance to uncertainty is a pivotal feature 

of generalized anxiety disorder (GAD; Dugas et al., 1998). Anxious individuals find 

uncertain situations particularly aversive and distressing, possibly because they exhibit 

a deficit in learning about the outcomes of their actions in very uncertain environments 

(Browning et al., 2015). This deficit, and resulting intolerance to uncertainty, are likely 

to play a key role in the development and maintenance of pathological anxiety.  

In addition, such intolerance for uncertainty should have important consequences on 

economic decisions in which uncertainty and risk are involved. The results of studies 

that have investigated risk perception and risk taking in anxious individuals are 

summarized in Table 1-2, with studies separated according to whether they examine 

the effect of dispositional (Table 1-2A) or clinical (Table 1-2B) anxiety.  

  



48 

 

Table 1-2. Summary of effects of dispositional and clinical anxiety on risky 

decision-making. 

Study Task 
Manifestation 

Population 
Effect of anxiety Implied effect 

A. Dispositional anxiety in normal population  

(Maner and 

Schmidt, 

2006) 

RTBS & 

Optimism Scale 

(risk appraisals) 

Trait anxiety 

↓ risky behaviours 

↑ pessimistic risk 

estimates 

↑ risk aversion 

(Maner et al., 

2007) studies 

1 and 2 

BART 
Trait and social 

anxiety 
↓ risk-taking ↑ risk aversion 

(Miu et al., 

2008) 
IGT Trait anxiety ↓ performance unclear 

(Lorian and 

Grisham, 

2010) 

RTBS (30-item 

version) & 

BART 

Social anxiety 
↓ risky behaviours 

↓ risk-taking 
↑ risk aversion 

(Xu et al., 

2013) 

Framing effect 

task 
Trait anxiety ↑ framing effect 

↑ risk aversion 

for gains & 

risk-seeking for 

losses 

B. Clinical anxiety (compared with healthy controls) 

(Butler and 

Mathews, 

1983) 

Risk estimation 

questionnaire 
Adults 

↑ pessimistic risk 

estimates 
↑ risk aversion 

(Maner et al., 

2007) study 3 

RTBS (14-item 

version) 
Adults ↓ risky behaviours ↑ risk aversion 

(Mueller et al., 

2010) 
IGT (modified) Adults 

↓ decisions leading 

small but 

consistent losses 
unclear 

(Giorgetta et 

al., 2012) 
PGT (lotteries) Adults ↓ risky choices 

↑ risk and/or 

loss aversion 

(Galván and 

Peris, 2014) 

Cups Task 

(choice of safe 

vs risky option) 

Adolescents 
↓ risk for losses 

= for gains 

↑ risk aversion 

for losses or   ↑ 

loss aversion 

(Ernst et al., 

2014) 

Accept/Reject 

50-50 mixed 

gambles 

Adolescents No effect = loss aversion 

↑ means increase, ↓ means decrease, = means no effect. RTBS: Risk-Taking Behaviors 

Scale (Weber et al., 2002), BART: Balloon Analogue Risk Task, IGT: Iowa Gambling 

Task, PGT: Probabilistic Gambling Task. 
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Specifically, there is clear evidence that anxious individuals, relative to their non-

anxious counterparts, (i) overestimate the risk associated with negative events (Butler 

and Mathews, 1983; Maner and Schmidt, 2006), (ii) report a lower inclination to 

engage in everyday risky behaviours (Maner and Schmidt, 2006; Maner et al., 2007; 

Lorian and Grisham, 2010), and (iii) avoid risky options during decision-making tasks 

under risk  (Maner et al., 2007; Lorian and Grisham, 2010; Giorgetta et al., 2012). This 

suggests that anxiety is associated with exacerbated risk aversion (see also Hartley and 

Phelps, 2012; Paulus and Yu, 2012; Robinson et al., 2013 for reviews), which is 

consistent with a model of anxiety based on the intolerance of uncertainty. 

Interestingly, Maner et al. (2007) also collected reports of people’s willingness to 

engage in risky everyday behaviour in other patient groups, including patients with 

mood disorders and patients with learning disorders and/or no formal axis I diagnosis. 

They found that group differences in reported risky behaviours were driven 

specifically by a reduction in the anxious patient group. By contrast, the level of 

reported risk-taking in the other patient groups was similar to that of healthy controls, 

suggesting that increased risk avoidance may be specific to anxiety, rather than driven 

by negative affect in general. 

Another piece of evidence for the role of anxiety in decision making comes from a 

study that showed increased susceptibility to the framing effect with trait anxiety (Xu 

et al., 2013), suggesting an increased propensity to both choose the sure option when 

framed as a gain (decreased risk taking in the gain domain) and avoid the sure option 

when framed as a loss (increased risk taking in the loss domain). Interestingly, this 

was the first study to also examine the neural basis of these individual differences. 

Their results show that high trait anxious individuals exhibit increased amygdala 

activity and amygdala-vmPFC connectivity during decisions consistent with the 

frame, but decreased dorsal ACC activity and ACC-vmPFC connectivity during 

decisions counter to the frame. This is consistent with previous reports of enhanced 

amygdala responses and amygdala-prefrontal connectivity in anxiety (Etkin et al., 

2004; Stein et al., 2007; Robinson et al., 2014), suggesting a role for this amygdala-

prefrontal brain network. 
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Interestingly, this increased susceptibility to the framing effect in anxiety may be 

mediated by genetic differences in the promoter region of the serotonin transporter 

gene (5-HTTLPR). Carriers of the short allele at this locus, which results in reduced 

serotonin transporter expression and function, relative to carriers of the long allele, 

exhibit enhanced dispositional anxiety (Lesch et al., 1996; Crişan et al., 2009), are 

more susceptible to the framing effect (Crişan et al., 2009; Roiser et al., 2009), and 

show increased amygdala responses during decisions made in accord with the frame 

but fail to engage amygdala-PFC coupling mechanisms during decisions made counter 

to the frame (Roiser et al., 2009).  

However, these studies focusing on the framing effect did not directly examine the 

neural basis of increased risk avoidance in anxiety. A recent study in adolescents with 

or without an anxiety disorder did so (Galván and Peris, 2014), using a decision-

making task where participants had to choose between a safe and a risky option both 

matched in expected value (e.g. $2 for sure or 1/5 chance of $10). Half the trials used 

gains, and half used losses. The behavioural results showed reduced risk taking in 

anxious adolescents compared to controls, but only in the loss domain. The 

neuroimaging findings revealed that anxiety was associated with decreased ventral 

striatum response during risky choice involving gains and increased amygdala 

response during risky choice involving losses. Although these responses were not 

directly associated with the behavioural effect, they suggest that non-anxious 

individuals may make decisions mainly by processing gains in the ventral striatum, 

while anxious individuals may more heavily rely on an amygdala-mediated influence 

of losses. 

Finally, a possible link between anxiety and loss aversion has not been established. 

There is a strong hypothesis that loss aversion should increase with anxiety, given the 

associated negative biases in emotional and attentional processes, as well as the 

heightened sensitivity to large negative outcomes (Hartley and Phelps, 2012; Paulus 

and Yu, 2012). However, there has been no study to date examining loss aversion in 

relation to anxiety in adult participants. One study looked at this question in 

adolescents (Ernst et al., 2014) and found no difference in loss aversion between 

anxious and healthy adolescents. In two other studies (Giorgetta et al., 2012; Galván 

and Peris, 2014), the gambling tasks used involved potential losses as well as gains, 
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but did not allow differentiating between risk and loss aversion, such that the observed 

decreased propensity to choose the risky options in those tasks could be driven by 

increased risk aversion, increased loss aversion or a combination of both. Similarly, 

the increased susceptibility to the framing effect observed in high trait anxious 

individuals (Xu et al., 2013) could be driven by increased loss aversion, but also by 

increased risk aversion for gains and decreased risk aversion for losses. No study to 

date has examined risk and loss aversion parameters in anxiety using a Prospect 

Theory framework – this is what I address in Chapter 5 of this thesis. 

1.5 Thesis aims and summary of chapters 

The overall aim of this thesis is to contribute a mechanistic account of the 

computational and neural processes by which emotion influence economic decisions, 

both from an integral and incidental perspective. From the evidence discussed in this 

introductory chapter it seems clear that emotion plays a key role in decision-making, 

and that decisions can be altered by manipulating emotions. However, how exactly 

these processes unfold is still largely unknown and represents the focus of this thesis 

over three main questions addressed in the three separate experimental chapters. 

1.5.1 Chapter 3: how are feelings integrated into economic decisions? 

Chapter 3 provides a computational account of the integral influence of emotion on 

economic choices. In particular, it aims to examine how self-report feelings are 

integrated during the decision-making process and to develop a computational model 

of choice that integrates both feelings and value and by doing so performs better than 

traditional models. This model may also explain how the integration of feelings during 

choice results in loss aversion. 

1.5.2 Chapter 4: how do incidental emotional cues modulate loss aversion? 

With a focus on loss aversion, the aim of the study presented in Chapter 4 was to 

examine whether and how incidental emotional cues alter loss aversion, with the 

hypothesis, given the (limited) literature detailed in section 1.3.2, that fearful cues may 

increase loss aversion while happy cues may instead reduce loss aversion. In addition, 

Chapter 4 also examined the neural mechanisms involved in this incidental influence 
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of emotions on loss aversion, with a particular focus on the amygdala and the ventral 

striatum, as well as individual differences in these processes due to trait anxiety. 

1.5.3 Chapter 5: how does anxiety affect the relative contribution of risk and 

loss aversion to economic choice? 

Finally, given the association between trait anxiety and emotion-induced changes in 

loss aversion described in Chapter 4, as well as the lack of studies to date examining 

separate contributions of risk and loss aversion to choice in anxiety disorders, the study 

presented in Chapter 5 aimed to address these two points. It details the results of a 

behavioural study comparing a group of clinically anxious patients with matched 

healthy controls on a Prospect Theory-derived gambling task that allows separating 

risk and loss aversion within the same model of choice. In addition, it aims to expand 

the results of Chapter 4 observed in high trait anxious, but non-clinical, individuals, to 

a sample of clinically anxious patients.     
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Chapter 2 Experimental methods 

This chapter will describe the common methods that were used in the experimental 

chapters of this thesis. Specifically the Prospect Theory framework under which 

economic decisions were studied and modelled is described, followed by the detail of 

two pilot studies that were run to develop a reliable emotional priming procedure 

together with a sensitive gambling task. 

2.1 Participant screening: Mini International Neuropsychiatric 

Interview (MINI) 

For the studies presented in Chapter 4 and Chapter 5, as well as pilot work presented 

in section 2.5 below, participants were screened using the Mini International 

Neuropsychiatric Interview (MINI; Sheehan et al., 1998). The MINI is a short, 

structured diagnostic interview to clinically assess symptoms of neuropsychiatric 

disorders, in accordance with the Diagnostic and Statistical Manual of Mental 

Disorder-IV (DSM-IV) and the International Classification of Diseases (ICD) 10th 

revision for psychiatric disorders. The complete version of the MINI contains 16 

sections; however, for screening purposes and because some sections are redundant, I 

used a version that was reduced to 12 sections, assessing the following: major 

depressive episode, (hypo) manic episode, panic disorder (PD), agoraphobia, 

obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), alcohol 

abuse and dependence, non-alcohol psychoactive substance use disorders, psychotic 

disorders (and mood disorder with psychotic features), anorexia nervosa, bulimia 

nervosa, and generalized anxiety disorder (GAD). The following four sections were 

not included: dysthymia, suicidality, social phobia, and antisocial personality disorder. 

Healthy volunteers (pilot studies, Chapter 4, and healthy controls in Chapter 5) were 

included only if they did not meet criteria for any of the aforementioned sections of 

the MINI. GAD patients (Chapter 5) had to meet criteria for GAD to be included in 

the study and were excluded if they met criteria for manic or hypomanic episodes (past 

or current), psychotic disorders, alcohol or substance abuse (in the last 6 months) or 
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dependence. Given that their comorbidity with GAD is high, the other disorders such 

as depression and other anxiety disorders did not constitute exclusion criteria. 

2.2 Self-report questionnaires and verbal IQ measure 

Both emotional processing and economic decision-making are subjective and highly 

likely to vary across individuals. In order to examine such individual differences in the 

studies presented in this thesis, participants completed self-report mood and 

personality questionnaires at the end of each study. 

The first questionnaire that was systematically administered is the State Trait Anxiety 

Inventory (STAI, Spielberger et al., 1983). The STAI contains 40 questions, divided 

into two sub-groups. The first 20 questions assess state anxiety, asking people to 

evaluate their current state of anxiety by rating the intensity of their feelings “right 

now, at this moment”. The 20 questions are statements that people have to rate with 

one of the following four answers: “Not at all”, “Somewhat”, “Moderately so”, “Very 

much so”. Ten of these statements, such as “I am tense” or “I feel nervous” are directly 

coded, with a score ranging from 1 (Not at all) to 4 (Very much so). The other 10 

statements, such as “I am relaxed” or “I feel secure” are reverse coded, with a score 

ranging from 4 (Not at all) to 1 (Very much so). The next 20 questions assess trait 

anxiety – the more stable proneness to anxiety – by asking people to indicate how they 

generally feel using the following four answers: “Almost never”, “Sometimes”, 

“Often”, “Almost always”. Again, scores on 11 of the questions are directly coded 

from 1 to 4, such as “I worry too much about something that doesn’t really matter” or 

“I lack self-confidence”; while the other 9 questions, such as “I am a steady person” 

or “I am satisfied with myself”, are reverse coded. Overall state and trait anxiety scores 

are obtained by adding scores of the 20 questions for each subscale. Both scores can 

range from 20 (low anxiety) to 80 (high anxiety). With respect to trait anxiety, previous 

studies have found that most people from a healthy population will score between 20 

and 50 (mean score around 35; Knight et al., 1983; Crawford et al., 2011); while a 

score above 50 may indicate some clinical relevance for an anxiety disorder (Kvaal et 

al., 2005; Julian, 2011). In this thesis individual differences in trait anxiety were 

examined in pilot studies (see sections 2.5.1 and 2.5.2 below), as well as Chapter 4 

and Chapter 5, either by including trait anxiety scores as a covariate in the analyses, 
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running a Pearson’s correlation between trait anxiety scores and a dependent variable 

of interest, or performing a median split on trait anxiety scores and comparing 

participants with high versus low anxiety. 

The second questionnaire that participants completed was the Beck Depression 

Inventory (BDI, Beck et al., 1961) to assess depressive symptoms. The questionnaire 

contains 21 questions corresponding to different symptoms. For each question, 

participants have to pick one of four statements best corresponding to how they have 

been feeling over the past few days. The four statements are presented in order of 

increasing severity, with the first statement corresponding to a score of 0 (e.g. “I do 

not feel sad”), then a score of 1 (e.g. “I feel sad”), 2 (e.g. “I am sad all the time and 

can’t snap out of it”), or 3 (e.g. “I am so sad or unhappy that I can’t stand it”). The 

overall BDI score is obtained by summing each individual question’s score, and can 

range from 0 to 63, with a score above 15 typically considered clinically relevant 

(Sprinkle et al., 2002). Because the distribution of BDI scores is often positively 

skewed in the general population (Lasa et al., 2000), with a majority of people scoring 

very low (below 10 – Beck et al., 1988), it is difficult to use BDI scores as a covariate 

in analyses, except for studies in patient populations. Therefore, I primarily used BDI 

scores for screening purposes, excluding participants who scored above 15.  

Participants in all studies except for Chapter 3 were also administered the Wechsler 

Test of Adult Reading (WTAR; Wechsler, 2001). In this test, the participant is 

presented with a list of 50 words and asked to read them out loud to the experimenter 

in the order from 1 to 50. There is no time limit, and one point is scored for each word 

read correctly. The final score out of 50 can then be converted to an IQ score according 

to standard score conversion tables and age, averaging 100 in the population. The 

WTAR was mainly used to match anxious patients and healthy controls in the study 

presented in Chapter 5, and to ensure no participant exhibited a strong IQ deficit. 

2.3 Gambling tasks 

All experimental chapters of this thesis used gambling tasks to assess decision-making 

biases such as loss and risk aversion. All versions of the task used 50/50 gambles, in 

which participants have 50% chance of winning a monetary amount and 50% chance 
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of losing a monetary amount. These gambles are referred to as mixed gambles 

throughout. Based on expected value (EV) calculation, one should accept the gamble 

whenever the win amount is higher than the loss amount. However, in reality, most 

people reject gambles when the win and loss amounts are close and only start accepting 

gambles when the win amount is about twice as big as the loss. This is thought to be 

driven by loss aversion. 

In the pilot studies (section 2.5 below) and in Chapter 4, which focused on loss 

aversion and its modulation by emotional cues, all trials of the task involved mixed 

gambles as described above and participants had to decide whether to accept or reject 

such gambles. In Chapter 5, however, in order to estimate both loss and risk aversion, 

gain-only trials were added to the task; they involved choosing between a sure win and 

a 50/50 gamble between a higher win and £0. This allowed to assess sensitivity to risk 

separately from sensitivity to losses. In order to have a consistent trial presentation, 

the mixed gamble trials in Chapter 5 were also presented as a choice between a sure 

option (always £0) and the mixed gamble between a win and a loss (instead of a choice 

to accept or reject the mixed gamble). Finally, in Chapter 3, given that the gambling 

task was run on its own and independent from priming with emotional cues, trials did 

not need to be repeated for each emotion condition and more trials could be included 

in the task, allowing the addition of loss-only trials. Those were symmetrical to the 

gain-only trials, in that they involved a choice between a sure loss and a 50/50 gamble 

between a higher loss and £0. Adding these trials was useful to be able to estimate risk 

attitudes separately in the gain and loss domains. 

A key point to take into account when designing such gambling tasks is the range of 

monetary amounts to use throughout the task. Because all the experiments were 

incentive-compatible, only relatively small amounts (lower than £30) were used, so 

that it was believable for participants that some of these amounts (or the average 

amount over several randomly-selected trials) would be paid to them for real at the end 

of the experiment. In addition, amounts needed to be paired (a win and a loss in the 

mixed gambles, a small win and a high win in the gain-only trials, a small loss and a 

high loss in the loss-only trials), such that the range of pairs would cover the range of 

indifference points (the gamble expected value at which a participant would accept or 

reject the gamble with a probability of 0.5) across subjects. For example, let us imagine 
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a set of mixed gambles consisting of all possible pairing between wins ranging from 

£5 to £10 and losses also ranging from £5 to £10. With such a set, where the highest-

value gamble is win £10/lose £5, it is likely that participants with a high degree of loss 

aversion will not accept any gamble of the set. If this happens, it will be impossible to 

estimate loss aversion reliably for these participants as their indifference point will be 

unknown. In order to reliably estimate decision-making parameters, such as risk and 

loss aversion, one needs to make sure that there are enough trials where the participant 

decides to gamble and enough trials where they decide not to. Two solutions are 

possible to ensure this.  

First, gamble EVs may encompass a large range of values, such that every participant’s 

indifference point will be included in that range. This is what was implemented in 

Chapter 3, where the gamble set was built using combinations of amounts ranging 

from £0.20 to £12. However, the drawback of this method is that it requires a lot of 

trials in order to include all possible gain/loss combinations. This was a problem for 

all the other studies presented in this thesis, which used emotional priming and 

required all gamble trials to be repeated identically for each emotion condition.  

Therefore, the other option, which allowed reducing the number of trials per emotion 

condition in Chapter 4 and Chapter 5, was to build a gamble matrix centred on each 

participant’s indifference point. Therefore, participants completed a practice session 

of the gambling task, which included a staircase procedure and during which potential 

wins and losses were varied parametrically as follows. The gamble EV (EV = 0.5*win 

amount + 0.5*loss amount) was adjusted every 2 trials in order to reach the 

participant’s indifference point (the EV for which gambles were accepted half of the 

time on average). Each set of 2 trials contained one “high” EV gamble and one “low” 

EV gamble. The EV of accepted gambles was decreased by 0.5 while the EV of 

rejected gambles was increased by 0.5. Potential gains ranged between £6 and £24 and 

potential losses between £1 and £12. For each trial, the gain/loss pair was chosen 

randomly among all pairs with the same desired EV. Once the indifference point for 

mixed gambles (and for gain-only gambles in Chapter 5) were determined, gamble 

matrices could be build centred on this indifference point with a relatively low number 

of trials (49 trials for mixed gambles, 25 trials for gain-only gambles), allowing 

repetition of the gamble set across the different emotional conditions. 
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A potential risk with using such a staircase procedure during practice is that 

participants could learn to “play” the staircase; i.e. accept very few gambles during 

practice to make the gamble expected value increase, then accept most gambles during 

the main task to maximize their outcome. Therefore, subjects whose gamble 

acceptance rate was less than 10% during practice and more than 90% in the main task 

were excluded. However this did not occur for any of the participants in Chapters 4 

and 5. Other exclusion criteria based on participants’ data from the gambling task 

included very high (>95%) or very low (>5%) gamble acceptance rate throughout the 

entire task (practice and main task), suggestive of insensitivity to value; inconsistent 

choices as reflected by values of the µ parameter (see Eq. 2-6 below) close to 0 and 

aberrant parameter estimates (e.g. negative loss aversion values), suggestive of bad 

understanding of the task; or a high number of missed trials (>10%) throughout the 

task. 

2.4 Modelling of economic decisions 

2.4.1 Model definition and estimation 

The different models of gambling decisions used throughout this thesis were all 

derived from Prospect Theory’s subjective value function equation.  

Utility or subjective value (u) of monetary gains (x>0) is defined as: 

𝑢(𝑥) =  𝑥𝝆𝒈𝒂𝒊𝒏           (Eq. 2-1) 

where 𝜌𝑔𝑎𝑖𝑛 represents the curvature of the function (or diminishing marginal utility) 

in the gain domain: a 𝜌𝑔𝑎𝑖𝑛 value lower than 1 indicates diminishing sensitivity to 

changes in gain value as gain value increases and results in risk aversion in the gain 

domain, while a 𝜌𝑔𝑎𝑖𝑛 value higher than 1 indicates risk seeking for gains.  

Utility or subjective value (u) of losses (x<0) is defined as: 

𝑢(𝑥) = − 𝝀 ∙ (−𝑥)𝝆𝒍𝒐𝒔𝒔        (Eq. 2-2) 

where 𝜆 represents loss aversion: a 𝜆 value higher than 1 indicates overweighting of 

gains relative to losses during decision-making and a 𝜆 value lower than 1 the 
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converse; and 𝜌𝑙𝑜𝑠𝑠 represents the curvature of the function (or diminishing marginal 

utility) in the loss domain: a 𝜌𝑙𝑜𝑠𝑠 value lower than 1 indicates diminishing sensitivity 

to changes in loss value as loss value increases and results in risk seeking in the loss 

domain, while a 𝜌𝑙𝑜𝑠𝑠 value higher than 1 indicates risk aversion for losses.  

Using the above equations the utility of each gamble can then be calculated as follows: 

𝑢(𝑔𝑎𝑚𝑏𝑙𝑒) =  𝑢(𝑚𝑖𝑥𝑒𝑑) =  0.5 ∙ 𝐺𝝆𝒈𝒂𝒊𝒏 − 0.5 ∙ 𝝀 ∙ |𝐿|𝝆𝒍𝒐𝒔𝒔     (Eq. 2-3) 

for mixed gamble trials, with G the value of the gain and L the value of the loss, and: 

𝑢(𝑔𝑎𝑚𝑏𝑙𝑒) =  𝑢(𝑔𝑎𝑖𝑛 𝑜𝑛𝑙𝑦) =  0.5 ∙ 𝐺𝝆𝒈𝒂𝒊𝒏 − 𝑆𝝆𝒈𝒂𝒊𝒏      (Eq. 2-4) 

for gain-only trials, with G the value of the high, risky gain and S the value of the sure 

gain, and: 

𝑢(𝑔𝑎𝑚𝑏𝑙𝑒) =  𝑢(𝑙𝑜𝑠𝑠 𝑜𝑛𝑙𝑦) =  − 0.5 ∙ 𝝀 ∙ |𝐿|𝝆𝒍𝒐𝒔𝒔 +  𝝀 ∙ |𝑆|𝝆𝒍𝒐𝒔𝒔     (Eq. 2-5) 

for loss-only trials, with L the value of the high, risky loss and S the value of the sure 

loss. 

These utility values are then entered in a softmax function to estimate the probability 

of accepting or choosing each gamble (coded as 1 if the gamble was chosen and 0 if 

the gamble was rejected or the sure option chosen): 

𝑃(𝑔𝑎𝑚𝑏𝑙𝑒) =  
1

1+ 𝑒−µ ∙ 𝑢(𝑔𝑎𝑚𝑏𝑙𝑒)      (Eq. 2-6) 

where 𝜇 is the logit sensitivity or “inverse temperature” parameter, an index of choice 

consistency for repeated identical gambles, equivalent to the maximal slope of a 

logistic regression curve: higher 𝜇 values indicate more consistent choices. Best-fitting 

parameters were estimated using a maximum likelihood estimation procedure in 

Matlab. 

 

According to the literature, most people exhibit a 𝜆 parameter greater than 1, indicative 

of loss aversion, and 𝜌 parameters lower than 1, indicative of risk aversion in the gain 

domains and risk seeking in the loss domain (Kahneman and Tversky, 1979; Tversky 

and Kahneman, 1992; Fox and Poldrack, 2014). Whether 𝜌𝑔𝑎𝑖𝑛 and 𝜌𝑙𝑜𝑠𝑠 are different 

or can be estimated as a single parameter is unclear, as many studies failed to 
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demonstrate a difference (for a review see Fox and Poldrack, 2014). In Chapter 3 of 

this thesis, which is the only study where the gambling task included both gain-only 

and loss-only trials, allowing 𝜌𝑔𝑎𝑖𝑛 and 𝜌𝑙𝑜𝑠𝑠 to be estimated separately, there was no 

significant difference, and the model with a single 𝜌 parameter performed better. 

In summary, for Chapter 3, equations 2-3, 2-4 and 2-5 were used to calculate gamble 

utility for mixed, gain-only, and loss-only trials, respectively, except that a single 𝜌 

parameter (𝜌𝑔𝑎𝑖𝑛 =  𝜌𝑙𝑜𝑠𝑠 =  𝜌) was estimated. For Chapter 4, as well as pilot studies 

(section 2.5 below), given that the task contained only mixed gambles, only equation 

2-3 was used to estimate 𝜆, with the assumption that 𝜌𝑔𝑎𝑖𝑛 =  𝜌𝑙𝑜𝑠𝑠 =  1 (because the 

curvature of the utility function could not be estimated without the inclusion of at least 

some gain-only trials in the task). For Chapter 5, equations 2-3 and 2-4 were used 

given that the task included a combination of mixed and gain-only gambles, again with 

a single 𝜌 parameter (𝜌𝑔𝑎𝑖𝑛 =  𝜌𝑙𝑜𝑠𝑠 =  𝜌). 

2.4.2 Model comparison: Bayesian Information Criterion (BIC) 

In order to perform model comparison, BIC scores (Schwartz, 1978) were calculated 

for each model and each participant using the following equation: 

𝐵𝐼𝐶 =  −2 ∙ 𝐿𝐿 + 𝑘 ∙ ln (𝑁)      (Eq. 2-7) 

where k represents the number of parameters in the model, N the number of trials used 

to estimate the parameters, and LL the loglikehood of the model calculated using the 

estimated best fit parameters. Comparing BICs is similar to a loglikelihood ratio test 

with the addition that the number of parameters in the model is taken into account and, 

therefore, models with more parameters are penalised.  

BIC scores were then summed across participants before being compared between 

models. Lower BICs represent better model fits. 
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2.5 Development of the emotional priming procedure and loss 

aversion task 

The face stimuli used as emotional primes throughout this thesis consisted of pictures 

from the NimStim Face Stimulus Set (http://www.macbrain.org/resources.htm). A set 

of 40 identities was chosen (20 male faces and 20 female faces), and each face stimulus 

was presented depicting either a neutral, happy, or fearful expression, resulting in a set 

of 120 face stimuli (primes). Surprised faces were also included in the pilot studies but 

were then discarded to reduce the task duration for the fMRI study (Chapter 4). For 

the object control condition, used in pilot study 2, Chapter 4 and Chapter 5, 20 pictures 

of light bulbs, obtained from the internet, were selected as a non-face control.  

2.5.1 Pilot study 1: subliminal priming 

In order to study the emotional modulation of loss aversion without the participant 

realising the goal of the study, the first pilot study used subliminal emotional primes 

as a procedure to manipulate emotions outside of the participants’ awareness. 

2.5.1.1 Methods 

The design of an example trial is presented in Figure 2-1. Each trial of the task started 

with the presentation of a prime for 16.7ms (unknown to the participant), 

corresponding to the duration of one refresh of the screen for a refresh rate of 60 Hz. 

This was immediately followed by the presentation of a mask (scrambled face image) 

for 283ms. Participants were then presented with a mixed gamble and had to decide 

whether to accept or reject it (no time limit). There was a 1s fixation cross presented 

before the start of the next trial. 

The primes belonged to one of the following 5 conditions: happy face, fearful face, 

surprised face, neutral face (no emotion control), scrambled image (no face control). 

For each face condition, the mask was a scrambled image of the face presented 

immediately before. When there was no prime, a scrambled image of a neutral face 

was presented for 300ms (combined duration of prime and mask). Images were all 

resized to 462 (width) x 588 (height) pixels. Scrambled images were created using 
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Matlab, dividing the original image into 33 x 42 squares of 14 x 14 pixels each, and 

then randomising the position of each square on the image. 

 

Figure 2-1. Task design – pilot study 1. Participants completed 450 trials of this task, 

with 90 trials for each of the following 5 emotion prime conditions: happy face, fearful 

face, neutral face, surprised face, and scrambled image like the mask. On each trial, 

the prime was presented subliminally for 16.7ms, immediately followed by a mask 

consisting of a scrambled image of the prime for 283ms. The gamble was then 

presented on the screen and participants had to press the left or right arrow button to 

indicate their choice to accept or reject the gamble. 

Psychtoolbox (version 3; http://psychtoolbox.org/; Brainard, 1997; Kleiner et al., 

2007) was used for visual presentation of stimuli. The reliability of timings was tested 

using a photodiode, which detected the presence of a white square shown at the top-

left corner of the screen at the same time as the prime (the white square was only 

present during preliminary tests and was removed when participants performed the 

task). The current produced by the photodiode could then be recorded and analysed 

with precise temporal resolution, confirming that the stimuli were indeed on the screen 

for the duration of one refresh (16.7 ms). 

Participants completed 90 trials per condition, randomly interspersed, leading to a total 

of 450 trials, presented in 3 blocks of 150 trials each with short breaks in between. 

Each set of 90 trials was constructed as follows: 81 gambles from all possible gain/loss 

pairs with gains ranging from £8 to £24 in £2 increments and losses ranging from -£6 

to -£14 in £1 increments, as well as 9 catch trials with all possible gains and a “loss” 

of zero. Those catch trials were added to ensure participants paid attention to the task, 

as the obvious choice on these trials should be to accept the gamble.  

http://psychtoolbox.org/
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Participants were not instructed about the presence of faces in the task. They were 

simply told that the aim of the task was to study their gambling behaviour. The 

presence of the scrambled image was explained as follows: “A scrambled image, made 

of squares filled with different colours (see below, left picture), will appear quickly at 

the beginning of each trial. This is to indicate you that the trial is about to start and 

that you should get ready to evaluate the upcoming gamble and decide to accept or 

reject it as quickly as possible.” 

After the task participants completed a short debriefing questionnaire designed to 

assess whether they noticed the presence of the primes and asking them to guess the 

purpose of the study. After that they completed a follow-up task. They were explained 

that on some trials of the first task, a face was flashed very quickly before the 

presentation of the scrambled image and had to complete a recognition task. 

Specifically, two faces were presented on each trial, one that was used as a prime in 

the first task and one that was novel, and they had to indicate which one they thought 

they saw during the first task. In addition, valence and arousal ratings were collected 

for all the faces. At the end of the study, participants completed mood questionnaires 

(BDI, STAI – see section 2.2 above). 

2.5.1.2 Participants and payment 

Thirty-five participants were recruited from the University College London subject 

pool to participate in the study. Two subjects had to be excluded because they made 

random choices and only accepted the gamble at chance level on catch trials; three 

additional subjects were excluded because they accepted the gamble on less than 3% 

of the trials, making their loss aversion impossible to estimate by the model. The final 

sample had 30 participants (13 males, 17 females, mean age = 26 years ± 7.40, age 

range: 19 to 52). The study was approved by the UCL departmental ethics committee 

and all subjects were paid for their participation in an incentive compatible manner. 

Specifically, they started the task with £20 and the average outcome of 10 randomly 

selected trials was added or removed to this initial endowment. 
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2.5.1.3 Results 

Loss aversion (𝜆) was estimated using the Prospect Theory model described in section 

2.4.1 above. Specifically, equation 2-3 was used to estimate 𝜆, with the assumption 

that 𝜌𝑔𝑎𝑖𝑛 =  𝜌𝑙𝑜𝑠𝑠 =  1. When estimated across all trials independent of emotion 

condition, average loss aversion was 2.099 ± SD 0.60, significantly greater than 1 

(t(29)=10.03, P<0.001). When estimated separately for each of the 5 emotion 

conditions and analysed in a repeated-measures ANOVA, there was no main effect of 

emotion condition on loss aversion (F(4,116)=1.172, P=0.327, for details see Table 

2-1 below). However, when trait anxiety scores were added in the ANOVA as a 

covariate, a significant emotion*trait anxiety interaction emerged (F(4,112)=3.188, 

P=0.016). To investigate which effects were driving the interaction, all pairwise 

differences in loss aversion between two emotion conditions were calculated and 

correlated with trait anxiety. This revealed that the interaction was primarily driven by 

a negative correlation between trait anxiety and the change in loss aversion from 

neutral to surprised faces (r(30)=-0.544, P=0.002) and a trend for a negative correlation 

between trait anxiety and the change in loss aversion from neutral to fearful faces 

(r(30)=-0.310, P=0.095), but no association between trait anxiety and the change in 

loss aversion from neutral to happy faces (r(30)=-0.091, P=0.634).  

2.5.1.4 Limitations and changes for subsequent studies 

Examining the recognition task data revealed that participants were not able to perform 

above chance in recognizing the faces that were used in the main task (mean 

performance = 50.09% ± SD 7.01), suggesting that primes were not consciously 

remembered. However, based on the debriefing questionnaires, six participants (20%) 

were able to correctly guess the purpose of the experiment; 14 participants (46.67%) 

spontaneously noticed the presence of faces flashed before the prime without being 

prompted for it, and an additional seven participants (21 participants total – 70%) 

reported the presence of a face when prompted about the content of something 

appearing before the scrambled image. Although the results were promising and 

participants were not able to identify the specific emotions associated with the faces, 

these answers from the debriefing questionnaires indicated that the priming procedure 

was not completely subliminal. For this reason, I decided to next pilot a version of the 
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task where the primes were presented supraliminally, but with a cover story to avoid 

participants deducing the true goal of the experiment (demand characteristics; Orne, 

2009). 

Table 2-1. Emotional modulation of task variables and interaction with trait 

anxiety – pilot study 1. 

 Happy Fearful Surpr. Neutral Scrbl. 

One-way 

repeated-

measures 

ANOVA 

Interaction 

with trait 

anxiety 

Paccept 
0.361 

(0.189) 

0.350 

(0.180) 

0.356 

(0.180) 

0.357 

(0.176) 

0.350 

(0.189) 

F(4,116)=0.86 

P=0.49 

F(4,112)=2.50 

P=0.047* 

Loss 

aversion 

2.077 

(0.644) 

2.121 

(0.596) 

2.087 

(0.566) 

2.091 

(0.593) 

2.125 

(0.641) 

F(4,116)=1.17 

P=0.33 

F(4,112)=3.19 

P=0.016* 

RTgamble 

(s) 

1.422 

(0.613) 

1.387 

(0.543) 

1.398 

(0.553) 

1.370 

(0.560) 

1.370 

(0.532) 

F(4,116)=0.79 

P=0.53 

F(4,112)=0.58 

P=0.68 

For each condition, means and standard deviations across participants are reported, for 

the following variables: probability to accept the gamble (Paccept), loss aversion 

parameter (λ), and reaction time to decide whether to accept or reject the gamble in 

seconds (RTgamble). The main effect of condition and its interaction with trait anxiety 

were assessed and the corresponding statistics are reported in the last two columns. 

None of these variables were modulated by emotional condition. The emotional 

modulation of gamble acceptance and loss aversion (λ), but not of reaction times, 

varied according to trait anxiety. Surpr. stands for Surprise and Scrbl. for Scrambled.  

2.5.2 Pilot study 2: supraliminal priming with cover story 

In the next pilot study, the gambling task was embedded in a working memory task 

and participants were told that the aim of the study was to investigate how memory 

was affected by emotions.  

2.5.2.1 Methods 

All stimuli used in this pilot study, as well as in Chapter 4 and Chapter 5, were 

resized to a resolution of 200 (width) x 300 (height) pixels and were displayed on a 

black background using Cogent 2000 (www.vislab.ucl.ac.uk/cogent.php) running 

under Matlab. 
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Participants started the study with a practice memory task (20 trials) where an array of 

2, 4, or 6 faces or objects were presented on the screen for 3 seconds. All stimuli from 

a given array always pertained to the same condition: happy faces, fearful faces, 

surprised faces, neutral faces, or objects. The objects were pictures of light bulbs added 

as a non-face control instead of the scrambled images in pilot study 1. After a 1.5s 

fixation cross, one of the stimuli was shown in the centre of the screen surrounded by 

empty boxes at the 2, 4, or 6 locations from the original array, and participants had to 

click on the box where that stimuli was previously located in the array. Participants 

were then told that in order to make the memory task more challenging, they would 

have to perform a distracting gambling task while holding the stimuli in memory. They 

were then given a practice gambling task to complete. This practice gambling task 

contained 20 trials and corresponded to the start of a double staircase procedure. 

Specifically, the first 10 trials included 5 gambles with an EV of 10 (which are usually 

always accepted), and 5 gambles with an EV of -2 (which are usually always rejected). 

Gain and loss values were chosen at random within combinations of values that gave 

the desired expected value, with gains not exceeding £30 and losses not exceeding 

£15. If at least 3 gambles of a given EV (e.g. 10) were accepted, the EV for the 

following 5 trials was decreased by 1; while if at least 3 gambles out of 5 were rejected 

(e.g. in the case of an expected value of -2) then the EV was increased by 1. 

During the main task, participants completed 180 trials with a similar double staircase 

procedure. The 180 trials were divided into 18 mini-blocks of 10 trials each; 5 trials 

with a “low” (subjective) expected value and 5 trials with a “high” (subjective) 

expected value, both determined by increasing or decreasing expected value depending 

on the choices from the previous mini-block. This time, the adjustments in EV were 

±0.5 (instead of ±1 during the practice), which allowed more sensitivity in determining 

the indifference point. In addition, each of the 5 trials belonged to one of the 5 emotion 

conditions, and the adjustment in EV from one mini-block to the next was done 

separately for each emotion condition (rather than based on the average choice of the 

5 trials as in the practice). In summary, participants completed 36 trials of each 

condition. 

Each trial of the main task (Figure 2-2) started with the presentation of an array of 2, 

4, or 6 stimuli for 3s (the size of the array was randomly determined at the beginning 
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of each trial) that participants had to memorise. They were then presented with the 

mixed gamble and had to decide (with no time limit) whether to accept or reject it by 

clicking on the “Accept?” or “Reject?” box. Finally one stimulus from the array was 

shown on the centre of the screen and participants had to click on the box where the 

stimuli was originally located. 

After the end of the task participants completed a rating task to rate all the face stimuli 

on valence and arousal, mood questionnaires (BDI, STAI) and a debriefing that 

assessed their perception of the goal of the study, their strategy on both the memory 

and the gambling parts of the task, and a final question asking whether they thought 

the emotional content of the faces may have impacted their gambling decisions.  

 

Figure 2-2. Task design – pilot study 2. Participants completed 180 trials of this task, 

with 36 trials for each of the following 5 emotion prime conditions: happy face, fearful 

face, neutral face, surprised face, and object (light bulb). On each trial, an array of 2, 

4, or 6 primes, all pertaining to the same condition, was presented for 3s and subjects 

were instructed to memorise the location of each stimulus on the screen. The gamble 

was then presented and participants had to decide whether to accept or reject it. After 

making their choice, one of the stimuli presented in the initial array was shown at the 

centre of the screen and participants had to remember where it was located in the initial 

array. For both gambling and memory responses, participants used the mouse to click 

on the corresponding box (accept or reject for the gamble, location on the screen for 

the memory probe), and had no time limit to make those responses. 
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2.5.2.2 Participants and payment 

Thirty-seven participants were recruited from the University College London subject 

pool to participate in the study. One subject was excluded because of past alcohol 

dependence and psychotic symptoms; one because of high BDI score of 31 and 

borderline past depressive episode. One subject’s data was lost because of a Matlab 

error. Two additional subjects had to be excluded because of very inconsistent choices 

in the gambling task, making their loss aversion parameter impossible to reliably 

estimate (and reflected in low values for the consistency parameter μ: 0.084 and 

0.00012). The final sample consisted of 32 participants (14 males, 18 females, mean 

age = 25.41 years ±9.19, age range: 18 to 57). The study was approved by the UCL 

departmental ethics committee and all subjects were paid for their participation in an 

incentive compatible manner. Specifically, they started the task with £15 and the 

average outcome of 10 randomly selected trials was added or removed to this initial 

endowment. 

2.5.2.3 Results 

Analyses were conducted similarly to pilot study 1 (see section 2.5.1 above). Average 

loss aversion, estimated across all trials, was 2.024 ± SD 1.11, significantly greater 

than 1 (t(31)=5.218, P<0.001), and very close to the mean loss aversion estimate from 

pilot study 1. There was also no difference in loss aversion between the five emotion 

conditions (one-way repeated-measures ANOVA: F(4,124)=0.796, P=0.530; for 

details see Table 2-2 below). However, when trait anxiety scores were added in the 

ANOVA as a covariate, a significant emotion*trait anxiety interaction emerged 

(F(4,120)=2.945, P=0.023), consistent with pilot study 1. Examining correlations 

between trait anxiety scores and pairwise differences in loss aversion, the interaction 

was primarily driven by a negative correlation between trait anxiety and the change in 

loss aversion from neutral to fearful faces (r(32)=-0.381, P=0.031), which did not 

achieve significance in pilot study 1. The correlation between trait anxiety and the 

change in loss aversion from neutral to surprised faces was also negative, but not 

significant (r(32)=-0.277, P=0.12). Similar to pilot study 1, trait anxiety was not 

associated with differences in loss aversion between neutral and happy faces (r(32)=-

0.100, P=0.587).   
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Table 2-2. Emotional modulation of task variables and interaction with trait 

anxiety – pilot study 2. 

 Happy Fearful Surprise Neutral Object 

One-way 

repeated-

measures 

ANOVA 

Interaction 

with trait 

anxiety 

Paccept 
0.547 

(0.176) 

0.556 

(0.157) 

0.545 

(0.169) 

0.545 

(0.171) 

0.556 

(0.159) 

F(4,124)=0.24 

P=0.91 

F(4,120)=2.88  

P=0.026* 

λ (loss 

aversion) 

1.992 

(1.092) 

2.020 

(1.107) 

2.053 

(1.117) 

2.048 

(1.224) 

1.994 

(1.074) 

F(4,124)=0.80 

P=0.53 

F(4,120)=2.95 

P=0.023* 

RTgamble 

(s) 

1.987 

(0.736) 

1.983 

(0.820) 

1.998 

(0.706) 

1.954 

(0.685) 

1.958 

(0.630) 

F(4,124)=0.18 

P=0.95 

F(4,120)=0.07  

P=0.99 

WM 

accuracy 

0.642 

(0.130) 

0.624 

(0.126) 

0.610 

(0.139) 

0.642 

(0.133) 

0.608 

(0.136) 

F(4,124)=1.39 

P=0.24 

F(4,120)=0.14  

P=0.97 

For each condition, means and standard deviations across participants are reported, for 

the following variables: probability to accept the gamble (Paccept), loss aversion 

parameter (λ), reaction time to decide whether to accept or reject the gamble in seconds 

(RTgamble), and working memory (WM) accuracy collapsed across the 3 difficulty 

levels. The main effect of condition and its interaction with trait anxiety were assessed 

and the corresponding statistics are reported in the last two columns. None of these 

variables were modulated by emotional condition. The emotional modulation of 

gamble acceptance and loss aversion (λ), but not of reaction times or working memory 

accuracy, varied according to trait anxiety. 

2.5.2.4 Conclusions, limitations, and changes for subsequent studies 

No participant guessed the actual goal of the study when asked in the debriefing, 

suggesting that this new design was better adapted to account for demand 

characteristics than the subliminal priming procedure. In addition, the memory task 

has the advantage to ensure that participants are paying attention and actually encoding 

the prime stimuli. 

However, this second design still suffered from a few limitations that needed to be 

addressed. First, the fact that the staircase procedure was implemented throughout the 

entire task meant that participants could potentially learn to “play” the staircase and 

make the gamble EV increase over time, thus maximising their outcome and moving 

away from their real indifference point. Moreover, because the adjustment in EV from 

one mini-block to the next was allowed to vary separately for each emotion condition, 

the final set of gambles on which analyses were run may have been different for each 

emotion condition, making them harder to compare. To address this issue, I decided 
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for studies presented in Chapters 4 and 5 to have a longer practice gambling task 

running through the entire staircase, allowing to estimate the participant’s indifference 

point right after the practice session. I was then able to build a gamble set for the main 

task centred on this indifference point and repeated identically for each emotion 

condition. 

Second, people did not perform very well in the 6-stimulus memory task. Even though 

most participants performed above chance (average memory accuracy for 6 stimuli: 

0.381 ±0.123; 4 stimuli: 0.605 ±0.155, 2 stimuli: 0.919 ±0.0897), they reported in the 

debriefing finding it difficult to encode 6 stimuli in such a short time, especially with 

the interference of the gambling task. In addition, when adapting this task for the fMRI 

(Chapter 4), the inclusion of jitters between the different onsets increased the duration 

of the period between encoding and retrieval from 1.5s to 10s, thus making the memory 

task more challenging because of this extra delay. Therefore, the 6-stimulus condition 

was dropped for subsequent versions of this task.   

Finally, because of timing considerations in the scanner, and because fearful and 

surprised face seemed to have a very similar effect in both pilot studies, the surprise 

condition was also dropped for subsequent versions of the task in order to focus on the 

comparison between the effects of a positive emotion (happy faces), a negative 

emotion (fearful faces), no emotion control (neutral faces) and no emotion-no face 

control (objects). 

In conclusion, these pilot studies allowed the development of an emotional priming 

procedure that was (i) not subject to the technical limitations of subliminal priming, 

and (ii) embedded in a cover story to effectively conceal the real goal of the experiment 

and prevent demand characteristics. In addition, they helped to optimise the 

determination of gain/loss matrices for the gambling task: using a staircase to target 

each participants’ indifference point then building a matrix centred on that indifference 

point. Such a design improved sensitivity whilst minimizing the total number of trials 

and duration of the task to use in the scanner (Chapter 4) and with a patient population 

(Chapter 5). 
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Chapter 3 How feelings predict economic choice: models 

of affective decision-making 

3.1 Abstract 

Intuitively, how we feel about potential outcomes will determine our decisions. 

Indeed, one of the most influential theories in psychology, Prospect Theory, implicitly 

assumes that feelings govern choice. Surprisingly, however, very little is known about 

the rules by which feelings are transformed into decisions. Here, we characterize a 

computational model that uses feelings to predict choice, and reveal that this model 

predicts choice better than existing value-based models, showing a unique contribution 

of feelings to decisions, over and above value. Similar to Prospect Theory value 

function, feelings showed diminished sensitivity to outcomes as value increased. 

However, loss aversion in choice was explained by an asymmetry in how feelings 

about losses and gains were weighted when making a decision, not by an asymmetry 

in the feelings themselves. The results provide new insights into how feelings are 

utilized to reach a decision. 

3.2 Introduction 

How would you feel if you won an award for outstanding professional achievement? 

How would you feel if your marriage broke apart? Intuitively, answers to these 

questions are important, as they should predict your actions. If the prospect of losing 

your spouse does not fill you with negative feelings you may not attempt to keep the 

unit intact. But how exactly do feelings associated with possible outcomes relate to 

actual choices? What are the computational rules by which feelings are transformed 

into decisions? While an expanding body of literature has been dedicated to answering 

the reverse question, namely how decision outcomes affect feelings (Mellers et al., 

1997; Kermer et al., 2006; McGraw et al., 2010; Kassam et al., 2011; Carter and 

McBride, 2013; Rutledge et al., 2014; Yechiam et al., 2014), little is known of how 

feelings drive decisions about potential outcomes.  
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Here, we examine whether feelings predict choice and build a computational model 

that characterizes this relationship. We turn to Prospect Theory (Kahneman and 

Tversky, 1979; Tversky and Kahneman, 1992) as a starting point in this research. The 

assumptions of Prospect Theory (see section 1.2.4 in general introduction for details) 

suggest that if we measure a person’s feelings associated with different outcomes, we 

should be able to generate that person’s utility function and use it to predict their 

choices. While Prospect Theory is one of the most influential theories in economics 

and psychology, this implicit assumption has never been empirically tested. Thus, if 

and how feelings guide choice is still unknown. 

To address this question, in three separate studies, participants reported how they felt, 

or expected to feel, after winning or losing different amounts of money. Those self-

reported feelings were used to form a “feeling function”; a function that best relates 

feelings (expected and/or experienced) to objective value.  Next, this function was 

used to predict participants’ choices in a different decision-making task. The findings 

were replicated in all three studies. 

An intriguing question is what such a “feeling function” would look like. One 

possibility is that it resembles Prospect Theory’s value function, which relates the 

subjective value estimated from choice data to objective value. First, for most people, 

the value function is steeper for losses in comparison to gains, resulting in loss aversion 

(Kahneman and Tversky, 1979; Kahneman et al., 1991; Tversky and Kahneman, 

1991). Yet whether the impact of a loss on feelings is greater than the impact of an 

equivalent gain is still unknown. Alternatively, it is possible that the impact of gains 

and losses on feelings is similar, but that the weight given to those feelings differs 

when making a choice. Second, we examined whether, similar to Prospect Theory’s 

value function, the “feeling function” was also concave for gains and convex for 

losses, implying that feelings associated with gains and losses would become less 

sensitive to outcome value as gains and losses increase. That is, the impact of winning 

(or losing) ten dollars on feelings is less than twice the impact of winning (or losing) 

five dollars. 

Once feelings were modelled using this “feeling function” the next aim was to examine 

whether they can predict choice. There were two main complementary hypotheses 
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about the shape of the “feeling function” and its relation to choice behaviour. The first 

hypothesis was that feelings would be related to value with the same properties as 

Prospect Theory’s value function: stronger impact of losses than gains on feelings, and 

diminishing impact of value on feelings as value increases. In turn such “feeling 

function” would predict choice at least as well as Prospect Theory’s value function, if 

not better. The second hypothesis was that if feelings do not relate to value with the 

properties described above, by being symmetrical for gains and losses and/or by 

varying linearly with value, then choice behaviour may be best explained by how these 

feelings are weighted and combined during the choice process, rather than by how 

potential outcome value influences feelings in the first place. 

3.3 Materials and methods 

3.3.1 Participants 

Fifty-nine healthy volunteers (24 males, mean age 23.94y, age range 19-35y) were 

recruited to take part in the experiment via the UCL Subject Pool. Sample size was 

determined using a power analysis (G*power version 3.1.9.2; Faul et al., 2007), based 

on previous studies that have investigated the link between decision outcomes and self-

report feelings using within-subjects designs. Effect sizes (Cohen’s d) in those studies 

ranged from .245 to .798, with a mean at .401 (Kermer et al., 2006; Harinck et al., 

2007; Yechiam et al., 2014). A sample size of 59 subjects would achieve 85% power 

of detecting an effect size of .401 with an alpha of 0.05. Three subjects were excluded: 

one who showed no variation at all in their feelings ratings, one whose data from the 

gambling task were lost, and one who missed more than 50% of the trials in the 

gambling task. Final analyses were run on 56 subjects (22 males, mean age 23.91y, 

age range 19-35y). All participants gave written informed consent and were paid for 

their participation. The study was approved by the departmental ethics committee at 

UCL. 

3.3.2 Behavioural tasks 

Participants completed two tasks, the order of which was counterbalanced. 
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1. Feelings Task. In the feelings task, subjects completed 4 blocks of 40 to 48 trials 

each, in which they reported either expected (Figure 3-1A) or experienced (Figure 

3-1B) feelings associated with a range of wins and losses (between £0.2 and £12), or 

no change in monetary amount (£0). At the beginning of each trial participants were 

told how much was at stake and whether it was a win trial (e.g., if you choose the 

“good” picture, you will win £10) or a loss trial (e.g., if you choose the “bad” picture, 

you will lose £10). Their task was then to make a simple arbitrary choice between two 

geometrical shapes, associated with a 50% chance of winning versus not winning (on 

win trials) or of losing versus not losing (on loss trials). On each trial participants were 

told that one novel stimulus was randomly associated with a gain or loss (between £0.2 

and £12) and the other novel stimulus with no gain and no loss (£0). Each stimulus 

was presented once so learning was not possible. There was no way for the participants 

to know which abstract stimulus was associated with a better outcome. The probability 

of sampling each amount was controlled to ensure that each gain and each loss from 

the range was sampled twice in each block: on one instance the outcome was the 

amount at stake (win/loss) and on the other one the outcome was £0 (no win/no loss). 

Participants reported their feelings by answering the questions “How do you feel 

now?” (experienced feelings, after a choice) or “How will you feel if you 

win/lose/don’t win/don’t lose?” (expected feelings, before a choice), using a subjective 

rating scale ranging from “Extremely unhappy” to “Extremely happy”. In two of the 

four blocks (counterbalanced order) they reported their expected feelings (Figure 

3-1A), and in the other two blocks, they reported their experienced feelings (Figure 

3-1B). Expected and experienced feelings were collected in different blocks to avoid 

subjects simply remembering and repeating the same rating. The choice between the 

two geometrical shapes was simply instrumental and implemented in order to have 

subjects actively involved with the outcomes. This instrumental choice also allowed 

manipulating agency: on two of the blocks (one with expected feelings and one with 

experienced feelings) the participant made the choice between the two stimuli, and in 

the other two blocks the computer made the choice for the participant who had to 

indicate the computer choice with a button press after it was made. There were no 

differences in the data between own choice and computer choice blocks, therefore data 

was collapsed. Even when making their own choices subjects had no control over the 

outcome, thus it may not be surprising that feelings did not differ between own choice 
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and computer choice. Note, that the above relates only to the task eliciting feelings 

associated with outcomes and not, obviously, to the gambling task. 

 

Figure 3-1. Experimental design. Participants completed two tasks in a 

counterbalanced order (A,B): a feelings task where they reported (in different blocks) 

expected (A) or experienced (B) feelings associated with winning, losing, not winning 

or not losing a range of monetary amounts; and (C) a gambling task where they 

selected between a sure option and a gamble involving the same amounts as those used 

in the feelings task. Feelings were modeled as a function of value and this resulting 

feelings function F was used to predict choice in the gambling task. For each trial, 

feelings associated with the sure option, the risky gain, and the risky loss were 

extracted and entered in a cross-trials within-subject logistic regression model. 

2. Gambling Task. Participants completed a probabilistic choice task (Figure 3-1C) in 

which they made 288-322 choices between a risky 50/50 gamble and a sure option. 

Importantly, all the amounts used in the gambling task were the same as those used in 

the feelings task (between £0.2 and £12), such that feelings associated with these 

outcomes could be combined to predict gamble choice. There were 3 gamble types: 

mixed (subjects had to choose between a gamble with 50% chance of a gain and 50% 

of a loss, or sure option of £0), gain-only (subjects had to choose between a gamble 

with 50% chance of a high gain and 50% chance of £0, or a sure, smaller, gain) and 

loss-only (subjects had to choose between a gamble with 50% chance of a high loss 

and 50% chance of £0, or a sure, smaller, loss). In Prospect Theory, these 3 types of 
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choices are essential to estimate loss aversion, risk preference for gains, and risk 

preference for losses, respectively. 

3.3.3 Study groups 

Participants were recruited in two different groups that were then collapsed in the 

analyses. A group of 29 participants (20 females, mean age=23.2y) was tested on a 

first version of the task, where each of the four blocks had 48 trials with 12 different 

amounts (£0.2, £0.4, £0.6, £0.8, £1, £1.2, £2, £4, £6, £8, £10, £12) that could be won, 

lost, not won or not lost. For expected feelings participants were asked “how will you 

feel if you win/lose?”; and for experienced feelings “how do you feel now?”. The 

rating scale ranged from 1 (extremely unhappy) to 10 (extremely happy) and 

participants had to press a key (1 to 9 for ratings 1 to 9 and 0 for rating 10) to indicate 

their feelings. A second group of 30 participants (15 females, mean age=24.5y) 

completed a slightly shorter version of the feelings task that had 40 trials per block (10 

amounts instead of 12: £0.2, £0.5, £0.7, £1, £1.2, £2, £5, £7, £10, £12) and indicated 

their ratings by moving a cursor on a symmetrical rating scale, in which 0 was used as 

a reference point. Specifically, for expected feelings they were asked “if 0 is how you 

feel now, how will you feel if you win/lose?”; and for experienced feelings “if 0 is 

how you felt just before the choice, how do you feel now?”. Ratings ranged from -5 

(extremely less happy) to +5 (extremely more happy). The first group of participants 

completed the feelings task first, while the second group completed the gambling task 

first. The results (parameters and model fits from the feelings function models, and 

from the regression models to predict choice) did not differ between the two study 

groups, indicating that those features of the design that varied between the two groups 

were not a significant factor. Data were therefore collapsed for all the analyses reported 

in the main text, and study group was controlled for by adding a dummy variable as a 

between-subject factor in all the analyses.  

3.3.4 Feelings function models 

3.3.4.1 Description of models 

The impact of outcome on feelings was calculated relative to three different baselines: 

difference from the mid-point of the rating scale, difference from rating reported on 
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the previous trial (for experienced feelings only), difference from corresponding zero 

outcome. These were calculated for each win and loss amount, for expected and 

experienced feelings separately. For each subject, for each of the above methods, 

feelings function models were then fit (ten for expected feelings and ten for 

experienced feelings) to explain how feelings best relate to value outcomes: 

Feeling Model 1:   𝐹(𝑥) =  𝜷𝑥 

Feeling Model 2:   𝐹(𝑥) = {
𝜷𝒈𝒂𝒊𝒏𝑥,    𝑥 > 0

𝜷𝒍𝒐𝒔𝒔𝑥,      𝑥 < 0
 

Feeling Model 3:   𝐹(𝑥) = {
𝜷(|𝑥|)𝜸,      𝑥 > 0

−𝜷(|𝑥|)𝜸,     𝑥 < 0
 

Feeling Model 4:   𝐹(𝑥) = {
𝜷𝒈𝒂𝒊𝒏(|𝑥|)𝜸,      𝑥 > 0

−𝜷𝒍𝒐𝒔𝒔(|𝑥|)𝜸,     𝑥 < 0
 

Feeling Model 5:   𝐹(𝑥) = {
𝜷(|𝑥|)𝜸𝒈𝒂𝒊𝒏 ,      𝑥 > 0

−𝜷(|𝑥|)𝜸𝒍𝒐𝒔𝒔 ,     𝑥 < 0
 

Feeling Model 6:   𝐹(𝑥) = {
𝜷𝒈𝒂𝒊𝒏(|𝑥|)𝜸𝒈𝒂𝒊𝒏 ,      𝑥 > 0

−𝜷𝒍𝒐𝒔𝒔(|𝑥|)𝜸𝒍𝒐𝒔𝒔 ,     𝑥 < 0
 

Feeling Model 7:   𝐹(𝑥) = {
𝜷𝑥 +  𝜺,    𝑥 > 0
𝜷𝑥 − 𝜺,      𝑥 < 0

 

Feeling Model 8:   𝐹(𝑥) = {
𝜷𝒈𝒂𝒊𝒏𝑥 + 𝜺,    𝑥 > 0

𝜷𝒍𝒐𝒔𝒔𝑥 − 𝜺,      𝑥 < 0
 

Feeling Model 9:   𝐹(𝑥) = {
𝜷𝑥 +  𝜺𝒈𝒂𝒊𝒏,    𝑥 > 0

𝜷𝑥 − 𝜺𝒍𝒐𝒔𝒔,      𝑥 < 0
 

Feeling Model 10:   𝐹(𝑥) = {
𝜷𝒈𝒂𝒊𝒏𝑥 + 𝜺𝒈𝒂𝒊𝒏,    𝑥 > 0

𝜷𝒍𝒐𝒔𝒔𝑥 − 𝜺𝒍𝒐𝒔𝒔,      𝑥 < 0
 

In all these models, 𝑥 represents the value (from -12 to -0.2 for losses and from 0.2 to 

12 for gains) and 𝐹 the associated feeling. The slope between feelings and values is 
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represented by the parameter 𝜷 estimated as a single parameter in all odd-numbered 

models, or separately for losses and gains in all even-numbered models. If loss 

aversion is reflected in feelings, 𝜷𝒍𝒐𝒔𝒔 should be significantly greater than 𝜷𝒈𝒂𝒊𝒏 and 

even-numbered models should perform better overall. Similar to the curvature 

parameter of Prospect Theory value function, 𝜸 reflects the curvature of the feeling 

function, i.e. the fact that feelings become more or less sensitive to changes in value 

as absolute value increases (Feeling Models 3 to 6). In Feeling Models 5 and 6, the 

curvature is estimated separately in the gain and loss domains. If the “feeling function” 

is S-shaped (function concave for gains and convex for losses) 𝜸 values should be 

significantly smaller than 1. To ensure that a function with curvature fit the feelings 

data better than a simple linear function with an intercept, Feeling Models 7 to 10 were 

defined (as respective comparisons for Feeling Models 3 to 6), where ε represents the 

intercept, or the offset (positive for gains, negative for losses) where feelings start for 

values close to £0.  

3.3.4.2 Model estimation 

All these models were estimated in Matlab (www.mathworks.com) using a maximum-

likelihood estimation procedure (Myung, 2003). Given a Feeling Model 𝑓(𝑥, 𝜃) with 

𝜃 the set of parameters, 𝑥 the range of outcome values, and 𝑦 the feelings data to be 

modelled, the residuals from the model can be written as: 

ℰ = 𝑦 − 𝑓(𝑥, 𝜃)         (Eq. 3-1) 

Assuming an appropriate normal distribution for the residuals, the likelihood of a given 

residual ℰ𝑖 is: 

ℒ(ℰ𝑖|𝜃, 𝜎) =
𝑒

−ℰ𝑖
2

2𝜎2

√2𝜋𝜎2
        (Eq. 3-2) 

where 𝜎 represents the standard deviation of the residuals (an additional parameter to 

be estimated). Then the fmincon function was used to find the optimal set of parameters 

(𝜃, 𝜎) that minimizes the negative log likelihood (thereby maximizing the likelihood): 
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− log ℒ = − log[ℒ(ℰ|𝜃, 𝜎)] = ∑ [
ℰ𝑖

2

2𝜎2 + 0.5 log(2𝜋𝜎2)]𝑖    (Eq. 3-3) 

BIC scores were then calculated for each subject using the following equation that 

penalizes additional parameters in the model: 

𝐵𝐼𝐶 =  −2 log ℒ̂ + 𝑘 log(𝑛)       (Eq. 3-4) 

where log ℒ̂ represents the maximum of loglikelihood ℒ (estimated using equation 3-

3 above), 𝑘 the number of parameters in the model (including σ as an extra parameter), 

and 𝑛 the number of data points (trials) that were fitted. BIC scores were calculated 

for each subject and model, and then summed across subjects. Lower sum of BICs for 

a given model compared to another indicates better model fit.   

3.3.5 Prediction of gambling choice 

3.3.5.1 Estimation of logistic regression models 

Feeling values from Feeling Model 3 (found to be the most parsimonious model 

overall) were then used to predict choices in the gambling task. Specifically, for each 

participant, the feeling associated with each amount was calculated using Feeling 

Model 3 with that participant’s estimated parameters (𝜷 and 𝜸). Thus, for each trial of 

the gambling task, a feelings value was obtained for the sure option, the gain and the 

loss presented on that trial. A feelings value of 0 was used when the amount in the 

gamble trial was £0. The probability of choosing the gamble on each trial, coded as 1 

if the gamble was chosen and 0 if the sure option was chosen, was then entered as the 

dependent variable of a logistic regression (Choice Model), with feelings associated 

with the sure option (𝑆, coded negatively in order to obtain a positive weight), the gain 

(𝐺, multiplied by its probability 0.5), and the loss (𝐿, multiplied by its probability 0.5) 

entered as the 3 predictor variables: 

𝑃(𝑔𝑎𝑚𝑏𝑙𝑒) =
1

1 + 𝑒−[𝝎𝑺𝐹(𝑆)+𝝎𝑮𝐹(𝐺)+𝝎𝑳𝐹(𝐿)]
 

Logistic regressions were run on Matlab using the glmfit function, using either 

expected feelings (Choice Model 1) or experienced feelings (Choice Model 2). To 
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determine whether those modelled feelings predicted choice better than value-based 

models, 5 other comparisons models were used to predict choice from values (Choice 

Models 3 to 7; see section 3.3.5.3 below for details). 

In order to be compared across conditions and subjects, weight values ω were 

standardized using the following equation (Menard, 2004; Schielzeth, 2010): 

𝜔𝑥
′ = 𝜔𝑥 ×

𝑠𝑥

𝑠𝑦
 

where 𝜔𝑥
′  is the standardized weight value, 𝜔𝑥 the original weight for predictor 

variable 𝑥 obtained from the regression, 𝑠𝑥 the standard deviation of variable 𝑥, and 

𝑠𝑦 the standard deviation of the dependent variable 𝑦, here the binary choice values. 

Standardized weight values were extracted from each regression and compared using 

repeated-measures ANOVA and paired t-tests. 

3.3.5.2 Loss and risk aversion modelling 

Loss and risk aversion were estimated for each subject using choice data from the 

gambling task and based on Prospect Theory equations (Kahneman and Tversky, 

1979; Tversky and Kahneman, 1992; Sokol-Hessner et al., 2009; Fox and Poldrack, 

2014). The model was estimated as explained in Chapter 2 (section 2.4.1) using 

equations 2-3 to 2-6, resulting in a loss aversion parameter 𝜆 for each subject, as well 

as estimates of risk preference 𝜌 and logit sensitivity 𝜇.  

In particular, the model was used to estimate risk and loss aversion on half the choice 

data, and to predict choice from subjective utility on the other half of choice data (see 

section 3.3.5.3 below). 

To predict individual differences in loss aversion from feelings, 𝜆 values were 

extracted for each subject on the entire set of gambling choices. They were then log-

transformed [ln(𝜆+1)] to ensure positive values and normal distributions, and 

correlated across subjects with the difference in how feelings about losses and feelings 

about gains are weighted during choice (Figure 3-8).  
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3.3.5.3 Comparison models 

Choices were predicted from feelings using the previously built feelings function 

(Choice Models 1 and 2). In order to examine whether this feelings function does a 

better job at predicting choice than objective value, or choice-derived subjective 

utility, five other models were tested (Choice Models 3 to 7). 

First a simple “Value” model (Choice Model 3) tried to predict choice simply by 

entering the amounts available multiplied by probability, regardless of associated 

feelings parameters 𝛽 and 𝛾 or subjective utility parameters such as loss and risk 

aversion. For example, if the choice is a mixed gamble between winning £10 and 

losing £6, the three predictors will be £0*1 (sure option), £10*0.5 (gain), and -£6*0.5 

(loss). 

The second comparison model included log(Value) as predictors (Choice Model 4). 

Most standard economic models account for the curvature of the utility function by 

taking the logarithm of linear values. In this model and with the example above, the 

three predictors would be computed as: 0 (sure option), log(10)*0.5 (gain), and -

log(6)*0.5 (loss). 

The three additional models predicted choice from Prospect Theory-derived subjective 

utility. To do so, risk and loss aversion parameters were estimated on half the choice 

data using the model described above (section 2.4.1 and equations 2-3 to 2-6) for each 

subject. One model included value weighted with the loss aversion parameter 𝝀 (£0 ×

1, £10 × 0.5, −𝝀 × £6 × 0.5; Choice Model 5); one included value parameterized 

with the risk attitude parameter 𝝆 (£0 × 1, (£10)𝝆 × 0.5, −(£6)𝝆 × 0.5; Choice 

Model 6); and the last model included both parameters to compute subjective values 

(£0 × 1, (£10)𝝆 × 0.5, −𝝀 × (£6)𝝆 × 0.5; Choice Model 7). 

All seven logistic regression choice models were run on the other half of the choice 

data, in order to be comparable and to avoid circularity for the utility-based models. 

The gambling task was designed such that each gamble was repeated twice; therefore, 

one occurrence of each gamble was present in each half of the data. In addition, in 

order to ensure the reliability of this split-half analysis, 100 iterations were run with a 

different data splitting on every iteration. The loglikelihood of each model was 

extracted from the logistic regression and BIC scores were calculated for each subject 

(see Model comparison section 2.4.2). The sum of BIC scores across subjects was then 

calculated for each model and each iteration, in order to report the number of 
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simulations where the two feelings model performed better than the five comparison 

models. 

3.3.6 Replication and extension studies 

Two separate studies were conducted to replicate the findings and extend them to cases 

where the impact of a loss and a gain on feelings is evaluated (i) within the same trial 

(see Replication and extension study 1, section 3.4.7) and (ii) on the same unipolar 

rating scale (see Replication and extension study 2, section 3.4.8).  

3.4 Results 

The analysis followed two main steps. First participants’ reported feelings associated 

with different monetary outcomes were used to build a “feeling function”. Specifically, 

we found the best fitting computational model to characterize how feelings associated 

with different amounts of gains and losses relate to the objective value of these 

amounts. Second, we tested whether that model of feelings predicted participants’ 

choices on a separate task.  

3.4.1 Characterizing a “feeling function” 

The first aim was to characterize a model that best fit feelings to outcome value. To 

that end, for each subject ten models (see section 3.3.4 above for equations and details) 

were run to fit data of expected feelings to outcome value and ten equivalent models 

to fit experienced feelings to outcome value. The models differed from each other in 

two ways: with respects to their slope parameter (𝛽) and to their curvature parameter 

(𝛾). If models with one 𝛽 parameter fit better than models with two (one for gains 

(𝛽𝑔𝑎𝑖𝑛) and one for losses (𝛽𝑙𝑜𝑠𝑠)) that would indicate that gains and losses do not affect 

feelings to different extents. If two 𝛽 fit better that would indicate a difference in the 

magnitude of influence. If models with a curvature (𝛾) fit better than linear models 

with an intercept (𝜀) that would suggest that the sensitivity of feelings varies as 

outcomes increase, such that the feeling of winning/losing £10 is more or less intense 

than twice the feeling of winning/losing £5. BIC values, which penalise for additional 

parameters, showed that the best fitting model (i.e. the lowest BIC value) for both 
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expected (Figure 3-2A) and experienced (Figure 3-2B) feelings was Feeling Model 3 

(see Table 3-1 for BIC and R2 values), which has one γ and one β:  

𝐹(𝑥) = {
𝜷(|𝑥|)𝜸, 𝑥 > 0

−𝜷(|𝑥|)𝜸, 𝑥 < 0
         

where 𝑥 is the gain/loss amount (positive for gains and negative for losses) and 𝐹 the 

corresponding feeling.  

This suggests that: 

(i) feelings’ sensitivity to outcomes gradually decreased as outcomes increased. 

Similar to Prospect Theory’s value function, γ was significantly smaller than 1 

(expected feelings: γ=0.512 ± SD 0.26, t(55)=-14.05, P<0.001, Cohen’s d=1.88, 95% 

CI=[0.418;0.558]; experienced feelings: γ=0.425 ± SD 0.23, t(55)=-18.52, P<0.001, 

Cohen’s d=2.5, 95% CI=[0.513;0.637]), indicating that the “feeling function” was 

concave in the gain domain and convex in the loss domain. Graphically, Figure 3-3 

shows that the magnitude of feelings associated with £10 for example was less than 

twice the magnitude of feelings associated with £5.  

(ii) neither sensitivity (β) nor curvature (γ) differed between gains and losses. Equal 

sensitivity suggests that when feelings associated with losses and gains are evaluated 

separately their impact is symmetrical, such that losses are not experienced more 

intensely than gains. On the surface, these findings contradict the notion of “loss 

aversion” as proposed by Prospect Theory (Kahneman and Tversky, 1979; Kahneman 

et al., 1991; Tversky and Kahneman, 1991, 1992). However, what will be showed later 

is that while here losses do not necessarily impact feelings more than gains they are 

weighted to a greater extent when making a choice (see section 3.4.6 below). With 

regards to curvature, a single γ was more parsimonious than two separate ones for 

gains and losses, suggesting that the extent of concavity for gains was equivalent to 

the extent of convexity for losses. 

Further support for point (i) came from the fact that all models with a curvature 

parameter γ (Feeling Models 3-6) were better fits, as indicated by lower BIC values, 

than corresponding linear models with an intercept (Feeling Models 7-10). This was 

true both when comparing BICs for models fitting expected feelings (BIC difference 

< -112) and experienced feelings (BIC difference < -37) (Table 3-1). Further support 

for point (ii) came from the fact that Feeling Model 3 had lower BICs than other curved 

functions with additional parameters that fit gains and losses with separate parameters 
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(Feeling Models 4-6, see Table 3-2) for both expected and experienced feelings. In 

addition, the absolute impact of losses and gains on ratings of feelings relative to a 

zero outcome revealed no difference (F(1,55)=0.01, P=0.92, ηp
2=0.00018). 

 

Figure 3-2. Feeling Models. BIC values, summed across all subjects, are plotted for 

the ten models fitting feelings to outcome value (see section 3.3.4.1 above for 

equations), separately for (A) Expected feelings ratings and (B) Experienced feelings 

ratings. Feeling Model 3 was the most parsimonious model, as indicated by lower BIC 

values for both expected and experienced feelings. 
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Table 3-1. Feeling Models 

Model 

# 

Number of 

parameters 

Name of 

parameters 

Expected feelings Experienced feelings 

Sum of 

BICs 
Mean R2 

Sum of 

BICs 
Mean R2 

1 1 β 6625.7 0.720 6561.1 0.637 

2 2 βgain, βloss 6731.5 0.731 6695.0 0.648 

3 2 β, γ 5716.1 0.804 5594.0 0.744 

4 3 βgain, βloss, γ 5792.2 0.814 5628.4 0.758 

5 3 β, γgain, γloss 5793.4 0.814 5685.6 0.753 

6 4 βgain, βloss, γgain, γloss 5938.8 0.819 5758.4 0.764 

7 2 β, ε 5833.3 0.800 5674.7 0.742 

8 3 βgain, βloss, ε 5905.1 0.811 5757.2 0.752 

9 3 β, εgain, εloss 5947.7 0.808 5723.9 0.755 

10 4 βgain, βloss, εgain, εloss 6069.4 0.814 5851.3 0.761 

Ten different models were fit to the feelings data in order to best explain its 

relationship to amount lost and gained (see section 3.3.4.1 above for exact equations). 

All models were run separately on expected and experienced feelings. BIC scores were 

summed across subjects and R2 values averaged across subjects. Smaller BIC values 

and higher R2 values are indicative of better model fit. Note that BIC values cannot be 

directly compared between expected and experienced feelings models because the 

numerical values of the dependent variables are different. R2 alone cannot be used to 

determine the best fitting model as it does not account for the number of parameters. 

Table 3-2. Comparison between Feeling Model 3 and Feelings Models 4 to 6 

 Expected feelings Experienced feelings 

 Number of 

subjects (/56) 

BIC 

difference 

Number of 

subjects (/56) 

BIC 

difference 

Model 3 > Model 4 46 -76.1 42 -34.4 

Model 3 > Model 5 46 -77.3 44 -92.2 

Model 3 > Model 6 50 -222.6 47 -163.1 

Feeling Model 3 performed better than Feeling Models 4, 5, and 6 with additional 

parameters. The table shows the number of subjects for which Model 3 performed 

better than the compared model, as well as the statistics for the BIC difference between 

the two models (BICmodel3 – BICcomparison model). Negative values indicate that Feeling 

Model 3 was more parsimonious (had a lower BIC). 
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Figure 3-3. “Feeling function”. Plotted are expected and experienced feelings ratings 

averaged across participants for each outcome value, as well as best fitting Feeling 

Model 3. Average slope (β) across participants was 0.857 ± SD 0.36 for expected 

feelings and 0.819 ± SD 0.37 for experienced feelings (paired t-test revealed no 

significant difference between them: t(55)=0.65, P=0.52, Cohen’s d=0.087, 95% CI=[-

0.079;0.155]). Average curvature (γ) was 0.512 ± SD 0.26 for expected feelings and 

0.425 ± SD 0.23 for experienced feelings. Both γ values were significantly smaller 

than 1 (t(55)>14, P<0.001, Cohen’s d>1.87), consistent with an S-shaped function and 

indicating diminishing sensitivity of feelings to increasing outcome values. γ was also 

significantly smaller for experienced relative to expected feelings (paired t-test: 

t(55)=3.31, P=0.002, Cohen’s d=0.442, 95% CI=[0.034;0.138]), suggesting that the 

“impact bias” grows with increasing outcomes. Error bars represent SEM. 

3.4.2 Controlling for different methods of calculating feelings 

Feelings associated with losses and gains were elicited using one of two different 

scales and the impact of losses and gains on feelings were computed using three 

different methods: as the change from the mid-point of the rating scale, as the change 

from the previous rating, and as the change from the rating associated with zero 

outcome (i.e., the rating associated with not winning or not losing the equivalent 

amount). For all the Feeling Models the latter baseline resulted in the best fit (Table 

3-3). Thus only results using this baseline are reported; however, the results were the 

same when using the other two methods of calculating feelings, suggesting that the 

findings do not depend on the method of calculating feelings. 
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Table 3-3. Mean R2 values associated with each Feeling Model, separately for 

each method of calculating feelings 

 

Model 

# 

 

Parameters 

 
Expected feelings Experienced feelings 

Rating 

baseline 

used: 

Zero 

baseline  

Mid-scale 

point 

Zero 

baseline  

Mid-scale 

point 

Previous 

trial 

feeling 

1 β  0.72  0.66 0.64  0.37  0.45 

2 βgain, βloss  0.73  0.68  0.65  0.47  0.46 

3 β, ρ  0.80  0.74  0.74  0.49  0.53 

4 βgain, βloss, γ  0.81  0.77  0.76  0.68  0.54 

5 β, γgain, γloss  0.81  0.76  0.75  0.55  0.54 

6 βgain, βloss, γgain, γloss  0.82  0.79  0.76  0.69  0.55 

7 β, ε  0.80  0.74  0.74  0.49  0.52 

8 βgain, βloss, ε  0.81  0.76  0.75  0.57  0.54 

9 β, εgain, εloss  0.81  0.77  0.75  0.68  0.53 

10 βgain, βloss, εgain, εloss  0.81  0.78  0.76  0.69  0.54 

The impact of outcomes on feelings was computed using three different methods: as 

the change from the rating associated with zero outcome (i.e., the rating associated 

with not winning or not losing the equivalent amount – zero baseline), as the change 

from the mid-point of the rating scale, or as the change from the previous rating. All 

feeling models were then fit to these feelings data. For all feeling models the zero 

baseline resulted in the best fit. Note, feeling change compared to previous trial feeling 

could only be computed for experienced feelings, as actual feelings are not measured 

during expected feelings blocks. Bold indicates the best fitting model. 

3.4.3 Impact bias increases with the amount at stake 

Interestingly, comparing the functions for experienced and expected feelings revealed 

an “impact bias” that increased with amounts lost/gained. The “impact bias” is the 

tendency to expect losses/gains to impact our feelings more than they actually do 

(Gilbert et al., 1998). Specifically, the curvature (γ) was smaller for experienced 

relative to expected “feeling function” (paired t-test: t(55)=3.31, P=0.002, Cohen’s 

d=0.442, 95% CI=[0.034;0.138]), while there was no difference in sensitivity values 

(β) (t(55)=0.65, P=0.52, Cohen’s d=0.087, 95% CI=[-0.079;0.155]). Thus, although 

both expected and experienced feelings became less sensitive to outcomes as absolute 

values of loss/gain increased, this diminished sensitivity was more pronounced in 

experience than in expectation. As a result, for small amounts of money gained/lost 

people’s expectations of how they will feel were more likely to align with their 
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experience. However, as amounts gained/lost increased, people were more likely to 

overestimate the effect of outcomes on their feelings, expecting to be affected more by 

gains and losses than they actually were (i.e., the impact bias; Gilbert et al., 1998). 

Graphically, the growth of the impact bias can be observed in Figure 3-3 as the 

increase in separation between the blue line (experienced feelings) and the more 

extreme orange line (expected feelings).   

3.4.4 Feeling function predicts choice better than value-based models 

Once the function that fit feelings to outcome value was established, the next question 

was to examine how well those feelings predict choices, in particular how they are 

combined and weighted to make a decision.  

To answer this question, the Feeling Model built above from the data recorded in the 

first task was used to predict decisions made in a separate gambling task. To do so two 

logistic regressions were conducted for each participant (one using expected feelings 

– Choice Model 1 – and one using experienced feelings – Choice Model 2), where 

choice on the gambling task was entered as the dependent variable (either 1 if the 

subject selected the gamble or 0 if the subject selected the sure option) and feelings 

(predicted by Feeling Model 3) associated with the options were entered as the 

independent variable. Specifically, using the participant’s β and γ from Feeling Model 

3, the feelings associated with each available option were computed and multiplied by 

their probability. For example, if a participant was offered a mixed gamble trial where 

s/he could either choose a gamble that offered a 50% chance of gaining £10 and a 50% 

chance of losing £6 or a sure option of £0, the feelings associated with these three 

elements were multiplied by their probability: the feeling associated with gaining £10 

[𝐹(£10) = 𝛽 × 10γ × 0.5]; the feeling associated with losing £6 [𝐹(−£6) = 𝛽 ×

(−6)γ × 0.5] and the feeling associated with getting £0: [𝐹(£0) = 0 × 1 = 0]. These 

were entered in the logistic regression to predict choice (Choice Model). Each logistic 

regression thus resulted in three weight parameters 𝜔, which reflected the weight 

assigned to feelings when making a choice; one for gains (𝜔𝐺), one for losses (𝜔𝐿) and 

one for sure options (𝜔𝑆).  
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Importantly, choice models using feelings as predictors (Choice Models 1 and 2) were 

compared to five other regression models which predicted choice using: objective 

values (Choice Model 3), log of objective values (consistent with standard economics 

models to account for the curvature of utility – Choice Model 4), as well as three 

models derived from Prospect Theory, where value was weighted for each subject with 

their loss aversion parameter (Choice Model 5), risk aversion parameter (Choice 

Model 6), or both (Choice Model 7) (see section 3.3.5.3 above for more details). To 

avoid circularity and ensure all Choice Models were run on the same set of choice data, 

loss and risk aversion parameters were estimated using half the choice data; then, all 

seven Choice Models, including those in which extracted feelings were used rather 

than values, were run on the other half of the choice data. 

Choice Models 1 and 2 , in which choice is predicted from feelings extracted from the 

expected and experienced “feeling function” respectively, predicted choice better than 

all value-based comparison models (Choice Models 3-7), as indicated by lower BIC 

scores (Figure 3-4), and higher R2 values (Table 3-4). Running the split-half analysis 

100 times, with a different way to split the data on every simulation, revealed that 

models using feelings predicted choice better than all 5 comparison models in 99 

simulations out of 100, thus confirming the reliability of this finding.  

In addition, the results were the same when using the feeling functions computed with 

the other two methods of calculating feelings, as explained in section 3.4.2 above. 

Indeed, when estimating Choice Models to predict gambling choice from these feeling 

functions varying in their reference point, the finding that these feelings predicted 

choice better than the five other value-based Choice Models was replicated (Choice 

Model using expected feelings from scale mid-point: BIC=8884, R2=0.30; Choice 

Model using experienced feelings from scale mid-point: BIC=8915, R2=0.30; Choice 

Model using experienced feelings from previous trial feeling: BIC=8924, R2=0.30; 

value-based Choice Models: BIC>9025, R2<0.29).  

  



90 

 

 

Figure 3-4. Choice Models. Seven logistic regressions (Choice Models) were run to 

predict choices on the gambling task, using either feelings derived from the “feeling 

function” build using expected (Choice Model 1) or experienced (Choice Model 2) 

feelings as predictors, or using value-based comparison models (Choice Models 3-7). 

BIC scores summed across subjects (smaller BIC scores indicate a better fit) show that 

derived feelings (both expected and experienced) predict choice significantly better 

than all other value-based models. 

Table 3-4. Predictive value of Choice Models 

Model # Predictor of choice Pseudo R2 

1 Expected feelings  0.31  

2 Experienced feelings 0.31  

3 Log(Value) 0.30  

4 Value  0.26  

5 Value & Loss aversion  0.27  

6 Value & Risk aversion  0.27  

7 Value, Loss & Risk aversion 0.28  

Choice Models using feelings derived from each subject’s “feeling function” predicted 

choice better than Choice Models using value or value-derived functions. Note that all 

Choice Models were run on the exact same half of the choice data and that feeling and 

value functions were extracted from separate, independent data. Therefore, these 

Choice Models are directly comparable. Given that all models have the same number 

of parameters (𝝎𝑮, 𝝎𝑳 and 𝝎𝑺, representing the weights associated with gain, loss and 

sure option on choice, respectively), higher pseudo R2 value indicates better model fit. 
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3.4.5 Loss aversion in gambling choice 

Across all participants in the main study, mean loss aversion (𝜆), estimated from the 

gambling task date (Figure 3-1C), was 2.38 (±SD=2.19), significantly greater than 1 

(t(55)=4.72, P<0.001, Cohen’s d=0.63, 95% CI=[1.80;2.97]). In the replication and 

extension studies, mean loss aversion was 2.49 (±SD=2.10, t(19)=3.17, P=0.005, 

Cohen’s d=0.71, 95% CI=[1.51;3.48]) and 2.38 (±SD=2.14, t(29)=3.54, P=0.001, 

Cohen’s d=0.65, 95% CI=[1.58;3.18]) for study 1 and 2, respectively. However, 

because the distribution of this loss aversion parameter is often positively skewed, an 

average parameter greater than 1 may be driven by few highly loss averse subjects; 

therefore, the median loss aversion was also calculated to ensure it was above 1 

(similar to Tom et al., 2007). This was the case in all three studies, with median 𝜆 

values of 1.64, 2.17 and 1.47 for the main study, replication and extension studies 1 

and 2, respectively. Finally, gambling choices on mixed gamble trials can also be 

indicative of loss aversion. To investigate this, the proportion of risky choices was 

calculated across all subjects for each study group. Results are shown in Figure 3-5 

and reveal that participants reliably avoid gambling when the loss and gain amounts 

are the same (shown by a proportion of risky choice between 20-40% along the 

diagonal of the matrices in Figure 3-5). Across all studies their indifference point 

(gambles for which the proportion of risky choice is 50%) was shifted towards gambles 

with a positive expected value (i.e. gain value>loss value), such that the gain value 

needs to be about twice as big as the loss value for participants to start gambling more 

than 50% of the time. This indicates that loss aversion was reliably present in choice 

and across the whole range of gambles. 
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Figure 3-5. Proportion of risky choices detailed for each mixed gamble trial from 

the choice task. Each table shows the gain and loss values used to create the range of 

mixed gambles. Each gamble consisted of 50% chance to win the gain amount and 

50% chance to lose the loss amount. As detailed in section 3.3.3 above (‘Study groups’ 

paragraph), a slightly different range of values were used for the first (A) and second 

(B) groups of the main study, resulting in 71 and 69 gamble types, respectively. Both 

replication and extension studies (C and D) used the same gambles as B. Each gamble 

was presented twice. For each subject, the propensity of choosing each of these 

gambles over the sure option of £0 was calculated by averaging over the 2 trials where 

the specific gamble was shown, then the mean proportion of risky choices was 

calculated by averaging that probability across all subjects in each group. The number 

and colour inside each cell both indicate that mean proportion of risky choices. Loss 

aversion is reflected in each group by reliable avoidance of gambles with the same 

gain and loss value (proportion of risky choices always <50% along the diagonal) and 

participants starting to choose the gamble more than 50% of the time only when the 

gain value was about twice as big as the loss value. 

  



93 

 

3.4.6 Feelings associated with losses are weighted more than feelings associated 

with gains when making a decision 

Are feelings about potential losses and gains given equal weights when we deliberate 

on a decision? The “feeling function” indicated that the impact of a loss on feelings 

was symmetrical to the impact of an equivalent gain. Yet, while losses and gains may 

impact explicit feelings similarly, these feelings were weighted differently when 

making a choice.  

Specifically, 𝜔 parameters from the choice models, which predicted choices from 

feelings, demonstrated a greater weight for feelings associated with losses (𝜔𝐿) 

relative to gains (𝜔𝐺) in predicting choice (for expected feelings: t(55)=3.04, P=0.004, 

Cohen’s d=0.406, 95% CI=[0.684;3.33]; for experienced feelings: t(55)=2.93, 

P=0.005, Cohen’s d=0.392, 95% CI=[0.599;3.19]; Figure 3-6). Models that allowed 

different weights for losses and gains performed significantly better than models that 

did not (Table 3-5).  

 

Figure 3-6. Standardized weight parameters from Choice Models. The resulting 

standardized parameters from Choice Model 1 (expected feelings) and Choice Model 

2 (experienced feelings) show that the weight of feelings associated with losses is 

largest, followed by the weight of feelings associated with gains, with the weight of 

feelings associated with sure options smallest. This suggests that feelings associated 

with losses are weighted more than feelings associated with gains when making a 

choice. Error bars represent SEM. Two-tailed paired t-tests: * P<0.05. 
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Table 3-5. Choice Models in which losses and gains are weighted differently 

perform better 

 Expected Feelings Experienced Feelings 

 BIC R2 BIC R2 

Losses and gains weighted 

differently (ωS, ωG, ωL) 
17092 0.30 17156 0.30 

Losses and gains weighted 

together (ωS, ωGL) 
19594 0.18 19519 0.18 

Separate logistic regressions models were run on all choice trials to predict choice from 

feelings (either expected or experienced). Specifically, to demonstrate that feelings for 

losses and feelings for gains had a different weight on choice, choice models where 

losses and gains are weighted differently were compared to choice models where both 

losses and gains are given the same weight ωGL. This revealed that choices are 

predicted significantly better when feelings for losses and feelings for gains are 

assigned different weights. 

The results were replicated when examining the data obtained with the other two 

methods of calculating feelings (see section 3.4.2 above). Indeed, feelings about losses 

were found to be weighted more than feelings about gains in predicting choice, 

independent of the baseline used to calculate feelings (expected feelings from scale 

mid-point: t(55)=3.38, P=0.001; experienced feelings from scale mid-point: 

t(55)=3.33, P=0.002; experienced feelings from previous trial feeling: t(55)=3.20, 

P=0.002). 

Follow-up analysis revealed that this increased weighting of feelings about losses 

relative to gains was true only in mixed-gamble trials, where losses and gains are 

weighted simultaneously, but not when comparing gain-only and loss-only trials, in 

which gains and losses are evaluated at different time points (different trials). 

Specifically, logistic regressions were run to predict choice from feelings separately 

for each trial type, and weight of feelings parameters were entered into a two (trial 

type: mixed/non-mixed) by two (outcome: loss/gain) repeated-measures ANOVA. 

This revealed a significant interaction (expected feelings: F(1,55)=6.54, P=0.013, 

ηp
2=0.106; experienced feelings: F(1,55)=7.46, P=0.008, ηp

2=0.119; Figure 3-7), 

driven by a greater weight put on feelings associated with losses relative to gains 

during mixed-gamble choices (expected feelings: t(55)=3.66, P=0.001, Cohen’s 

d=0.489, 95% CI=[1.67;5.71]; experienced feelings: t(55)=2.45, P=0.018, Cohen’s 

d=0.327, 95% CI=[0.91;9.10]) but not during loss- versus gain-only trials (expected 
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feelings: t(55)=0.82, P=0.42, Cohen’s d=0.109, 95% CI=[-3.25;7.71]; experienced 

feelings: t(55)=0.79, P=0.43, Cohen’s d=0.105, 95% CI=[-2.75;6.32]). In other words, 

only when potential losses and gains are evaluated simultaneously (i.e. in the same 

gamble) are feelings about losses weighted more strongly during choice than feelings 

about gains. Results of the first replication and extension study further show that even 

when gains and losses are evaluated in the same trial during the feelings task, their 

impact on feelings does not differ, but their weight on gamble choice does (see section 

3.4.7 below for details). 

 

Figure 3-7. Influence of gamble type on differential weighting of feelings 

associated with losses versus gains. Logistic regressions were run to predict choice 

from feelings separately for each trial type. Standardized parameter estimates 

representing the decision weight of feelings were analyzed in a two (trial type: 

mixed/non-mixed gambles) by two (outcome: loss/gain) repeated-measures ANOVA. 

Significant interactions for both expected (A) and experienced (B) feelings indicate 

that more weight is given to feelings about a loss relative to a gain only when the loss 

and the gain are evaluated simultaneously (i.e. in the same gamble). Error bars denote 

SEM. Paired t-tests: * P<0.05. 

To further tease apart the asymmetrical use of feelings associated with gains and losses 

in shaping choice from the use of value alone, another logistic regression was run 

(Choice Model 8) in which raw feelings (i.e. reported feelings relative to baseline 

rather than those derived from the feeling function) were added as predictors of choice 

in the same logistic regression as objective values themselves. This was done to reveal 

the weight assigned to feelings in making a choice over and beyond the effect of value 

per se, when the two compete. The results showed no difference in the weight assigned 

to the value of losses and gains per se (t(55)<1.2, P>0.23, Cohen’s d<.17), only to the 

weight assigned to the associated feelings (expected feelings: t(55)=3.59, P=0.001, 

Cohen’s d=0.479, 95% CI=[1.29;4.55]; experienced feelings: t(55)=2.28, P=0.027, 
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Cohen’s d=0.307, 95% CI=[0.197;2.89]). Again, this was only true for mixed gamble 

choices, not for gain-only or loss-only trials where neither feelings nor values were 

weighted differently between losses and gains (Table 3-6). This suggests that losses 

are not weighted differently from gains; rather feelings associated with losses are 

weighted differently from feelings associated with gains, emphasizing the importance 

of feelings in decision making. 

Table 3-6. Weight of feelings on choice, while controlling for value, separated by 

gamble type 

 Expected feelings Experienced feelings 

 
Mixed 

gambles 

Gain/Loss-

only gambles 

Mixed 

gambles 

Gain/Loss-

only gambles 

Weight of feelings about 

gains on choice, controlling 

for value (±SD) 

-0.202 

(±6.01) 

1.976  

(±5.92) 

0.388 

(±4.25) 

3.045 

(±13.51) 

Weight of feelings about 

losses on choice, controlling 

for value (±SD) 

4.017 

(±8.11) 

2.246 

(±4.43) 

2.671 

(±5.14) 

0.029  

(±6.34) 

T-test Loss 

vs Gain 

t(53)= 2.843 0.302 2.709 1.522 

P= 0.006 0.763 0.009 0.134 

Both raw feelings (i.e. reported feelings relative to baseline rather than those derived 

from the feeling function) and objective values were added as predictor of gambling 

choice in the same logistic regression, separately for each gamble type. The weights 

of feelings about gains and losses were extracted from each regression, averaged 

across subjects, and compared using a paired t-test. Data from two participants were 

excluded because the logistic regression models could not be fit and resulted in 

aberrant parameter values. 

This last conclusion raises the possibility that individual differences in decision-

making could be explained by how people weigh feelings when making a choice. 

Indeed, using the weights from the above Choice Model 8 showed that individual 

differences in both loss aversion and the propensity to choose gambles were directly 

correlated with the extent to which feelings associated with losses were overweighted 

compared to gains while controlling for value (correlation between loss aversion and 

loss-gain weight difference for expected feelings: r(56)=0.56, P<0.001; for 

experienced feelings: r(56)=0.34, P=0.012; correlation between propensity to gamble 

and loss-gain weight difference for expected feelings: r(56)=-0.61, P<0.001; for 

experienced feelings: r(56)=-0.46, P<0.001; Figure 3-8). Specifically, subjects who 
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weighted feelings about losses more than feelings about gains were more loss averse 

and less likely to gamble.  

 

Figure 3-8. Individual differences in choice are driven by the relative weights of 

feelings. Raw feelings (i.e. reported feelings relative to baseline) and objective values 

were combined in the same regression model (Choice Model 8) to examine the extent 

to which feelings predict choice while controlling for value. Each regression used 

either Expected (A,C) or Experienced (B,D) raw feelings together with objective 

values of each of the 3 decision options (Gain, Loss, Sure option), leading to 6 weight 

parameters in each regression (𝝎𝑮
𝒇𝒆𝒆𝒍𝒊𝒏𝒈𝒔

, 𝝎𝑳
𝒇𝒆𝒆𝒍𝒊𝒏𝒈𝒔

, 𝝎𝑺
𝒇𝒆𝒆𝒍𝒊𝒏𝒈𝒔

, 𝝎𝑮
𝒗𝒂𝒍𝒖𝒆, 𝝎𝑳

𝒗𝒂𝒍𝒖𝒆, 𝝎𝑺
𝒗𝒂𝒍𝒖𝒆). The 

difference between the weight of feelings about losses (𝝎𝑳
𝒇𝒆𝒆𝒍𝒊𝒏𝒈𝒔

) and the weight of 

feelings about gains (𝝎𝑮
𝒇𝒆𝒆𝒍𝒊𝒏𝒈𝒔

) was then calculated for each individual and each 

regression and plotted against ln Loss Aversion (A,B) (parameter estimated for each 

individual from the choice data and log-transformed as ln[Loss Aversion +1] before 

running the correlation) and proportion of chosen gambles (C,D). These correlations 

indicate that the greater weight a participant puts on feelings associated with a loss 

relative to a gain when making a decision, the more loss averse (and less likely to 

gamble) they are. Note that loss aversion and propensity to gamble are highly 

correlated, therefore correlations in C and D are not independent from A and B, 

respectively, and are displayed for illustrations purposes.   
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This set of results suggests that the asymmetric influence of gains and losses on 

decision-making, as suggested by Prospect Theory, is not necessarily reflected in 

expected nor experienced feelings, nor in different weights assigned to value per se, 

but rather in the extent to which feelings associated with losses and gains are taken 

into account when making a decision. 

3.4.7 Replication and extension study 1 

3.4.7.1 Rationale 

Because the feelings task reported in the main text elicited feeling ratings about gains 

and about losses on separate trials, this design does not rule out the possibility that 

losses and gains may impact feelings differently when they are evaluated at the same 

time. 

3.4.7.2 Methods 

Thus, a follow-up study was run using exactly the same procedure as before, except 

that on each trial of the feelings task (Figure 3-9), the outcomes at stake included a 

gain, a loss, and £0 (rather than gain versus £0 on some trials, and loss versus £0 on 

different trials). Twenty participants were recruited and tested on this paradigm (12 

males, 8 females, mean age: 23.8 years, age range: 19-33). Ten participants completed 

the feelings task first, and the remaining completed the gambling task first. Block order 

within the feelings task was also counterbalanced across subjects. The range of 

amounts and rating scale used were the same as in the second study group of the main 

study (see “Study groups” paragraph above). Participants were told that each picture 

from the pair was associated with a certain probability to win, lose, or get £0, and that 

these probabilities were different for each picture and not shown to them. Therefore 

participants had to rate their feelings on every trial knowing that each picture chosen 

could result in a gain, a loss, or a null outcome (£0). To maintain consistency with the 

previous design, participants were only asked to rate their expected feelings about two 

of the three potential outcomes on each trial. These were determined such that each 

amount from £0.2 to £12 (win or lose) had at least one expected feeling rating 

associated with it; then the other rating was selected randomly from the other two 

options. The order of the two ratings was randomized. The impact of losses and gains 
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on feelings were computed using three different baselines as in the main experiment. 

For all ten feelings models, using the change from the mid-point of the rating scale 

resulted in best fit of both expected and experienced feelings data as indicated by 

higher R2 values and lower BIC values, and was therefore used for all the analyses 

below. Note that in contrast with the main experiment the zero baseline did not result 

in the best fit of feelings data. This is because in the replication study the zero outcome 

was always associated with two possible outcomes instead of one. Thus, the zero 

baseline was calculated differently – for each amount (for example £2), the ratings 

associated with £0 were averaged across all trials where that specific amount (£2) was 

at stake, regardless of third amount presented (which could be for example -£1, or -

£10) – this conceptually and mathematically different approach resulted in different 

model fits. 

 

Figure 3-9. Replication and extension study 1 – design of the feelings task. An 

additional study was run to replicate the findings and test whether gains and losses 

impact feelings differently when they are evaluated in the same trial. The task structure 

was similar to the main study (Figure 3-1), except that on each trial of the feelings 

task, three potential outcomes were presented to the subject, always including a gain, 

a loss, and a null outcome (£0). The design of the gambling task (Figure 3-1C) 

remained the same. 
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3.4.7.3 Results 

Feeling Models. Feelings were fit with the ten Feeling Models described in the main 

Methods to determine which function best relates feelings to value. If gains and losses 

impact feelings differently when evaluated at the same time, then a Feeling Model with 

different parameters (for example, a different slope β) for gains and losses, such as 

Feeling Model 4 or 6, should fit the feelings data better. However, this was not the 

case; instead the previous finding was replicated, showing that Feeling Model 3, with 

a single slope (β) and single curvature (γ) parameter for gains and losses, was the most 

parsimonious function that explains how feelings relate to value (Figure 3-10). This 

result replicates the previous finding that gains and losses impact feelings similarly 

and extends to cases where the loss and the gain are evaluated together.  

Choice Models. To examine whether and how these feelings are weighted to predict 

choice, feelings extracted from best fitting Feelings Model 3 were entered in a logistic 

regression to predict choice on the gambling task. The same seven Choice Models 

were run as in the main data, again replicating the finding that feelings predicted choice 

better than value-based models (as indicated by lower BIC scores and higher R2 values 

for Choice Models 1 and 2; Figure 3-11A). Importantly, during choice, participants 

also weighted their feelings about losses more than their feelings about gains (expected 

feelings: t(19)=2.41, P=0.027; experienced feelings: t(19)=2.32, P=0.032; Figure 

3-11B). Finally, the extent to which feelings about losses were weighted more than 

feelings about gains (in a separate Choice Model controlling for the effect of value) 

was positively associated with individual estimates of behavioural loss aversion 

(expected feelings: r(20)=0.54, P=0.014; experienced feelings: r(20)=0.44, P=0.052; 

Figure 3-11C). 
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Figure 3-10. Replication and extension study 1 – “Feeling function” and Feeling 

Model fits. Feelings data collected on the replication and extension study were fit 

using the same procedure as the main study. (A) Expected and Experienced feelings 

ratings are plotted for each outcome value as the average rating across participant. 

Error bars represent SEM. The line representing best fitting Feeling Model 3 is also 

plotted. Average slope (𝜷) across participants was 0.702 ± SD 0.24 for expected 

feelings and 0.669 ± SD 0.25 for experienced feelings. Average curvature (𝜸) was 

0.474 ± SD 0.17 for expected feelings and 0.469 ± SD 0.23 for experienced feelings 

(both significantly smaller than 1, consistent with diminishing sensitivity of feelings 

to increasing outcome values: t(19)>10, P<0.001). BIC values, summed across all 

subjects, for each of ten Feeling Models are plotted separately for (B) Expected 

feelings ratings and (C) Experienced feelings ratings. This replicates the finding of the 

main study (Figure 3-2 and Figure 3-3) that Feeling Model 3 was the most 

parsimonious model and extends it to a situation in which the impact of gains and 

losses on feelings is evaluated during the same trial. 
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Figure 3-11. Replication and extension study 1 – Choice Models. Using the same 

procedure as in the main study (Figure 3-4), choices on the gambling task were entered 

in logistic regression models with expected feelings, experienced feelings, or various 

value-based regressors as predictors. Replicating the findings, BIC scores indicated 

that derived feelings predicted choice better than all other value-based models (A), 

with feelings about losses weighted more during a decision than feelings about gains 

(B). When running an additional Choice Model where both raw feelings and values 

were added as predictor of choice (similar to Figure 3-8), thereby allowing to examine 

the predictive weight of feelings on choice while controlling for value, we replicated 

the finding that the extent to which participants overweigh their feelings about losses 

relative to gains during choice predict individual differences in loss aversion (C). Two-

tailed paired t-tests: * P<0.05. 



103 

 

3.4.8 Replication and extension study 2 

3.4.8.1 Rationale 

A recent study (McGraw et al., 2010) has reported that measuring feelings on a bipolar 

scale, like the main experiment did, resulted in no gain/loss asymmetry in feelings, 

consistent with the main findings, while using a unipolar scale (which represents the 

magnitude of feelings only) does result in an asymmetry. The suggestion is that a 

unipolar scale allows positive and negative feelings to be directly evaluated and scaled 

relative to one another. The experiment was thus rerun using a unipolar scale. 

3.4.8.2 Methods 

Data were collected on an independent group of 30 participants (15 males, 15 females, 

mean age = 24 years, age range = 18-35). The procedure was the same as in the main 

study, except that a unipolar rating scale was used in the feelings task. A power 

analysis indicated that a sample size of 30 would give 99% power to detect an effect 

size similar to the one observed in McGraw et al. (d=0.76 for the difference between 

feelings for gains and losses using the unipolar scale) at a threshold of p<0.05. Even if 

the true effect size is lower (d=0.5), achieved power would be 85%. 

On experienced feelings trials the question was “How is this outcome affecting your 

feelings now?”. On expected feelings gain trials subjects were asked “How would 

winning £X affect your feelings?” and “How would not winning £X affect your 

feelings?”, and on expected feelings loss trials “How would losing £X affect your 

feelings?” and “How would not losing £X affect your feelings?”. Participants 

responded by moving a cursor on a scale ranging from 0 (“No effect”) to 5 (“Very 

large effect”). For analysis, ratings associated with losing and with not winning were 

coded negatively. Analysis then proceeded exactly as in the main experiment. 

3.4.8.3 Results 

Feeling Models. As in the main experiment Feeling Model 3, with a single slope (β) 

and single curvature (γ) parameter for gains and losses, was the best model of the ten 

in explaining how feelings relate to value (Figure 3-12). This suggests that even when 

using the same unipolar scale that allows scaling positive and negative feelings relative 
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to each other regardless of valence, gains and losses have a symmetrical impact on 

feelings. 

Bayes Factor analysis. In addition, a Bayes Factor analysis was run on the feelings 

data using JASP (version 0.7.1; Love et al., 2015; Morey and Rouder, 2015). A 

Bayesian repeated-measures ANOVA was conducted with domain (gain/loss) and 

amount (the range of 10 amount values from £0.2 to £12) as within-subject factors. 

The winning Bayesian ANOVA model included a main effect of amount, but no effect 

of domain or domain*amount interaction, consistent with the Feeling Models result. 

In particular, adding a main effect of domain made the model about 11 times worse 

(BF[Amount Model over Amount & Domain Model]=10.87 for expected feelings and 

10.62 for experienced feelings), offering strong evidence for an absence of feelings 

asymmetry between gains and losses (for correspondence between BF magnitude and 

strength of evidence, see Jeffreys, 1961; Jarosz and Wiley, 2014). 

Choice Models. As in the main experiment, feelings extracted from best fitting Feeling 

Model 3 predicted choice better than value-based models (as indicated by lower BIC 

scores and higher R2 values for Choice Models 1 and 2; Figure 3-13A). During choice, 

participants weighted their feelings about losses more than their feelings about gains 

(expected feelings: t(29)=2.29, P=0.030; experienced feelings: t(29)=2.08, P=0.047; 

Figure 3-13B). Finally, the extent to which participants overweighted their feelings 

about losses relative to gains (in an additional Choice Model where the effect of value 

per se is accounted for) also predicted individual differences in behavioural loss 

aversion (expected feelings: r(30)=0.62, P<0.001; experienced feelings: r(30)=0.63, 

P<0.001; Figure 3-13C).  

With these additional studies, the findings from the main study were replicated in two 

further independent samples, thereby confirming and strengthening the results. 
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Figure 3-12. Replication and extension study 2 – “Feeling function” and Feeling 

Model fits. Feelings data collected on the second replication and extension study were 

fit using the same procedure as the main study. The only difference from the main 

study was the use of a unipolar rating scale to measure reported feelings. (A) Expected 

and Experienced feelings ratings are plotted for each outcome value. Error bars 

represent SEM. The line representing best fitting Feeling Model 3 is also plotted. 

Average slope (𝜷) across participants was 1.339 ± SD 0.36 for expected feelings and 

1.509 ± SD 0.34 for experienced feelings. Average curvature (𝛄) was 0.299 ± SD 0.18 

for expected feelings and 0.215 ± SD 0.16 for experienced feelings (both significantly 

smaller than 1, consistent with diminishing sensitivity of feelings to increasing 

outcome values: t(29)>20, P<0.001). BIC values, summed across all subjects, for each 

of ten Feeling Models are plotted separately for (B) Expected feelings ratings and (C) 

Experienced feelings ratings. This replicates the finding of the main study (Figure 3-2 

and Figure 3-3) that Feeling Model 3 was the most parsimonious model and extends 

the finding to cases where the impact of losses and gains on feelings is reported on a 

unipolar rating scale. 
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Figure 3-13. Replication and extension study 2 – Choice Models. Using the same 

procedure as in the main study (Figure 3-4), choices on the gambling task were entered 

in logistic regression models with expected feelings, experienced feelings, or various 

value-based regressors as predictors. Replicating the main findings, BIC scores 

indicated that derived feelings predicted choice better than all other value-based 

models (A), with feelings about losses weighted more during a decision than feelings 

about gains (B). When running an additional Choice Model where both raw feelings 

and values were added as predictor of choice (similar to Figure 3-8), thereby 

examining the predictive weight of feelings on choice while controlling for value, we 

replicated the finding that the extent to which participants overweigh their feelings 

about losses relative to gains during choice predict individual differences in loss 

aversion (C). Two-tailed paired t-tests: * P<0.05. 
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3.5 Discussion 

The relationship between human feelings and the choices they make has occupied 

scientists, policymakers and philosophers for decades. Indeed, in recent years 

numerous studies have investigated how decisions and outcomes impact people’s 

feelings (Mellers et al., 1997; Kermer et al., 2006; McGraw et al., 2010; Kassam et al., 

2011; Carter and McBride, 2013; Rutledge et al., 2014; Yechiam et al., 2014) and life 

satisfaction (Boyce et al., 2013; De Neve et al., 2015). Yet, the equally critical question 

of how people’s explicit feelings impact their decisions has been relatively neglected. 

This study addressed this important question in a controlled laboratory setting and 

modelled how feelings are integrated into decisions. The results demonstrate that 

feelings drive the decisions people make. However, the rules by which they do so differ 

from previously assumed. 

Feelings were first modelled in a “feeling function” (Feeling Model), which was then 

used to predict choices (Choice Model). The Feeling Model predicted choice better 

than objective values, and a unique contribution of feelings in the decision process was 

demonstrated. The initial hypothesis outlined in the introduction was that the “feeling 

function” would exhibit the same properties as Prospect Theory’s value function, 

namely diminishing sensitivity to increasing outcome values and stronger impact of 

losses relative to gains. However, only the first part of this hypothesis was confirmed. 

Indeed, the “feeling function” that best related feelings to value was found to be 

concave for gains and convex for losses, similar to Prospect Theory value function 

(Kahneman and Tversky, 1979; Tversky and Kahneman, 1992) and other non-linear 

utility functions (Von Neumann and Morgenstern, 1947; Bernoulli, 1954; Fox and 

Poldrack, 2014; Stauffer et al., 2014). This curvature suggests that explicit feelings, 

similar to subjective value or utility, show diminishing sensitivity to outcomes as the 

value of these outcomes increases (Carter and McBride, 2013). In other words, the 

impact of winning or losing ten dollars on feelings is less than twice that of winning 

or losing five dollars. 

However, the Feeling Model revealed no asymmetry between gains and losses, 

suggesting that the impact of a loss on feelings is not necessarily greater than the 
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impact of an equivalent gain. This was replicated in two additional studies where a 

gain and a loss were evaluated at the same time and where the associated feelings about 

gains and losses were reported using the same unipolar scale. These findings do not 

suggest that the feelings associated with losses and gains would always be 

symmetrical. To the contrary, different stimuli and context may result in varying 

asymmetric effects (Harinck et al., 2007; McGraw et al., 2010). In particular, in 

contrast to the findings reported here, a loss-gain asymmetry in feelings has been 

previously reported in a study using a one-shot game, where the stakes consisted of 

large ($200) hypothetical amounts (McGraw et al., 2010). The study examines 

responses to incentive-compatible, but relatively small, gains and losses. It is possible 

that for higher amounts an asymmetry in feelings would emerge. However, a 

speculation is that even for large stakes the “feeling function” may do a better job at 

predicting choice than value alone. That question awaits testing.  

Despite this absence of asymmetry in feelings, loss aversion was still present in choice, 

consistent with Prospect Theory. Importantly, when making a decision a greater 

weight was put on feelings associated with losses relative to gains. Therefore, the 

finding suggests that even when losses do not impact feelings more strongly than gains, 

those feelings are weighted more when making a choice than feelings about gains, 

consistent with the second hypothesis outlined in the introduction. Moreover, the 

amount by which feelings associated with losses are over-weighted relative to gains in 

making a decision relates to individual differences in loss aversion and propensity to 

gamble.  

This finding resolves a long-standing puzzle by which loss aversion is often observed 

in choice, but not necessarily in explicit feelings (Mellers et al., 1997; Kermer et al., 

2006; Harinck et al., 2007; McGraw et al., 2010). It suggests that the asymmetric 

influence of gains and losses on decision making, as suggested by Prospect Theory, is 

not reflected in expected or experienced feelings directly, neither in different weights 

assigned to value per se, but in the extent to which feelings about losses and gains are 

taken into account when making a decision. This result is consistent with the 

interpretation of an increased attention to losses when making a choice (Yechiam and 

Hochman, 2013). When losses and gains are presented separately in a decision their 

associated feelings are weighted in a symmetrical way. However, when they compete 
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for attention, as is the case in mixed gambles, people may allocate more attention to 

the feelings they would derive from the loss than from the gain, leading them to choose 

in a loss averse manner. It is also possible that people implicitly experience losses to 

a greater extent than gains (Sokol-Hessner et al., 2009; Hochman and Yechiam, 2011), 

but this difference is not exhibited in explicit reports. 

The findings also provide the first demonstration of an increasing impact bias with 

value. Specifically, there was a general impact bias in feelings (also called affective 

forecasting error), where people expect the emotional impact of an event to be greater 

than their actual experience (Gilbert et al., 1998; Kermer et al., 2006; Kwong et al., 

2013; Levine et al., 2013; Morewedge and Buechel, 2013; Wilson and Gilbert, 2013). 

Interestingly, this impact bias was not constant, but increased with value. This was due 

to a stronger curvature of experienced feelings relative to expected feelings. In other 

words, as absolute value increases, sensitivity to value diminished more quickly for 

experienced relative to expected feelings. This suggests that as people win or lose more 

money, they are more and more biased towards overestimating the emotional impact 

of these outcomes.  

Our modelling approach provides novel insight into how explicit feelings relate to 

choice. Such understanding is both of theoretical importance and has practical 

implications for policy-makers, economists and clinicians who often measure explicit 

feelings to predict choice (Benjamin et al., 2012, 2014). 
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Chapter 4 Emotional modulation of loss aversion: an 

fMRI study 

4.1 Abstract 

Adapting behaviour to changes in the environment is a crucial ability for survival, but 

such adaptation varies widely across individuals. Here we asked how humans alter 

their economic decision-making in response to emotional cues, and whether this is 

related to trait anxiety. Developing an emotional decision-making task for functional 

magnetic resonance imaging (fMRI), in which gambling decisions were preceded by 

emotional and non-emotional primes, allowed assessing emotional influences on loss 

aversion, the tendency to overweigh potential monetary losses relative to gains. The 

behavioural results revealed that only low-anxious individuals exhibited increased loss 

aversion under emotional conditions, and that this was similar for positive (happy 

faces) and negative (fearful faces) emotions. This emotional modulation of decision-

making was accompanied by a corresponding emotion-elicited increase in amygdala-

striatal functional connectivity, which correlated with the behavioural effect across 

participants. Consistent with prior reports of ‘neural loss aversion’, both amygdala and 

ventral striatum tracked losses more strongly than gains, and amygdala loss aversion 

signals were exaggerated by emotion, suggesting a potential role for this structure in 

integrating value and emotion cues. Increased loss aversion and striatal-amygdala 

coupling induced by emotional cues may reflect the engagement of adaptive harm-

avoidance mechanisms in low-anxious individuals, possibly promoting resilience to 

psychopathology. 

4.2 Introduction 

The previous chapter of this thesis demonstrated that emotions play an integral role in 

driving people’s decisions, confirming the assumptions of Prospect Theory. This 

suggests that externally manipulating a person’s emotions should alter their decisions. 

Detecting and processing such changes in our environment, and adapting our decisions 

in response to those changes, are important features of human behaviour. For example, 
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we are likely to behave and make choices differently if we receive positive or negative 

social feedback (Sip et al., 2015), or if threatening and emotionally arousing cues 

appear in our surroundings (Mobbs et al., 2007, 2009). However, such behavioural 

adaptation varies substantially across individuals, and the factors that influence how 

people alter their decision-making in emotional situations remain poorly understood.  

Trait anxiety is likely to be an important factor in people’s tendency to alter their 

decisions in response to emotional cues. Rodent studies have reported that low levels 

of anxiety are associated with adaptive stress-coping and learning behaviour (Landgraf 

and Wigger, 2002; Herrero et al., 2006). Highly anxious humans exhibit difficulty in 

modulating learning in volatile environments (Browning et al., 2015), cognitive 

control (Derryberry and Reed, 2002; Bishop, 2007, 2009) and emotion regulation 

(Etkin et al., 2010; Farmer and Kashdan, 2012); and it has been suggested that the 

flexible modulation of behaviour in response to anxiogenic environmental changes 

may be an important mechanism by which further exposure to stress can be avoided 

(Mathews and Mackintosh, 1998; Robinson et al., 2013, 2015a). Therefore it is 

possible that highly anxious individuals may fail to adapt their decision-making under 

emotional conditions. On the other hand, high anxiety is also associated with 

exaggerated responses to emotional stimuli (Etkin et al., 2004; Fox et al., 2007; Stein 

et al., 2007; Sehlmeyer et al., 2011), raising the possibility that decision-making in 

highly anxious individuals may be disproportionately influenced by emotion.  

Therefore, whether decision-making is influenced by emotional cues to a greater extent 

in low anxious individuals (potentially driven by greater behavioural flexibility), or in 

high anxious individuals (potentially driven by greater emotional reactivity) is 

unknown. To disambiguate between these hypotheses, a functional magnetic 

resonance imaging (fMRI) paradigm was developed, in which each decision 

(accepting or rejecting a gamble) was preceded by emotional or non-emotional primes. 

People’s decisions were examined in the framework of Prospect Theory (Kahneman 

and Tversky, 1979), and their loss aversion (the tendency to overweigh potential losses 

relative to gains; Kahneman et al., 1991; Tversky and Kahneman, 1991; Hardie et al., 

1993) was modelled under emotional relative to non-emotional conditions. To 

investigate whether avoidance of potential losses is altered specifically under threat, 
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or under emotional arousal in general, both negative and positive emotional cues were 

used.  

Based on prior work implicating the amygdala and ventral striatum in both loss 

aversion (Tom et al., 2007; De Martino et al., 2010; Canessa et al., 2013; Sokol-

Hessner et al., 2013) and the processing of emotional cues (Adolphs, 2002; Glascher 

and Adolphs, 2003; Dalgleish, 2004; Mobbs et al., 2006; Phelps, 2006; Pessoa and 

Adolphs, 2010; Wang et al., 2014), these regions were hypothesized to drive the 

influence of emotion on economic decisions. Specifically, two mechanistic hypotheses 

were tested: 1) that enhanced amygdala and striatum responses to potential losses 

relative to gains (“neural loss aversion”) may be directly modulated by emotion in a 

manner that drives changes in behaviour; 2) that the amygdala and ventral striatum 

play complementary roles in this modulation of decision-making, and it is their 

functional integration (as opposed to their activation) that underlies changes in loss 

aversion. 

4.3 Materials and methods 

4.3.1 Participants 

Thirty healthy volunteers were recruited by advertisement. Data from two participants 

were excluded because of a lack of behavioural consistency in the gambling task, 

making loss aversion impossible to model. Final analyses included 28 participants (15 

males, 13 females, age range 19-47 years, mean 26.5 years). Participants gave written 

informed consent and were paid for their participation in an incentive-compatible 

manner. The study was approved by the local departmental ethics committee. 

4.3.2 Procedure 

Participants attended the laboratory on two different days. On Day 1 (screening 

session), participants were administered the MINI (Sheehan et al., 1998; see section 

2.1), BDI and an MRI safety questionnaire. Eligibility for the study required: no past 

or present psychiatric disorders, including alcohol/substance dependence/abuse, 

BDI<15 and no MRI contraindications.  
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They first practiced the 20 trials of the memory task, with no gambles, thus ensuring 

that they were able to perform the task correctly and were familiar with the response 

buttons. Specifically, on each trial participants memorized the positions of two or four 

faces or objects presented on the screen for 3 s, and, after a delay of 10 s, reported the 

previous location of one of the stimuli, displayed at the centre of the screen. The 

stimuli displayed on each trial were chosen randomly among all pictures from the same 

emotion condition (all happy, all fearful, all neutral, or all objects) and (for faces) from 

the same gender (all males or all females). Difficulty and condition were randomized 

across trials. 

After this practice memory task, participants were instructed that in order to make this 

memory task more challenging, they would perform a distracting gambling task while 

holding the stimuli in memory. They next completed a training block of gamble-only 

trials. The design of the gambling task to assess loss aversion was adapted from a 

previous study (Tom et al., 2007). On each trial participants were presented with a 

mixed gamble in which there was a 50% probability of winning the amount of money 

written in green (e.g. “WIN £12”) and a 50% probability of losing the amount written 

in red (e.g. “LOSE £8”). The left/right positions of the win and loss amounts were 

randomly assigned. Participants had 2 seconds to decide whether they wanted to take 

(accept) or pass on (reject) the gamble, and indicated their choice by a button press.  

At the screening session, loss aversion was estimated in a training block of 49 trials 

(without the concurrent memory task) using a double staircase procedure to adjust the 

gambles for each participant, allowing to build a gamble matrix centred on each 

participant’s indifference point (see section 2.3 for details).  

Participants finished the training session with 40 trials of the combined memory/loss 

aversion task, in which gambles were determined using a similar staircase procedure 

to the training gambling task above. These data ensured that participants still scored 

above chance on the memory task despite interference from the gambling task, and 

that their choices on the gambles were consistent with their previously estimated 

indifference point. 
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Participants returned to the laboratory for Day 2 (scanning session) after the screening 

session (mean delay=17.92 days, range=1-44 days). During this session, they initially 

completed one block of trials of the combined emotional decision-making task (Figure 

4-1A) before entering the scanner, and four further 11-min blocks during fMRI 

scanning. Since there is large variability in loss aversion across individuals, each 

participant’s indifference point on the loss aversion task from Day 1 was used on Day 

2 to individually tailor the gamble matrix (Figure 4-1B-C).  

After the scan, participants completed the BDI and the STAI. None of the 28 

participants scored above 15 on the BDI (mean=1.68, SD±2.09, range 0-10). Mean 

trait anxiety was 31.2 (SD±6.34). Trait anxiety was used as a covariate in the analyses; 

in addition, a median split was performed, with 14 participants in a “low” trait anxiety 

group (mean=25.9, SD±3.03, range 20-30) and 14 in a “high” trait anxiety group 

(mean=36.5, SD±3.65, range 33-44). 

4.3.3 Emotional decision-making task 

Each trial started with the presentation of either two or four prime stimuli from the 

same condition (happy/fearful/neutral/object) for 3s (prime: Figure 4-1A). 

Participants were instructed to memorize their location. After a jittered delay of 2-6s, 

the gamble appeared for 2s and participants decided whether to accept or reject this 

gamble. There was another 2-6s jittered delay before the probe face/object appeared. 

Participants had 2s to indicate the location where the probe had been displayed in the 

first screen, followed by a 1s fixation cross between trials. Gamble outcomes were not 

revealed. The two delays were jittered in order to decorrelate the prime stimuli from 

the gamble presentation time, but always summed to 8s, such that the inter-trial 

interval was maintained at a constant 16s throughout the task. Participants completed 

196 trials of this combined task (49 trials of each of the four conditions: happy, fearful, 

neutral, object). Gambles were randomly sampled from a 7*7 gain-loss matrix centred 

on each participant’s own indifference point (example matrices: Figure 4-1B-C). This 

was done to ensure that the same ranges of wins and losses were presented for each 

emotion condition, and to optimize sensitivity to detect emotion-driven changes in loss 

aversion with a majority of gambles close to the participant’s indifference point. 
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Figure 4-1. Experimental design. A. On each trial, participants were first presented 

with an array (prime) of two or four faces (all happy, all fearful, or all neutral) or 

objects (light bulbs) and had 3 s to memorise it. They then had to decide whether to 

accept or reject a mixed gamble in which there was a 50% chance of winning the 

amount in green, and a 50% chance of losing the amount in red. Finally, a probe from 

the first array was presented and participants had to report its position. B, C. In order 

to optimize model fitting and sensitivity to emotional context, an estimate of each 

participant’s indifference point (IP) was obtained from the practice session, and used 

to define the gamble gain/loss matrix. Each matrix was formed by combining seven 

potential gains with seven potential losses, leading to 49 gambles, repeated across each 

of the four conditions. Example matrices are shown with the resulting gamble expected 

value (EV=0.5*gain + 0.5*loss), centred on an indifference point of 0 (B, non-loss 

averse participant), or 4.5 (C, highly loss averse participant). 

4.3.4 Incentive-compatible payment procedure 

Participants were endowed with an initial amount of £15, to which the average 

outcome of 10 randomly selected choices was added or removed. They were explained 

this payment procedure carefully before starting the task. Participants earned an 

average of £17.41 on the task (i.e. extra win of £2.41 on top of the initial £15 

endowment), and payments ranged from £11 to £22.90. They also received £7 for their 

time on the screening session and £10 on the scanning session. 
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4.3.5 Post-scanning tasks 

Immediately after scanning, participants completed a final block of 49 trials of the 

task, in which all the memory stimuli were objects. This block was added to control 

for the fact that during the main task objects were presented on only one-quarter of 

trials and might therefore be perceived as oddballs (relative to faces) and could 

potentially influence loss aversion purely on the basis of novelty. To control for this, 

the change in gambling propensity was additionally calculated using the data from the 

object-only block completed by participants immediately after scanning, instead of the 

object trials presented during the scan. The results were the same irrespective of which 

object condition was used for comparison in the non-emotional trials. The change in 

propensity to gamble between emotional and non-emotional trial significantly 

correlated with trait anxiety in both cases (object trials presented during the scan: 

r(28)=0.437, P=0.020; object trials from post-scan object-only block: r(28)=0.413, 

P=0.029). This argues against a possible oddball effect from the object trials. 

Participants then rated each of the 120 faces used inside the scanner for emotional 

content and arousal, from very negative to very positive, and from not at all arousing 

to very arousing, respectively.  

Finally they completed a debriefing questionnaire in order to determine whether they 

suspected the true purpose of the experiment. Only one participant indicated that he 

suspected the actual purpose, but also stated that this thought occurred to him while 

answering the debriefing questions and not while he was performing the task; 

therefore, his data were included in the analysis. 

4.3.6 Behavioural data analysis 

Behavioural data were analysed using IBM SPSS Statistics (v.21) and Matlab. Missed 

gamble trials were excluded. For each participant, the probability of accepting the 

gamble (Paccept), mean reaction time (RT) to accept or reject the gamble, number of 

missed trials, and working memory accuracy were calculated separately for the 

different emotion conditions and submitted to repeated-measures analysis of variance 

(ANOVA) in order to assess the impact of emotion on behaviour. Trait anxiety scores 

were added as covariates in the analyses (Table 4-1). 
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In order to assess loss aversion a two-parameter model was estimated based on 

Prospect Theory’s subjective utility function (Kahneman and Tversky, 1979; Tversky 

and Kahneman, 1992; Sokol-Hessner et al., 2009; Chib et al., 2012), following the 

methods described in section 2.4 (Chapter 2). Specifically, for each trial, the 

subjective utility (u) of each gamble was estimated using equation 2.3, assuming that 

𝜌𝑔𝑎𝑖𝑛 =  𝜌𝑙𝑜𝑠𝑠 =  1, resulting in: 

𝑢(𝑔𝑎𝑚𝑏𝑙𝑒) = 0.5 ∙ 𝐺 + 0.5 ∙ 𝜆 ∙ 𝐿     (Eq. 4-1) 

(with losses L entered as negative values). These utility values were then used in a 

softmax function (Eq. 2-6) to estimate the probability of accepting each gamble (coded 

as 0 or 1 for each rejected or accepted gamble, respectively). 

Different models were run using this procedure, where loss aversion (λ) and choice 

consistency (µ) parameters were estimated. A first Prospect Theory model (Eq. 4-1 

and 2-6 as above) was estimated with all trials included independently of emotion 

condition (Model 1). Both parameters were successfully estimated by the model in 28 

out of 30 participants. The remaining two participants’ choice behaviour was very 

inconsistent (µ<0.8 and λ<0), resulting in poor model fits, and their data were excluded 

from the analyses. The mean loss aversion parameter (λ) was 1.56 (SD±0.92, range 

0.63–5.44), significantly greater than 1 (one-sample t-test: t(27)=3.21, P=0.003).  

In order to assess the impact of emotion on loss aversion and choice consistency, four 

further models were estimated: 

- Model 2: λ and µ estimated separately for trials with emotional (happy and fearful 

faces) and non-emotional (neutral faces and objects) primes: 4-parameter model  

- Model 3: λ and µ estimated separately for each of the four conditions (happy, fearful, 

neutral, and objects): 8-parameter model 

- Model 4: λ estimated separately for emotion and no emotion trials; µ estimated 

separately for each of the four conditions: 6-parameter model 

- Model 5: λ estimated separately for each of the four conditions; µ estimated 

separately for emotion and no emotion trials: 6-parameter model 
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To assess whether estimating λ and µ for emotional versus non-emotional contexts 

was more parsimonious than estimating them separately for each of the four 

conditions, BIC scores (Schwartz, 1978) were calculated for each model and each 

participant (see section 2.4.2 for details). Sum of BIC scores across all participants for 

the two-condition model (emotional & non-emotional – Model 2) was 3,212 while sum 

of BICs for the other models including one or both parameters estimated separately for 

the four conditions (happy, fearful, neutral & object) were 3,646, 3,400 and 3,460 for 

Models 3, 4 and 5, respectively. BIC was lower for Model 2 than for all the other 

models; therefore, the two-condition model was used preferentially in all analyses, 

other than to verify that the effects obtained were independent of valence or face 

processing per se. 

The percentage change in λ and in μ between emotional and non-emotional conditions 

was calculated from this two-condition model. Both variables were normally 

distributed with Skewness values smaller than 1 and Kurtosis values smaller than 3 

(percentage change in λ: Skewness=-0.252, Kurtosis=0.669; percentage change in µ: 

Skewness=0.672, Kurtosis=2.033). However, the distribution of the loss aversion 

parameter λ was positively skewed, so when analyses where run on this parameter per 

se (e.g. correlation between loss aversion and trait anxiety), λ values were log-

transformed before running statistical tests. 

To estimate risk aversion a procedure reported previously was used (De Martino et al., 

2010), based on the behavioural sensitivity to gamble variance (O’Neill and Schultz, 

2010). When gamble variance is high (e.g. win £10/lose £10 relative to win £2/lose 

£2), the risk is high; therefore, risk averse individuals will exhibit a stronger reduction 

in gamble acceptance as gamble variance increases. To calculate this sensitivity to 

gamble variance, a linear regression was run between gamble variance (calculated for 

each gamble as [0.5*gain–0.5*loss]2, with losses entered as negative values) and the 

probability of gamble acceptance (calculated for groups of gambles with the same 

variance). For each subject, risk aversion was approximated by the negative value of 

this regression slope, separately for emotional and non-emotional conditions. Note that 

the design of the task did not allow to concurrently estimate loss and risk aversion in 

the same utility model. To do so, the task could have included a subset of trials where 

risk is present, but losses do not need to be weighted against gains, so that the model 
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can distinguish between risk and loss aversion. However, because of fMRI time 

constraints, it was not possible to add these trials to the task. Risk aversion was 

therefore estimated separately and added as a covariate in the analyses to ensure it did 

not affect the results. In particular, to ensure that the influence of trait anxiety was 

specific to the change in loss aversion, partial correlations were conducted, in which 

emotion-driven change in loss aversion was correlated with trait anxiety while 

controlling for changes in risk aversion and choice consistency. 

4.3.7 MRI data acquisition 

Neuroimaging data were collected on a Siemens Avanto 1.5T MRI scanner using a 32-

channel head coil. To correct for inhomogeneities of the static magnetic field, 

fieldmaps were acquired and used in the unwarping stage of data preprocessing. Four 

functional scanning sessions, composed of 4 dummy and 203 functional volumes, were 

acquired using a pre-scan normalized gradient echo-planar imaging (EPI) sequence 

with the following parameters: volume repetition time=3.132s, echo time=50ms, flip 

angle=90o, matrix=64x64, voxel size=3x3x3mm3, 36 axial slices sampled for whole 

brain coverage, tilt=-30o. A T1-weighted MPRAGE anatomical scan was acquired at 

the end of the session (176 sagittal slices, repetition time=2.73s, echo time=3.57ms, 

flip angle=7o, matrix=224x256, voxel size=1x1x1mm3). 

4.3.8 MRI data processing and analysis 

MRI data preprocessing and analysis was performed using SPM8 software (Wellcome 

Trust Centre for Neuroimaging, London, UK, http://www.fil.ion.ucl.ac.uk/spm) in 

Matlab. The first four volumes of each functional session were discarded from the 

analyses to allow for T1 equilibration. A field map was then created for each functional 

session using the SPM FieldMap toolbox. Using this field map file for phase 

correction, images were realigned to the first functional volume of each session and 

unwarped using 7th degree B-spline interpolation. Movement plots were checked to 

ensure that any scan-to-scan translations greater than one-half of a voxel (1.5 mm) or 

rotations greater than 1 degree did not cause artifacts in the corresponding scan(s). If 

artifacts were detected, the corrupted scans were removed and replaced by an average 

of the previous and following scans and the corrupted scan was added as a regressor 

of no interest in the design matrix. The anatomical scan was coregistered to the 
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unwarped mean functional image. All images were then reoriented such that the 

anterior commissure lay at coordinates [x=0, y=0, z=0]. Functional images were 

spatially normalized to the standard MNI EPI template using 7th degree B-spline 

interpolation, and smoothed using a 4 mm3 full-width at half maximum (FWHM) 

Gaussian kernel. After defining and estimating contrasts, the resulting contrast images 

were smoothed again using a 7 mm FWHM kernel, such that the final images included 

in the second level models were smoothed by √(42+72) ≈ 8 mm. 

For each participant, the GLM was used to model BOLD signals during the task, 

incorporating an AR(1) model of serial correlations and a high-pass filter at 1/128s.  

Two first-level models were defined. The first model identified brain regions tracking 

gain and loss value independent of emotion (similar to Tom et al., 2007). It included 

the following regressors (and associated durations), collapsed across all memory 

conditions and convolved with the SPM synthetic hemodynamic response function: 

prime onset (3s); gamble onset (2s) with gain value, loss value (coded as negative 

values), and choice difficulty (distance between gamble expected value and 

participant’s indifference point) as parametric modulators; memory probe onset (stick 

function); missed gamble onset (if any: stick function). The 6 movement parameters 

were also included in the model.  

To assess whether these responses were modulated by emotion, another model 

contained the same regressors as above, but separately for emotional trials (happy and 

fearful faces) and non-emotional trials (neutral faces and objects). This constituted the 

primary analysis based on the behavioural results suggesting that grouping trials into 

emotional and non-emotional ones was most parsimonious. However, to ensure that 

the effects were not driven by face processing per se and to contrast emotional with 

neutral faces, a further model was estimated in which neutral face and object trials 

were modelled separately. 

First-level contrasts were created through linear combinations of the resulting beta 

images, and analysed at the group level with one-sample t-tests, using the standard 

summary-statistics approach to random-effects analysis in SPM. A cluster-forming 

threshold of P<0.001 uncorrected was applied, followed by FWE correction at P<0.05, 

using SVC in a priori ROIs. These were: bilateral ventral striatum (caudate and 
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putamen, left and right combined) given its role in loss aversion (Tom et al., 2007; 

Canessa et al., 2013), and bilateral amygdala, given its role in processing emotion 

(Adolphs, 2002; Glascher and Adolphs, 2003; Dalgleish, 2004; Phelps, 2006; Pessoa 

and Adolphs, 2010; Wang et al., 2014). ROIs were anatomically defined using the 

Automated Anatomical Labeling (AAL) atlas in the SPM WfuPickAtlas toolbox 

(Tzourio-Mazoyer et al., 2002). 

4.3.9 Functional connectivity analyses 

Amygdala-striatum functional connectivity was analysed using PPI in SPM8. First, 

the ventral striatum cluster found to track value (using a P<0.001 (uncorrected) 

threshold and masked with the anatomical ROI) was used as the seed region. BOLD 

timeseries was extracted across all voxels in this mask, and adjusted for all effects of 

interest. A first-level model was created for each participant including the deconvolved 

striatal BOLD timeseries (physiological regressor), the emotional context (contrast 

between emotional and non-emotional trials at the time of the gamble: psychological 

regressor) and their cross-product (PPI regressor). This model also included the 

following regressors: prime onset, memory probe onset, parametric modulators for 

gains and losses at gamble onset, all split by emotion condition, as well as missed 

gamble onset (if any) and movement regressors. Two nuisance timeseries were also 

added, from a white-matter voxel (corpus callosum body, MNI coordinates: 0,14,19) 

and from a cerebrospinal fluid voxel (centre of right lateral ventricle, MNI coordinates: 

4,14,18); both in the same y-plane as the ventral striatum peak voxel. Finally, contrasts 

were defined on the striatal timeseries (physiological) regressor, modelling “main 

effect” functional connectivity, and on the PPI regressor, modelling the modulation of 

functional connectivity by emotional context, which were analysed at the second level. 

Again, in order to make sure that the observed effects were driven by emotional faces 

rather than faces in general, the PPI analysis was repeated for emotional versus neutral 

faces trials at the time of the gamble (excluding the object condition). 
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4.4 Results 

4.4.1 Emotional modulation of loss aversion depends on trait anxiety 

Emotional stimuli increased loss aversion (λ) in individuals with low trait anxiety. The 

percentage change in loss aversion was calculated for each participant between 

emotional and non-emotional trials, thus removing inter-individual variability due to 

loss aversion values per se, and related to trait anxiety scores across participants. There 

was a significant negative relationship between emotion-driven change in loss 

aversion and trait anxiety (r(28)=-0.524, P=0.004, Figure 4-2A), such that low anxious 

individuals showed the greatest increase in loss aversion induced by emotional cues. 

Importantly, baseline loss aversion (modelled across all trials independent of emotion 

condition and log-transformed because positively skewed) was not correlated with trait 

anxiety (r(28)=-0.031, P=0.88; after removing one outlier with very high λ: 

r(28)=0.043, P=0.83), suggesting that the effect of trait anxiety on loss aversion change 

is not simply driven by regression to the mean. 

The percentage change in risk aversion between emotional and non-emotional trials, 

although highly correlated with change in loss aversion (r(28)=0.65, P<0.001; 

expected given that loss and risk aversion were estimated separately; see De Martino 

et al., 2010; Canessa et al., 2013), was not correlated with trait anxiety (r(28)=-0.23, 

P=0.24). Finally, the correlation between emotion-induced change in loss aversion and 

trait anxiety was unchanged when controlling for change in risk aversion and change 

in choice consistency (partial correlation, r(28)=-0.51, P=0.008). Note that most 

participants exhibited a negative sensitivity to gamble variance (mean beta = -0.0014 

± 0.0026, significantly negative: t(27)=-2.80, P=0.009), meaning that their propensity 

to choose the gamble decreased as gamble variance increased, consistent with risk 

aversion. There was no correlation between risk aversion and trait anxiety (r(28)=-

0.22, P=0.26). 
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Table 4-1. Emotional modulation of task variables and interaction with trait 

anxiety. 

 
Emotion  

(Fearful + Happy) 

No Emotion 
(Neutral + Object) 

Paired t-test 

Interaction 

with trait 

anxiety 

Paccept 0.607 (0.171) 0.607 (0.165) 
t(27)=0.009 

P=0.99 

F(1,26)=6.12 

P=0.02* 

λ (loss aversion) 1.563 (0.953) 1.553 (0.894) 
t(27)=0.623 

P=0.54 

F(1,26)=4.53 

P=0.04* 

µ (choice consistency) 2.486 (1.83) 2.020 (1.274) 
t(27)=2.244 

P=0.033* 

F(1,26)=1.81 

P=0.19 

Sensitivity to gamble 

variance (risk-seeking) 
-0.0014 (0.0025) -0.0016 (0.0027) 

t(27)=0.951 

P=0.35 

F(1,26)=1.73 

P=0.20 

RTaccept (s) 1.081 (0.156) 1.072 (0.143) 
t(27)=0.934 

P=0.36 

F(1,26)=0.001 

P=0.98 

RTreject (s) 1.216 (0.183) 1.224 (0.187) 
t(27)=-0.582 

P=0.57 

F(1,26)=0.199 

P=0.66 

Missed gamble 

responses (% trials) 
2.81 (3.51) 3.21 (3.61) 

t(27)=-0.869 

P=0.39 

F(1,26)=2.395 

P=0.13 

WM accuracy (2 stimuli) 0.935 (0.057) 0.938 (0.045) 
t(27)=-0.278 

P=0.78 

F(1,26)=1.89 

P=0.18 

WM accuracy (4 stimuli) 0.665 (0.129) 0.662 (0.134) 
t(27)=0.141 

P=0.89 

F(1,26)=2.137 

P=0.16 

Missed WM responses 

(% trials) 
3.43 (5.05) 3.68 (4.76) 

t(27)=-0.893 

P=0.38 

F(1,26)=1.319 

P=0.26 

Mean arousal rating 

(scale from 1 to 100) 
50.8 (20.3) 30.66 (14.2) 

t(27)=5.345 

P<0.001* 

F(1,26)=1.815 

P=0.19 

Mean valence rating 

(scale from 1 to 100) 
48.5 (7.17) 42.3 (8.23) 

t(27)=4.105 

P<0.001* 

F(1,26)=0.258 

P=0.62 

For each condition, means and standard deviations across participants are reported, for 

the following variables: probability to accept the gamble (Paccept), loss aversion 

parameter (λ), reaction time to accept and reject the gamble in seconds (RTaccept and 

RTreject), number of missed gamble responses, working memory (WM) accuracy for 

the 2- and 4-stimulus conditions, number of missed memory responses, mean arousal 

and valence ratings (on a scale from 0 to 100). The main effect of condition and its 

interaction with trait anxiety were assessed and the corresponding statistics are 

reported in the last two columns. Apart from arousal and valence ratings, none of these 

variables were modulated by emotional stimuli. Only the emotional modulation of 

gamble acceptance and loss aversion (λ) varied according to trait anxiety. Averaged 

across all participants, the percentage change in loss aversion was not significantly 

different from zero (mean=1.01%, SD=7.8%, range=-18.08%-16.21%, one-sample t-

test: t(27)=0.685, P=0.499). 
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Figure 4-2. Emotional cues increase loss aversion in low-anxious individuals. A. 

The change in loss aversion following emotional relative to non-emotional primes was 

negatively correlated with trait anxiety across participants. B. Participants with low 

trait anxiety (median-split, N=14 per group) showed a significant increase in loss 

aversion following both happy and fearful stimuli. Collapsing fearful and happy trials 

into an emotional condition and neutral and object trials into a non-emotional condition 

was justified by the fact that there was no valence effect, and no differences between 

neutral faces relative to object stimuli. Two-tailed P-values: * P<0.05. Error bars 

represent SEM. 

Performing a median split on trait anxiety scores confirmed the emotional modulation 

of loss aversion, revealing a significant condition (emotion/no emotion) * trait anxiety 

(low/high) interaction (F(1,26)=6.96, P=0.014). While the “low” anxious group 

showed a significant increase in loss aversion following emotional relative to non-

emotional stimuli (+5.49%, SD=6.38%, t(13)=3.22, P=0.007), there was no significant 

effect of emotion on loss aversion in the “high” trait anxiety group (-2.81%, 

SD=7.52%, t(13)=-1.40, P=0.18).  

To check that collapsing emotional (happy/fearful) and non-emotional (neutral/object) 

conditions together did not alter the results, the change in loss aversion was examined 

separately for each condition (happy, fearful and neutral) relative to object (Figure 
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4-2B). First, there was no difference between positive and negative emotion: the 

valence (happy/fearful)*trait anxiety group (low/high) interaction was non-significant 

(F(1,26)=0.24, P=0.63) and the effect of trait anxiety group on emotionally-driven 

changes in loss aversion was significant for happy and fearful faces separately (happy: 

t(26)=2.04, P=0.05; fearful: t(26)=2.75, P=0.01). Second, the effect of neutral faces 

relative to object stimuli on loss aversion did not differ between trait anxiety groups 

(t(26)=0.6, P=0.55). Third, model comparison analyses showed that estimating loss 

aversion for emotional and non-emotional trials (i.e. collapsing happy and fearful 

together, and neutral and object together) was more parsimonious than estimating loss 

aversion separately for all conditions.  

Increased loss aversion following emotional cues, as identified in low anxious 

individuals (Figure 4-2A) should be accompanied by a corresponding decrease in the 

propensity to gamble, as subjective utilities will be perceived as lower when losses 

loom larger. Consistent with this, there was a significant positive relationship between 

trait anxiety and the increase in the proportion of accepted gambles from non-

emotional to emotional trials (r(28)=0.437, P=0.020). 

Analyses of the choice consistency parameter (μ) revealed that participants were more 

consistent in their gambling choices on emotional than on non-emotional trials 

(t(27)=2.24, P=0.033, Figure 4-3 and Table 4-1), though this effect did not correlate 

significantly with trait anxiety (r(28)=-0.31, P=0.12). Similarly, only the emotional 

modulation of gamble acceptance and loss aversion correlated significantly with trait 

anxiety, ruling out the possibility that differences in memory, RTs or missed trials may 

have driven the observed effects (Table 4-1).  

Taken together, the behavioural results suggest that emotional cues trigger changes in 

loss aversion as a function of trait anxiety, such that low anxious individuals show the 

greatest emotionally-induced increase in loss aversion. In addition, this effect is not 

driven by risk aversion, or by choice consistency. Finally, and surprisingly, both 

positive and negative emotional stimuli have a similar effect.  
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Figure 4-3. Choice consistency increases under emotion. Choice consistency 

parameter (inverse temperature) μ was significantly higher on emotional relative to 

non-emotional trials. Two-tailed P-values: * P<0.05. Error bars represent SEM. 

4.4.2 Neural responses to decreasing losses are greater than to increasing gains 

The first step in the fMRI data analysis was to verify that expected value signals were 

observed in the brain at the time of gamble, with exaggerated responses to losses 

(“neural loss aversion”) in the ventral striatum. Next, responses to emotional primes 

were examined, as well as emotional modulation of value signals in the amygdala. 

Finally, the interaction between these two regions was investigated using functional 

connectivity. For all analyses the relationship with trait anxiety was also assessed.  

A whole-brain analysis was first conducted to identify clusters with a parametric 

response to decreasing losses and increasing gains, time-locked to the presentation of 

the decision and independent of emotion condition. This “gain & loss” contrast is 

equivalent to a single parametric modulator representing the expected value of the 

gamble (0.5*gain+0.5*loss, with losses coded as negative values). Three clusters 

surviving whole-brain correction for multiple comparisons were found to track gamble 

value (Table 4-2A), located in the right ventral striatum (Figure 4-4A), right 

amygdala/hippocampus (Figure 4-4B), and anterior cingulate/orbitofrontal cortex 

(Figure 4-4C), confirming previous reports of generic value signals in these regions 

(Gottfried et al., 2003; Tom et al., 2007; Kable and Glimcher, 2009; Morrison and 

Salzman, 2010).  

Parameter estimates (betas) were extracted for each region, separately for losses and 

gains. There was a greater parametric response to decreasing losses relative to 
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increasing gains in each of these three regions (significant in the ventral striatum, 

t(27)=3.52, P=0.002; and amygdala, t(27)=3.16, P=0.004; marginally significant in the 

ACC/OFC, t(27)=1.95, P=0.06; Figure 4-4D-F), consistent with previous reports of 

loss-biased value signals in these regions (Tom et al., 2007; Canessa et al., 2013; 

Sokol-Hessner et al., 2013).  

 

Figure 4-4. Brain regions tracking gamble expected values. A whole-brain analysis 

was conducted to identify regions showing a parametric response to decreasing losses 

and to increasing gains. Clusters surviving whole-brain FWE correction were found in 

the ventral striatum (A), the amygdala extending into the hippocampus (B), and the 

anterior cingulate (ACC)/orbitofrontal cortex (OFC) (C). Activations are displayed at 

P<0.001 (uncorrected) on the average anatomical scan from all 28 participants. Colour 

bars represent T-values. (D-F) Parameter estimates (betas) extracted from the 

parametric response to losses (red bars) and to gains (green bars) separately revealed 

greater tracking of losses relative to gains in these regions (at trend level in the ACC). 

Note that the latter contrasts are orthogonal to that used for voxel identification and 

therefore do not require correction for a voxel-wise search. Two-tailed P-values: * 

P<0.05, † P<0.1. Error bars represent SEM. 
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Table 4-2. Brain regions exhibiting an expected value signal (A) and a neural 

loss aversion signal (B) at the time of gamble. 

A. Parametric response to decreasing losses and increasing gains (expected value signal) 

All p(unc)<0.001, k>10 size T x y z 
Type of FWE 

correction 

P(FWE-

corr) 

Ventral striatum  

(Figure 4-4A) 
R 144 6.14 9 17 -2 

Whole-brain, 

cluster-level 
0.0017 

Amygdala / Hippocampus 

(Figure 4-4B) 
R 184 5.63 33 -7 -20 

Whole-brain, 

cluster-level 
<0.001 

ACC / OFC  

(Figure 4-4C) 

med/ 

R 
106 4.75 21 38 -14 

Whole-brain, 

cluster-level 
0.008 

Precuneus R 21 5.01 18 -55 43   

Cerebellum med 25 4.73 0 -67 -29   

Fusiform gyrus / 

Cerebellum 
L 12 4.38 -21 -55 -20   

Superior frontal gyrus R 14 4.24 21 50 10   

Caudate head L 21 4.05 -18 26 1   

B. Parametric response to decreasing losses > Parametric response to increasing gains (neural loss 

aversion signal) 

All p(unc)<0.001, k>10 size T x y z 
Type of FWE 

correction 

P(FWE-

corr) 

Precuneus / Occipital gyri R&L 328 5.17 24 -64 19 
Whole-brain, 

cluster-level 
<0.001 

Ventral striatum  

(Figure 4-5A) 
R 42 4.61 12 14 -8 

SVC, peak-

level 
0.026 

Precuneus / Superior 

parietal 
R 11 4.57 18 -49 46   

Hippocampus R 28 4.50 24 -25 -17   

Occipital gyrus L 36 4.43 -15 -76 -8   

Cerebellum R 13 4.26 6 -52 -17   

The analysis was initially thresholded at P<0.001 (uncorrected), cluster size ≥10. For 

completeness, clusters of at least 10 contiguous voxels that did not survive FWE 

correction are also reported. ACC – anterior cingulate cortex. OFC – orbitofrontal 

cortex. 

The result in the ventral striatum was confirmed by creating a loss minus gain contrast 

(similar to Tom et al., 2007). Specifically, to identify regions in the brain where the 

parametric response to decreasing losses was greater than the parametric response to 

increasing gains, the contrast [parametric response to losses > parametric response to 

gains] was explored across the whole brain, independent of emotion condition. This 

voxel-wise search yielded a cluster in the ventral striatum that responded more strongly 

to decreasing losses than increasing gains, overlapping with that reported above, as 

well as a cluster in bilateral precuneus/occipital cortex (Figure 4-5A and Table 4-2B). 

In other words, responses in these regions tracked decreasing losses significantly more 

strongly than increasing gains (equivalent to the “neural loss aversion” signal 
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identified by Tom et al., 2007). However, none of these activations was related to loss 

aversion behaviourally across participants, even when excluding an outlier with a very 

high loss aversion value (all r<0.25 and P>0.2).  

Interestingly, biased striatal parametric responses to losses relative to gains (contrast 

estimate averaged across the cluster) were negatively correlated with trait anxiety 

(r(28)=-0.392, P=0.039, Figure 4-5B). Further analysis showed that this effect was 

primarily driven by parametric response to losses: ventral striatum response to 

decreasing losses correlated significantly negatively with trait anxiety (r(28)=-0.478, 

P=0.01, Figure 4-5C), whereas the response to gains did not (r(28)=-0.016, P=0.94). 

These two correlations were significantly different (Steiger’s Z=1.98, P<0.05). 

 

Figure 4-5. Striatal loss aversion signals. A. A cluster in the right ventral striatum 

showed a greater parametric response to decreasing losses than to gains. Activation is 

displayed at P<0.001 (uncorrected), but survived small volume correction (PSVC<0.05) 

in the anatomically defined striatal ROI (bilateral caudate + putamen). The colour bar 

represents T-values and voxels are overlaid on the average anatomical scan from all 

28 participants. B. Trait anxiety was negatively associated with the magnitude of this 

biased loss vs gain signal in the ventral striatum. C. Specifically, the parametric 

response to losses, but not to gains, was negatively correlated with trait anxiety: the 

less anxious the participant, the greater the response to decreasing losses, but not to 

increasing gains, in the ventral striatum. 
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4.4.3 Amygdala response to emotional cues correlates positively with trait 

anxiety 

In a second analysis, time-locked to the presentation of the prime, the contrast between 

emotion (happy and fearful faces) and non-emotion (neutral faces and objects) trials 

was explored. Consistent with prior reports (Sabatinelli et al., 2011) this revealed a 

widespread pattern of activation, with whole-brain corrected results in the fusiform 

gyrus, occipital gyrus, OFC/medial PFC, posterior cingulate cortex, middle temporal 

gyrus, anterior insula, inferior temporal gyrus extending into frontal gyrus, and 

amygdala extending into bilateral hippocampus (Table 4-3). Given previous literature 

suggesting that amygdala responses vary with anxiety (Etkin et al., 2004; Stein et al., 

2007; Sehlmeyer et al., 2011), signal from the right amygdala cluster was extracted 

(peak voxel MNI coordinates: 33, -1, -26; Figure 4-6A), showing a significant positive 

relationship with trait anxiety (r(28)=0.417, P=0.027; Figure 4-6B). This relationship 

was not driven by responses to faces in general – while amygdala responses to 

emotional relative to neutral faces correlated with trait anxiety (r(28)=0.39, P=0.04), 

amygdala responses to neutral faces relative to objects did not (r(28)=-0.042, P=0.83; 

marginally significant difference between the two correlations: Steiger’s Z=1.83, 

P=0.067). 
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Figure 4-6. Modulation of amygdala responses by emotional cues. A. A cluster in 

the right amygdala showed greater response to emotional versus non-emotional primes 

(i.e. at initial stimulus presentation). Activation is displayed at P<0.001 (uncorrected), 

but survived FWE voxel-level small volume correction (PSVC<0.05) in the 

anatomically defined bilateral amygdala ROI. The colour bar represents T-values and 

voxels are overlaid on the average anatomical scan from all 28 participants. B. 

Amygdala response to emotional primes was positively correlated with trait anxiety. 

C. Extracting parametric response to losses and to gains in this amygdala cluster at the 

time of gamble, separately for emotion and no emotion trials, revealed that the 

amygdala only tracks decreasing losses following emotional cues. Two-tailed P-

values: * P<0.05. Error bars represent SEM. 
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Table 4-3. Brain regions showing response to emotional relative to non-

emotional stimuli during presentation of the prime.  

Emotion>No Emotion during 

stimuli presentation. 

All p(unc)<0.001 

size T x y z 
Type of FWE 

correction 

P(FWE-

corr) 

Fusiform gyrus 
R 208 12.55 42 -52 -23 Whole-brain, 

cluster-level 

<0.001 

L 133 8.14 -42 -58 -26 0.002 

Occipital gyrus 
R 349 8.38 24 -94 -8 Whole-brain, 

cluster-level 

<0.001 

L 354 8.10 -30 -91 -17 <0.001 

OFC / mPFC med 901 7.94 0 56 -8 
Whole-brain, 

cluster-level 
<0.001 

PCC med 273 6.47 -3 -49 28 
Whole-brain, 

cluster-level 
<0.001 

Middle temporal gyrus 

L 258 6.28 -57 -13 -20 
Whole-brain, 

cluster-level 

<0.001 

R 125 5.86 57 -10 -26 0.003 

R 105 5.08 66 -49 1 0.007 

Anterior insula L 160 5.96 -39 20 -17 
Whole-brain, 

cluster-level 
0.001 

Inferior temporal / frontal 

gyrus 
R 116 5.18 33 23 -29 

Whole-brain, 

cluster-level 
0.005 

Hippocampus / Amygdala 
L 65 5.45 -21 -13 -20 Whole-brain, 

cluster-level 

0.049 

R 51 5.72 21 -10 -20 0.10 

Amygdala ROI 
L 2 4.19 -18 -7 -17 SVC, peak-

level 

0.011 

R 9 4.17 33 -1 -26 0.011 

The analysis was initially thresholded at P<0.001 (uncorrected), cluster size ≥10. To 

identify effects in the amygdala, a bilateral anatomical ROI was used to perform small 

volume correction without a cluster size criterion.  

4.4.4 Emotional cues modulate loss aversion signals in the amygdala 

To test whether the above amygdala responses play a role in the observed emotion-

driven changes in loss aversion, parametric responses to losses and to gains (at the 

time of the gamble) were extracted separately for emotional and non-emotional trials, 

from the right amygdala cluster identified above (responding to emotional primes - 

MNI: 33, -1, -26). The resulting parameter estimates (betas) were submitted to a 2-

(gamble component: loss/gain) by-2 (prime: emotional/non-emotional) repeated-

measures ANOVA. There was a significant interaction (F(1,27)=7.998, P=0.009, 

Figure 4-6C), driven by a positive amygdala parametric modulation, on emotional 

trials only, by decreasing losses (t(27)=3.61, P=0.001) but not increasing gains 

(t(27)=-0.88, P=0.39). However, there were no relationships with trait anxiety or 

emotion-elicited change in loss aversion (added as covariates: all P>0.25).  

The above modulation of amygdala value signal was specific to emotional cues, rather 

than faces in general. When extracting the response to losses separately for emotion, 
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neutral and object conditions, and submitting the resulting betas to a one-way ANOVA 

(emotion/neutral/object), there was a significant main effect of emotion (F(2,54)=3.49, 

P=0.038). The amygdala parametric response to losses was higher on emotional face 

relative to neutral face trials (t(27)=3.08, P=0.005), but not on neutral face relative to 

object trials (t(27)=-0.6, P=0.55). 

4.4.5 Striatal-amygdala functional connectivity is associated with changes in 

loss aversion 

Are emotionally-induced changes in loss aversion driven by ventral striatum-amygdala 

interactions during emotional decision-making? To test this hypothesis, a PPI analysis 

was conducted, with emotion versus no-emotion (at the time of the decision) as the 

psychological factor (Figure 4-7A). The ventral striatum cluster (shown in Figure 

4-4A) was defined as the seed region, and beta estimates for the physiological and PPI 

effects were extracted from the right amygdala cluster that responded to emotional 

cues (the target region: shown in Figure 4-6A). The increase in ventral striatum-

amygdala connectivity between non-emotional and emotional trials was negatively 

correlated with trait anxiety (r(28)=-0.47, P=0.012, Figure 4-7B), and positively 

correlated with emotion-elicited change in loss aversion (r(28)=0.42, P=0.025, Figure 

4-7C). In other words, low anxious individuals exhibited an increase in striatal-

amygdala functional connectivity on emotional trials, which in turn was associated 

with emotion-elicited loss aversion.  

Again, this pattern of results held when examining the emotion-driven change in 

striatal-amygdala connectivity, excluding the object condition (negative correlation 

between PPI and trait anxiety: r(28)=-0.38, P=0.047), suggesting that trait anxiety 

modulates functional connectivity changes specifically in response to emotional 

stimuli. 

Functional connectivity across the entire fMRI time series (or “main effect” functional 

connectivity) was estimated from the physiological (striatal) regressor in the PPI 

model. The “main effect” connectivity between ventral striatum and amygdala was 

significantly positive (mean beta=0.111, SD=0.017, t(27)=6.60, P<0.0001), thus 

confirming pronounced coupling between ventral striatum and amygdala (Roy et al., 
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2009). There was no correlation between this “main effect” coupling and trait anxiety 

(r(28)=-0.14, P=0.48). The emotional modulation of this functional connectivity 

between the ventral striatum and the amygdala (the PPI effect) was non-significant 

across all subjects (t(27)=0.76, P=0.46). In addition, an exploratory whole-brain 

analysis of the PPI effect (P<0.001 uncorrected, k>10 voxels) revealed no supra-

threshold clusters where the connectivity with the ventral striatum seed region was 

modulated by emotion.  

 

Figure 4-7. Emotional modulation of striatum-amygdala functional connectivity 

is related to trait anxiety and loss aversion change. A. Psychophysiological 

interaction (PPI) analysis was conducted to assess how ventral amygdala-striatum 

functional connectivity was modulated by emotional relative to non-emotional cues, 

using the ventral striatum cluster as a seed (Figure 4-4A). B. The PPI effect (i.e. 

emotion-driven increased connectivity) in the amygdala was negatively correlated 

with trait anxiety. In other words, low anxious individuals exhibited increased ventral 

striatum-amygdala connectivity following emotional relative to non-emotional 

stimuli. C. This increased functional connectivity was associated with emotion-elicited 

increase in loss aversion across participants. 
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4.5 Discussion 

How people alter their decisions in response to emotional cues, and the neural 

mechanisms underlying such changes, vary with their level of trait anxiety. 

Specifically, low-anxious individuals exhibit increased loss aversion when primed 

with emotional cues. This was accompanied by and associated with increased 

functional coupling between the striatum and amygdala, regions that have been 

implicated in loss aversion (Tom et al., 2007; De Martino et al., 2010; Canessa et al., 

2013; Sokol-Hessner et al., 2013).  

One of the main aims was to establish whether loss aversion would be modulated by 

emotional cues to a greater extent in low-anxious individuals (which would be 

predicted by greater behavioural flexibility), or in high-anxious individuals (which 

would be predicted by emotional hypersensitivity). The data support the first 

hypothesis. This is consistent with a recent study in which only low-anxious 

individuals decreased risk-taking under stress (Robinson et al., 2015a). This finding 

may reflect an adaptive ability of individuals with low anxiety to deploy harm-

avoidance strategies (avoiding potential harm from monetary losses) in response to 

emotionally-arousing cues. This could be linked with the reduced sensitivity to 

pathological anxiety disorders in this low-anxiety group (Robinson et al., 2013, 

2015a), and with previous reports of anxiety-related impairments in the ability to adapt 

behaviour to changes in the environment (Blanchette and Richards, 2003; Farmer and 

Kashdan, 2012; Robinson et al., 2013, 2015a; Browning et al., 2015). 

An alternative interpretation of the findings could be that high anxious individuals may 

in fact exhibit greater attentional control than low anxious individuals and be better at 

ignoring the emotional primes, which are irrelevant to the gambling task. Although 

this interpretation is inconsistent with the theory of impaired attentional control in 

anxiety (Eysenck et al., 2007; Bishop, 2009), it remains possible that such superior 

attentional control is a feature of non-clinical anxiety (i.e. high trait anxiety in healthy 

individuals; see Robinson et al., 2013 for a review), and that dysfunctional attentional 

control only emerges in clinical anxiety. Further work is needed to distinguish between 

these explanations.  
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Recent literature has shown a growing interest in the link between anxiety and 

decision-making (for a review see Hartley and Phelps, 2012), and provided evidence 

for heightened sensitivity to uncertainty and ambiguity in high anxiety. A recent study 

demonstrated an increased framing effect in high anxious individuals (Xu et al., 2013). 

According to Prospect Theory (Kahneman and Tversky, 1979; Tversky and 

Kahneman, 1981, 1986), framing effects on choice could be driven both by loss 

aversion and by diminishing sensitivity to changes in value as value increases 

(resulting in risk avoidance in the gain domain and risk seeking in the loss domain). 

There was no direct relationship between trait anxiety and loss aversion in the data, 

suggesting that the increased framing effect observed in Xu et al. (2013) may be driven 

by stronger diminishing sensitivity to value changes in high trait anxious individuals, 

rather than by increased loss aversion. Similarly, the results are in line with a recent 

study in adolescents showing that clinically anxious and healthy adolescents did not 

differ in their level of loss aversion (Ernst et al., 2014). Note that the sample of healthy 

volunteers included a relatively constrained range of anxiety scores; it would therefore 

be interesting to examine loss aversion (and its modulation by emotion) in clinically 

anxious individuals, which was the aim of the study presented in Chapter 5.  

The findings also indicate that positive and negative emotional expressions induced 

similar changes in decision-making. This supports the hypothesis that increased 

avoidance of potential losses is recruited under general emotional arousal, rather than 

specifically under incidental threat. Previous work, using a pharmacological 

manipulation of autonomic arousal, suggests that arousal responses specifically drive 

loss aversion, but not risk aversion (Sokol-Hessner et al., 2015b). Although 

speculative, this hypothesis of an arousal-driven loss aversion could explain the 

findings that (i) manipulating emotional arousal influenced loss aversion in the same 

direction regardless of valence and (ii) this effect was specific to loss aversion, with 

risk aversion (estimated separately) not altered by emotional manipulation.  

However, due to time constraints in the scanner, a limitation of the task design was 

that it was not possible to include additional trials necessary to estimate risk aversion 

together with loss aversion in the same utility model. Typically this would be done by 

adding choices between a sure gain and a gamble (featuring a chance of a higher gain 

or zero); on such gain-only trials only risk aversion (but not loss aversion) should 
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contribute to safe choices. Without these trials, the Prospect Theory-derived model 

could not distinguish between risk and loss aversion. Estimating risk aversion 

separately, using an approach that has been used before (De Martino et al., 2010; 

Canessa et al., 2013), and ensuring it did not contribute to the results by adding it as a 

covariate in the analyses was the best alternative to overcome this limitation.  

Our fMRI results shed light on a potential mechanism underlying the emotional 

modulation of economic behaviour, related to amygdala-striatum functional 

connectivity. Consistent with previous studies both amygdala and ventral striatum 

tracked losses more strongly than gains (Tom et al., 2007; De Martino et al., 2010; 

Canessa et al., 2013; Sokol-Hessner et al., 2013); however, the modulation of these 

signals by emotional cues was not associated with emotionally-driven changes in loss 

aversion.  

Instead, the interaction between amygdala and ventral striatum was the neural metric 

most related to the observed behavioural effects. Emotionally-induced changes in 

functional connectivity between ventral striatum and amygdala correlated negatively 

with trait anxiety and were associated with behavioural changes in loss aversion, with 

low-anxious individuals showing increased loss aversion together with increased 

amygdala-striatum functional connectivity in response to emotional cues. According 

to a recent study, a potential concern is that amygdala activations could be driven by 

drainage from nearby vessels such as the basal vein of Rosenthal (BVR; Boubela et 

al., 2015). However, in the present fMRI data there was no observed patterns 

consistent with BVR signals, even at a very liberal threshold (data not shown). In 

particular, the amygdala cluster responding to emotional relative to non-emotional 

primes (MNI coordinates [30,-1,-24]) did not extend to the posterior amygdala, and 

instead was located in the lateral anterior amygdala on the opposite side to the BVR 

(MNI coordinates [14.6,-7.7,-15.5] according to Boubela et al., 2015) with voxels 

adjacent to the BVR not activated. Therefore the amygdala activations reported in this 

study are unlikely to be confounded by a contribution from the BVR.  

Amygdala-striatum connectivity is well established in both animal and human fMRI 

work and has been suggested to play a role in motivated behaviour (Price, 2003; 

Zorrilla and Koob, 2013), emotional memory (Ferreira et al., 2008; Paz and Pare, 
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2013), reward-related processes (Everitt and Robbins, 1992; Camara et al., 2008) and 

learning to avoid harmful negative outcomes (Delgado et al., 2009). The results 

provide a further insight into a potential function of amygdala-striatum interactions, 

suggesting that changes in functional connectivity between these two regions, as 

opposed to responses in each region per se, may drive the tendency towards more 

conservative decisions under emotionally arousing conditions. 

In summary, incidental emotional cues can modulate loss averse behaviour and 

associated neural responses, shedding light on a potential mechanistic account of 

emotional influences on economic decisions (Phelps et al., 2014). A speculation 

resulting from the findings is that the amygdala may integrate emotional information 

about external cues together with value information from the ventral striatum, in order 

to produce a decision signal. Individual differences in amygdala-striatal coupling are 

related to trait anxiety, possibly reflecting improved functional integration between 

these regions in low anxious individuals, and greater flexibility to adapt decision-

making in emotionally volatile environments. 
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Chapter 5 Risk and loss aversion in clinical anxiety 

5.1 Abstract 

Anxiety disorders are associated with disruptions in both emotional processing and 

decision-making. In healthy individuals these processes are known to strongly interact, 

such that decisions are influenced by emotional cues and states and vice versa. 

However, whether these interactions are altered in clinical anxiety remains an 

unresolved and important question with the potential to provide a better cognitive 

understanding of anxiety disorders. To address this question, patients with Generalized 

Anxiety Disorder (GAD) and matched healthy controls completed a gambling task, 

featuring a decision between a gamble and a safe (certain) option on every trial. Each 

decision was preceded by happy, fearful, or neutral faces, or object primes. One type 

of gamble featured only wins (“gain-only”); the other type involved weighing a 

potential win against a potential loss (“mixed”); allowing to assess risk and loss 

aversion respectively by fitting a computational Prospect Theory model to 

participants’ choice data. Relative to healthy controls, GAD patients exhibited 

enhanced risk aversion, but equivalent levels of loss aversion. However, both risk and 

loss aversion seemed robust to priming by emotional cues. These findings suggest that 

economic decision-making in clinical anxiety is characterized by a reduced propensity 

to take risks, not by a stronger aversion to losses. 

5.2 Introduction 

Anxiety disorders constitute a major global health burden (Beddington et al., 2008), 

and are characterized by negative emotional processing biases, as well as disrupted 

working memory and decision-making (Hartley and Phelps, 2012; Paulus and Yu, 

2012; Robinson et al., 2013). Understanding impaired cognitive processing in anxiety 

disorders is important as it could help to improve cognitive-based therapies for anxiety 

by better targeting the specific processes that are disrupted. 

In particular, patients with anxiety frequently report difficulties concentrating and 

making decisions. When faced with risky economic decisions, individuals with an 
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anxiety disorder (Butler and Mathews, 1983; Maner et al., 2007; Mueller et al., 2010; 

Giorgetta et al., 2012; Ernst et al., 2014) or healthy individuals with high dispositional 

anxiety (Maner and Schmidt, 2006; Maner et al., 2007; Lorian and Grisham, 2010; 

Mueller et al., 2010) exhibit increased risk avoidant behaviour.  

For example, in Maner et al. (2007), different groups of patients (anxiety disorder, 

mood disorder, learning disorder) and a group of healthy controls were administered a 

risk-taking questionnaire. Only anxious patients exhibited reduced risk-taking relative 

to controls, suggesting that increased risk avoidance may be specific to anxiety. 

However, the main limitation of this study is that patients did not perform a task 

designed to directly assess risk-taking: questionnaires are non-objective and subject to 

well-established limitations including demand characteristics (Orne, 2009). In a 

modified version of the IGT (Mueller et al., 2010), GAD patients exhibited increased 

avoidance of decks with accumulated low magnitude but consistent losses. However, 

the main limitation of the IGT is that many processes contribute to behaviour on the 

task and it becomes hard to disentangle what drives the observed effect; in this case, 

possible explanations include increased risk aversion in GAD patients, increased loss 

aversion, improved learning of negative outcomes, or improved learning in general. 

Finally, in Giorgetta et al. (2012), the authors addressed some of these concerns by 

administering a probabilistic gambling task, which does not involve learning, to 

anxious patients and matched controls. Anxious patient exhibited a strong reduction in 

their propensity to choose the riskier gambles relative to controls. However, once 

again, it cannot be determined from this design whether avoidance of these gambles is 

driven by enhanced aversion to risk, aversion to losses, or a combination of the two. 

Finally, patients with anxiety tend to overestimate the risk of negative events (Butler 

and Mathews, 1983); however, it is unclear whether this might also extend to the 

positive domain. If not, such an imbalance in risk processing could result in increased 

loss aversion in clinical anxiety, with patients overestimating the risk of negative 

events (or losses) more so than that of positive events (or gains); in other words 

resulting in increased weighting of losses relative to gains. In sum, prior work 

assessing risk-taking behaviour in anxiety is unclear. 

There is a strong hypothesis that loss aversion should increase with anxiety, given the 

associated negative biases in emotional and attentional processes, as well as the 
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heightened sensitivity to large negative outcomes (Hartley and Phelps, 2012; Paulus 

and Yu, 2012). However, somewhat surprisingly, there are no published studies to date 

examining loss aversion in relation to anxiety in adult participants. One study 

examined this question in adolescents (Ernst et al., 2014) and found no difference in 

loss aversion between anxious and healthy adolescents. In other studies (Giorgetta et 

al., 2012; Galván and Peris, 2014), the gambling tasks used involved potential losses 

as well as gains, but did not allow dissociating between risk and loss aversion. 

Therefore, the primary aim of this study was to test the hypothesis that both risk and 

loss aversion are higher in unmedicated anxious patients relative to healthy controls. 

By using a task that clearly separates risk and loss aversion and does not involve 

learning, these processes were adequately separated. A secondary aim of this study 

was to replicate and extend the findings presented in the previous chapter (Chapter 

4), in which healthy individuals with low anxiety exhibited an emotion-induced 

increase in loss aversion. A first prediction was that healthy controls, or at least those 

with relatively low levels of trait anxiety (between 20 and 30 on the STAI), would 

exhibit increased loss aversion following the presentation of emotional relative to non-

emotional primes. A second hypothesis was that clinically anxious patients would fail 

to adapt their decision-making behaviour in response to emotional cues – therefore 

showing no emotional modulation of risk or loss aversion – or would adapt it in a “non-

optimal” direction, engaging harm-seeking rather than harm-avoidant behaviours – 

therefore showing reduced risk or loss aversion in response to emotional cues. 

5.3 Materials and Methods 

5.3.1 Participants 

Twenty-nine unmedicated patients with Generalized Anxiety Disorder (GAD) and 26 

matched healthy volunteers were recruited by advertisement. Data from four patients 

and three controls were excluded because of insensitivity to value in the gambling task 

(3 patients, 1 controls) or more than 10% of missed trials (1 patient, 2 controls), making 

loss and risk aversion impossible to model. Final analyses included 25 GAD patients 

(20 females, 5 males, mean age 25.2 years ± SD 4.90) and 23 healthy controls (18 

females, 5 males, mean age 25.74 years ± SD 6.55) (see Table 5-1 for details). 
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Participants gave written informed consent and were paid for their participation in an 

incentive-compatible manner. The study was approved by University College London 

research ethics committee. 

5.3.2 Procedure 

Participants were pre-screened by completing an online trait anxiety questionnaire 

after expressing interest in participating in the study. High trait anxiety has been shown 

to constitute a vulnerability factor for anxiety disorders, with clinically anxious 

individuals usually scoring above 50 on the scale (Kvaal et al., 2005; Julian, 2011). A 

short phone screening was then conducted on participants scoring under 35 

(prospective healthy controls) or above 50 (prospective anxious patients) on the trait 

anxiety scale to ensure they did not meet any exclusion criteria: diagnosis of 

schizophrenia, bipolar disorder, attention deficit hyperactivity disorder (ADHD), or 

learning disability, medication for psychiatric disorder (e.g. antidepressants) in the last 

30 days, consumption of cannabis in the last 30 days, consumption of any other 

recreational drug in the last week, recent (<6 months) alcohol or drug abuse, current 

or past neurological disorder. Any other past or present psychiatric diagnosis was also 

an exclusion criterion for the control group. All participants were fluent in English 

(native language or at least some secondary school education in English). 

On the day of their visit to the laboratory, all participants were first administered the 

MINI (Sheehan et al., 1998) to confirm that healthy controls had no past or present 

psychiatric disorders, and that patients met MINI criteria for GAD. Because of their 

high comorbidity with GAD (Cloninger, 1990; Hirschfeld, 2001), major depressive 

disorder (MDD; current or past), as well as other anxiety disorders, did not constitute 

an exclusion criterion for the GAD group as long as criteria for current GAD were met. 

However, while most GAD patients (24 out of 25) had experienced at least one 

depressive episode in the past, only about half (13 out of 25) met criteria for current 

MDD at the time of the study, thereby making it possible to examine the role of anxiety 

disorder in the presence or absence of depressive symptoms (see section 5.4.4 below). 

Participants then completed the WTAR, providing an estimate of IQ.  
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Table 5-1. Demographics, questionnaire scores, and GAD patients' clinical 

characteristics 

 

GAD 

patients 

(N=25) 

Healthy 

controls 

(N=23) 

T(46) 
P-

value 

N female : N male 20 : 5 18 : 5 - - 

Age in years (s.d.) 25.20 (4.90) 25.74 (6.55) -0.33 0.75 

IQ score (predicted from WTAR score) 

(s.d.) 
109.60 (5.32) 108.13 (6.30) 0.88 0.39 

STAI Trait anxiety score (s.d.) 55.24 (8.10) 30.00 (5.01) 12.85 <0.001 

BDI score (s.d.) 16.96 (9.19) 1.57 (3.17) 7.62 <0.001 

Age of onset of anxiety (s.d.) 18.08 (5.99) - - - 

Average number of years with anxiety 

(s.d.) 
7.12 (5.85) - - - 

Number (%) with current major 

depressive episode 
13 (52%) - - - 

Number (%) with past medication 

(anxiolytic or antidepressant) 
2 (8%) - - - 

Number (%) hospitalized for anxiety or 

depression 
1 (4%) - - - 

Number (%) with past suicide attempts 1 (4%) - - - 

 

Participants then completed the practice for the emotional decision-making task as 

described in the general methods chapter (Chapter 2) of this thesis (first practice on 

the emotional memory task alone, then practice on the gambling task alone, then 

practice on the combined task). A slight variation was used in the design of the task. 

For the memory part, only 2 stimuli were included in the memorisation array (instead 

of 2 and 4 in the fMRI version of the task). This is because the 4-stimuli condition was 

challenging, with several subjects in the fMRI study performing close to chance, and 

because the relationship between trait anxiety and emotional modulation of loss 

aversion in that previous study was stronger in the 2-stimuli condition (correlation 

between trait anxiety and emotion-induced change in loss aversion from fMRI study: 

r(28)=-0.465 for the 2-stimuli condition; r(28)=-0.175 for the 4-stimuli condition), 

which may be because fewer cognitive resources were taken up by the memory task. 

For the gambling part of the task, some gain-only gambles were added to the mixed 

(gain/loss) gambles in order to estimate both loss and risk aversion in the same model. 

The gain-only gambles involved a choice between a sure gain (ranging from £3 to £7) 
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and a risky gamble with 50% chance of winning a higher amount and 50% chance of 

not winning anything (£0). The range of higher amounts for the gamble was 

determined based on each participant’s indifference point from the practice trials. To 

maintain consistency across trials, the presentation of the mixed gambles was slightly 

altered from the task in the previous chapter (Chapter 4) such that participants were 

presented with a choice between the mixed gamble and a sure option of £0, instead of 

a choice between accepting and rejecting the mixed gamble (see Figure 5-1 for an 

example). In each condition (happy, fearful, neutral, objects), there were 49 mixed 

gambles (7*7 matrix built exactly as before), as well as 25 gain-only gambles (5*5 

matrix, centred on the participant’s indifference point estimated from the practice 

gambling task), leading to a total of 296 trials, all randomly interleaved and split into 

4 blocks of equal length.  

After the task, participants completed the STAI and the BDI (see trait anxiety and BDI 

scores in Table 5-1). As expected, both measures were significantly higher in patients 

than in controls (trait anxiety: t(46)=7.62, P<0.001; BDI: t(46)=12.85, P<0.001). 

 

Figure 5-1. Trial design - clinical anxiety study. The design was similar to that of 

the fMRI study (Chapter 4, Figure 4-1A) except that (i) the array to memorize always 

contained 2 primes (instead of 2 and 4), and (ii) gain-only gambles were added to the 

mixed gambles in order to estimate risk and loss aversion in the same model. 
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5.3.3 Behavioural data analysis 

The propensity to choose the gamble over the sure option was calculated separately 

for healthy controls and GAD patients and in three different ways for analysis 

purposes. First, the overall propensity to gamble was calculated across all trials and 

compared between controls and patients using an independent two-sample t-test. 

Second, it was calculated separately for mixed and gain-only gambles, and analysed 

in a 2-by-2 ANOVA with gamble type as a within-subjects factor and group as a 

between-subjects factor. Finally, to investigate the role of emotional primes on 

gambling decisions, the propensity to gamble was calculated separately for each 

emotion condition and analysed in a 4 (emotion condition) by 2 (group) ANOVA. 

Other variables, such as reaction times, working memory accuracy, and missed trials, 

were analysed in a similar way (see Table 5-2 for a summary of all outcome variables). 

In order to simultaneously estimate loss and risk aversion within the same model, an 

extra parameter 𝜌 was added to the model (as described in Chapter 2, section 2.4.1). 

Specifically for each trial, the subjective utilities (u) of the gamble and of the sure 

option were estimated using equations 2-3 and 2-4, with the assumption that 𝜌𝑔𝑎𝑖𝑛 =

 𝜌𝑙𝑜𝑠𝑠 =  𝜌 and with losses coded as negative values, resulting in: 

𝑢(𝑔𝑎𝑚𝑏𝑙𝑒) = 0.5 ∙ 𝐺𝝆 + 0.5 ∙ 𝝀 ∙ |𝐿|𝝆     (Eq. 5-1) 

𝑢(𝑠𝑢𝑟𝑒) = 0.5 ∙ 𝑆𝝆        (Eq. 5-2) 

λ again represents loss aversion: λ>1 indicates an overweighting of losses relative to 

gains and λ<1 the converse. The ρ parameter represents the curvature of the utility 

function, which reflects varying sensitivity to changes in values as value increases. In 

particular, if ρ<1, the utility function is concave for gains and convex for losses, 

resulting in risk aversion on gain-only trials (greater utility for a sure gain than for a 

risky 50/50 gamble with the same expected value); ρ>1 indicates risk-seeking. 

Similar to the previous chapters and to equation 2-6, these subjective utility values 

were used in a softmax function to estimate the probability of choosing the gamble on 

each trial (coded as 1 or 0 for choosing the gamble or the sure option, respectively), 

with the inverse temperature parameter µ: 
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𝑃(𝑔𝑎𝑚𝑏𝑙𝑒) =  
1

1+ 𝑒−µ[𝑢(𝑔𝑎𝑚𝑏𝑙𝑒)−𝑢(𝑠𝑢𝑟𝑒)] 
     (Eq. 5-3) 

Different models were run using this procedure, where the three parameters (λ, ρ, and 

µ) were estimated: (i) across all trials; (ii) separately for emotional (happy and fearful 

faces) and non-emotional (neutral faces and objects) trials; or (iii) separately for each 

of the four emotion conditions. In the latter case, the model with 12 parameters could 

not be reliably estimated; therefore, only λ and ρ were estimated separately for each of 

the four emotions conditions, with a single µ across all trials, resulting in a model with 

9 parameters instead of 12.  

The distribution of both λ and ρ parameters was positively skewed, so they were log-

transformed before running statistical tests. In addition, because risk aversion is 

highest for lowest values of ρ, the negative value –log(ρ) was taken as the final index 

of risk aversion. This allowed both risk and loss aversion to be similarly distributed, 

with positive values of log(λ) and of –log(ρ) indicating loss aversion and risk aversion, 

respectively. 

To test whether the difference between patient and control groups were indeed specific 

to anxiety or may be driven by depression, which is known to be highly comorbid with 

anxiety, two analyses were run. First the anxious patients were divided into two groups 

according to whether they met criteria for current MDD in addition to GAD. A one-

way ANOVA was then run on risk and loss aversion estimates, comparing the 

following three groups: patients with GAD and MDD, patients with GAD only, and 

controls. Means were then compared with post-hoc t-tests using the least significant 

difference (LSD) test.  

5.4 Results 

A summary of all outcome variables, calculated separately for healthy controls and 

GAD patients, is presented in Table 5-2 below. 
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Table 5-2. Summary of outcome variables 

 GAD patients 
Healthy 

controls 
T(46) P-value 

Cohen’s 

d 

Pgamble 0.325 (0.161) 0.394 (0.174) -1.426 0.161 0.412 

Pgamble mixed gambles 0.354 (0.204) 0.376 (0.173) -0.393 0.696 0.114 

Pgamble gain-only gambles 0.268 (0.145) 0.430 (0.257) -2.728 0.009* 0.788 

λ (loss aversion) 2.013 (0.494) 2.067 (0.752) 
0.141 

(log) 
0.889 0.041 

ρ (risk preference) 0.564 (0.313) 0.875 (0.537) 
-2.491 

(log) 
0.016* 0.720 

µ (inverse temperature) 5.120 (4.124) 3.858 (4.502) 1.014 0.316 0.293 

RTgamble (s) 1.294 (0.229) 1.319 (0.209) -0.390 0.699 0.113 

RTsure option (s) 1.134 (0.193) 1.250 (0.228) -1.914 0.062 0.553 

Missed gamble responses 

(% trials) 
0.514 (0.787) 0.646 (1.125) -0.477 0.636 0.138 

WM accuracy (% correct) 90.78 (11.11) 92.15 (4.675) -0.547 0.587 0.158 

Missed WM responses (% 

trials) 
2.203 (2.717) 1.983 (2.183) 0.307 0.760 0.089 

Note that for comparing λ and ρ parameters between groups, their values were log-

transformed before running statistical tests. 

5.4.1 Propensity to gamble 

Across all participants, the average propensity to choose the gamble was 35.8%. 

Although healthy controls tended to gamble slightly more than GAD patients (39.4% 

versus 32.5%, respectively), this difference was not significant (t(46)=-1.426, 

P=0.161, Cohen’s d=0.412). However, when the type of gamble – mixed versus gain-

only – was added as a within-subjects factor, a significant gamble type*group 

interaction emerged (F(1,46)=5.196, P=0.027, ηp
2=0.101, Figure 5-2), such that 

propensity to gamble on mixed gamble trials did not differ between controls and 

patients (t(46)=-0.393, P=0.696, Cohen’s d=0.114) but patients gambled significantly 

less than controls on gain-only trials (t(46)=-2.728, P=0.009, Cohen’s d=0.788). Note, 

however, that due to the tailoring process during the practice gambling task, the range 

of values used to build the gambles for the main task varied across participants; 

therefore, examining the proportion of chosen gambles may not reflect actual levels of 

risk-taking given that values may be different between subjects. To do so, risk and loss 
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aversion parameters were estimated from the Prospect Theory model, taking into 

account the specific range of values for each participant. 

 

Figure 5-2. Propensity to gamble. The proportion of trials in which the gamble was 

chosen was calculated for each participant and each gamble type (mixed, gain-only), 

then averaged separately for healthy controls and GAD patients. Error bars represent 

SEM. * p<0.05, two-tailed t-test. 

5.4.2 Risk and loss aversion 

Estimated across all trials independent of emotion condition, the average λ parameter 

across all participants was 2.039 (±SD 0.625), greater than 1 and consistent with loss 

averse decisions, and with previous literature suggesting that people weigh losses 

about twice as much as gains (Tversky and Kahneman, 1992; Tom et al., 2007; De 

Martino et al., 2010; Chib et al., 2012). Risk aversion was also evident in people’s 

choices, with an average ρ parameter of 0.713 (±SD 0.458), lower than 1 and indicative 

of diminishing sensitivity to changes in value as value increases. Statistically, these 

were confirmed by one-sample t-tests (against zero) on the log-transformed 

parameters, with loss aversion [log(λ)] and risk aversion [-log(ρ)], both significantly 

positive (loss aversion: t(47)=14.81, P<0.001, Cohen’s d=2.14; risk aversion: 

t(47)=6.261, P<0.001, Cohen’s d=0.904). The distribution of each parameter across 

individuals is depicted in Figure 5-3A. This graph additionally reveals that loss and 

risk aversion are not correlated across individuals (r(48)=0.107, P=0.469), suggesting 
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that distinct processes underlie risk and loss aversion and that the parameters are not 

trading off against each other in the model. 

In order to examine group differences in risk and loss aversion, both log-transformed 

parameters were analysed separately and compared between patients and controls 

(Figure 5-3B). Risk aversion was significantly higher in anxious patients relative to 

controls (t(46)=2.491, P=0.016, Cohen’s d=0.720), but there was no difference in loss 

aversion between groups (t(46)=0.141, P=0.889, Cohen’s d=0.041). 

 

Figure 5-3. Risk and loss aversion parameter estimates. A. Distribution of log-

transformed parameter estimates. Positive values indicate risk aversion and loss 

aversion, respectively. B. Mean estimates of loss and risk aversion, plotted separately 

for GAD patients and healthy controls. Error bars represent SEM. * P<0.05, two-tailed. 

5.4.3 Impact of incidental emotions on decision-making 

The effect of emotional primes on subsequent gambling decisions was analysed in a 4 

(Prime: Happy, Fearful, Neutral, Object) by 2 (Group: GAD patients, healthy controls) 

ANOVA on the following dependent variables: propensity to choose the gamble over 

the sure option (calculated across all trials), loss aversion, and risk aversion. None of 

these variables was influenced by the content of the prime (main effect of prime on 

propensity to gamble: F(3,138)=1.459, P=0.228, ηp
2=0.031, Figure 5-4A left panel; 

on loss aversion: F(3,138)=1.034, P=0.379, ηp
2=0.022, Figure 5-4B left panel; on risk 

aversion: F(3,138)=0.877, P=0.455, ηp
2=0.019, Figure 5-4C left panel). There was 

also no interaction between emotional prime and group on these variables (propensity 

to gamble: F(3,138)=0.069, P=0.977, ηp
2=0.001; loss aversion: F(3,138)=1.653, 
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P=0.180, ηp
2=0.035; risk aversion: F(3,138)=0.602, P=0.615, ηp

2=0.013). Note that the 

increased risk aversion observed in anxious patients relative to controls was present 

for each prime condition (Figure 5-4C left panel). 

 

Figure 5-4. Impact of incidental emotional primes on economic decisions. The 

impact of emotional manipulation, through incidental presentation of visual primes 

prior to making a gambling decision, was examined on three variables: proportion of 

trials where the gamble is chosen (A), loss aversion (B) and risk aversion (C), 

calculated separately for each prime condition (happy faces, fearful faces, neutral 

faces, and objects – left panels) or collapsed across emotion conditions (happy and 

fearful) and across non-emotion conditions (neutral and object) – right panels – and 

averaged across GAD patients and healthy controls.  
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For consistency with the analyses reported in Chapter 4, loss and risk aversion 

parameters were also estimated collapsing across both emotional conditions (Happy 

and Fearful) and across both non-emotional conditions (Neutral and Object) to 

compare the effect of emotional versus non-emotional cues on decisions. However, 

none of the decision variables were affected by emotion (propensity to gamble: 

F(1,46)=0.037, P=0.848, ηp
2=0.0008, Figure 5-4A right panel; loss aversion 

F(1,46)=2.227, P=0.142, ηp
2=0.046, Figure 5-4B right panel; risk aversion: 

F(1,46)=2.014, P=0.163, ηp
2=0.042, Figure 5-4C right panel) or by an interaction 

between emotion and group (propensity to gamble: F(1,46)=0.011, P=0.919, 

ηp
2=0.0002; loss aversion: F(1,46)=1.365, P=0.249, ηp

2=0.029; risk aversion: 

F(1,46)=0.897, P=0.349, ηp
2=0.019).  

5.4.4 Controlling for depression scores 

Because anxiety and depression are highly comorbid, it is possible that the higher risk 

aversion observed in GAD patients relative to controls could be due to higher 

depressive scores or higher occurrence of MDD diagnoses in the patient group (see 

Table 5-1), rather than higher anxiety. Trait anxiety and BDI were indeed highly 

correlated across the entire sample (r(48)=0.836, P<0.001, Figure 5-5A). Therefore, 

in order to control for depression diagnosis, GAD patients were split according to 

current MDD diagnosis (at the time of study), resulting in two sub-groups: patients 

with GAD and MDD (N=13) and patients with GAD but no current MDD (N=12). A 

one-way ANOVA was then run on log-transformed risk and loss aversion estimates of 

these two patient sub-groups as well as the control group, revealing a significant effect 

of group on risk aversion (F(2,45)=3.853, P=0.029, ηp
2=0.146, Figure 5-5B) but no 

effect on loss aversion (F(2,45)=0.012, P=0.988, ηp
2=0.0005). For risk aversion, post-

hoc least significant difference (LSD) tests revealed increased risk aversion in patients 

with GAD only (no MDD) relative to controls (mean difference = 0.509; 95% 

confidence interval = [0.134,0.885], P=0.009), and no difference between the two 

patients groups (mean difference = 0.252; 95% confidence interval = [-0.170,0.674], 

P=0.24). There was also no difference between patients with GAD and MDD relative 

to controls (mean difference = 0.258; 95% confidence interval = [-0.108,0.624], 

P=0.16). This suggests that if anything the increased risk aversion observed in anxious 
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patients relative to controls is driven by those patients who do not exhibit comorbid 

depressive disorder, arguing against an effect of depression in enhancing risk aversion. 

 

Figure 5-5. Controlling for depression levels in risk and loss aversion estimates. 

A. Despite their correlation with trait anxiety scores, variability in BDI scores and 

MDD diagnosis within the patient group allowed examining differences in risk and 

loss aversion between GAD patients who met MDD criteria and those who did not. B. 

Anxious patients with and without a current diagnosis of MDD did not differ in their 

level of loss and risk aversion; however, only GAD patients without MDD exhibited 

significantly higher risk aversion than controls, confirming that increased risk aversion 

is driven by anxiety rather than depressive symptoms.  Error bars represent SEM; post-

hoc LSD tests: * P<0.05. 

5.5 Discussion 

This study demonstrated that relative to healthy individuals, patients with clinical 

anxiety exhibit an enhanced degree of risk aversion, but similar levels of loss aversion. 

Originally, given the broad literature associating anxiety with a more conservative 

decision-making style (see Hartley and Phelps, 2012; Robinson et al., 2013 for 

reviews), the main hypotheses were that both risk and loss aversion would increase in 

clinical anxiety. Interestingly, however, only the first hypothesis was confirmed. 

Increased risk aversion means that clinically anxious individuals are less likely to take 

risks when making decisions, consistent with reduced general tendency to engage in 

risky daily-life behaviours observed in anxious individuals (Maner et al., 2007) as well 

as previous studies using gambling tasks (Mueller et al., 2010; Giorgetta et al., 2012). 

Psychologically, a possible explanation for this increased risk-avoidance bias could 

stem from a bias in the evaluation of risk, with anxious individuals overestimating the 
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risk of negative events happening to them (Butler and Mathews, 1983), which would 

result in an overestimation of the probabilities of not winning the gamble, and in a 

stronger disengagement from risky decisions and behaviours relative to healthy 

individuals. 

The hypothesis that loss aversion would also be enhanced in anxiety was, however, 

not confirmed in the present study. Despite the myriad of studies suggesting negative 

attentional and emotional biases in anxiety (Mogg and Bradley, 2005; Bar-Haim et al., 

2007; Cisler and Koster, 2010; Etkin et al., 2010; MacLeod and Mathews, 2012; 

Robinson et al., 2014), leading to the assumption that anxious individuals may give 

more weight to negative outcomes (in this case monetary losses) compared to healthy 

individuals, this had never been investigated by directly examining loss aversion. It is 

important to note that loss aversion was present in both healthy controls and clinically 

anxious individuals: on average participants weighted monetary losses approximately 

twice as much as monetary gains. However, this ratio was the same across both groups, 

and anxious patients did not overweigh losses in comparison to the control group. This 

is consistent with a recent study in adolescents, which did not find any loss aversion 

difference between anxious and healthy adolescents (Ernst et al., 2014). Although 

surprising, this result may suggest that when the prospect of a loss or negative outcome 

is evaluated on its own, anxious patients may be more sensitive than controls and 

report more negative judgments and affect; however, when they have to weight this 

prospective loss against a prospective gain in order to make a decision, the degree by 

which they do so is similar to controls. 

Results from the emotional priming procedure additionally showed that both risk and 

loss aversion seem robust to manipulation by incidental emotional cues. In particular, 

the original effect described in Chapter 4 (section 4.4.1, Figure 4-2), namely an 

increase in loss aversion for emotional relative to non-emotional primes in low anxious 

individuals, was not replicated. A possible explanation could be that trait anxiety 

scores in the control group of the present study were not as low as those of the low 

anxious group showing the effect in Chapter 4. A more detailed examination of this 

results, combining data of Chapters 4 and 5 is presented in the general discussion 

(Chapter 6, section 6.2).  
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Finally the general effect of anxiety on risk aversion (independent of emotional 

priming) was found to be specific to anxiety and not driven by higher depression, 

known to be comorbid with anxiety. Within the anxious patient group, current MDD 

diagnosis was not associated with any variation in risk or loss aversion. If anything, 

the enhanced risk aversion in anxious patients relative to controls was exclusively 

driven by those patients who did not meet criteria for MDD, arguing against a role for 

depressive symptoms in increasing risk-avoidant decisions. Even though the present 

results suggest that reduced risk-taking seems to be a specific feature of anxiety 

disorders, very little is known about economic decision-making biases in depression 

and this warrants further investigation. 

This study addressed a significant omission in previous designs of risky decision-

making tasks (Mueller et al., 2010; Giorgetta et al., 2012), as well as the loss aversion 

task used in Chapter 4, in which safe choices could be driven both by risk or loss 

aversion. Here, both decision parameters were reliably estimated within the same task 

and computational framework. The study of economic decisions, and their interaction 

with emotions, was also expanded to a clinical group in which affect and emotional 

processes are disrupted. Clinically, these results may be of importance given that 

patients with anxiety frequently report difficulties making decisions in their everyday 

life. In particular, they may help pave the way for the development of future cognitive-

based interventions to better target this specific symptom, for example by focusing on 

reducing patients’ sensitivity to risk, rather than to negative outcome, when they have 

to make decisions. 
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Chapter 6 General Discussion 

This discussion will first summarise the findings of experimental Chapters 3-5, giving 

a brief overview of the results and conclusions of each study. It will then provide a 

unifying analysis combining the behavioural data from Chapters 4 and 5 to examine 

the link between anxiety and the emotional modulation of loss aversion across both 

studies. The findings of this thesis will then be discussed in light of their implications 

for models of the role of emotion in economic decision-making and for future research. 

The limitations associated with each study will then be presented, followed by a 

conclusion on the possible development of therapeutic interventions. 

6.1 Summary of experimental findings 

6.1.1 Chapter 3: how are feelings integrated into economic decisions? 

The aim of the studies presented in Chapter 3 was to test the implicit assumption of 

Prospect Theory that emotions govern our decisions and to provide a computational 

account of how they do so. Emotions were measured as subjective, self-report, feelings 

in a task that elicited such feelings in response to winning or losing a range of monetary 

amounts. These feelings were then incorporated in a “feeling function” that reflected 

the best relationship between feelings and monetary values. Finally this function was 

used to predict participants’ gambling decisions in a separate risky decision-making 

task involving choices between a sure option and a risky gamble. The findings can be 

summarised in three main points. First, feelings show diminishing sensitivity to 

monetary value as value increases, similar to Prospect Theory’s value function, but 

importantly do not show an asymmetry between gains and losses. Second, the “feeling 

function” predicts gambling decisions better than existing models of economic choice, 

showing a unique contribution of feelings to decisions. Third, individual differences 

in loss aversion were driven by an overweighting of feelings about losses, relative to 

feelings about gains, at the time of the decision. Importantly, these findings indicate 

that loss aversion does not arise from a greater impact of losses relative to equivalent 

gains on feelings, but instead from a greater influence of feelings about losses relative 

to feelings about gains when weighting up the decision options. 
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6.1.2 Chapter 4: how do incidental emotional cues modulate loss aversion? 

After showing in Chapter 3 that an asymmetric integration of feelings into choice 

explains loss aversion, my aim in Chapter 4 was to show that by manipulating 

emotions, loss aversion could be altered. In addition, I aimed to investigate the 

underlying neural mechanisms of this effect, using fMRI, as well as to understand 

sources of individual differences in this process, given that people react and adapt to 

changes in the environment, and in particular changes in emotional cues, in very 

different ways. Participants completed a loss aversion task during fMRI while being 

primed before each decision by emotional (fearful or happy faces) or non-emotional 

cues (neutral faces or objects). The behavioural finding was that relative to non-

emotional cues, emotional cues increased loss aversion, but only in individuals with 

low trait anxiety, which was hypothesized to be driven by a greater ability to flexibly 

engage harm-avoidance mechanisms in response to changes in their environment. The 

neuroimaging results were three-fold. First, previous accounts of “neural loss 

aversion” in the ventral striatum were replicated, with activity in the ventral striatum 

found to track decreasing losses more strongly than increasing gains. Second, the 

amygdala responded to the presentation of emotional cues relative to non-emotional 

cues, and tracked monetary losses but only following emotional cues, suggesting a 

potential role for the amygdala in integrating emotion and value signals. Finally, the 

behavioural effect observed (emotion-induced risk aversion) was associated with an 

emotion-induced increase in amygdala functional connectivity with the ventral 

striatum; an effect that also decreased with trait anxiety levels. These findings provide 

new insights into the key role played by the amygdala and ventral striatum, as well as 

their functional interaction, in loss aversion and its modulation by emotion. 

6.1.3 Chapter 5: how does anxiety affect the relative contribution of risk and 

loss aversion to economic choice? 

My aim in Chapter 5 was two-fold; first, to formally examine risk and loss aversion 

in clinical anxiety, as previous studies suggesting increased risk avoidance in anxiety 

have not been able to separate the contributions of risk and loss aversion to choice; 

and second, to replicate the behavioural finding from Chapter 4 and extend it to clinical 

anxiety. I was successful with the first aim, showing that reduced propensity to choose 

risky gambles over safe options in clinical anxiety was driven specifically by increased 
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risk aversion; while loss aversion did not differ between anxious patients and healthy 

controls. However, the behavioural finding of Chapter 4, namely an increase in loss 

aversion for emotional relative to non-emotional primes in low anxious individuals, 

failed to replicate. In fact, individuals in the control, non-anxious group in Chapter 5 

did not exhibit any change in loss or risk aversion in response to emotional cues. There 

was also no difference between anxious patients and healthy controls in how emotional 

cues modulated loss or risk aversion. Some possible explanations, as well as an 

analysis of data combined from Chapters 4 and 5 is presented in the next section. 

6.2 Emotional modulation of loss aversion: integrated findings 

from Chapters 4 and 5 

Several possibilities could explain the absence of effect of emotional cues on loss 

aversion in low anxious individuals in Chapter 5, relative to Chapter 4 (see section 

4.4.1, Figure 4-2). A first potentially important difference between the participant 

groups from the two studies was that the range of trait anxiety scores from the low 

anxious individuals in Chapter 4 (between 20 and 30) was lower than the range of 

scores from the control group in Chapter 5 (between 22 and 39). One possibility could 

be that this effect is specific to individuals with extremely low levels of anxiety, 

consistent with the hypothesis of a link with resilience to anxiety. This might also 

reflect a sampling bias for the fMRI study (Chapter 4), such that those who are 

prepared to volunteer for a brain scanning study are generally less anxious. Another 

explanation could come from a difference in timings between the two tasks. Because 

the study presented in Chapter 4 was adapted for fMRI, the inter-trial interval was 

longer: the delay between the presentation of the emotional faces and the gamble 

varied between 2 and 6 seconds, whereas in Chapter 5 this delay was reduced to 0.5 

seconds to allow the addition of gain-only trials to the design. However, if anything 

one would expect the influence of the emotional prime to be greater when presented 

closer to the decision, so this factor is unlikely to explain the difference in findings. 

Finally, another possibility is that the conditions inside the fMRI scanner, such as 

noise, enclosed space, less opportunity for visual distraction, may interact with the 

emotional manipulation to make it more potent. 
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Interestingly, despite the absence of a significant interaction between emotion and 

group (anxious patients vs controls) on loss aversion in Chapter 5, I noted the presence 

of an emotion-induced decrease in loss aversion in the patient group (Figure 5-4B 

right panel; t(24)=2.161, P=0.041), which could expand the finding of Chapter 4. In 

order to examine this possibility in more detail, the data from Chapters 4 and 5 were 

combined into one sample of N=76 participants. Similar to Chapter 4’s methods, the 

percentage change in loss aversion (λ parameter) between emotional cues (fearful and 

happy faces) and non-emotional cues (neutral faces and objects) was calculated for 

each participant. However this variable was not normally distributed (Kolmogorov-

Smirnov test for normality with Lilliefors significance correction: statistic=0.129, 

P=0.003), due to a heavy-tailed distribution (on both sides of the distribution; Kurtosis 

value = 3.415) and the presence of 4 outliers, defined by asterisks in SPSS. After these 

outliers were removed the variable was normally distributed (Kolmogorov-Smirnov 

test: P=0.2; Kurtosis = 0.851; N=72). Partial correlations were then run between trait 

anxiety and the percentage change in loss aversion from non-emotional to emotional 

cues, controlling for study group (dummy coded variable categorising participants into 

studies from Chapter 4 or 5). 

Across all 72 participants, this correlation was significantly negative (partial 

correlation r(69)=-0.307, P=0.009; Figure 6-1A), suggesting that the significant effect 

observed in Chapter 4 holds when adding the data from Chapter 5. This negative 

correlation remained significant when including only the data from non-clinically 

anxious participants (N=48, partial correlation r(45)=-0.372, P=0.010, Figure 6-1B). 

I next examined group differences and within-group effects by splitting participants 

into three groups: a low anxious group with trait anxiety scores ranging from 20 to 30 

similar to the low anxious group in Chapter 4 (N=23, including 14 participants from 

Chapter 4 and 9 participants from Chapter 5); a clinically anxious group consisting of 

all the GAD patients from Chapter 5 (N=24); and a mild-anxious group with the 

remaining participants, with trait anxiety scores ranging from 31 to 44 similar to the 

high anxious group in Chapter 4 (N=25, including 14 participants from Chapter 4 and 

11 participants from Chapter 5). The average emotion-induced change in loss aversion 

is plotted separately for each of these three groups in Figure 6-1C. A univariate 

ANOVA, controlling for Study, revealed a significant main effect of anxiety group 

(F(2,68)=6.183, P=0.003). Post-hoc t-tests using the least significant difference test 
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showed that this effect was driven by a significant difference between the low and 

mild-anxious groups (mean difference = 5.70; 95% CI = [0.486, 10.91], P=0.033) and 

between the low and clinically anxious groups (mean difference = 9.14; 95% CI = 

[3.88, 14.41], P=0.001), but not between the mild- and clinically anxious groups (mean 

difference = 3.45; 95% CI = [-1.71, 8.60], P=0.19). In addition, one-sample t-tests 

performed on each group mean demonstrated a significant emotion-induced increase 

in loss aversion in low anxious individuals (t(22)=3.57, P=0.002), consistent with the 

finding of Chapter 4, no change in loss aversion in mild-anxious individuals 

(t(24)=0.27, P=0.79), and a marginally significant decrease in loss aversion following 

emotional cues in clinically anxious participants (t(23)=1.83, P=0.08). Note that the 

difference between this latter t-test and the one reported above (corresponding to the 

decrease in loss aversion for anxious individuals depicted in Chapter 5, Figure 5-4B 

right panel; t(24)=2.161, P=0.041) is driven by the fact that the statistical test in 

Chapter 5 was run on the difference between loss aversion in the emotional relative to 

non-emotional conditions, whereas the variable reported here in Figure 6-1C is the 

percentage change in loss aversion (rather than the difference). In addition, one outlier 

was removed from the patient group, resulting in the newer test being run on 24 

subjects instead of 25. Because the loss aversion variables (during emotional and non-

emotional conditions) reported in Figure 5-4B right panel were normally distributed, 

all participants were included in the analyses. It is only when calculating the 

percentage change in loss aversion for the current analysis to be consistent with 

Chapter 4 that outliers emerged and had to be removed from the data. 

Finally, despite the suggestion that the findings from Chapter 4 hold when adding the 

data from Chapter 5, this pattern of results has to be taken with caution given the 

distribution of trait anxiety scores across the whole sample, which is more consistent 

with a bimodal rather than normal distribution, resulting in very few data points for 

trait anxiety scores between 45 and 55. As mentioned in the limitations section 6.4 

below, replications of these results will be needed in future investigations. 
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Figure 6-1. Combined analysis of data from Chapters 4 and 5. Data from studies 

presented in Chapters 4 and 5 of this thesis were combined to analyse how individual 

differences in anxiety levels relate to emotion-induced changes in loss aversion across 

the whole sample (N=72, following the exclusion of 4 outliers). The percentage change 

in loss aversion between emotional and non-emotional cues was calculated for each 

participant and correlated with trait anxiety (A) across all subjects and (B) across all 

healthy subjects excluding clinically anxious participants from Chapter 5. C. The mean 

emotion-induced change in loss aversion is plotted for each of three groups: low 

anxious subjects (trait anxiety between 20 and 30, N=23), mild-anxious subjects (trait 

anxiety between 31 and 44, N=25) and clinically anxious subjects (patient group from 

Chapter 5, N=24). Error bars represent ± 1 SEM. Two-tailed t-tests: * P<0.05; † P<0.1. 

6.3 How these findings pave the way for new mechanistic accounts 

of the role of emotion in decision-making 

6.3.1 A model of choice based on the integration of subjective feelings: 

implications of Chapter 3 

The findings of Chapter 3 provide a novel account and computational model of how 

emotions are utilized to predict choice. Specifically, the model incorporates how 

people’s feelings relate to objective value then uses this relationship to predict choice 

by adding a greater weight to feelings about losses than to feelings about gains. It 

confirms the assumption of Prospect Theory that emotions mediate the influence of 
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objective value on choice. The non-linear, S-shaped, relationship between emotion and 

objective value also suggests that emotion can be viewed as a utility signal. 

However, the two components of the model point towards some differences with the 

assumptions of Prospect Theory. First, contrary to Prospect Theory’s value function, 

the function that relates emotion and objective value is not steeper for losses than for 

gains, suggesting that losses do not impact subjective feelings to a greater extent than 

gains. Second, it is when these feelings are incorporated into a decision variable at the 

time of choice that the gain-loss asymmetry appears. Therefore, the model suggests 

that the utility signal that ultimately determines an agent’s decisions (or decision 

utility) can be decomposed into an early component based on the emotional evaluation 

of each potential outcome separately (“emotion utility”), followed by a later 

component formed of the asymmetrically-weighted integration of these emotion 

utilities, with a greater weight attributed to negative than positive utilities. Note that in 

this framework, what I call “emotion utility” is conceptually very similar to 

Kahneman’s proposed “experienced utility” (Kahneman et al., 1997). 

Crucially, the model incorporating a “feeling function” performed better in predicting 

an independent set of choices than traditional models based on expected value 

maximization, expected utility (modelled as log[expected value]) maximization, or 

maximization of Prospect Theory-derived utility (calculated using subject-specific 

estimates of risk aversion only, loss aversion only, or both). Therefore, by directly 

measuring emotions, instead of estimating the role of emotion from people’s choices 

as assumed by Prospect Theory and reflected in estimates of risk and loss aversion, the 

model’s ability to predict choice can be reliably improved. 

This idea suggests that measuring more components of emotions than only subjective 

feelings may provide an even better model of people’s decisions. In particular, these 

other measures could include physiological emotional responses, such as SCRs, heart 

rate, pupil dilation, brain responses, or subjective reports of different emotions (e.g. 

fear, anger, sadness, excitement, etc) or emotional dimensions (e.g. valence, arousal, 

etc). With these measures, it may be possible to dissect how the different components 

of emotions lead to a decision, and provide a better descriptive account of economic 

decision-making. 
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6.3.2 An improved understanding of loss aversion: an expression of autonomic 

arousal, rather than fear? 

Previous work has suggested, as described in Chapter 1 (section 1.2.3), that loss 

aversion may be an expression of fear, given the common neural and physiological 

signatures of both fear processing and the anticipation of losses or loss aversion. 

Although the neuroimaging findings from Chapter 4, involving amygdala-striatum 

interactions and amygdala tracking of losses only following an emotional prime, may 

be consistent with LeDoux’s model of fear processing (LeDoux and Gorman, 2001), 

most of the behavioural findings of this thesis do not support this account, especially 

in terms of specificity to fear processing. Instead, they might be more consistent with 

other models of amygdala function that emphasise its role in arousal, emotional 

intensity or affective significance, instead of simply processing fear or negative 

emotions (Morrison and Salzman, 2010; Pessoa and Adolphs, 2010; Wang et al., 2014; 

Seara-Cardoso et al., 2016). 

First, the findings of Chapter 3 suggest that loss aversion arises from increased 

weighting of feelings about potential losses relative to feelings about potential gains, 

rather than feelings about losses being more intense per se. If the fear of losing was 

the main driver of loss aversion, then one could expect negative feelings about losses 

to be bigger in magnitude than positive feelings about gains; but the results presented 

in Chapter 3 suggest that there is no such asymmetry in people’s reported feelings. To 

test this hypothesis more specifically, however, one possibility would be to collect 

subjective reports of different emotions, one of them being fear. If loss aversion results 

from the expression of fear, then it should be specifically reflected in ratings of fear, 

but not other emotions (which could also be one of the reasons why asymmetry is not 

observed in the data). 

Second, if fear drives loss aversion, then manipulating fear should alter loss aversion. 

This is what a recent study has found, such that increasing fear with the presentation 

of fearful faces resulted in an increase in loss aversion (Schulreich et al., 2016). 

However, this study did not test for the specificity of fear relative to other emotions, 

as fear was the only emotion used. In the study presented in Chapter 4, findings 

suggest that even though fearful faces seemed to have the strongest effect on increasing 
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loss aversion in low anxious individuals, happy faces also had a significant effect in 

the same direction (Figure 4-2B), suggesting a potential role for emotional arousal, 

rather than fear, in modulating loss aversion. 

Finally, anxious individuals are known to exhibit exacerbated fear responses, mainly 

reflected by increased behavioural and neural responses to threat-related stimuli (Bar-

Haim et al., 2007; Robinson et al., 2013, 2014). Therefore, a fear-related account of 

loss aversion should predict increased loss aversion in anxious individuals, which is 

not supported by the results of Chapter 5 showing no difference in loss aversion 

between anxious patients and healthy controls. 

A more recent account of loss aversion suggests a key role for autonomic arousal 

(Sokol-Hessner et al., 2009, 2015b; Sokol-Hessner and Phelps, 2016). Specifically, 

Sokol-Hessner et al propose a mechanistic account by which “amygdala-mediated 

arousal responses [to decision outcomes] may drive striatally mediated decisions to 

avoid losses” (Sokol-Hessner and Phelps, 2016; p.12); an account consistent with the 

possible function of the amygdala in encoding arousal more generally (Glascher and 

Adolphs, 2003; Pessoa and Adolphs, 2010; Seara-Cardoso et al., 2016). Sokol-Hessner 

et al provide preliminary evidence that adrenergic responses may relay this arousal 

response (Sokol-Hessner et al., 2015b), to a greater extent for losses than for gains, 

which in turn induces avoidance of subsequent losses and loss aversion. In addition, 

they hypothesized that such an effect should be greater in individuals who are more 

sensitive or better able to perceive their own internal states, including states of arousal. 

They found support for their hypothesis in a recent study showing that participants 

with increased interoceptive abilities in a heartbeat-detection task exhibit higher loss 

aversion (Sokol-Hessner et al., 2015a). I suggest that the results of this thesis, in 

particular of Chapter 4, can be interpreted in light of this account: both fearful and 

happy faces increase arousal, and as such induce an increase in loss aversion; in 

addition, low anxious individuals may have a greater ability to perceive and react to 

this internal state of arousal than high anxious individuals, which could explain why 

emotion-induced changes in loss aversion are only observed in the low anxious group. 

However, this latter hypothesis awaits testing. Examining loss aversion in alexithymia 

would be interesting for that purpose. Alexithymia is characterized by a deficit in 

identifying, experiencing and describing one’s own emotion (Sifneos, 1973; Taylor et 
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al., 1999) and may in that sense be associated with difficulties in monitoring internal 

bodily states. Predictions would include lower loss aversion in subjects with high 

alexithymia, as well as reduced or no emotion-induced changes in loss aversion, 

compared to subjects with no alexithymia. 

Finally, while past studies have suggested a role for dopamine in promoting risk 

seeking (thus reducing risk aversion; St. Onge and Floresco, 2009; Stopper et al., 2014; 

Rutledge et al., 2015; Ferenczi et al., 2016; Rigoli et al., 2016); whether dopamine also 

influence loss aversion, perhaps by changing the relative contribution of losses and 

gains to decisions, remains unknown. It would therefore be interesting for future 

studies to examine whether and how loss aversion is changed by the administration of 

a dopamine agonist such as L-DOPA. 

6.3.3 Interaction between emotion and decision-making phenomena not 

accounted for by Prospect Theory’s value function 

All the studies presented in this thesis focused exclusively on estimating Prospect 

Theory’s value function parameters, namely loss aversion (λ) and curvature (ρ), an 

index of risk preference. However, an important component of Prospect Theory as 

described in Chapter 1 (section 1.1.2.2) is the probability weighting function, which 

suggests that during risky decisions, people overweigh low probabilities and 

underweigh high probabilities. Because all the experimental designs in this thesis used 

gambles with 50% chance of each outcome, and probabilities were never varied to a 

range that encompassed low and high probabilities, it was not possible to estimate such 

probability weighting function in the data collected in this thesis. 

However, similar to the findings of this thesis that indicate both an integral and 

incidental influence of emotions on risk and loss aversion, emotions may also play a 

key role in the probability weighting process. The following two studies would 

therefore be useful to conduct in the future to address this point. First, by measuring 

emotional reactions to probabilistic potential outcomes, one could examine whether 

these emotional reactions relate to outcome probabilities in a similar way as Prospect 

Theory-derived probability weights do. Second, if this influence is established, one 
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could use emotional induction or priming methods to manipulate emotions and 

examine the consequences on the probability weighting function. 

A recent study has provided preliminary evidence for the latter (Schulreich et al., 

2014). The authors used a within-subject emotion induction procedure using music. 

Participants completed four blocks of a probabilistic gambling task (50 trials per block) 

where they had to decide between two lotteries (e.g. 75% chance of $3 and 25% chance 

of $15 versus 90% chance of $5 and 10% chance of $10). All the amounts were 

potential gains (no losses were involved), and magnitude and probability were varied 

parametrically across the 50 trials of each block, such that one lottery was always 

riskier than the other (wider spread in magnitude and/or probability). Before each 

block a 6-min emotion induction procedure was performed by having the participant 

listen to either happy music, sad music, random tones, or no music. Relative to sad 

music or random tones, happy music made participants more likely to choose the risky 

option, consistent with some of the studies reviewed in Chapter 1 (Knutson et al., 

2008; Lee and Andrade, 2014). However, their model of participants’ choices, which 

included two parameters from the probability weighting function (sensitivity and 

elevation) as well as a curvature parameter for the value function (ρ, similar to risk 

aversion estimates throughout this thesis), revealed that the effect of happy music on 

risky choice was not driven by a reduction in the curvature of the value function, but 

by an increase in the elevation parameter. This increase results in overall higher 

probability weights following happy music relative to sad music or random tones, such 

that people will overall perceive the probabilities of winning as slightly higher when 

they are happy, in turn increasing risk taking. 

Finally, there are also several other decision-making phenomena that are not accounted 

for by Prospect Theory value or probability weighting functions, and for which the 

role played by emotions is still poorly understood. One example includes context 

effects on decision-making, in particular the similarity, compromise and attraction 

effects, which occur when a third option is added to a binary choice. To illustrate these 

context effects, the common example concerns the choice between two cars A and B, 

A being cheap but lower quality and B more expensive but high quality, to the extent 

that the decision-maker is indifferent between A and B. The similarity effect is caused 

by the addition of another car S that is very similar to A, which biases the decision 
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towards car B over car A (Tversky, 1972). The compromise effect occurs when a car 

C is added. Car C is extremely expensive but also extremely high quality, thus making 

car B a compromise between A and C; this increases the probability of car B to be 

chosen over car A (Simonson, 1989). Finally, the attraction effect results from adding 

a decoy car D that is close to car B but both more expensive and lower quality. Car D 

should therefore be discarded altogether in the choice process; instead it makes car B 

more likely to be chosen than car A (Huber et al., 1982). Several models have been 

developed to explain all three context effects (see Noguchi and Stewart, 2014, for a 

review), such as multi-alternative decision field theory (Roe et al., 2001) or the leaky 

competing accumulator model (Usher and McClelland, 2001). In particular, these 

models are dynamic models, whereby one attribute (e.g. car price) will be attended to 

at one moment, then all alternatives will be evaluated simultaneously on that attribute. 

Then at the next moment, a different attribute will be attended. Evaluation of the 

alternatives at every moment in time depends on which attribute is attended to. An 

alternative is chosen once this evaluation reaches a threshold. To my knowledge 

integral and incidental influences of emotions on these context effects have not been 

investigated, so future research questions could aim to examine such emotion effects 

on the dynamic allocation of attention to attributes of decision options; and thus 

provide a better understanding of which parameters of these models incorporate 

integral components of emotions and can be modulated by incidental emotions. 

6.4 Limitations of studies within this thesis and directions for 

future research 

6.4.1 Chapter 3 

One limitation of the study from Chapter 3 is that the assessment of emotions was 

limited to one subjective feelings question about the subject’s self-reported happiness. 

Even though the findings were replicated in three independent samples, including one 

where the rating scale was changed to ask subjects to rate the impact of the monetary 

outcome on their feelings (rather than the valence on a scale from very unhappy to 

very happy), it is still possible that the findings might have differed if a different 

assessment was used, in particular asking about negative emotions. 
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In addition, previous studies that have measured more implicit emotional responses to 

decision outcomes (in particular monetary gains and losses) have generally shown an 

asymmetry between gains and losses; an effect that the studies of Chapter 3 of this 

thesis and other studies (Mellers et al., 1997; Kermer et al., 2006; Harinck et al., 2007; 

McGraw et al., 2010) have failed to demonstrate using self-report feelings. For 

example, Sokol-Hessner et al. (2009) showed that the average SCR per dollar lost was 

greater than the average SCR per dollar won. Pupil dilation and heart rate (Hochman 

and Yechiam, 2011), as well as amygdala responses (Sokol-Hessner et al., 2013), were 

also found to be greater in response to losses than to equivalent gains. This suggests 

again that using different methods of assessing emotions may lead to different results 

and interpretations. In particular here, it is possible that participants do experience 

losses to a greater extent than gains, but that this difference is (deliberately or not) not 

reflected in explicit reports. It is important that future studies assess the consistency 

between implicit and explicit reports of emotions, in order to improve models of how 

such emotions influence decisions. 

Another limitation of this study comes from the fact that feelings were not measured 

at the exact time of choice. The risk as feelings hypothesis presented in Chapter 1 

(section 1.2.2; Loewenstein et al., 2001; Lerner et al., 2015) suggests that feelings 

induced by the decision at hand, for example by the level of risk independent of the 

potential outcomes, influence the decision. The results of Chapter 3 make the 

assumption that the decisions are determined by a weighted combination of the 

feelings about potential outcomes. Two potential caveats could contradict that claim. 

First, it is possible that feelings about potential outcomes are different at the time of 

choice than when evaluated in a different context (here a different task). If so, an 

alternative explanation to the results could be that loss aversion is actually reflected in 

a gain-loss asymmetry in feelings experienced at the time of choice, rather than by an 

asymmetry in the weight of feelings experienced in a different contexts. Second, 

because feelings induced by the decision itself were not directly measured (with a 

question such as “how do you feel about making this decision?”), a component of 

emotion (the current or immediate emotions suggested by the risk as feelings 

hypothesis) and its influence on choice were neglected. Future directions would 

therefore involve developing a task and a model of emotional decision-making that 
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can account for the influence of both immediate and expected emotions at the time of 

choice. 

Finally, whether expected and experienced feelings contribute differently to decisions 

is still not established by the data. Even though the findings suggest that both predict 

choice better than traditional value-based models, they were both strongly correlated 

with each other, making it impossible to include them in the same model to examine 

their unique contribution to choice. 

6.4.2 Chapter 4 

One of the main limitations in the design of the study from Chapter 4 was that gain-

only gamble trials were not included, which would have been necessary to estimate 

both risk and loss aversion parameters in the same model. However given the time 

constraints in the scanner, the longer duration of each trial due to the addition of the 

jitters, and the need for a substantial number of trials per emotion condition in order to 

allow the loss aversion parameter to vary with emotion, it was not possible to add those 

extra trials. A separate estimation of risk aversion, based on the sensitivity to the 

variance of each gamble as has been used previously (De Martino et al., 2010; Canessa 

et al., 2013), ensured risk aversion did not contribute to the observed effects on loss 

aversion. Despite this, future studies should try and overcome this limitation by adding 

both trial types to their design. One possibility could be to start with only two types of 

primes (e.g. fearful vs neutral faces, similar to Schulreich et al., 2016), in order to 

simplify the design and maximize the number of trials and sensitivity for modelling 

loss and risk aversion in each condition. Then if an effect is found, other primes could 

then be added to the design. 

A second limitation associated with the findings of Chapter 4 comes from the fact that 

the result of emotional priming was not significant across the entire sample, only when 

analysed in relation to individual differences in trait anxiety. Since one of the aims of 

this study was to examine individual differences, this is not a problem in this 

perspective, but the absence of a main effect of emotion across all participants means 

that the results cannot be generalized to the simple claim that emotion increases loss 

aversion.  
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In addition, even though the analysis of the combined data of Chapters 4 and 5 (see 

section 6.2 above) suggests that the effect holds over both samples, the effect was not 

in itself replicated in Chapter 5. There is therefore a need to replicate this result in 

future studies. Interestingly, the results of the pilot studies (Chapter 2, section 2.5), 

even though they have to be taken with caution because the protocol was still being 

developed, seem to corroborate the effect of trait anxiety on the emotional modulation 

of loss aversion. When examining the specific correlation between trait anxiety and 

the percentage change in loss aversion between emotional and non-emotional primes, 

however, this correlation was only significant for pilot study 1, which used subliminal 

emotional primes [r(30)=-0.468, P=0.009], but not for pilot study 2 [r(32)=-0.114, 

P=0.54]. 

Another possibility to address some of these issues could be to use more arousing 

pictures (instead of faces) as primes. Even though faces have the advantage of allowing 

manipulation of the emotional content while keeping everything else constant (e.g. the 

face from the same individual depicting fearful, happy or neutral expression), they are 

usually not perceived as very arousing by participants. For example, in the debriefing 

questionnaire, several participants reported finding the fearful faces “funny” but 

clearly not scary. In addition, most studies that have found an effect of incidental 

emotional primes, presented for a few seconds, on economic choice (Knutson et al., 

2008; Kuhnen and Knutson, 2011; Cassotti et al., 2012) have used pictures of scenes 

rather than faces. A similar procedure could be used, by perhaps having subjects 

subjectively rate the pictures on arousal and different emotions (happiness, fear, 

disgust, sadness, etc) in a preliminary session; then specifically selecting those images 

that the subject finds particularly arousing and emotionally-provoking as primes for 

the decision-making task. Visual primes could also be combined with primes presented 

in another modality (e.g. sounds) for a stronger effect. Finally, it would be interesting 

to try to replicate the same findings using emotional priming and a more long-lasting 

mood induction procedure, although as mentioned in Chapter 1 (section 1.3), the 

mechanisms may be different and result in differential effects on behaviour. 

Nonetheless, both play a role in influencing decisions, probably on a different 

timescale, and little is known about the concurrent integration of both short-lasting 

emotions and long-lasting mood effects during choice; therefore this warrants further 

investigation. 
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6.4.3 Chapter 5 

As summarised above, the main finding of Chapter 5 is the difference in risk aversion 

(but not in loss aversion) between anxious patients and controls, independent of the 

influence of incidental emotional cues. However, because the design used those cues 

on every trial, and was embedded in a working memory cover story with subjects 

having to perform a memory task concomitantly with the gambling task, there is a need 

for future studies to replicate the risk aversion effect in a simpler design, with the only 

purpose of examining risk and loss aversion. In addition, implementing such a design 

would have the advantage of removing the emotional cues and the memory task, thus 

saving a substantial amount of time and allowing more trials in the task to estimate the 

model parameters, which would afford a greater degree of precision. In particular, it 

would allow adding loss-only trials, in which participants have to choose between a 

sure small loss and a risky gamble with 50% chance of a high loss and 50% chance of 

not losing (similar to the choice task used in Chapter 3, Figure 3-1C), in order to 

separate risk aversion in the gain and loss domains. 

In addition, an alternative explanation for the increased risk aversion in the anxious 

group could be explained by the fact that anxious patients may underestimate the 

probability of winning in the gain-only trials. Given the finding that positive affect 

induces an overestimation of gain probabilities (Schulreich et al., 2014), one 

hypothesis could be that anxious patients, in contrast, exhibit a general tendency to 

underestimate gain probabilities, which could result in the decreased propensity to take 

risks observed in anxious patients. In order to disentangle between these two 

hypotheses and determine whether anxiety is best characterized by increased risk 

aversion or decreased probability weighting, future experiments should parametrically 

vary the probabilities of winning and losing in their design, rather than focus on 50-50 

gambles. 
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6.5 Conclusions and implications for the development of possible 

interventions 

6.5.1 Beneficial and detrimental effects of emotions on decision-making 

Very few accounts of the role of emotion in decision-making have discussed whether 

such an influence is ultimately beneficial or detrimental for the decision-maker. It is 

obviously difficult to answer such a question given the still limited understanding of 

the detailed mechanisms by which emotions and decisions interact. However, given 

the focus of this thesis, a few points and speculations can be made. 

Traditionally, most decision-making researchers, particularly in economics, would 

view any kind of emotion as an interference in the rational, optimal process of 

calculating expected value and making decisions. By making people deviate from 

rationality, emotions were in that sense systematically considered detrimental to the 

decision-making process. However, the early theories of an integral influence of 

emotions on decisions started diverging from this view. The somatic marker 

hypothesis (Bechara et al., 1994, 1997, 1999; Bechara and Damasio, 2005) was one of 

the first to suggest that emotions are necessary, and therefore beneficial, for decisions. 

The theory makes the assumption that it is thanks to our emotional reactions that we 

learn to seek rewards and avoid losses, and to make advantageous long-term decisions. 

As a result, people who cannot experience or process such emotional reactions exhibit 

impaired decision-making. Although the task that was used to test this somatic marker 

hypothesis (the IGT) is far from perfect (as described in Chapter 1, section 1.2.1), the 

theory remains nonetheless an interesting one and has helped transforming the view of 

emotions as pivotal and beneficial components of decisions. The risk as feeling 

hypothesis proposed later (Loewenstein et al., 2001; Lerner et al., 2015) offers a more 

integrated and nuanced view, in particular distinguishing the role of expected versus 

immediate emotions. Expected emotions are emotions expected to be induced by the 

potential decisions outcomes should they be experienced later; these expected 

emotions are likely to be driven by past experiences of similar outcomes and similar 

to the somatic marker hypothesis, the risk as feelings hypothesis suggests they will 

inform the decision-maker and be beneficial to their decision. In contrast, immediate 

emotions, which are induced by the decision at hand, for example by the level of risk, 
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will often bias decision-maker away from the rational course of action, and can in that 

sense be detrimental. 

Overall I argue that emotions are mostly beneficial to the decision-making process if 

one considers that a decision-maker behaves optimally, not by maximizing the 

expected value of their outcomes, but by maximizing their positive feelings and 

minimizing their negative feelings at any given moment in time. With this view, a 

decision is considered optimal when it maximizes how good the decision-maker feels, 

rather than how much money they will win. The outcome of the decision can therefore 

be viewed as one component that will generate emotions (positive if the outcome is 

good, negative if the outcome is bad); however, once combined with all the other 

emotional components of the decision (e.g. feelings induced by the level of risk, or the 

anticipation, etc), feelings will often be maximized in cases where the outcome may 

not be the best. Therefore, emotions may act as primary reinforcers and an optimal 

decision-maker will be someone who seek to maximize positive emotional experiences 

and minimize negative emotional experiences, possibly in a simple Pavlovian manner 

(Seymour and Dolan, 2008; Hart et al., 2014; Ly et al., 2014; Rutledge et al., 2015). 

With this view, integral emotions are largely beneficial to decision-making. 

Another potentially important idea consistent with a beneficial role of emotions in 

decisions is the view that emotions help people decide quickly. Because in reality, a 

decision-maker rarely has much time to carefully consider and weigh up all possible 

decision options, especially when they are close in value, emotion can be key in 

speeding the decision-making process. In particular, simple heuristics, driven by the 

negative emotional impact of potential losses, help participants prune away some 

branches of the decision tree they face in a complex sequential decision-making task, 

thus reducing the number of possible decisions and the time needed to choose (Huys 

et al., 2012, 2015). Even though previous work indicates that emotions affect timing 

and the perception of time (see Droit-Volet and Meck, 2007 for a review), suggesting 

a possible mechanism by which emotions may reduce decision times, this question 

has, to my knowledge, never been directly examined. If such an effect of emotion in 

speeding decision processes exists, it can also be viewed as an adaptive role of 

emotion, especially when considered from an evolutionary perspective and applied to 
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situations in which making quick decisions (e.g. avoiding danger) is necessary for 

survival and improves evolutionary fitness. 

Nonetheless, there are cases where the influence of emotions can become detrimental. 

Those are cases where decisions fail to maximize positive feelings, and might instead 

induce more negative feelings, where the decision-maker fails to learn from these 

feelings to adapt their subsequent decisions, or where emotions may slow down the 

decision process instead of speeding it up. This will often occur in emotional disorders, 

such as anxiety and depression, and can be one of the main causes for the persistence 

of these negative feelings and biases. 

6.5.2 Can emotion regulation strategies target and reduce detrimental 

influences of emotions on decisions? 

When emotions have a detrimental influence on people’s decisions, or even people’s 

behaviour and mental health in general, some interventions exist to try and override 

this negative influence. Such interventions involve cognitive training to learn to reduce 

or regulate one’s emotions. The two most common examples of emotion regulation 

strategies are emotion suppression, which simply involves controlling and reducing 

any negative emotion, and reappraisal, which involves reframing and reinterpreting in 

a positive ways the meaning of an event that generated a negative emotional response 

(for example, viewing losing a job as an opportunity to pursue a new exciting career 

path; Gross, 2002; Gross and John, 2003). Most studies comparing the effect of both 

strategies on a range of tasks, as well as in patients with affective disorders, have 

shown a clear advantage for reappraisal over suppression (Gross, 2002; Gross and 

John, 2003), mainly because in addition to reducing negative feelings, reappraisal 

reduces neural and physiological responses to negative events (Ochsner et al., 2002; 

Jamieson et al., 2012) and increases positive emotional experiences (Gross and John, 

2003), whereas suppression fails to do so (Gross and Levenson, 1993; Gross, 2002). 

As yet, only a handful of studies have examined the influence of emotion regulation 

strategies on decision-making under risk, but all converge towards the finding that 

cognitive reappraisal of emotions increases risk taking behaviour (Sokol-Hessner et 

al., 2009; Heilman et al., 2010; Panno et al., 2013; Martin Braunstein et al., 2014). In 

particular, using a reappraisal technique that made participants focus on the global 
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outcome of all their decisions, rather than on individual outcomes (more likely to 

induce incidental emotions carrying over to the next decisions) combined with a 

Prospect Theory model, Sokol-Hessner et al. (2009) found that the increased 

propensity to gamble under reappraisal was driven by reduced loss aversion rather than 

risk aversion, accompanied by reduced SCRs to loss outcomes. Panno et al. (2013) 

extended the effect of reappraisal as a within-subject manipulation to individual 

differences, showing that individuals who generally used more cognitive reappraisal 

in daily life situations took more risk in a gambling task and were less sensitive to 

losses. 

The use of such emotion regulation techniques could be promising as clinical 

interventions for anxiety. As described in Chapter 1 (section 1.4.1), individuals with 

anxiety have difficulties regulating their emotions, both during emotional conflict 

tasks (Etkin et al., 2010; Etkin and Schatzberg, 2011) and in their daily life (Farmer 

and Kashdan, 2012). In addition, anxiety is characterized by the presence of negative 

attentional biases, such that anxious individuals primarily allocate their attention 

towards threat-related stimuli and have difficulty disengaging their attention from such 

stimuli (Bar-Haim et al., 2007). Attentional bias modification is an intervention that 

has been developed to try and counteract this threat-related bias. In most cases, this 

intervention uses a variant of the dot-probe task, in which instead of having the dot 

probe appearing randomly behind the neutral or threatening face, the contingencies are 

modified such that the dot mostly or always appear behind the neutral face (MacLeod 

et al., 2002). Through learning, patients can therefore learn to allocate their attention 

away from the threatening stimuli. This and similar tasks are effective in reducing 

attentional biases in clinical anxiety (see Browning et al., 2010 for a review) and 

significantly reduce anxiety symptoms (see Hakamata et al., 2010; Linetzky et al., 

2015 for meta-analyses) with effects lasting at least several months (Schmidt et al., 

2009). Interestingly a recent meta-analysis that included clinical trials using attentional 

bias modification, as well as other trials using cognitive bias modification (an 

intervention focusing on biases in interpreting information, rather than attentional 

biases) or other approaches such as concreteness training or alcohol approach and 

avoidance training, found no reliable effect on anxiety symptoms (Cristea et al., 2015). 

This suggests that attentional bias modification may be specifically well suited to 

anxiety, while other cognitive interventions are not. 
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Despite their efficacy, the mechanisms by which such interventions work, and in 

particular the role they play in the integration of emotions during decision-making, 

remain poorly understood. As yet, the potential link between interventions such as 

cognitive reappraisal (which seems to reduce risk/loss aversion) or attentional bias 

modification (which seems to improve anxiety symptoms) and risk-taking behaviour 

in anxiety has not been examined. In particular, two interesting questions for future 

research would be (i) to determine whether cognitive reappraisal may reduce risk 

aversion in clinical anxiety, and if so whether this mediates any clinical improvements 

in symptoms; and (ii) to investigate the possibility that reduced risk aversion may 

mediate the link between attentional bias modification and reduction in anxiety 

symptoms. Finally, intolerance to uncertainty has been defined as a pivotal feature of 

clinical anxiety (Dugas et al., 1998) and may also be a primary driver of the observed 

increased risk aversion. However, whether such aversion to uncertainty arises from 

similar or different mechanisms than threat-related attentional biases, and whether this 

plays a role in the mechanisms of attentional bias modification, are also unresolved 

questions. If attention to threat and intolerance to uncertainty are in fact two distinct 

processes, future interventions focusing on reducing intolerance to uncertainty may 

prove useful in anxiety. 

6.5.3 Overall conclusions 

Taken together, the findings of this thesis help provide a more complete understanding 

of the complex interactions between emotions, mood and decision-making. They 

indicate (i) that traditional models of economic choice, such as Prospect Theory, can 

be improved by accounting for the role played by subjective emotions, (ii) that loss 

aversion is best explained by an asymmetry in how people weigh their feelings about 

losses relative to gains, (iii) that an arousal account of loss aversion is probable, 

whereby the emotional modulation of loss aversion recruits amygdala-striatal 

interactions, and (iv) that anxiety is associated with enhanced risk aversion but no 

change in loss aversion, and possibly with difficulties in modulating one’s decisions 

in response to emotionally-arousing cues. 

Interventions based on the regulation or modification of emotional responses are 

promising; yet, they may greatly benefit from better mechanistic accounts of how 
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emotions affect behaviour in the first place. This thesis attempted to provide such a 

mechanistic account of economic decision-making behaviour and to improve the 

understanding of the combined influence of integral feelings, incidental emotions, and 

clinical anxiety in this process, in the hope of paving the way for future avenues of 

research applied to economic decision-making, as well as other cognitive processes.  
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