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Abstract
Department of Computer Science

Doctor of Philosophy

Efficient Algorithms for Online Learning over Graphs

by Stephen Ugo PASTERIS

In this thesis we consider the problem of online learning with labelled
graphs, in particular designing algorithms that can perform this problem
quickly and with low memory requirements. We consider the tasks of
Classification (in which we are asked to predict the labels of vertices) and
Similarity Prediction (in which we are asked to predict whether two given
vertices have the same label). The first half of the thesis considers non-
probabilistic online learning, where there is no probability distribution on
the labelling and we bound the number of mistakes of an algorithm by a
function of the labelling’s complexity (i.e. its “naturalness"), often the cut-
size. The second half of the thesis considers probabilistic machine learning
in which we have a known probability distribution on the labelling. Before
considering probabilistic online learning we first analyse the junction tree
algorithm, on which we base our online algorithms, and design a new ver-
sion of it, superior to the otherwise current state of the art. Explicitly, the
novel contributions of this thesis are as follows:

• A new algorithm for online prediction of the labelling of a graph
which has better performance than previous algorithms on certain
graph and labelling families.

• Two algorithms for online similarity prediction on a graph (a novel
problem solved in this thesis). One performs very well whilst the
other not so well but which runs exponentially faster.

• A new (better than before, in terms of time and space complexity)
state of the art junction tree algorithm, as well as an application of it
to the problem of online learning in an Ising model.

• An algorithm that, in linear time, finds the optimal junction tree for
online inference in tree-structured Ising models, the resulting online
junction tree algorithm being far superior to the previous state of the
art.

All claims in this thesis are supported by mathematical proofs.
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Chapter 1

Introduction

In this thesis we introduce several efficient algorithms for online classifi-
cation and online similarity prediction on networked data. The computa-
tional model used by this thesis is the real random access machine. i.e. we
assume that all basic operations such as arithmetic operations and mem-
ory reads/writes take constant time, storing any number or pointer takes
constant space, and indirect addressing is supported. We now give the pre-
liminary definitions required by the thesis:

Preliminary definitions: The symbol := is used for definition: e.g. x := y
means “x is defined to be equal to y". Given a ∈ N we define Na to be equal
to the set of the first a natural numbers: i.e. the set {1, 2, 3, ..., (a − 1), a}.
In our pseudo-code the left arrow, ←, denotes assignment: e.g. a ← b in-
dicates that the value b is computed and then assigned to the variable a. A
graph G is an ordered pair (V,E) of sets where the elements of V are called
vertices and the elements of E, called edges, are unordered pairs of distinct
vertices. We will denote an edge, composed of vertices v and w, by (v, w).
Given a graph G we define by V(G) and E(G) the set of vertices of G (i.e.
V , above) and the set of edges of G (i.e. E, above) respectively. We may
also use the notation V (G) and E(G) to denote the vertex and edge set of a
graph G or even simply V and E where the graph is clear from the context.
Sometimes in this thesis, with a slight abuse of notation, by writing v ∈ G
we mean v ∈ V(G).

In addition to the above notation, each chapter has its own definitions.
Note, however, that the same symbol may mean very different things in
different chapters.

1.1 Online Learning on a Graph

The online learning protocol is a game between nature and learner. The
game proceeds in trials t = 1, 2, 3, ...T . For every t ∈ {0, 1, 2, ..., T} we
have a natural number Mt which is the cumulative mistakes made by the
learner up to and including trial t. We initialise withM0 ← 0. On trial t the
following happens:

1. Nature asks learner a question qt.

2. Learner gives an answer ât.

3. Nature reveals correct answer at to learner.

4. If ât = at thenMt ←Mt−1. OtherwiseMt ←Mt−1 + 1
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The aim of the learner is to few mistakes: i.e. forMT to be small.

In this thesis we focus on online learning over a labelled graph: that is a
graph G and a labelling y : V(G) → NK for some K (note, however, that
sometimes in this thesis we will denote a labelling y by vector notation y,
were the notation yv is used instead of y(v)). Sometimes in this thesis we
will restrict to K = 2. The graph G is known to the learner a-priori but the
labelling y is not. This thesis covers the following two learning tasks:

Classification: The questions are of the form “what is the label of vertex
v". Formally: qt is any vertex vt ∈ V(G) selected freely by nature and
at := y(vt).

Similarity Prediction: The questions are of the form “do vertices v and
w have the same label". Formally: qt is any pair of vertices vt, wt ∈ V(G) se-
lected freely by nature, at := 0 if y(vt) = y(wt) and at := 1 if y(vt) 6= y(wt).
In the literature similarity prediction is known also as “semi-supervised
clustering".

1.2 Overview of the Thesis

We now give an overview of the contents of the thesis.

1. Chapter 2 : In this chapter we design an online algorithm to classify
the vertices of a graph. Underpinning the algorithm is the probability
distribution of an Ising model isomorphic to the graph. Each classifi-
cation is based on predicting the label with maximum marginal prob-
ability in the limit of zero-temperature with respect to the labels and
vertices seen so far. Computing these classifications is unfortunately
based on a #P -complete problem. This motivates us to develop an
approximate prediction for which we give a sequential guarantee in
the online mistake bound framework. The performance guarantee is
comparable to previous upper bounds that are logarithmic in the di-
ameter [16] if the graph is a tree. For a general graph, the algorithm
exploits the additional connectivity over a tree to provide a per-cluster
bound. The algorithm is efficient, as the cumulative time to sequen-
tially predict all of the vertices of the graph is quadratic in the size of
the graph.
This chapter was written in collaboration with Mark Herbster and
is based on our paper entitled "Online Prediction at the Limit of Zero
Temperature" and published in NIPS 2015. The experiments were per-
formed by Shaona Gosh.

2. Chapter 3: In this chapter we deal with the online similarity predic-
tion problem. By converting the problem to a linear classification
problem on a space of matrices we apply the perceptron and matrix
winnow algorithms to give us two algorithms to solve the similarity
prediction problem. We then use the concept of a binary support tree
(first described in [32] and [17]) to ensure these algorithms have a low
mistake bound. Finally we show how the perceptron-based algorithm
on the binary support tree can be made exponentially faster.
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This chapter is based on our paper “Online similarity prediction of
networked data from known and unknown graphs" in COLT 2013.
The final section of this chapter is all my own work. The other sec-
tions of this chapter were written in collaboration with Mark Herbster
and Claudio Gentile.

3. Chapter 4: The junction tree algorithm, which is used to compute all
marginals in a multivariate probability distribution stored in a fac-
tored form, will serve as the basis for the design of efficient algo-
rithms for online Baysian classification in general Ising models (in
Chapter 5). Hence, this chapter is devoted to studying the junction
tree algorithm and developing efficient new versions of it. The junc-
tion tree algorithm first constructs a tree called a junction tree who’s
vertices are sets of random variables. The algorithm then performs
a generalised version of belief propagation on the junction tree. The
Shafer-Shenoy and Hugin architectures are two ways to perform this
belief propagation that tradeoff time and space complexities in differ-
ent ways: Hugin propagation is at least as fast as Shafer-Shenoy prop-
agation and in the cases that we have large vertices of high degree is
significantly faster. However, this speed increase comes at the cost
of an increased space complexity. This chapter first introduces a sim-
ple novel architecture, ARCH-1, which has the best of both worlds:
the speed of Hugin propagation and the low space requirements of
Shafer-Shenoy propagation. A more complicated novel architecture,
ARCH-2, is then introduced which has, up to a factor only linear in
the maximum cardinality of any vertex, time and space complexities
at least as good as ARCH-1 and in the cases that we have large ver-
tices of high degree is significantly faster than ARCH-1.
This chapter is all my own work.

4. Chapter 5: In this chapter we first define the general Ising model,
show how it comes from a natural process and show that the Bayes
classifier minimises the expected number of mistakes in an online
learning game with the Ising model. We show how to convert the
junction tree algorithm so that it implements efficient online Bayesian
classification in general Ising models. We give the online versions
of Shafer-Shenoy propagation/ARCH-1, Hugin propagation and the
novel architecture ARCH-2. We show that online Shafer-Shenoy is
more space efficient than online Hugin but at the expense of a higher
time complexity. We then show that the online version of ARCH-2 es-
sentially achieves the best of both worlds: it has, up to a factor linear
in the width of the junction tree, the speed of online Hugin propa-
gation and the space efficiency of online Shafer-Shenoy propagation.
Finally we develop an algorithm that, for any tree structured Ising
model, constructs, in linear time and space, a junction tree that gives
optimal time per prediction for online Hugin/ARCH-2. We show that
this prediction time is logarithmic in the maximum cardinality of a bi-
nary subtree of the tree (that is, a subtree for which every vertex has
degree of at most three). The space requirement for Hugin/ARCH-2
with the junction tree is linear in the cardinality of the tree which is
optimal for the online junction tree algorithm.
The final section of this chapter (except the last two subsections, which
are all my own work) is based on our paper “Online sum-product
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computations over trees" in NIPS 2012 which was written in collab-
oration with Mark Herbster and Fabio Vitale. I submitted this paper
as part of my MRes dissertation in Financial Computing. All other
sections in this chapter are all my own work.
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Chapter 2

Online Approximate Prediction
at the Limit of Zero
Temperature in an Ising Model

2.1 Abstract

We design an online algorithm to classify the vertices of a graph. Under-
pinning the algorithm is the probability distribution of an Ising model iso-
morphic to the graph. Each classification is based on predicting the label
with maximum marginal probability in the limit of zero-temperature with
respect to the labels and vertices seen so far. Computing these classifica-
tions is unfortunately based on a #P -complete problem. This motivates
us to develop an algorithm for which we give a sequential guarantee in
the online mistake bound framework. Our algorithm is optimal when the
graph is a tree matching the prior results in [16]. For a general graph, the
algorithm exploits the additional connectivity over a tree to provide a per-
cluster bound. The algorithm is efficient, as the cumulative time to sequen-
tially predict all of the vertices of the graph is quadratic in the size of the
graph.

2.2 Introduction
Semi-supervised learning is now a standard methodology in machine learn-
ing. A common approach in semi-supervised learning is to build a graph [9]
from a given set of labeled and unlabeled data with each datum represented
as a vertex. The hope is that the constructed graph will capture either the
cluster [18] or manifold [7] structure of the data. Typically, an edge in this
graph indicates the expectation that the joined data points are more likely to
have the same label. One method to exploit this representation is to use the
semi-norm induced by the Laplacian of the graph [61, 7, 60, 54]. A shared
idea of the Laplacian semi-norm based approaches is that the smoothness
of a boolean labeling of the graph is measured via the “cut”, which is just
the number of edges that connect disagreeing labels. In practice the semi-
norm is then used as a regularizer in which the optimization problem is
relaxed from boolean to real values. Our approach also uses the “cut”, but
unrelaxed, to define an Ising distribution over the vertices of the graph.

Predicting with the vertex marginals of an Ising distribution in the limit
of zero temperature was shown to be optimal in the mistake bound model [16,
Section 4.1] when the graph is a tree. The exact computation of marginal
probabilities in the Ising model is intractable on non-trees [25]. However,
in the limit of zero temperature, a rich combinatorial structure called the
Picard-Queyranne graph [45] emerges. We exploit this structure to give an
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algorithm which 1) is optimal on trees, 2) has a quadratic cumulative com-
putational complexity, and 3) has a mistake bound on generic graphs that
is stronger than previous bounds in many natural cases.

The paper is organized as follows. In the remainder of this section, we
introduce the Ising model and lightly review previous work in the online
mistake bound model for predicting the labeling of a graph. In Section 2.3
we review our key technical tool the Picard-Queyranne graph [45] and ex-
plain the required notation. In the body of Section 2.4 we provide a mistake
bound analysis of our algorithm as well as the intractable 0-Ising algo-
rithm and then conclude with a detailed comparison to the state of the art.
In the appendices we provide proofs as well as preliminary experimental
results.
Ising model in the limit zero temperature. In our setting, the parameters of
the Ising model are an n-vertex graph G = (V (G), E(G)) and a temperature
parameter τ > 0, where V (G) = {1, . . . , n} denotes the vertex set and E(G)
denotes the edge set. Each vertex of this graph may be labeled with one of
two states {0, 1} and thus a labeling of a graph may be denoted by a vector
u ∈ {0, 1}n where ui denotes the label of vertex i. The cutsize of a labeling u
is defined as φG(u) :=

∑
(i,j)∈E(G) |ui−uj |. The Ising probability distribution

over labelings of G is then defined as pGτ (u) ∝ exp
Ä
− 1
τ φG(u)

ä
where τ > 0

is the temperature parameter. In our online setting at the beginning of trial
t + 1 we will have already received an example sequence, St, of t vertex-
label pairs (i1, y1), . . . , (it, yt) where pair (i, y) ∈ V (G) × {0, 1}. We use
pGτ (uv = y|St) := pGτ (uv = y|ui1 = y1, . . . , uit = yt) to denote the marginal
probability that vertex v has label y given the previously labeled vertices of
St. For convenience we also define the marginalized cutsize φG(u|St) to be
equal to φG(u) if ui1 = y1, . . . , uit = yt and equal to undefined otherwise.
Our prediction ŷt+1 of vertex it+1 is then the label with maximal marginal
probability in the limit of zero temperature, thus

ŷ0I
t+1(it+1|St) := argmax

y∈{0,1}
lim
τ→0

pGτ (uit+1 = y|ui1 = y1, . . . , uit = yt) . [0-Ising]

(2.1)
Note the prediction is undefined if the labels are equally probable. In low
temperatures the mass of the marginal is dominated by the labelings con-
sistent with St and the proposed label of vertex it+1 of minimal cut; as we
approach zero, ŷt+1 is the label consistent with the maximum number of
labelings of minimal cut. Thus if k := min

u∈{0,1}n
φG(u|S) then we have that

ŷ0I(v|S) =

{
0 |u ∈ {0, 1}n : φG(u|(S, (v, 0))) = k| > |u ∈ {0, 1}n : φG(u|(S, (v, 1))) = k|
1 |u ∈ {0, 1}n : φG(u|(S, (v, 0))) = k| < |u ∈ {0, 1}n : φG(u|(S, (v, 1))) = k|

.

The problem of counting minimum label-consistent cuts was shown to be
#P-complete in [46] and further computing ŷ0I(v|S) is also NP-hard (see Sec-
tion 2.11). In Section 2.3.1 we introduce the Picard-Queyranne graph [45]
which captures the combinatorial structure of the set of minimum-cuts. We
then use this simplifying structure as a basis to design a heuristic approxi-
mation to ŷ0I(v|S) with a mistake bound guarantee.
Predicting the labelling of a graph in the mistake bound model. We
prove performance guarantees for our method in the mistake bound model
introduced by Littlestone [38]. On the graph this model corresponds to
the following game. Nature presents a graph G; Nature queries a vertex
i1 ∈ V (G) = INn; the learner predicts the label of the vertex ŷ1 ∈ {0, 1};
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nature presents a label y1; nature queries a vertex i2; the learner pre-
dicts ŷ2; and so forth. The learner’s goal is to minimize the total number
of mistakes M = |{t : ŷt 6= yt}|. If nature is adversarial, the learner will
always make a “mistake”, but if nature is regular or simple, there is hope
that a learner may incur only a few mistakes. Thus, a central goal of online
learning is to design algorithms whose total mistakes can be bounded rela-
tive to the complexity of nature’s labeling. The graph labeling problem has
been studied extensively in the online literature. Here we provide a rough
discussion of the two main approaches for graph label prediction, and in
Section 2.4.3 we provide a more detailed comparison. The first approach
is based on the graph Laplacian [32, 28, 29]; it provides bounds that uti-
lize the additional connectivity of non-tree graphs, which are particularly
strong when the graph contains uniformly-labeled clusters of small (resis-
tance) diameter. The drawbacks of this approach are that the bounds are
weaker on graphs with large diameter and that the computation times are
slower. The second approach is to estimate the original graph with an ap-
propriately selected tree or “path” graph [30, 17, 16, 56]; this leads to faster
computation times, and bounds that are better on graphs with large diam-
eters. The algorithm treeOpt [16] is optimal on trees. These algorithms
may be extended to non-tree graphs by first selecting a spanning tree uni-
formly at random [17] and then applying the algorithm to the sampled tree.
This randomized approach enables expected mistake bounds which exploit
the cluster structure in the graph.

The bounds we prove for the NP-hard 0-Ising prediction and our
heuristic are most similar to the “small p” bounds proven for the p-seminorm
interpolation algorithm [29]. Although these bounds are not strictly compa-
rable, a key strength of our approach is that the new bounds often improve
when the graph contains uniformly-labeled clusters of varying diameters.
Furthermore, when the graph is a tree we match the optimal bounds of [16].
Finally, the cumulative time required to compute the complete labeling of
a graph is quadratic in the size of the graph for our algorithm, while [29]
requires the minimization of a non-strongly convex function (on every trial)
which is not differentiable when p→ 1.

2.3 Preliminaries
An (undirected) graph G is a pair of sets (V,E) such that E is a set of un-
ordered pairs of distinct elements from V . We say that R is a subgraph
R ⊆ G iff V (R) ⊆ V (G) and E(R) = {(i, j) : i, j ∈ V (R), (i, j) ∈ E(G)}.
Given any subgraphR ⊆ G, we define its boundary (or inner border) ∂0(R),
its neighbourhood (or exterior border) ∂e(R) respectively as ∂0(R) := {j :
i 6∈ V (R), j ∈ V (R), (i, j) ∈ E(G)}, and ∂e(R) := {i : i 6∈ V (R), j ∈
V (R), (i, j) ∈ E(G)}, and its exterior edge border ∂Ee (R) := {(i, j) : i 6∈
V (R), j ∈ V (R), (i, j) ∈ E(G)}. The length of a subgraph P is denoted
by |P| := |E(P)| and we denote the diameter of a graph by D(G). A pair
of vertices v, w ∈ V (G) are κ-connected if there exist κ edge-disjoint paths
connecting them. The connectivity of a graph, κ(G), is the maximal value of κ
such that every pair of points in G is κ-connected. The atomic numberNκ(G)
of a graph at connectivity level κ is the minimum cardinality c of a partition
of G into subgraphs {R1, . . . ,Rc} such that κ(Ri) ≥ κ for all 1 ≤ i ≤ c.

Our results also require the use of directed-, multi-, and quotient- graphs.
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Every undirected graph also defines a directed graph where each undi-
rected edge (i, j) is represented by directed edges (i, j) and (j, i). An orien-
tation of an undirected graph is an assignment of a direction to each edge,
turning the initial graph into a directed graph. In a multi-graph the edge
set is now a multi-set and thus there may be multiple edges between two
vertices. A quotient-graph G is defined from a graph G and a partition of its
vertex set {Vi}Ni=1 so that V (G) := {Vi}Ni=1 (we often call these vertices super-
vertices to emphasize that they are sets) and the multiset E(G) := {(I, J) :
I, J ∈ V (G), I 6= J, i ∈ I, j ∈ J, (i, j) ∈ E(G)}. We commonly construct a
quotient-graph G by “merging” a collection of super-vertices, for example,
in Figure 2.2 from 2.2a to 2.2b where 6 and 9 are merged to “6/9” and also
the five merges that transforms 2.2c to 2.2d.

The set of all label-consistent minimum-cuts in a graph with respect to
an example sequence S is U∗G(S) := argminu∈{0,1}n φG(u|S). The mini-
mum is typically non-unique. For example in Figure 2.2a, the vertex sets
{v1, . . . , v4}, {v5, . . . , v12} correspond to one label-consistent minimum-cut
and {v1, . . . , v5, v7, v8}, {v6, v9 . . . , v12} to another (the cutsize is 3). The (un-
capacitated) maximum flow is the number of edge-disjoint paths between a
source and target vertex. Thus in Figure 2.2b between vertex “1" and ver-
tex “6/9” there are at most 3 simultaneously edge-disjoint paths; these are
also not unique, as one path must pass through either vertices 〈v11, v12〉 or
vertices 〈v11, v10, v12〉. Figure 2.2c illustrates one such flow F (just the di-
rected edges). For convenience it is natural to view the maximum flow or
the label-consistent minimum-cut as being with respect to only two vertices
as in Figure 2.2a transformed to Figure 2.2b so thatH ← merge(G, {v6, v9}).
The “flow” and the “cut” are related by Menger’s theorem which states that
the minimum-cut with respect to a source and target vertex is equal to the
max flow between them. Given a connected graph H and source and tar-
get vertices s, t the Ford-Fulkerson algorithm [22] can find k edge-disjoint
paths from s to t in time O(k|E(H)|) where k is the value of the max flow.

2.3.1 The Picard-Queyranne graph
Given a set of labels there may be multiple label-consistent minimum-cuts
as well as multiple maximum flows in a graph. The Picard-Queyranne (PQ)
graph [45] reduces this multiplicity as far as is possible with respect to the
indeterminacy of the maximum flow. The vertices of the PQ-graph are de-
fined as a super-vertex set on a partition of the original graph’s vertex set.
Two vertices are contained in the same super-vertex iff they have the same
label in every label-consistent minimum-cut. An edge between two ver-
tices defines an analogous edge between two super-vertices iff that edge is
conserved in every maximum flow. Furthermore the edges between super-
vertices strictly orient the labels in any label-consistent minimum-cut as
may be seen in the formal definition that follows.

First we introduce the following useful notations: let kG,S := min{φG(u|S) :

u ∈ {0, 1}n} denote the minimum-cutsize of G with respect to S; let i S∼j de-
note an equivalence relation between vertices in V (G) where i S∼j iff ∀u ∈
U∗G(S) : ui = uj ; and then we define,

Definition 1 ([45]). The Picard-Queyranne graph G(G,S) is derived from graph
G and non-trivial example sequence S. The graph is an orientation of the quotient
graph derived from the partition {⊥, I2, . . . , IN−1,>} of V (G) induced by S∼. The
edge set of G is constructed of kG,S edge-disjoint paths starting at source vertex ⊥
and terminating at target vertex >. A labeling u ∈ {0, 1}n is in U∗G(S) iff
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1. i ∈ ⊥ implies ui = 0 and i ∈ > implies ui = 1

2. i, j ∈ H implies ui = uj

3. i ∈ I , j ∈ J , (I, J) ∈ E(G), and ui = 1 implies uj = 1

where ⊥ and > are the source and target vertices and H, I, J ∈ V (G).

As G(G,S) is a DAG it naturally defines a partial order (V (G),≤G) on
the vertex set where I ≤G J if there exists a path starting at I and ending
at J . The least and greatest elements of the partial order are ⊥ and >. The
notation ↑R and ↓R denote the up set and down set of R. Given the set U∗ of
all label-consistent minimum-cuts then if u ∈ U∗ there exists an antichain
A ⊆ V (G)\{>} such that ui = 0 when i ∈ I ∈ ↓A otherwise ui = 1; further-
more for every antichain there exists a label-consistent minimum-cut. The
simple structure of G(G,S) was utilized by [45] to enable the efficient algo-
rithmic enumeration of minimum-cuts. However, the cardinality of this set
of all label-consistent minimum-cuts is potentially exponential in the size of
the PQ-graph and the exact computation of the cardinality was later shown
#P-complete in [46]. In Figure 2.1 we give the algorithm from [45, 4] to

PicardQueyranneGraph(graph: G; example sequence: S = (vk, yk)tk=1)
1. (H, s, t)← SourceTargetMerge(G,S)

2. F ← MaxFlow(H, s, t)
3. I ← (V (I), E(I)) where V (I) := V (H) and E(I) := {(i, j) : (i, j) ∈ E(H), (j, i) 6∈ F}
4. G0 ← QuotientGraph(StronglyConnectedComponents(I),H)

5. E(G)← E(G0); V (G)← V (G0) except ⊥(G)← ⊥(G0) ∪ {vk : k ∈ INt, yk = 0}
and>(G)← >(G0) ∪ {vk : k ∈ INt, yk = 1}

Return: directed graph: G

FIGURE 2.1: Computing the Picard-Queyranne graph

compute a PQ-graph. We illustrate the computation in Figure 2.2. The al-
gorithm operates first on (G,S) (step 1) by “merging” all vertices which
share the same label in S to create H. In step 2 a max flow graph F ⊆ H is
computed by the Ford-fulkerson algorithm. It is well-known in the case of
unweighted graphs that a max flow graph F may be output as a DAG of k
edge-disjoint paths where k is the value of the flow. In step 3 all edges in
the flow become directed edges creating I. The graph G0 is then created in
step 4 from I where the strongly connected components become the super-
vertices of G0 and the super-edges correspond to a subset of flow edges
from F . Finally, in step 5, we create the PQ-graph G by “fixing” the source
and target vertices so that they also have as elements the original labeled
vertices from S which were merged in step 1. The correctness of the algo-
rithm follows from arguments in [45]; we provide an independent proof in
Section 2.6.

Theorem 2 ([45]). The algorithm in Figure 2.1 computes the unique Picard-
Queyranne graph G(G,S) derived from graph G and non-trivial example sequence
S.

2.4 Mistake Bounds Analysis
In this section we analyze the mistakes incurred by the intractable 0-Ising
strategy (see (2.1)) and the strategy longest-path (see Figure 2.3). Our
analysis splits into two parts. Firstly, we show (Section 2.4.1, Theorem 4)
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FIGURE 2.2: Building a Picard-Queyranne graph

for a sufficiently regular graph label prediction algorithm, that we may an-
alyze independently the mistake bound of each uniformly-labeled cluster
(connected subgraph). Secondly, the per-cluster analysis then separates
into three cases, the result of which is summarized in Theorem 7. For a
given cluster C when its internal connectivity is larger than the number of
edges in the boundary (κ(C) > |∂Ee (C)|) we will incur no more than one
mistake in that cluster. On the other hand for smaller connectivity clus-
ters (κ(C) ≤ |∂Ee (C)|) we incur up to quadratically in mistakes via the edge
boundary size. When C is a tree we incur O(|∂Ee (C)| logD(C)) mistakes.

The analysis of smaller connectivity clusters separates into two parts.
First, a sequence of trials in which the label-consistent minimum-cut does
not increase, we call a PQ-game (Section 2.4.2) as in essence it is played
on a PQ-graph. We give a mistake bound for a PQ-game for the intractable
0-Ising prediction and a comparable bound for the strategy longest-path
in Theorem 5. Second, when the label-consistent minimum-cut increases
the current PQ-game ends and a new one begins, leading to a sequence
of PQ-games. The mistakes incurred over a sequence of PQ-games is ad-
dressed in the aforementioned Theorem 7 and finally Section 2.4.3 con-
cludes with a discussion of the combined bounds of Theorems 4 and 7 with
respect to other graph label prediction algorithms.

2.4.1 Per-cluster mistake bounds for regular graph label predic-
tion algorithms

An algorithm is called regular if it is permutation-invariant, label-monotone,
and Markov. An algorithm is permutation-invariant if the prediction at any
time t does not depend on the order of the examples up to time t; label-
monotone if for every example sequence if we insert an example “between”
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examples t and t + 1 with label y then the prediction at time t + 1 is un-
changed or changed to y; and Markov with respect to a graph G if for any
disjoint vertex sets P and Q and separating set R then the predictions in
P are independent of the labels in Q given the labels of R. A subgraph is
uniformly-labeled with respect to an example sequence iff the label of each
vertex is the same and these labels are consistent with the example se-
quence. The following definition characterizes the “worst-case” example
sequences for regular algorithms with respect to uniformly-labeled clus-
ters.

Definition 3. Given an online algorithm A and a uniformly-labeled subgraph
C⊆G, then BA(C;G) denotes the maximal mistakes made only in C for the presen-
tation of any permutation of examples in ∂e(C), each with label y, followed by any
permutation of examples in C, each with label 1−y.

The following theorem enables us to analyze the mistakes incurred in
each uniformly-labeled subgraph C independently of each other and indepen-
dently of the remaining graph structure excepting the subgraph’s exterior
border ∂e(C).

Theorem 4 (Proof in Section 2.8). Given an online permutation-invariant label-
monotone Markov algorithm A and a graph G which is covered by uniformly-
labeled subgraphs C1, . . . , Cc the mistakes incurred by the algorithm may be bounded
by M ≤∑c

i=1 BA(Ci;G) .

The above theorem paired with Theorem 7 completes the mistake bound
analysis of our algorithms.

2.4.2 PQ-games
Given a PQ-graph G = G(G,S), the derived online PQ-game is played
between a player and an adversary. The aim of the player is to min-
imize their mistaken predictions; for the adversary it is to maximize the
player’s mistaken predictions. Thus to play the adversary proposes a ver-
tex z ∈ Z ∈ V (G), the player then predicts a label ŷ ∈ {0, 1}, then the
adversary returns a label y ∈ {0, 1} and either a mistake is incurred or not.
The only restriction on the adversary is to not return a label which increases
the label-consistent minimum-cut. As long as the adversary does not give
an example (z ∈ ⊥, 1) or (z ∈ >, 0), the label-consistent minimum-cut does
not increase no matter the value of y; which also implies the player has a
trivial strategy to predict the label of z ∈ ⊥∪>. After the example is given,
we have an updated PQ-graph with new source and target super-vertices
as seen in the proposition below.

Proposition 1. If G(G,S) is a PQ-graph and (z, y = 0) ((z, y = 1)) is an example
with z ∈ Z ∈ V (G) and z 6∈ > (z 6∈ ⊥) then let Z = ↓{Z} (Z = ↑{Z}) then
G(G, 〈S, (z, y)〉) = merge(G(G,S),Z).

Thus given the PQ-graph G the PQ-game is independent of G and S ,
since a “play” z ∈ V (G) induces a “play” Z ∈ V (G) (with z ∈ Z).

Mistake bounds for PQ-games. Given a single PQ-game, in the fol-
lowing we will discuss the three strategies fixed-paths, 0-Ising, and
longest-path that the player may adopt for which we prove online
mistake bounds. The first strategy fixed-paths is merely motivational: it
can be used to play a single PQ-game, but not a sequence. The second strat-
egy 0-Ising is computationally infeasible. Finally, the longest-path
strategy is “dynamically” similar to fixed-paths but is also permutation-
invariant. Common to all our analyses is a k-path cover P of PQ-graph G
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which is a partitioning of the edge-set of G into k edge-disjoint directed
paths P := {p1, . . . , pk} from ⊥ to >. Note that the cover is not necessar-
ily unique; for example, in Figure 2.2d, we have the two unique path covers
P1 := {(⊥, A,>), (⊥, A,B,>), (⊥, B,C,>)} andP2 := {(⊥, A,>), (⊥, A,B,C,>), (⊥, B,>)}.
We denote the set of all path covers as P and thus we have for Figure 2.2d
that P := {P1, P2}. This cover motivates a simple mistake bound and strat-
egy. Suppose we had a single path of length |p|where the first and last ver-
tex are the “source” and “target” vertices. So the minimum label-consistent
cut-size is “1” and a natural strategy is simply to predict with the “nearest-
neighbor” revealed label and trivially our mistake bound is log |p|. Gener-
alizing to multiple paths we have the following strategy.
Strategy fixed-paths(‹P ): Given a PQ-graph choose a path cover {p̃1, . . . , p̃k} =‹P ∈ P(G). If the path cover is also vertex-disjoint except for the source
and target vertex we may directly use the “nearest-neighbor” strategy de-
tailed above, achieving the mistake upper bound M ≤ ∑k

i=1 log |p̃i|. Un-
surprisingly, in the vertex-disjoint case it is a mistake-bound optimal [38]
algorithm. If, however, ‹P is not vertex-disjoint and we need to predict a
vertex V we may select a path in ‹P containing V and predict with the near-
est neighbour and also obtain the bound above. In this case, however, the
bound may not be “optimal.” Essentially the same technique was used
in [24] in a related setting for learning “directed cuts.” A limitation of the
fixed-paths strategy is that it does not seem possible to extend into a
strategy that can play a sequence of PQ-games and still meet the regularity
properties, particularly permutation-invariance as required by Theorem 4.
Strategy 0-Ising: The prediction of the Ising model in the limit of zero
temperature (cf. (2.1)), is equivalent to those of the well-known Halving al-
gorithm [5, 39] where the hypothesis class U∗ is the set of label-consistent
minimum-cuts. The mistake upper bound of the Halving algorithm is just
M ≤ log |U∗|where this bound follows from the observation that whenever
a mistake is made at least “half” of concepts in U∗ are no longer consistent.
We observe that we may upper bound |U∗| ≤ argminP∈P(G)

∏k
i=1 |pi| since

the product of path lengths from any path cover P is an upper bound on
the cardinality of U∗ and hence we have the bound in (2.2). And in fact this
bound may be a significant improvement over the fixed-paths strategy’s
bound as seen in the following proposition.
Proposition 2 (Proof in Section 2.7). For every c ≥ 2 there exists a PQ-graph
Gc, with a path cover P ′ ∈ P(Gc) and a PQ-game example sequence such that the
mistakes Mfixed-paths(P ′) = Ω(c2), while for all PQ-game example sequences on
Gc the mistakes M0-Ising = O(c).

Unfortunately the 0-Ising strategy has the drawback that counting
label-consistent minimum-cuts is #P-complete and computing the predic-
tion (see (2.1)) is NP-hard (see Section 2.11).
Strategy longest-path: In our search for an efficient and regular predic-
tion strategy it seems natural to attempt to “dynamize” the fixed-paths
approach and predict with a nearest neighbor along a dynamic path. Two
such permutation-invariant methods are the longest-path and shortest-path
strategies. The strategy shortest-path predicts the label of a super-
vertex Z in a PQ-game G as 0 iff the shortest directed path (⊥, . . . , Z) is
shorter than the shortest directed path (Z, . . . ,>). The strategy longest-path
predicts the label of a super-vertex Z in a PQ-game G as 0 iff the longest di-
rected path (⊥, . . . , Z) is shorter than the longest directed path (Z, . . . ,>).
The strategy shortest-path seems to be intuitively favored over longest-path
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Input: Graph: G, Example sequence: S = 〈(i1, 0), (i2, 1), (i3, y3), . . . , (i`, y`)〉 ∈ (INn × {0, 1})`

Initialization: G3 = PicardQueyranneGraph(G,S2)

for t = 3, . . . , ` do
Receive: it ∈ {1, . . . , n}
It = V ∈ V (Gt) with it ∈ V

Predict (longest-path): ŷt =

®
0 |longest-path(Gt,⊥t, It)|≤|longest-path(Gt, It,>t)|
1 otherwise

Predict (0-Ising): ŷt = ŷI0(it|St−1) % as per equation (2.1)
Receive: yt
if (it 6∈ ⊥t or yt 6= 1) and (it 6∈ >t or yt 6= 0) then % cut unchanged

Gt+1 =

®
merge(Gt, ↓{It}) yt = 0

merge(Gt, ↑{It}) yt = 1

else % cut increases
Gt+1 = PicardQueyranneGraph(G,St)

end
FIGURE 2.3: Longest-path and 0-Ising online predic-

tion

as it is just the “nearest-neighbor” prediction with respect to the geodesic
distance. However, the following proposition shows that it is strictly worse
than any fixed-paths strategy in the worst case.

Proposition 3 (Proof in Section 2.7). For every c ≥ 4 there exists a PQ-graph
Gc and a PQ-game example sequence such that the mistakes Mshortest-path =
Ω(c2 log(c)), while for every path cover P ∈P(Gc) and for all PQ-game example
sequences on Gc the mistakes Mfixed-paths(P ) = O(c2).

In contrast, for the strategy longest-paths in the proof of Theorem 5
we show that there always exists some retrospective path cover Plp∈P(G)
such that Mlongest-paths ≤

∑k
i=1 log |pilp|. Computing the “longest-path” has

time complexity linear in the number of edges in a DAG.
Summarizing the mistake bounds for the three PQ-game strategies for

a single PQ-game we have the following theorem.
Theorem 5 (Proof in Section 2.7). The mistakes, M , of an online PQ-game for
player strategies fixed-paths(‹P ), 0-Ising, and longest-path on PQ-
graph G and k-path cover ‹P ∈ P(G) is bounded by

M ≤


∑k
i=1 log |p̃i| fixed-paths(‹P )

argminP∈P(G)
∑k
i=1 log |pi| 0-Ising

argmaxP∈P(G)
∑k
i=1 log |pi| longest-path

. (2.2)

2.4.3 Global analysis of prediction at zero temperature
In Figure 2.3 we summarize the prediction protocol for 0-Ising and longest-path.
We claim the regularity properties of our strategies in the following theo-
rem.

Theorem 6 (Proof in Section 2.9). The strategies 0-Ising and longest-path
are permutation-invariant, label-monotone, and Markov.

The technical hurdle here is to prove that label-monotonicity holds over
a sequence of PQ-games. For this we need an analog of Proposition 1 to
describe how the PQ-graph changes when the label-consistent minimum-
cut increases (see Proposition 4). The application of the following theo-
rem along with Theorem 4 implies we may bound the mistakes of each
uniformly-labeled cluster in potentially three ways.
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Theorem 7 (Proof in Section 2.8). Given either the 0-Ising or longest-path
strategy A the mistakes on uniformly-labeled subgraph C ⊆ G are bounded by

BA(C;G) ∈


O(1) κ(C) > |∂Ee (C)|
O
Ä
|∂Ee (C)|(1 + |∂Ee (C)| − κ(C)) logN(C)

ä
κ(C) ≤ |∂Ee (C)|

O(|∂Ee (C)| logD(C)) C is a tree
(2.3)

with the atomic number N(C) := N|∂Ee (C)|+1(C) ≤ |V (C)|.
First, if the internal connectivity of the cluster is high we will only make

a single mistake in that cluster. Second, if the cluster is a tree then we pay
the external connectivity of the cluster |∂Ee (C)| times the log of the cluster
diameter. Finally, in the remaining case we pay quadratically in the exter-
nal connectivity and logarithmically in the “atomic number” of the cluster.
The atomic number captures the fact that even a poorly connected cluster
may have sub-regions of high internal connectivity. Computational com-
plexity. If G is a graph and S an example sequence with a label-consistent
minimum-cut of φ then we may implement the longest-path strategy so
that it has a cumulative computational complexity of O(max(φ, n) |E(G)|).
This follows because if on a trial the “cut” does not increase we may im-
plement prediction and update in O(|E(G)|) time. On the other hand if
the “cut” increases by φ′ we pay O(φ′|E(G)|) time. To do so we implement
an online “Ford-Fulkerson” algorithm [22] which starts from the previous
“residual” graph to which it then adds the additional φ′ flow paths with φ′

steps of size O(|E(G)|).
Discussion. There are essentially five dominating mistake bounds for the
online graph labeling problem: (I) the bound of treeOpt [16] on trees, (II)
the bound in expectation of treeOpt on a random spanning tree sampled
from a graph [16], (III) the bound of p-seminorm interpolation [29]
tuned for “sparsity” (p < 2), (IV) the bound of p-seminorm interpolation
as tuned to be equivalent to “online label propagation [61]” (p = 2), (V) this
paper’s longest-path strategy.

The algorithm treeOpt was shown to be optimal on trees. In Sec-
tion 2.10 we show that longest-path also obtains the same optimal bound
on trees. Algorithm (II) applies to generic graphs and is obtained from (I)
by sampling a random spanning tree (RST). It is not directly comparable to
the other algorithms as its bound holds only in expectation with respect to
the RST.

We use [29, Corollary 10] to compare (V) to (III) and (IV). We intro-
duce the following simplifying notation to compare bounds. Let C1, . . . , Cc
denote uniformly-labeled clusters (connected subgraphs) which cover the
graph and set κr := κ(Cr) and φr := |∂Ee (Cr)|. We define Dr(i) to be the
wide diameter at connectivity level i of cluster Cr. The wide diameter Dr(i)

is the minimum value such that for all pairs of vertices v, w ∈ Cr there ex-
ists i edge-disjoints of paths from v to w of length at least Dr(i) in Cr (and
if i > κr then Dr(i) := +∞). Thus Dr(1) is the diameter of cluster Cr and
Dr(1) ≤ Dr(2) ≤ · · · . Let φ denote the minimum label-consistent cutsize and
observe that if the cardinality of the cover |{C1, . . . , Cc}| is minimized then
we have that 2φ =

∑c
r=1 φr.

Thus using [29, Corollary 10] we have the following upper bounds of
(III): (φ/κ∗)2 logD∗ + c and (IV): (φ/κ∗)D∗ + c where κ∗ := minr κr and
D∗ := maxrDr(κ

∗). In comparison we have (V): [
∑c
r=1 max(0, φr − κr +

1)φr logNr] + c with atomic numbers Nr := Nφr+1(Cr). To contrast the
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bounds, consider a double lollipop labeled-graph: first create a lollipop
which is a path of n/4 vertices attached to a clique of n/4 vertices. Label
these vertices 1. Second, clone the lollipop except with labels 0. Finally join
the two cliques with n/8 edges arbitrarily. For (III) and (IV) the bounds
are O(n) independent of the choice of clusters. Whereas an upper bound
for (V) is the exponentially smaller O(log n) which is obtained by choosing
a four cluster cover consisting of the two paths and the two cliques. This
emphasizes the generic problem of (III) and (IV): parameters κ∗ and D∗ are
defined by the “worst” clusters; whereas (V) is truly a “per-cluster” bound.
We consider the previous “constructed” example to be representative of a
generic case where the graph contains clusters of many resistance diameters
as well as sparse interconnecting “background” vertices.

On the other hand, there are cases in which (III,IV) improve on (V). For
a graph with only small diameter clusters and if the cutsize exceeds the
cluster connectivity then (IV) improves on (III,V) given the linear versus
quadratic dependence on the cutsize. The log-diameter may be arbitrar-
ily smaller than log-atomic-number ((III) improves on (V)) and also vice-
versa. Other subtleties not accounted for in the above comparison include
the fact a) the wide diameter is a crude upper bound for resistance diam-
eter (cf. [29, Theorem 1]) and b) the clusters of (III,IV) are not required to
be uniformly-labeled. Regarding “a)” replacing “wide” with “resistance”
does not change the fact the bound now holds with respect to the worst
resistance diameter and the example above is still problematic. Regarding
“b)” it is a nice property but we do not know how to exploit this to give
an example that significantly improves (III) or (IV) over a slightly more de-
tailed analysis of (V). Finally (III,IV) depend on a correct choice of tunable
parameter p.

Thus in summary (V) matches the optimal bound of (I) on trees, and
can often improve on (III,IV) when a graph is naturally covered by label-
consistent clusters of different diameters. However (III,IV) may improve
on (V) in a number of cases including when the log-diameter is significantly
smaller than log-atomic-number of the clusters.
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Technical Appendices

2.5 Experiments
In this section we present some preliminary experiments that compare the longest-path
strategy to treeOpt [16] and label propagation [61, 7]. The datasets include the
four standardized benchmark datasets USPS 2 vs 3, 3 vs 8, 20 newsgroups
and ISOLET as well as a constructed dataset Stripes. We used our own imple-
mentation of longest-path and labelProp. For the purposes of computational
efficiency we ran our experiments in the “batch mode” rather than “online.”

We used the benchmark datasets as follows. With the USPS datasets we sam-
pled 500 digits from each class. For ISOLETwe combined “ISOLET1” to “ISOLET5”
giving 3900 in class “0” (letters ‘A-M’) and 3897 class “1” (letters ‘N-Z’) examples.
While for 20 newsgroups we combined “comp.*” and “rec.*” creating class “0”
with 8124 examples and combining “sci.*” and “talk.*” creating class “1” with 8118
examples. Thus all datasets are nearly balanced between the classes. We then con-
structed a graph for each dataset by computing a “cost” matrix between all exam-
ples (patterns) in the dataset, using the Euclidean metric except on ISOLET where
we used the “cosine distance.” We then constructed both an unweighted minimum
spanning tree (MST) and a “3-NN” graph (via the cost matrix) and then “unioned”
the edge sets together creating our final graph for each of the datasets. The ra-
tionale behind the methodology was based on the common empirical observation
that 3-NN graphs are often among the most competitive of the unweighted k-NN
graphs. We then added a MST to ensure that the final graph was connected. This
produced a relatively sparse graph that reduced the computational burden for all
methods and reduced variance by avoiding model selection. Although it was be-
yond the scope of our limited study, it may be the case that constructed graphs
with higher connectivity could potentially lead to higher accuracies.

In Figure 2.4 we report our results. We give the mean accuracy (computed
over all labels in the graph) and its standard deviation from ten runs. For each
“column,” and each run of 10, we sampled uniformly `/2 labels from each class.
For the USPS datasets we also randomly sampled and built a new graph on each
run. Finally on each run as treeOpt expects a tree we further sampled a uniform
random spanning tree as per [16] from the built graph on each of the 10 runs.

Our obervations are as follows. LabelProp performs systematically well across
all datasets. treeOpt tends to have the weakest performance. Note, however, that
treeOpt is very computationally efficient and it is natural to run with an ensem-
ble of trees to improve performance; this is discussed and experimentally con-
firmed in [56]. Longest-path is competitive and improves on labelProp often.
But it has a “failure mode” as seen in the first column for the relatively smaller
label sets. We observed that when this occurred we are finding small PQ-graphs
corresponding to unbalanced trivial label-consistent minimum-cuts.

We also show results on a constructed dataset to illustrate the potential of the
algorithm. Stripes is a 60 × 60 grid graph with toroidal boundary connectivity.
Thus each vertex has four neighbors. The problem corresponds to a simple geo-
metric concept of “stripes.” We induce the two classes by alternately “coloring”
each of the 6 vertical stripes of 10 × 60 vertices. For this dataset the performance
of longest-path strongly dominates. We provide a visualization of a typical
PQ-graph from a Stripes in Figure 2.5.
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` = 8 ` = 16 ` = 32 ` = 64 ` = 128

USPS labelProp .980± .010 .982± .008 .984± .005 .988± .003 .991± .002

2 vs. 3 treeOpt .814± .055 .885± .032 .891± .032 .956± .013 .959± .013
longest-path .504± .001 .940± .143 .987± .003 .988± .003 .990± .002

` = 8 ` = 16 ` = 32 ` = 64 ` = 128

USPS labelProp .956± .009 .953± .007 .961± .007 .967± .004 .971± .004

3 vs. 8 treeOpt .797± .105 .749± .095 .878± .013 .935± .026 .960± .023
longest-path .505± .001 .600± .184 .969± .006 .971± .004 .972± .003

` = 32 ` = 128 ` = 512 ` = 1600 ` = 2048

ISOLET labelProp .661± .039 .764± .024 .820± .012 .887± .006 .899± .004
treeOpt .658± .042 .731± .012 .824± .008 .888± .007 .906± .002

longest-path .524± .033 .726± .016 .799± .016 .906± .007 .921± .006

` = 800 ` = 1000 ` = 2000 ` = 4000 ` = 6000

Newsgroups labelProp .825± .005 .826± .007 .844± .004 .871± .002 .894± .003
treeOpt .753± .006 .758± .014 .804± .001 .847± .002 .878± .003

longest-path .549± .004 .798± .013 .839± .005 .867± .003 .890± .002

` = 250 ` = 450 ` = 650 ` = 850 ` = 1050

Stripes labelProp .915± .013 .948± .005 .962± .004 .972± .004 .978± .005
treeOpt .817± .012 .879± .017 .909± .006 .928± .003 .936± .006

longest-path .921± .090 .998± .002 .997± .002 .994± .004 .993± .002

FIGURE 2.4: Experiments

FIGURE 2.5: A PQ-Graph is generated by a stripes run
(` = 250). There are 152 super-vertices, the source vertex
(⊥) is white, the target (>) is black. The value of the flow is
654. Many of the edges encoded represent multi-edges. Of
these there are six types: a green edge with a flow of 231,
a brown edge with a flow of 7, an orange with a flow of 5,
blue with a flow of 2 and the remaining black edges with a

flow of 1.
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2.6 Properties of the PQ-graph (proof of Theorem 2)

We separate the proof of Theorem 2 into two claims.

Claim 1. The Picard-Queyranne graph G(G,S) of Definition 1 is uniquely defined.

Claim 2. The algorithm in Figure 2.1 computes the Picard-Queyranne graph G(G,S).

Proof of Claim 1.
To prove Claim 1 we need to show that V (G) and E(G) are unique. Observe

that V (G) is trivially unique as it is the partition on V (G) induced by S∼.
To prove E(G) is unique, first recall that G is an orientation of a quotient graph

of G induced by the partition (V (G)) of V (G); thus up to direction the edges of
G are determined uniquely. Hence, all that is left to prove is that the directions
of the edges are uniquely determined. If this is not the case then there exists
G′ = (V (G), E(G′)) and G′′ = (V (G), E(G′′)) satisfying Definition 1 such that
there exists (I, J) ∈ E(G′) and (J, I) ∈ E(G′′). Then for i ∈ I and j ∈ J , for all
u ∈ U∗G(S) we have ui = 1⇔ uj = 1 by condition 3 applied to G′ and G′′. Thus for
arbitrary i ∈ I and j ∈ J we have that ui = uj which contradicts the fact that I, J
are distinct elements in the partition induced by S∼. �
Proof of Claim 2.

In this proof we define G,S,H, I, G0 and G as in the algorithm of Figure 2.1.
We also define k := kG,S . In step 2 of the algorithm the graph H is formed by
merging the vertices of G in the example sequence S which are labeled 0 and 1 to
create source vertex s and target vertex t, respectively. In steps 2-4 we then com-
pute the PQ-graph G0(H, ((s, 0), (t, 1))) and then in step 5, we construct G(G,S)
by “de-merging” vertices s and t. Note that the set of all labelings of H which sat-
isfy us = 0 and ut = 1 with minimum-cut is isomorphic to the set of all labelings
U∗G(S) of G consistent with S with minimum-cut; and likewise the edge sets E(H)
and E(G) are isomorphic. Hence for simplicity in presentation we lightly abuse
notation in the following proof at times by identifyingH with G and G0 with G.

Lemma 8. The edge set E(G) computed by the algorithm consists of k edge-disjoint paths
from ⊥ to >

Proof. We have, from the Ford-Fulkerson algorithm on an unweighted graph, that
the flow F consists of k edge-disjoint directed paths F1, F2, . . . , Fk from s to t.
Take path F1 and write it as (s = f0, f1, . . . , fm = t). For every i < m we have
(fi, fi+1) ∈ F so (fi+1, fi) /∈ F and hence (fi, fi+1) ∈ I so F1 is a directed path in
I. For each strongly connected component H ∈ V (G), let fH = {i ∈ Nm : fi ∈ H}.
Suppose we have i, j, l ∈ Nm with i < j < l and i, l ∈ fH for someH ∈ V (G). Then
since fi and fl are in the same strongly connected component (of I) there exists a
directed path p in I from fl to fi. Hence we have a path (fi, fi+1, . . . , fj) from fi
to fj and a path 〈(fj , fj+1, . . . , fl), p〉 from fj to fi, in I. This implies that fi and
fj are in the same strongly connected component and hence fj ∈ H so j ∈ fH .
We can hence write fH = {c : a ≤ c < b} for some a, b ∈ Nm+1 with a ≤ b. This
means we can write F1 as 〈gH0 , gH1 , . . . , gHl〉 for some l and distinct Hi where gHi
is a sequence containing exactly the elements of {fa : a ∈ fHi}. Since f0 = s (resp.
fm = t), and f0 ∈ fH0 (resp. fm ∈ fHl ) we must have H0 = ⊥ (resp. Hl = >).
Upon the collapse of I to G, F1 hence becomes the path (⊥ = H0, H1, . . . ,Hl = >),
i.e., F1 collapses to a path in G from ⊥ to >. This happens for each Fi, giving us k
edge-disjoint paths in G from ⊥ to >. The result is then seen by noting that every
directed edge in G comes from a directed edge in F (otherwise the edge would
be bidirected in I implying that both vertices on the edge would be in the same
strongly connected component (and hence such an edge would disappear)).

Lemma 9. Every labelling u ∈ U∗G(S) satisfies the conditions in Definition 1 with respect
to G as computed by the algorithm.

Proof. Let u be a labelling in U∗G(S). First we prove the useful fact that,

if ui 6= uj and (i, j) ∈ E(I) then ui = 0, uj = 1 (2.4)
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The above is seen since k edges in F are cut under u (as F consists of k edge-
disjoint directed path graphs from “s” to “t” with us = 0 and ut = 1). Thus if
there was a cut edge in E(G) \ E(F) the cut of u would be larger than k which is
a contradiction. Hence we have (since ui 6= uj and (i, j) ∈ E(H) (as (i, j) ∈ E(I)))
that either (i, j) ∈ F or (j, i) ∈ F . But if (j, i) ∈ F then (i, j) /∈ E(I) which is
a contradiction. Hence we have that (i, j) ∈ F so, since u minimises the cut and
ui 6= uj , we must have ui = 0 and uj = 1.

We now prove that u satisfies conditions 1-3 of Definition 1.
Condition 2: Suppose, for contradiction, that i and j are in the same super-

vertex H ∈ V (G) and ui 6= uj . Then without loss of generality assume ui = 1
and uj = 0. Since i and j are in the same strongly connected component of I
there exists a directed path (i = v0, v1, v2, . . . , vm−1, vm = j) in I. Since ui 6= uj
there exists a < m such that uva 6= uva+1

so let b be the minimum such a. Since
uvl = uvl+1

for all l < b, we have uvb = uv0 = ui = 1. But, since (vb, vb+1) ∈ E(I),
and uvb 6= uvb+1

, this contradicts (2.4).
Condition 1: We have a vertex s ∈ ⊥ with us = 0 (since u is label-consistent).

Hence, if i ∈ ⊥ then, by condition 2 (with H := ⊥) ui = us = 0. The same goes for
> (with 1 instead of 0 and t instead of s).

Condition 3: Since (I, J) ∈ E(G) with I 6= J there exists i′ ∈ I and j′ ∈ J such
that there exists an edge (i′, j′) in I. Hence, if ui = 1 then by condition 2 (with
H := I), ui′ = 1 which implies, by (2.4), that uj′ = 1 and hence, by condition 2
(with H := J), uj = 1.

We now prove the converse of Lemma 9.

Lemma 10. If a labelling u satisfies the conditions in Definition 1 with respect to G as
computed by the algorithm then we have u ∈ U∗G(S).

Proof. By condition 1, us = 0 and ut = 1 so u is label-consistent. From the proof
of Lemma 8 we have that G is formed of k edge-disjoint paths P1, P2, P3, . . . , Pk
which are the flow paths F1, F2, F3, . . . , Fk after collapse. Let’s consider P1 and F1.
Let P1 = (⊥ = H0, H1, . . . ,Hl = >) and F1 = 〈gH0 , gH1 , . . . , gHl〉 for gHi defined
as in the proof of Lemma 8. By condition 2 we have that, for any a ∈ Nl there exists
uHa ∈ {0, 1} such that for all i ∈ Ha, ui = uHa . Let b = min{a ∈ Nl : uHa = 1}
(note that b exists since uHl = 1 (by condition 1 and since Hl = >) and that b > 0
since uH0 = 0 (by condition 1 and since H0 = ⊥)). Suppose, for contradiction,
that uHc = 0 for some c > b. Then d = min{a > b : uHa = 0} is defined. Then
we have uHd−1 = 1 so we have a directed edge (Hd−1, Hd) in G with uHd−1 = 1
and uHd = 0 which contradicts condition 3. We hence have that Ha = 1 for all
a ≥ b. By definition of b we also have that uHa = 0 for all a < b. Hence, we
have that all elements i of the sequence 〈gH0 , gH1 , . . . , gHb−1〉 satisfy ui = 0 and all
elements i of the sequence 〈gHb , gHb+1 , . . . , gHl〉 satisfy ui = 1. This means that F1

has exactly one cut edge (the edge from the final vertex of gHb−1 to the first vertex
of gHb ). The same argument for all of the k edge-disjoint paths P1, P2, ..Pk implies
that every flow path has exactly one cut edge which gives us exactly k cut edges
in F . Suppose now that we have an edge (i, j) of G such that (i, j), (j, i) /∈ F . Then
(i, j) (resp. (j, i)) is a path from i to j (resp. j to i) in I. This implies that i and j are
in the same strongly connected component of I and hence by condition 2, ui = uj .
This means that all the edges that aren’t on flow paths are not cut and hence that
there are exactly k cut edges in G.

Lemma 11. If G is the graph produced by the algorithm then the vertex set V (G) is the
partition induced by S∼ on V (G).

Proof. Since from Lemma 9 we have shown for V (G) as computed by the algorithm
the condition

∀u ∈ U∗G(S) : i, j ∈ H ∈ V (G)⇒ ui = uj ,

we now need to show,

∀i, j : i ∈ H ∈ V (G), j 6∈ H ⇒ ∃u ∈ U∗G(S) : ui 6= uj .
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Thus given i ∈ H ∈ V (G), j ∈ H ′ ∈ V (G) and H 6= H ′ we now show there exists a
labeling u ∈ U∗G(S) such that ui 6= uj .

Assume H ′ 6≤G H (else swap H and H ′). Let D := ↓{H} then for all i ∈
⋃
D

set ui := 0 and for all i ∈
⋃

(V (G) \ D) set ui := 1. We have (since H ∈ D) that
u labels all vertices in H as 0 and (since H ′ /∈ D) that u labels all vertices in H ′ as
1. Hence u labels H and H ′ differently. Hence, all that is required to prove now
is that u ∈ U∗G(S) which, by Lemma 10, is proved by showing that u satisfies the
conditions 1-3 in Definition 1 which we now show.

Condition 1: We have that ⊥ ∈ D and hence all vertices i ∈ ⊥ are labelled 0 by
u. We also have that > /∈ D (as H ′ ≤G > implies H 6= >) and hence all vertices in
> are labelled 1 by u.

Condition 2: It is clear from the definition of u that, givenH ∈ V (G), all vertices
i in H have the same label ui since if H ∈ D then all vertices in H are labelled 0
and if H /∈ D then all vertices in H are labelled 1.

Condition 3: Suppose we have (I, J) ∈ E(G) and i ∈ I with ui = 1. We now
prove that for all j ∈ J , uj = 1 which shows that u satisfies condition 3. To prove
this assume the converse: that uj = 0. Then we must have that J ∈ D so there
exists a path P in G from J to H . Hence we have a path 〈(I, J), P 〉 from I to H in
G which implies that I ∈ D and hence all vertices in I , and hence i, are labelled 0
by u which is a contradiction.

Lemmas 8-11 show that G satisfies Claim 2. �

2.7 PQ-game proofs (Propositions 1,2,3 and Theorem 5)

2.7.1 Proof of Proposition 1

Proof. By symmetry we can, without loss of generality, assume that y = 1. Let
⊥′ and >′ be the source and target vertices of G(G, 〈S, (z, y)〉). Given a labelling
u ∈ U∗G(S), define u′ to be the labelling of G such that for all v ∈

⋃
↑{Z} we have

u′v := 1 and for all v /∈
⋃
↑{Z} we have u′v := uv . We now show that given any

labelling u ∈ U∗G(S) we have that the cutsize of u′ is equal to kG,S and hence (since
u′z = 1) that u′ ∈ U∗G(〈S, (z, 1)). To show this split G(G,S) into kG,S edge-disjoint
directed paths p1, p2, ..., pkG,S . Note that, since u has a cutsize of kG,S , each path pi
has a single cut under u. We can write pi as (⊥, Y1, Y2, ..., Ym, X1, X2, ..., X

′
m = >)

where each Yj is not in ↑{Z} and each Xj is in ↑{Z}. Hence, it is easy to see that
since pi has a single cut under u it also has a single cut under u′. u′ hence induces a
cutsize of kG,S in G(G,S) so u′ has a cutsize of kG,S . Note that since (by the above)
kG,〈S,(z,y)〉 = kG,S we have U∗G(〈S, (z, 1)) = {u ∈ U∗G(S) : uz = 1}.

Given X ∈ V (G(G,S)) and x, y ∈ X we have, for all u ∈ U∗G(〈S, (z, 1)), u ∈
U∗G(S) and hence, by Item 1 of Definition 1 we have ux = uy . This implies that x and
y are in the same super-vertex of G(G, 〈S, (z, y)〉). Hence, given X ∈ V (G(G,S)),
we have that X is a subset of some super-vertex, in G(G, 〈S, (z, y)〉). Given X ∈
V (G(G,S)) define X̄ to be the super-vertex in G(G, 〈S, (z, y)〉) that contains X as a
subset.

We now show that for every X ∈ ↑{Z} we have X̄ = >′. Suppose we have
X ∈ ↑{Z}. Then let (Z = Y0, Y1, ..., Ym = X) be a directed path in G(G,S). For
all i choose xi to be an arbitrary vertex in Yi. Let u be an arbitrary labelling in
U∗G(〈S, (z, 1)). Then since x0 ∈ Z we have ux0 = 1 and hence, by induction on i
using Item 3 of Definition 1 (and noting that u ∈ U∗G(S)) we have uxi = 1. This im-
plies that uxm = 1. We have just shown that for every labelling u ∈ U∗G(〈S, (z, 1)),
u labels all vertices in X as 1 and hence we have that X ⊆ >′ which implies that
X̄ = >′.

We now show that for every X ∈ V (G(G,S)) \ ↑{Z} we have X̄ 6= >′. To
see this let x be an arbitrary member of X . Then since X 6= > choose a labelling
u ∈ U∗G(S) such that ux = 0. We then have u′x = 0 so since (by the above) u′ ∈
U∗G(〈S, (z, 1)) we have x /∈ >′. Hence X 6⊆ >′ so we have X̄ 6= >′.

We now show that for every X,Y ∈ V (G(G,S)) \ ↑{Z} we have that X̄ 6= Ȳ .
To see this choose x ∈ X and y ∈ Y . Since x and y are in different super-vertices
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in G(G,S) we can choose u ∈ U∗G(S) such that ux 6= uy . We then have u′x = ux 6=
uy = u′y so, since (by the above) u′ ∈ U∗G(〈S, (z, 1)), we have that x and y are in
different super-vertices of G(G, 〈S, (z, y)〉). It follows that X̄ 6= Ȳ .

Combining the above results we get the following: for every X ∈ ↑{Z} we
have X̄ = >′ and for every X ∈ V (G(G,S)) \ ↑{Z} we have X̄ = X . By Item 3 of
Definition 1 (and since U∗G(〈S, (z, 1)) ⊆ U∗G(S)) we have that the directions of the
edges in G(G, 〈S, (z, y)〉) are inherited from G(G,S). This completes the proof.

2.7.2 Proof of Propositions 2 and 3

Proof of Proposition 2. The comb PQ-graph Gc,r is generated from the labeled graph
G with cr + 2c− 1 vertices, and 2c labels. We initially have a path,

p0 := (s0, v0, v1, . . . , vcr−1, vcr, t0), ,

of cr+3 vertices and then every r vertices (from vr to v(c−1)r) we have a bottom ver-
tex si and a top vertex ti forming a three-vertex path pi := (si, vir, ti) for i ∈ INc−1

that intersects p0. Thus if {s0, . . . , sc−1} are each labeled “0” and {t0, . . . , tc−1}
are each labeled “1”; then the PQ-graph Gc,r will have cr + 3 vertices with all
source “s”-vertices “glued” together to form ⊥ and likewise the “t”-vertices form
> (Notationally it is still convenient to refer to these “s” and “t” vertices within
“⊥” and “>” as they now correspond to edges leaving the super-vertex). Thus
P := {p0, . . . , pc−1} is one path cover (see Figure 2.6a). However, we also have
another “zig-zag” path cover (see Figure 2.6b)

P ′ = {(s0, . . . , t1), (s1, . . . , t2), . . . , (sc−2, . . . , tc−1), (sc−1, . . . , t0)} .

Observe that path cover P has one path of length cr+ 2 and c− 1 paths of length 2
whereas P ′ has c paths of length r + 2; thus the path lengths are very unbalanced
in P as opposed to P ′ which leads to the following mistake bounds M0-Ising ≤
O(log r + log c+ (c− 1)) and Mfixed-paths(P ′) ≤ O(c log r).

s0 s1 s2 s3 sc-1

t 1 t 2 t 3 t c-1 t 0

(A) Path cover P of Gc,r

s0 s1 s2 s3 sc-1

t 1 t 2 t 3 t c-1 t 0

(B) Path cover P ′ of Gc,r

FIGURE 2.6: Two path covers of the comb PQ-graph

Now if we assume the true labeling of G is all “0” except at the “t"-vertices
then an adversary may also force fixed-paths(P ′) to incur Ω(c log r) mistakes
by forcing Ω(log r) mistakes in first path (s0, . . . , t1) (e.g. by first selecting vr/2+1

then v3r/4+1 then v7r/8+1 and so on) and then Ω(log r) mistakes in the second path
(s1, . . . , t2) and so on. Thus comparing the two algorithms by setting r := 2c we
have that M0-Ising ≤ O(c) and Mfixed-paths(P ′) ≥ Ω(c2).

Proof of Proposition 3. We consider a generalization of the (c, r)-comb to the (b, c, r)-
grid, with b, c < r . The (b, c, r)-grid is essentially is a “stacking” of b + 1 of the
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(c, r)-combs. More precisely we have b+ 1 directed path graphs of the form

pi,. := (si,., vi,0, vi,1, . . . , vi,cr−1, vi,cr, ti,.)

for i ∈ {0, 1, . . . , b} each with cr + 3 vertices. We then create a grid intersecting
these b+ 1 paths with c− 1 paths of the form

p.,j := (s.,j , v1,jr, v2,jr, . . . , vb,jr, t.,j)

for j ∈ INc−1, so that the grid has (b + 1)(cr + 3) + 2(c − 1) vertices and a label-
consistent minimum-cut size of b + c. We assume the true labeling of each ver-
tex is “0” except the “t” vertices. For the following we define the path segments

s.,1 s.,2 s.,3 s.,c-1

t .,1 t .,2 t .,3 t .,c-1

s0,.

sb-3,.
sb-2,.
sb-1,.
sb,.

t 0,.

t b-3,.
t b-2,.
t b-1,.
t b,.

FIGURE 2.7: The grid PQ-graph

z(i, j) := (vi,jr, vi,jr+1, . . . , vi,(j+1)r−1) for i ∈ {0, 1, . . . , b} and j ∈ {0, 1, . . . , c− 1}.
We now describe an adversarial strategy for the shortest path heuristic: First force,
Ω(log(r − b)) mistakes on z( b2 + 1, 0) by first selecting v b

2 +1, r+b2 +1, then selecting
v b

2 +1,
3(r+b)

4 +1
, then selecting v b

2 +1,
7(r+b)

8 +1
and so on. In the same way then force

Ω(log(r − b)) mistakes on z( b2 + 1, j) for every 1 ≤ j ≤ c− 1 in turn. We have now
forced Ω(c log(r− b)) mistakes on p

b
2 +1,.. In the same way then force Ω(c log(r− b))

mistakes on path p
3b
4 +1,., then Ω(c log(r − b)) mistakes on path p

7b
8 +1,. and so on.

This gives us a total of Ω(c log(b) log(r − b)) mistakes. Thus, if we set b = c, r = 2c

we have that Mshortest-path = Ω(c log(c) log(2c − c)). Noting that Ω(log(2c − c)) =
Ω(c) we hence have that Mshortest-path = Ω(c2 log(c)).

On the other hand, since there are O(bcr) vertices in the grid and the grid has
b+ c edge disjoint paths from source to sink we must have that, for any path cover
P , Mfixed-paths(P ) = O((b + c) log bcr). Thus if we set b = c, r = 2c we have
that Mfixed-paths(P ) = O(c2). Hence we have Mshortest-path = Ω(c2 log(c)) and
Mfixed-paths(P ) = O(c2).

2.7.3 Proof of Theorem 5

Proof of Theorem 5. The bounds for strategies fixed-paths and 0-Ising are
straightforward (see discussion in Section 2.4.2) and we focus on the proof of (2.2)
for the longest-path strategy.

Let (G1, . . . ,GT ) be the sequence of PQ-graphs in a PQ-game of cutsize k
(where GT is the final PQ-graph of cutsize k and hence the mistake made in this
graph is not counted towards the mistakes of the PQ-game). Recall that, for any
t ≤ T , the edge set E(Gt) may be partitioned (non-uniquely) into k edge-disjoint
directed paths. For all t ≤ T we will constuct k edge-disjoint directed paths
{p1
t , p

2
t , ..., p

k
t }. Note that we are treating each path as a set of edges rather than

vertices so that |pit| is the length of the ith path in Gt. Let Mt denote the number
of mistakes (“backwards cumulative”) of longest-path made in the sequence
(Gt,Gt+1, . . . ,GT ). We prove by a “reverse” induction (i.e., from t = T to t = 1)
that for all t there exist k edge-disjoint directed paths {p1

t , p
2
t , ..., p

k
t } from ⊥ to > in

Gt, and numbers (“mistakes on a path”) {M1
t ,M

2
t , ...,M

k
t } with M i

t ≤ log |pit| for
1 ≤ i ≤ k such that the “backwards cumulative mistakes” is Mt =

∑k
i=1M

i
t .
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We now consider the base case of our induction: for t = T we arbitrarily choose

{p1
T , p

2
T , ..., p

k
T } to be an arbitrary set of k edge-disjoint paths from ⊥ to > in GT .

Let M1
T = · · · = Mk

T = 0. We clearly have MT = 0 =
∑k
i=1M

i
T and that M i

T = 0 ≤
log |piT | for 1 ≤ i ≤ k.

Suppose now that the inductive hypothesis holds for some t > 1. We proceed
to show that it holds for t − 1. On trial t − 1 we receive example (Zt−1, yt−1). If
Zt−1 ∈ {⊥,>} then since we are “within” a PQ-game we have not made a mistake,
so the inductive hypothesis holds trivially with pit−1 := pit and M i

t−1 := M i
t for

1 ≤ i ≤ k. Suppose instead that Zt−1 /∈ {⊥,>}. Without loss of generality assume
that the label yt−1 = 1. Define p̂it to be equal to pit except that the “final” edge
is removed i.e., p̂it := pit ∩ {(I, J) ∈ E(Gt) : J 6= >}. Since (by Proposition 1)
Gt = merge(Gt−1, ↑{Zt−1}) observe that p̂it ⊂ E(Gt−1). By construction observe
that since Zt−1 6∈ V (Gt), it is in no path p̂it however there is at least one vertex
Z ′t−1 ∈ V (Gt−1) and a i′ such that p̂i

′

t ∪ {(Z ′t−1, Zt−1)} is a directed path in Gt−1.
Define r⊥t−1 to be the longest directed path in Gt−1 from ⊥ to Zt−1 and r>t−1 to
be the longest directed path in Gt−1 from Zt−1 to >. Now define path pi

′

t−1 :=

p̂i
′

t ∪ {(Z ′t−1, Zt−1)} ∪ r>t−1. Finally select an arbitrary edge-disjoint extensions of
the paths {p̂1

t , . . . , p̂
i′−1
t , p̂i

′+1
t , . . . , p̂kt } to paths {p1

t−1, . . . , p
i′−1
t−1 , p

i′+1
t−1 , . . . , p

k
t−1} so

each is a path from ⊥ to >, in Gt−1.
Now consider the sub-case where longest-path incurred a mistake in Gt−1.

Then we have Mt−1 = Mt + 1 so choose M i′

t−1 := 1 +M i′

t and choose, for all i 6= i′,
M i
t−1 := M i

t . By the inductive hypothesis we hence have that Mt−1 = 1 + Mt =

1 +
∑k
i=1M

i
t =

∑t
i=1M

i
t−1. We predicted Zt−1 to be 0 so we hence have that

|r⊥t−1| ≤ |r>t−1|. Since pi
′

t−1 \ r>t−1 is a directed path in Gt−1 from ⊥ to Zt−1 we have
|pi′t−1 \ r>t−1| ≤ |r⊥t−1| and we hence have that |pi′t−1 \ r>t−1| ≤ |r>t−1|. Hence we have,
by the inductive hypothesis, that |pi′t−1| = |pi′t−1 \ r>t−1| + |r>t−1| ≥ 2|pi′t−1 \ r>t−1| =

2|pi′t | ≥ 2 × 2M
i′
t = 21+Mi′

t = 2M
i′
t−1 . Since, |pit−1| ≥ |pit| for all i, we have, by the

inductive hypothesis, that, for all i 6= i′, |pit−1| ≥ |pit| ≥ 2M
i
t = 2M

i
t−1 . And thus the

sub-case with a mistake is shown.
Now consider the sub-case where we didn’t make a mistake in Gt−1. Then we

have that Mt−1 = Mt so choose, for all i, M i
t−1 := M i

t and we have, by the induc-
tive hypothesis, Mt−1 = Mt =

∑k
i=1M

i
t =

∑k
i=1M

i
t−1. Since, for all i, |pit−1| ≥ |pit|,

we have, by the inductive hypothesis, that |pit−1| ≥ |pit| ≥ 2M
i
t = 2M

i
t−1 . And thus

the sub-case without a mistake is shown.
We conclude observing that the cumulative mistakes from trials 1 to T of the

PQ-game is M1 =
∑k
i=1M

i
1 ≤

∑k
i=1 log |pi1|

2.8 Global mistake analysis (proofs of Theorems 4 and 7)

2.8.1 Proof of Theorem 4

Suppose we have a uniformly-labeled subgraph C.
A covering sequence is an example sequence (i.e. a sequence of pairs (v, y) where

y is the label of vertex v) that contains every vertex in G and the label of any vertex
in C is, without loss of generality, equal to 1.

When, given a covering sequence, R, we say “mistakes made in C with R" we
mean “mistakes made in C when algorithmA is run onR". We also say, for a vertex
w, “w is predicted 0 (resp. 1) withR" when we mean “when algorithmA is run on
R the label of w is predicted, by A, to be 0 (resp. 1).

Lemma 12. Suppose we have a covering sequence R = 〈S, (v, 1), T 〉 for example se-
quences S and T where v /∈ C. Let R′ := 〈S, T , (v, 0)〉. Then the number of mistakes
made in C withR′ is at least the number of mistakes made in C withR.

Proof. All we need to show is that given some w ∈ C in which a mistake is made
on w (i.e. w is predicted 0) with R, then a mistake is made (i.e. w is predicted 0)
with R′. This is clearly true if (w, 1) is in S (the algorithms are identical on S) so
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assume otherwise. We must then have that (w, 1) is in T . If w is predicted 1 with
R′ then by monotonicity and permutation invariance, w must be predicted 1 with
Rwhich is a contradiction. We must hence have that w is predicted 0 withR′.

Lemma 13. Suppose we have a covering sequence R = 〈S, (v, 0), T 〉 for example se-
quences S and T where v /∈ C. Let R′ := 〈(v, 0),S, T 〉. Then the number of mistakes
made in C withR′ is at least the number of mistakes made in C withR.

Proof. All we need to show is that given some w ∈ C in which a mistake is made
on w (i.e. w is predicted 0) with R, then a mistake is made (i.e. w is predicted 0)
with R′. This is clearly true if (w, 1) is in T (the algorithms are identical on T by
permutation invariance) so assume otherwise. We must then have that (w, 1) is in
S. Since w is predicted 0 with R, by monotonicity and permutation invariance w
must be predicted 0 withR′.

Lemma 14. Given a covering sequence R, there exists sequences U and V such that the
elements of U are {(v, 0) : v /∈ C} and the elements of V are {(v, 1) : v ∈ C} and at least
as many mistakes are made in C with 〈U ,V〉 as are made withR.

Proof. Repeatedly use Lemma 12 on R to form a covering sequence R′ which
makes at least as many mistakes in C as R and in which for every v /∈ C, the
label of v is 0. Next, repeatedly use Lemma 13 onR′ to form the covering sequence
〈U ,V〉 in the lemma.

Suppose then that R is our true label sequence. Then find sequences U and
V as in Lemma 14. The number of mistakes made in C with sequence R is then
no more than the number of mistakes made in C with sequence 〈U ,V〉 which, by
the Markov property, is bounded above by BA(C;G). This completes the proof of
Theorem 4. �

2.8.2 Proof Theorem 7

The proof of Theorem 7 separates into three cases: high-connectivity clusters, low-
connectivity clusters, and a tree cluster. In each case we assume that we have
received the label of each vertex in ∂e(C) and we then upper bound the number of
mistakes in C. Without loss of generality assume that each vertex of C is labelled 1
and each vertex of ∂e(C) is labelled 0.

CASE 1 : If κ(C) > |∂Ee (C)| then BA(C;G) ∈ O(1).

Proof. Suppose we have made a single mistake in cluster C. Then we have received
the true label yv (equal to 1) for some vertex v ∈ C. Let u be a consistent (with the
observed labels) labelling of C ∪ ∂e(C) that minimises the cut. Note that we have
uv = 1 and for all w ∈ ∂e(C) we have uw = 0. So if uz = 1 for all z ∈ C then u has
a cut of size |∂Ee (C)|. If there exists a vertex z ∈ C with uz = 0 then, since there are
at least κ(C) edge disjoint paths between z and v, we have that u has a cutsize of
at least κ(C). So since κ(C) > |∂Ee (C)| and u minimises the cut we must have that
uz = 1 for all z ∈ C. Hence, since the the next prediction in C is consistent with a
labelling of minimum-cut, it will predict the label as 1 so will not be a mistake. We
can hence make at most one mistake in C.

CASE 2 : If κ(C) ≤ |∂Ee (C)| then BA(C;G) ∈ O(|∂Ee (C)|(1 + |∂Ee (C)| −
κ(C)) logN|∂Ee (C)|+1).

Proof. We consider the sequence of PQ-games after we have made a single mistake.
We first bound the cutsize of the first PQ-game. Since we have made a single
mistake we have received the true label yv (equal to 1) for some vertex v ∈ C. Let u
be a consistent (with the observed labels) labelling of C ∪ ∂e(C) that minimises the
cut. Note that we have uv = 1 and for all w ∈ ∂e(C) we have uw = 0. So if uz = 1
for all z ∈ C then u has a cut of size |∂Ee (C)|. If there exists a vertex z with uz = 0
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then, since there are at least κ(C) edge disjoint paths between z and v, we have that
u has a cut of size at least κ(C). Hence, since κ(C) ≤ |∂Ee (C)| we have that u has a
cutsize of at least κ(C). Hence, the cutsize of the first PQ-game is at least κ(C).

Since the true cutsize is |∂Ee (C)| we hence have that up to |∂Ee (C)| − κ(C) + 1
PQ-games are played and the cutsize of each PQ-game is no greater than |∂Ee (C)|.
We now bound the number of mistakes made in each PQ-game. To do this we first
bound the number of super-vertices in any of the PQ-graphs. Suppose we have
a set X of vertices in C with connectivity greater than |∂Ee (C)|. Then suppose u is
a consistent (with the observed labels, at any point in the algorithm) labelling of
C ∪ ∂e(C) that minimizes the cut. We must have that u has a cutsize equal to the
cutsize of a PQ-game and hence has a cutsize no greater than |∂Ee (C)|. Suppose, for
contradiction, that there exist vertices x, y ∈ X such that ux 6= uy . Then since there
are at over |∂Ee (C)| edge-disjoint paths from x to y we have that u has a cutsize
greater than |∂Ee (C)| which is a contradiction. We have just shown that for any
consistent (with the observed labels) labelling, u, of C ∪ ∂e(C) that minimizes the
cut we have that ux is identical for all x ∈ X . By definition of the PQ-graph this
means that X is a subset of some super-vertex of the PQ-graph. Hence, we have
that any PQ-graph in the algorithm has at most 1 + N|∂Ee (C)|+1(C) super-vertices
(the “+1” corresponds to the super-vertex formed from ∂e(C)).

Now we can apply Theorem 5 to sum the bounds of each PQ-game where we
upper bound k for each game by |∂Ee (C)| and the path length by N|∂Ee (C)|+1(C).
Since there are at most |∂Ee (C)| −κ(C) + 1 PQ-games this gives us a maximum of at
most O(|∂Ee (C)|(1 + |∂Ee (C)| − κ(C)) logN|∂Ee (C)|+1) mistakes inside the PQ-games.
Finally, note that there are at most |∂Ee (C)| −κ(C) + 1 mistakes between PQ-games.
The result follows.

CASE 3 : If C is a tree then BA(C;G) ∈ O(|∂Ee (C)| logD(C)).

Theorem 15. Given a tree structured subgraph, C, of G we haveBA(C;G) ∈ O(|∂Ee (C)| log2(D(C)))

Proof of Theorem 15

Suppose k := ∂Ee (C). For every vertex v ∈ C let η(v) be the number of neighbours
of v that are not in C. Then consider the tree T which is formed from C by adding,
to each vertex v, η(v) vertices. Label T as follows: if v ∈ C label v as 1 and if
v /∈ C label v as 0. Then BA(C;G) is upper-bounded by the maximum number of
mistakes made in T with any permutation of the vertices. Note that the cutsize of
the labelling of T is equal to k so by Section 2.10, the number of mistakes made in
T is upper-bounded by O (LB(T , k)) which is upper bounded by O(k log(D(T ))).
The result follows since D(T ) ≤ D(C) + 2.

2.9 Regularity properties of longest-path and 0-Ising
(proof of Theorem 6)

The proof of all properties except for the label-monotonicity of longest-path are
straightforward.

2.9.1 Proof that longest-path is label-monotone

In this proof we use the more explicit notation (v → w) for a directed edge from v
to w.

Let S be an example sequence. Let z be a vertex of G that is not contained
in S. Define S ′ := 〈S, (z, 0)〉 (note that, in what follows, we don’t lose generality
by assuming that z is labelled 0 by the symmetry over switching the labels 0 and
1 on all vertices). Let (H, s, t) (resp. (H′, s′, t′)) be the result of step 1 of the PQ-
graph construction algorithm (see Figure 2.1) when run on sequence S (resp. S ′).
Note that H′ is identical to H except that the vertices s and z are merged into a
single vertex s′. Let G (resp. G′) be the graph formed at step 4 of the PQ-graph
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construction algorithm (see Figure 2.1) when run on sequence S (resp. S ′). Let ⊥
and > (resp. ⊥′ and >′) be the source and target super-vertices of G (resp. G′)
respectively. Given v ∈ V (H) (resp. v ∈ V (H′)) define Ψ(v) (resp. Ψ′(v)) to be the
super-vertex in G (resp. G′) that contains v.

To prove label monotonicity we need to show that given h ∈ V (H′) \ {s′, t′},
if the label of h is predicted 0 in G then it is predicted 0 in G′. Let φ and ψ be the
longest directed paths in G from ⊥ to Ψ(h) and from Ψ(h) to > respectively. Let φ′

and ψ′ be the longest directed paths in G′ from ⊥′ to Ψ′(h) and from Ψ′(h) to >′
respectively. If Ψ′(h) = ⊥′ then we are done since then the label of h is predicted 0
in G′, so assume otherwise. Since the label of h is 0 in G we also have that h /∈ >.

We need the following proposition about the graphs G and G′. We will prove
the proposition later in the section.

Proposition 4. We have the following results:

if X,Y ∈V (G′), X ⊆ > and (X → Y ) ∈ E(G′) then Y ⊆ > [edge creation] (a)
if v ∈ V (H) \ (>∪ {s,z}) then Ψ′(v) = ⊥′ or Ψ′(v) = Ψ(v) [vertex collapse/conservation]

(b)

if v, w ∈ V (H) \ (>∪{s,z}) and Ψ′(v) 6= ⊥′ then [edge conservation]
(Ψ′(v)→ Ψ′(w)) ∈ E(G′)⇔ (Ψ(v)→ Ψ(w)) ∈ E(G) (c)

Lemma 16. |φ′| ≤ |φ|

Proof. Since, Ψ′(h) 6= ⊥′ write φ′ as (⊥′, X1, X2, ..., Xm = Ψ′(h)). If, for some i, we
haveXi ⊆ > then by Proposition 4 Item (a) (by induction throughXi, Xi+1, ..., Xm =
Ψ′(h) using inductive hypothesis Xj ⊆ >) we would have Ψ′(h) ⊆ > which
would imply that h ∈ > which is a contradiction. Also, if for some i we have
s′ ∈ Xi, we would have Xi = ⊥′ which is a contradiction. Hence, for every i,
we have some vertex xi ∈ H \ (> ∪ {s, z}) such that Xi = Ψ′(xi). We hence
have a path (Ψ′(x1),Ψ′(x2), ...,Ψ′(xm)) in G′ where, for all i, xi ∈ H \ (> ∪ {s, z})
and Ψ′(xi) 6= ⊥′. By Proposition 4 Item (b) we have that for each i, Ψ′(xi) =
Ψ(xi) (and since h ∈ H \ (> ∪ {s, z}), we have Ψ′(xm) = Ψ′(h) = Ψ(h)) so
by Proposition 4 Item (c) (Ψ(x1),Ψ(x2), ...,Ψ(xm) = Ψ(h)) is a directed path in
G. Since Ψ(x1) = Ψ′(x1) and (since Ψ′(x1) is a subset of H′) s /∈ Ψ′(x1) we
must have Ψ(x1) = Ψ′(x1) 6= Ψ(s) = ⊥. We can hence continue (in G) the path
(Ψ(x1),Ψ(x2), ...,Ψ(xm) = Ψ(h)) back to ⊥ giving us, for some m′ ≥ 0 a directed
path (⊥, Y1, Y2, ...Ym′ ,Ψ(x1),Ψ(x2), ...,Ψ(xm) = Ψ(h)) in G. We hence have con-
structed a directed path in G, from ⊥ to Ψ(h) that is at least as long as φ′ which
proves the result.

Lemma 17. |ψ| ≤ |ψ′|

Proof. Since h /∈ > and hence Ψ(h) 6= > write ψ as (Ψ(h) = X1, X2, ..., Xm,>).
Let x1 := h and for i > 2 let xi be an arbitrary member of Xi. Since h /∈ > and
h 6= s, z we have x1 ∈ H \ (> ∪ {s, z}) For i > 2 we know (since there is no edge
in G that goes into ⊥) that Xi 6= ⊥ and hence s /∈ Xi. Since Xi 6= > we then
have that xi ∈ H \ (> ∪ s). Hence, for all i we have xi ∈ H \ (> ∪ s). Suppose,
for contradiction, that, for some i, xi = z. Then z ∈ Xi 6= > so z /∈ >. Hence,
by Proposition 1 and since Ψ(h) is downstream of Xi we have that h ∈ ⊥′ which
contradicts the assumptions of h. Hence we have that, for all i, xi 6= z and hence
xi ∈ H \ (> ∪ {s, z}).

Note that (Ψ(x1),Ψ(x2), ...,Ψ(xm)) is a directed path in G (as it is a subpath of
ψ). We now prove the following by induction on i:

1. Ψ′(xi) 6= ⊥′

2. Ψ′(xi) = Ψ(xi)

3. (Ψ′(xi)→ Ψ′(xi+1)) is an edge in G′ (for i 6= m)

Note that items 2 and 3 can be proved from Item 1 as follows: Since xi ∈ H \ {> ∪
{s, z}} and Ψ′(xi) 6= ⊥′ then by Proposition 4 Item (b) we have Ψ′(xi) = Ψ(xi).
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Since xi, xi+1 ∈ H \ {>∪ {s, z}} and Ψ′(xi) 6= ⊥′ then by Proposition 4 Item (c) we
have that (Ψ′(xi)→ Ψ′(xi+1)) is an edge in G′.

We now prove Item 1 from the inductive hypothesis: For i = 1 we have (since
h /∈ ⊥′) that Ψ′(x1) = Ψ′(h) 6= ⊥′. For i > 1 we have, from the inductive hypoth-
esis, that (Ψ′(xi−1) → Ψ′(xi)) is an edge in G′. But no edge in G′ goes into ⊥′, so
Ψ′(xi) 6= ⊥′. This completes the inductive proof of the above items.

We hence have that (Ψ′(x1),Ψ′(x2), ...,Ψ′(xm)) is a directed path in G′. Note
that since xm /∈ > we have t′ = t /∈ Ψ(xm) so (by Item 2 above) we have t′ /∈
Ψ(xm) = Ψ′(xm) and hence Ψ′(xm) 6= >′. So we can extend (in G′) the path
(Ψ′(x1),Ψ′(x2), ...,Ψ′(xm)) to a path
(Ψ′(h) = Ψ′(x1),Ψ′(x2), ...,Ψ′(xm), Y1, Y2, Ym′ ,>′) for some m′ ≥ 0. We have now
constructed a path in G′ from Ψ′(h) to>′ that is at least as long as |ψ|which proves
the result.

Since the label of h was predicted as 0 in H we have that |φ| ≤ |ψ|. Hence, by
Lemmas 16 and 17 we have that |φ′| ≤ |φ| ≤ |ψ| ≤ |ψ′|. So |φ′| ≤ |ψ′| implying that
the label of h is still predicted as 0 inH′. �

Proof of Proposition 4

By Proposition 1, Proposition 4 clearly holds if z /∈ > so assume otherwise. Let K
(resp. K ′) be the cut-size of a label-consistent minimum-cut of H (resp. H′). Let
B = {(x → y) : (x, y) ∈ H, x /∈ >, y ∈ >}. Given a flow in a graph, we define the
size of the flow to be the number of edge disjoint paths in it.

We now construct the flowF (in step 2 of the PQ-graph construction algorithm
for G) from s to t in H of size K, and the flow F ′ (in step 2 of the PQ-graph con-
struction algorithm for G′) from s′ to t′ in H′ of size K ′ as follows (note that we
will refer to the objects in this algorithm later):

Algorithm 18.
1. ConvertH to a graphH′′ by adding a set A of K ′ edges between s and z.

2. By running the Ford-Fulkerson algorithm on H construct a flow, F , of size K in
H′′ from s to t such that none of the edges in A are contained in the flow. Note that
this is the first K steps in an instance of the Ford-Fulkerson algorithm onH′′. Note
also that F is a flow of size K inH.

3. Continue (from stage 2) the Ford-Fulkerson algorithm on H′′ to get a flow, F ′′, of
size K ′ from s to t inH′′.

4. SetF ′′′ equal toF ′′. Repeat the following until there is no directed path inF ′′′ from
s to z that does not contain an edge in A:

(a) Choose a directed path in F ′′′ from s to z that does not contain an edge in A.
Remove this path from F ′′′ and add to F ′′′ an edge in A (directed from s to
z). Note that F ′′′ is still a valid flow of size K ′.

5. Merge the vertices s and z to get, from F ′′′, a flow, F ′, of size K ′ from s′ to t′ in
H′.

We now let I and I ′ be the graphs formed in step 3 of the PQ-graph construc-
tion algorithm for G (given the maximum flow F) and G′ (given the maximum
flow F ′) respectively.

Lemma 19. For all x, y ∈ H, if (x→ y) ∈ B then we have (x→ y) ∈ F .

Proof. Assume we have some x, y ∈ H, with (x → y) ∈ B. Suppose, for contra-
diction, that both (x → y) and (y → x) are not in F . Then we have that (x → y)
and (y → x) are both in I implying that Ψ(x) = Ψ(y). Then since y ∈ > we have
Ψ(x) = Ψ(y) = >, which contradicts the fact that x /∈ >. We hence have that either
(x → y) or (y → x) are in F . Suppose, now, for contradiction, that (y → x) ∈ F .
Then it is a result of the Ford-Fulkerson algorithm that there exists a directed path
p, in F , from y to t that goes through x. Let p = (y = v1, v2, ...vm = t). Since, for all
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i we have (vi → vi+1) ∈ F , it is the case that (vi+1 → vi) /∈ F so (vi → vi+1) ∈ I.
Hence p is a path in I from t to y that goes through x. Since y ∈ > and hence
Ψ(y) = > = Ψ(t) we have a directed path in I from y to t. Putting these together
we hence have a directed cycle in I that contains t and x. So t and x are in the same
strongly connected component of I and hence Ψ(x) = Ψ(t) = >. This contradicts
the fact that x /∈ >. We hence have that (y → x) /∈ F which, by the above, implies
that (x→ y) ∈ F .

Definition 20. For 0 ≤ a ≤ (K ′ − K), let Fa be the flow during step a of stage 3 of
algorithm 18 (i.e. F0 = F , FK′−K = F ′′, and for all a, the size of Fa+1 is one more than
the size ofFa). For every 0 ≤ a ≤ (K ′−K) defineCa := Fa\({(x→ y) : x, y ∈ >}∪A).

Lemma 21. For all 0 ≤ a ≤ (K ′ −K) we have Ca = C0.

Proof. We prove by induction on a. The inductive hypothesis clearly holds for
a = 0.

Now suppose the inductive hypothesis holds for some a. We now show that it
also holds for a+ 1:

First note that by Lemma 19 every directed edge in B is contained in C0. Now,
let p be the path (from s to t) that is found in the Ford-Fulkerson algorithm when
the flow goes from Fa to Fa+1. Then let (s, z = x0, x1, x2, ...xm = t) := p (where
the edge (s, z) is in A)

Suppose, for contradiction, that for some i ≤ m, xi /∈ >. Then let j := min{i :
xi /∈ >}. Let k := min{i > j : xi ∈ >} which is defined since xm = t ∈ >. We have
(xk−1 → xk) ∈ B so (xk−1 → xk) ∈ C0 and hence by the inductive hypothesis
(xk−1 → xk) ∈ Ca so (xk−1 → xk) ∈ Fa which contradicts the fact that p is the
path found by the Ford-Fulkerson algorithm.

Hence, all the edges in p are in {(x→ y) : x, y ∈ >} ∪ A and hence, by consid-
ering the Ford-Fulkerson algorithm, we have Ca+1 = Ca. Hence, by the inductive
hypothesis we have Ca+1 = C0.

Definition 22. Let J := F \{(x→ y) : x, y ∈ >} and J ′ := F ′ \{(x→ y) : x, y ∈ >}.

Lemma 23. We have the following results:

1. Given (x→ y) ∈ J ′, either (x→ y) ∈ J or x = s′.

2. Given (x→ y) ∈ J , either (x→ y) ∈ J ′ or x, y ∈ ⊥′ or x ∈ {s, z} or y ∈ {s, z}.

Proof. Let J ′′ := F ′′\({(x→ y) : x, y ∈ >}∪A). Note that J = C0 and J ′′ = CK′−K
so by Lemma 21 we have that J ′′ = J .

Suppose we have (x → y) ∈ J ′ with x 6= s′. Then we automatically have that
(x → y) ∈ F ′′′ at the start of stage 5 of algorithm 18. On each step in stage 4 of
algorithm 18 the only edges added to F ′′′ are those in A so since (because x, y ∈ H′
so x, y 6= s) (x, y) /∈ A we have that (x → y) ∈ F ′′. Since (x → y) /∈ {(v → w) :
v, w ∈ >} ∪ A we hence have (x → y) ∈ J ′′ which implies, by the above, that
(x→ y) ∈ J . This proves Item 1 of the lemma.

Suppose we have some (x → y) ∈ J with (x → y) /∈ J ′, x, y /∈ {s, z}. Since
(x → y) ∈ J we have (since, by the above, J = J ′′) that (x → y) ∈ J ′′. Since (x →
y) ∈ J ′′ we have (x → y) /∈ {(v → w) : v, w ∈ >} and hence, since (x → y) /∈ J ′,
(x → y) /∈ F ′. Since (x → y) ∈ J ′′ we must have (x → y) ∈ F ′′. So (x → y) ∈ F ′′
and (x → y) /∈ F ′ and hence (since x, y /∈ {s, z}) it must be the case that (x → y)
was removed (from F ′′′) during stage 4 of algorithm 18. Let (s = v1, v2, ..., vm = z)
be the directed path in F ′′ that contains (x → y) and was removed during stage
4 of algorithm 18. Since this path is removed and s and z are merged into s′ in
forming F ′ we have that no edge in the cycle (in H′) (s′, v2, v3, ..., vm−1, s

′) is in
F ′. Hence we have that (s′, vm−1, vm−1, ..., v2, s

′) is a directed cycle in I ′ so all
vertices in this cycle belong to the same strongly connected component of I ′. This
implies that for all i we have Ψ′(vi) = Ψ′(s′) = ⊥′. Since x, y /∈ {s, z} we have that
x = vi and y = vi+1 for some 1 < i < m − 1. Hence we have that x, y ∈ ⊥′ which
completes the proof of item 2 of the lemma.
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Lemma 24. Given some v ∈ > with v 6= z we either have Ψ′(v) = ⊥′ or Ψ′(v) ⊆ >.

Proof. Suppose we assume the converse: that there exists some v ∈ > \ {z} with
Ψ′(v) 6= ⊥′ and Ψ′(v) * >. Then choose some x ∈ H′ \ > such that x ∈ Ψ′(v).
Since x and v are in the same strongly connected component in I ′ there exists (in
I ′) a directed path p := {v = x0, x1, x2, ..., xm = x} such that each xi is in Ψ′(v).
Let i = min{j : xj /∈ >} which exists since xm /∈ >. Note that since x0 = v ∈ > we
have i > 0 so xi−1 exists. Since Ψ′(v) 6= ⊥′ we know xi 6= s′ (else s′ ∈ Ψ′(v) and
hence Ψ′(v) would equal ⊥′). We hence have that (xi → xi−1) ∈ B so we know,
from Lemma 19 that (xi → xi−1) is in J .

Since (xi−1 → xi) is a directed edge in p, and hence in I ′, we know that (xi →
xi−1) /∈ F ′ so we have that (xi → xi−1) /∈ J ′ which implies by Lemma 23 Item
2 (since, by the above, (xi → xi−1) is in J and (since xi, xi−1 ∈ H′) xi, xi−1 /∈
{s, z}) that xi ∈ ⊥′. Since xi ∈ Ψ′(v) this implies that Ψ′(v) = ⊥′ which is a
contradiction.

Lemma 25. Given some X,Y ∈ G′ with X ⊆ >, if there is an edge in G′ from X to Y ,
then we have Y ⊆ >.

Proof. Suppose the converse: that there exists some X,Y ∈ G′ with X ⊆ >, Y * >
and an edge in G′ from X to Y .

Note first that since X ⊆ > we have s′ /∈ X and hence X 6= ⊥′. Since there is
an edge in G′ from X to Y and no edge goes into ⊥′ we have Y 6= ⊥′.

Since there is an edge in G′ from X to Y choose x ∈ X and y ∈ Y such that
there is an edge in F ′ from x to y

Since Y * > and Y 6= ⊥′ and (since y ∈ H′) y 6= z we must have, by Lemma
24, that y /∈ >. Hence we have that (x → y) ∈ J ′. Since Y 6= ⊥′ we also have that
y 6= s′. We hence have that (y → x) ∈ B so, by Lemma 19, we have that (y → x) ∈
J . By Lemma 23 Item 1 we hence have a contradiction (since (y → x) ∈ J implies
(x→ y) /∈ J and we have (x→ y) ∈ J ′ and x 6= s′).

Lemma 26. Given a vertex v such that (v → s) ∈ I and v /∈ > we have that (v → s′) ∈
I ′.

Proof. Suppose the converse: that there exists a vertex v such that (v → s) ∈ I,
v /∈ > and (v → s′) /∈ I ′. Since (v → s′) /∈ I ′ we have (s′ → v) ∈ F ′. Hence,
by considering Stage 5 of Algorithm 18 we must have that either (s → v) ∈ F ′′′
or (z → v) ∈ F ′′′. Since v /∈ > we have v 6= z so (since v 6= s (as there is an
edge in I from s to v)) we have (s, v), (z, v) /∈ A. Hence, since during Stage 4 of
Algorithm 18 the only edges added to the flow are those in A, we must have that
either (s→ v) ∈ F ′′ or (z → v) ∈ F ′′.

Assume, for contradiction, that (z → v) ∈ F ′′. Then (z, v) ∈ E(H′′) so since,
by the above, (z, v) /∈ A (and, since z, v ∈ H we have z, v 6= s′) we have that
(z, v) ∈ E(H). Since z ∈ > and v /∈ > we have that (v → z) ∈ B and hence, by
Lemma 19, we have that (v → z) ∈ C0 so, by Lemma 21, (v → z) ∈ CK′−K which
implies that (v → z) ∈ F ′′ and hence that (z → v) /∈ F ′′ which is a contradiction.

We hence have that (s → v) ∈ F ′′ which implies, since v /∈ >, that (s → v) ∈
CK′−K so by Lemma 21 we have (s → v) ∈ C0 which implies that (s → v) ∈
F . This implies that (v → s) /∈ I which is a contradiction. This completes the
proof.

Lemma 27. Given some v ∈ H \ (> ∪ {s}) with Ψ′(v) 6= ⊥′ or Ψ(v) 6= ⊥, we have
Ψ(v) ⊆ Ψ′(v).

Proof. We shall prove that Ψ(v) is strongly connected in I ′ which directly implies
the result.

We first show that s and z are not contained in Ψ(v). Since v /∈ > we have
Ψ(v) 6= > = Ψ(z) which implies that z /∈ Ψ(v). Suppose now, for contradiction,
that s ∈ Ψ(v). Since v 6= s we then have a directed paths (s, x1, x2, ..., xm := v) and
(v = y1, y2, ..., ym′ , s) in I such that, for all i, xi, yi ∈ Ψ(v). Note that since z /∈ Ψ(v)
none of the xi or yi are equal to z. Since (s, x1) is an edge in H we must then have
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that (s′, x1) is an edge in H′ and since no edge of F ′ goes into s′ we must have
that (x1 → s′) /∈ F ′ implying that (s′ → x1) ∈ I ′. Since (ym′ → s) ∈ I and (since
Ψ(ym′) = Ψ(v) 6= >) ym′ /∈ > we have, by Lemma 26 that (ym′ → s′) ∈ I ′. Since,
for all i, (xi → xi+1) ∈ I we have that (xi+1 → xi) /∈ F hence (xi+1 → xi) /∈ J .
If it was true that (xi+1 → xi) ∈ F ′ then since xi /∈ > (as v /∈ > implies that
Ψ(xi) = Ψ(v) 6= >) we would have that (xi+1 → xi) ∈ J ′ so since xi+1, xi 6= s′ (as
both are inH) we would have, by Lemma 23 Item 1, that (xi+1 → xi) ∈ J which is a
contradiction. Hence we have that (xi+1 → xi) /∈ F ′ so (xi → xi+1) ∈ I ′. Similarly
we have (yi → yi+1) ∈ I ′ for all i. We hence have that (s′, x1, x2, ...xm = v) and
(v = y1, y2, ..., ym′ , s

′) are directed paths in I ′ so we have that v and s′ are in the
same strongly connected component of I ′. So Ψ′(v) = Ψ(s′) = ⊥′ and hence
v ∈ ⊥′. Since s ∈ Ψ(v) we also have that Ψ(v) = ⊥which is a contradiction.

We hence have that s, z /∈ Ψ(v) so Ψ(v) ⊆ V (H′). Suppose that we have vertices
x, y ∈ Ψ(v). We now show that there exists a directed path in I ′ from x to y which
proves that Ψ(v) is strongly connected in I ′:

Since Ψ(v) is strongly connected in I there exists a directed path p from x to y
in I such that every vertex in p is in Ψ(v). Since Ψ(v) 6= >, p is a path in V (H) \ >.
Hence, if some directed edge (x′ → y′) is in p and not in I ′ then (since, by definition
of I ′, (y′ → x′) ∈ F ′) we have (since x′ ∈ Ψ(v) 6= > and hence x′ /∈ >) that
(y′ → x′) ∈ J ′ which implies, by Lemma 23 Item 1 (since y′ ∈ H so y′ 6= s′) that
(y′ → x′) ∈ J , and hence (y′ → x′) ∈ F , which implies that (x′ → y′) is not in I
which is a contradiction. Hence, p is a directed path in I ′. This completes the proof
that Ψ(v) is strongly connected in I ′. The result follows.

Lemma 28. Given some v ∈ H \ (>∪ {s}) we either have Ψ′(v) = ⊥′ or Ψ′(v) = Ψ(v).

Proof. Suppose the converse: that there exists some v ∈ H\ (>∪{s}) with Ψ′(v) 6=
⊥′ and Ψ′(v) 6= Ψ(v). Since Ψ′(v) 6= ⊥′, we have, by Lemma 27, that Ψ(v) ⊆ Ψ′(v).
Since Ψ(v) 6= Ψ′(v) we hence can choose some x ∈ Ψ′(v) \ Ψ(v). Since x ∈ Ψ′(v)
we have a directed path (in I ′), p (resp. q) in Ψ′(v) from v to x (resp. x to v).

Suppose, for contradiction, that there exists some v′ ∈ Ψ′(v) with v′ ∈ >. By
the above we have Ψ′(v′) = Ψ′(v) 6= ⊥′. Note also that since v′ ∈ H′ we have
v′ 6= z. Hence, by Lemma 24 we must have that Ψ′(v′) ⊂ > which implies (since
Ψ′(v) = Ψ′(v′)) that Ψ′(v) ⊂ >which contradicts the fact that v ∈ Ψ′(v). Hence we
have that no element of > is contained in Ψ′(v).

Since Ψ′(v) 6= ⊥′ no element of Ψ′(v) is equal to s′. We hence have that the
path p contains only vertices in H′ \ (> ∪ {s′}). Hence, if some directed edge
(x′ → y′) is in p and not in I then (since, by definition of I, (y′ → x′) ∈ F) we have
(y′ → x′) ∈ J which implies, by Lemma 23 Item 2 that (y′ → x′) ∈ J ′ (because
else, by Lemma 23 Item 2, y′, x′ ∈ ⊥′ (since y′, x′ ∈ H′ and hence y′, x′ /∈ {s, z})
which is a contradiction since y′, x′ ∈ Ψ′(v) 6= ⊥′) and hence (y′ → x′) ∈ F ′, which
implies that (x′ → y′) is not in I ′ which is a contradiction. Hence, p is a directed
path in I. Similarly q is a directed path in I . This implies that v and x are in the
same strongly connected component of I. Hence Ψ(v) = Ψ(x) so x ∈ Ψ(v) which
is a contradiction.

Lemma 29. Given some v, w ∈ H \ (> ∪ {s}) in which Ψ′(v) 6= ⊥′ then the existence
of an edge in G′ from Ψ′(v) to Ψ′(w) implies the existence of an edge in G from Ψ(v) to
Ψ(w).

Proof. Note first that since there is an edge in G′ going into Ψ′(w) we must have
Ψ′(w) 6= ⊥′. By Lemma 28 we then have that Ψ′(v) = Ψ(v) and Ψ′(w) = Ψ(w).
Since there is an edge in G′ from Ψ′(v) to Ψ′(w) there exist vertices x ∈ Ψ′(v) and
y ∈ Ψ′(w) such that (x → y) ∈ F ′. Since Ψ′(v) 6= ⊥′ we have x 6= s′. Since
Ψ′(x) = Ψ′(v) 6= ⊥′ and (as v ∈ Ψ′(v) = Ψ′(x) and v /∈ >) Ψ′(x) 6⊆ > we have, by
Lemma 24, that x /∈ >. We hence have that (x → y) ∈ J ′ and that x 6= s′ so, by
Lemma 23 Item 1, we have (x → y) ∈ J and hence there is an edge from x to y in
F . Since Ψ′(v) = Ψ(v) and Ψ′(w) = Ψ(w), we hence obtain the result (since there
is an edge in F from a vertex in Ψ(v) to a vertex in Ψ(w)).
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Lemma 30. Given some v, w ∈ H \ (> ∪ {s}) with Ψ′(v) 6= ⊥′ then the existence of an
edge in G from Ψ(v) to Ψ(w) implies the existence of an edge in G′ from Ψ′(v) to Ψ′(w).

Proof. By Lemma 28 we have that Ψ′(v) = Ψ(v). Since there is an edge in G from
Ψ(v) to Ψ(w) there exist vertices x ∈ Ψ(v) and y ∈ Ψ(w) such that (x → y) ∈ F .
Since Ψ(v) = Ψ′(v) and s /∈ Ψ′(v) we have x 6= s. Since there is no edge in F that
goes into s we must have y 6= s. If x was in > then we would have Ψ(v) = Ψ(x) =
> which contradicts the fact that v /∈ >. Similarly y /∈ >. We hence have that
x, y 6= z. Hence, (x → y) ∈ J and x, y /∈ {s, z} so by Lemma 23 Item 2 we either
have that (x → y) ∈ J ′ or that x, y ∈ ⊥′. But if x ∈ ⊥′, then since x ∈ Ψ′(v) (since,
by the above, Ψ′(v) = Ψ(v)) we have that Ψ′(v) = ⊥′ which is a contradiction.
So (x → y) ∈ J ′ and hence (x → y) ∈ F ′. Since there is an edge in G that goes
into Ψ(w) we have that Ψ(w) 6= ⊥ so by Lemma 27 we have that Ψ(w) ⊆ Ψ′(w) so
y ∈ Ψ′(w).
Suppose, for contradiction, that Ψ′(v) = Ψ′(w). We know that Ψ′(v) 6= ⊥′ and
hence that Ψ′(w) 6= ⊥′. By Lemma 28 we hence have that Ψ(w) = Ψ′(w) = Ψ′(v) =
Ψ(v) which is a contradiction. We hence have that Ψ′(v) 6= Ψ′(w).
We hence have (since x ∈ Ψ(v) = Ψ′(v) and y ∈ Ψ′(w) and (x → y) ∈ F ′) that
there is an edge in G′ from Ψ′(v) to Ψ′(w).

We have now proved Proposition 4: Item (a) is Lemma 25, Item (b) is Lemma 28
and Item (c) comes directly from lemmas 29 and 30. �

2.10 Proof of Optimality for Trees

In this section we prove that 0-Ising and longest-path are optimal graph
label prediction algorithms on trees in the sense of [16, Theorem 1]. We note that
the 0-Ising strategy when restricted to a tree was already proved optimal in [16]
where it was called “Halving.” Our proof of optimality of longest-path uses
much of “proof technology” from [16] so for the convenience of the reader in the
next subsection we recall their notation and definitions.

2.10.1 Ingredients from [16, Section 2]

Given a set L of edge-disjoint paths contained in a tree T , we say that l ∈ L is
a grafted path if one of the two terminal vertices of l is also an internal vertex of
another path l′ ∈ L. This shared vertex is called the graft vertex of l. We say that L
is a connected blanket if:

1. The union of all paths in L forms a (connected) tree.

2. Every vertex in this (connected) tree can be an internal vertex of at most one
such path.

3. Every grafted path in L shares with the remaining paths in L no vertices but
the graft.

Finally, L is a blanket if it is either a connected blanket or it has been obtained by a
connected blanket after removing one or more of its paths. The size of a blanket L
is the number of its paths |L|. Note that a blanket need not include all edges of the
original tree T . Also, observe that for any size K < n, a size-K blanket over a tree
T always exists: take L to be any set of K distinct edges in T ; then no paths of L
have internal vertices and the blanket property trivially holds. On the other hand,
a given tree T clearly admits many size-K blankets. Let L(T,K) be the set of all
size-K blankets over T , and define the function LB (“lower bound”) as follows:

LB(T,K) := max
L∈L(T,K)

∑
l∈L

blog2(|l|)c (2.5)

where |l| is the number of vertices in l. We state the lower bound for any graph
label prediction algorithm proved in [16].
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Theorem 31. [16, Theorem 1], Given a tree T and a number K ∈ N, then for any online
prediction algorithm A there exists a {0, 1} labelling, ν, of T with cutsize at most K, on
which algorithm A makes at least LB(T,K) mistakes.

2.10.2 Proof of Optimality

Let X be the set of cut edges of T and let K := |X|. A subtree Q is called a 2-tree
(resp. 1-tree) if it is a subtree of T with an inner boundary of two vertices (resp.
one vertex) and all vertices in its inner boundary are leaves of it. Given a 1-tree or
2-tree Q we let Q◦ be equal to Q minus its inner boundary. We have the following
lemma.

Lemma 32. We can find a set S, of 1-trees, and a set T, of 1-trees and 2-trees , which
satisfy the following.

1. Any 1-tree in T has a single edge and that edge is cut.

2. The trees in S ∪ T are edge-disjoint.

3. The union of the edges of the trees in S ∪ T is equal to the edge set of T .

4. |T| ≤ 3K

5. For every edge (v, w) in X we have a tree in T which has (v, w) as a single edge.
Note that this implies that |T| ≥ K

6. Given a tree Q ∈ S, where ∂0(Q) = {v} for some v ∈ T , then we have v ∈ ∂0(R)
for some R ∈ T.

7. For any tree Q ∈ T ∪ S we have that Q◦ is identically labelled (i.e. there is no edge
of Q◦ that is in X .)

8. For any tree Q ∈ S we have that Q is identically labelled (i.e. there is no edge of Q
that is in X .)

9. For any trees R,Q ∈ S ∪ T we have that no vertex in the inner boundary of Q is in
R◦.

Proof. Note first that in the following proof we may create subtrees containing a
single vertex - such trees can be discarded. We prove by induction on K. For the
base case K = 1 let {(v, w)} := X . Let Q be the tree containing the single edge
(v, w) (Note that Q◦ has at most one vertex and is hence identically labelled). Let
A be equal to the set of 1-trees with inner boundary {v} or {w} such that the trees
in A∪ {Q} are edge-disjoint and the union of edges of the trees in A∪ {Q} is equal
to the edge set of T . We then have S := A and T := {Q}. It is easy to check that all
the statements of the lemma hold in this case.

Suppose that the inductive hypothesis holds for K = κ. We now consider the
case that K = κ + 1: In this case choose an edge e ∈ X and define X ′ = X \ {e}.
Since |X ′| = κwe can find, by the inductive hypothesis, sets S′ and T′ to be equal to
S and T (respectively) in the lemma if the set of cut edges was equal to X ′ (instead
of X). Let S be the (unique) tree in S′ ∪ T′ that contains the edge e. Note that if
S was a 1-tree in T′ then by Lemma 32 Item 1 we would have that S had a single
edge and that edge would be in X ′ and hence not equal to e which would be a
contradiction. Hence, if S is in T′ then it has two inner boundary vertices. We
hence have three cases.

1. S ∈ S′: In this case let (v, w) := e where v is closer than w to the inner-
boundary vertex of S. Let S′ be the maximal subtree of S with leaf v that
does not contain w. Let Q be the tree containing the single edge (v, w) (Note
that Q◦ has at most one vertex and is hence identically labelled). Let A be
equal to the set of 1-trees with inner boundary {v} or {w} such that the
trees in A ∪ {S′, Q} are edge-disjoint and the union of edges of the trees in
A∪{S′, Q} is equal to the edge set of S. Let T := T′ ∪{S′, Q} (noting that by
the inductive hypothesis we have |T| = 2 + |T′| ≤ 2 + 3κ < 3(κ + 1) = 3K)
and S := (S′ \ {S}) ∪ A. By the inductive hypothesis (i.e. the conditions on
S′ and T′) it is easy to check that all the statements of the lemma hold in this
case.
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2. S ∈ T′ and e is on the path between the inner boundary vertices of S: In this

case let (v, w) := e. Let S′ (resp. S′′) be the maximal subtree of S with leaf
v (resp. w) that does not contain w (resp. v). Let Q be the tree containing
the single edge (v, w) (Note that Q◦ has at most one vertex and is hence
identically labelled). Let A be equal to the set of 1-trees with inner boundary
{v} or {w} such that the trees in A ∪ {S′, S′′, Q} are edge-disjoint and the
union of edges of the trees in A ∪ {S′, S′′, Q} is equal to the edge set of S.
Let T := (T′ \ {S})∪{S′′, S′, Q} (noting that by the inductive hypothesis we
have |T| := 2 + |T′| ≤ 2 + 3κ < 3(κ + 1) = 3K) and S := S′ ∪ A. By the
inductive hypothesis (i.e. the conditions on S′ and T′) it is easy to check that
all the statements of the lemma hold in this case.

3. S ∈ T′ and e is not on the path between the inner boundary vertices of S:
In this case let {x, y} be the inner boundary of S and let (v, w) := e. Let z
be the vertex where the path from v to y first meets the path from x to y.
Without loss of generality let v be closer to z than w is. Let S′ (resp. S′′)
be the maximal subtree of S with x and z (resp. y and z) as leaves. Let
R be the maximal subtree of S that has leaves z and v. Let Q be the tree
containing the single edge (v, w) (Note that Q◦ has at most one vertex and
is hence identically labelled). Let A be equal to the set of 1-trees with inner
boundary {v} or {w} or {z} such that the trees in A∪{S′, S′′, Q,R} are edge-
disjoint and the union of edges of the trees in A ∪ {S′, S′′, Q,R} is equal to
the edge set of S. Let T := (T′ \ {S}) ∪ {S′′, S′, Q,R} (noting that by the
inductive hypothesis we have |T| := 3 + |T′| ≤ 3 + 3κ = 3(κ+ 1) = 3K) and
S := S′ ∪ A. By the inductive hypothesis (i.e. the conditions on S′ and T′) it
is easy to check that all the statements of the lemma hold in this case.

Let S and T be as in the above lemma. Let J :=
⋃
{∂0(S) : S ∈ S ∪ T}. Given

v ∈ J let S(v) be the set of trees in S that have an inner boundary of {v} and let
T(v) be the set of trees in T that have v in their inner boundary.

Lemma 33. We have |J | ≤ 6K

Proof. By Lemma 32 Item 6 we have that any vertex in J is in the inner boundary
of a tree in T and there are (as for all Q ∈ T we have that Q has an inner boundary
of cardinality of at most two) at most 2|T| such vertices. The result then follows by
Lemma 32 Item 4

Lemma 34. Suppose we have some v ∈ J . Then after we have received at least one example
in R◦ for α of the trees R ∈ S(v), where α := |T(v)| + 1, we will no longer make any
mistakes on any of the trees in S(v).

Proof. Let y be the true labelling of T and let y(v) denote the label of vertex v.
Without loss of generality assume that y(v) = 1. We first note that by Lemma 32
Item 8 we have, for all R ∈ S(v), that every vertex a in R satisfies y(a) = 1 (since
v ∈ R).

Suppose we have received at least one label in R◦ for α of the trees R ∈ S(v),
where α := |T(v)| + 1. Then let u be a consistent (with the observed examples)
labelling of T that minimises the cut. Given some Q ∈ T(v), define zQ to be the
vertex in Q that is adjacent to v. Let C := {(v, zQ) : Q ∈ T(v)} ∪

⋃
{E(R) : R ∈

S(v)}. Then the restriction of u to the vertices in the edges in C minimises the
cutsize in C given the observed examples and the labels {uzQ : Q ∈ T(v)}.

By labelling all the vertices in
⋃
{V (R) : R ∈ S(v)} 1 we get a cut in C of size

no greater than |T(v)|. But if uv = 0 we get a cut in each of the trees in S(v) for
which we have observed a label in, giving us a cut in C of size at least |T(v)| + 1.
To minimise the cutsize in C we must hence have that uv = 1.

Hence, given a tree R ∈ S(v), the restriction of u to R minimises the cutsize
in R given the observed labels and conditioned on uv = 1. This cutsize is 0 if and
only if all vertices in R are labelled 1. Hence, uw = 1 for all vertices w ∈ V (R), so
no mistake will be made in R.
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Let U be the set of trees R ∈ S in which a mistake is made in R◦.

Lemma 35. We have |U| ≤ 12K

Proof. By Lemma 34 we have that:

U ≤
∑
v∈J

(|T(v)|+ 1) = |J |+
∑
v∈J
|T(v)| = |J |+ 2|T| (2.6)

where the last equality comes from the fact that for each tree S in T we have that
S appears in at most two of the sets in {T(v) : v ∈ J} as it has at most two vertices
in its inner boundary. By Lemma 33 and Lemma 32 Item 4 the result follows.

Lemma 36. Given a tree S ∈ T∪U, the number of mistakes made in S◦ by the longest-path
and 0-Ising strategies is bounded above by 3 log2(D(S) + 1)) + 5.

Proof. Let y be the true labelling of T . Define a labelling, ŷ, of S to be as follows.
For v ∈ ∂0(S) we have ŷ(v) := 0. For v ∈ S \ ∂0(S) we have ŷ(v) := 1. Define the
full-algorithm to be the algorithm run on T with labelling y. Define the sub-algorithm
to be the algorithm run on S with labelling ŷ.

Since, by Lemma 32 Item 7, S◦ is identically labelled, by Theorem 4 the number
of mistakes made by the full-algorithm in S◦ is no greater than the maximum num-
ber of mistakes, M , that the sub-algorithm makes in S \ ∂0(S) after it has received
the labels on ∂0(S). We hence consider the sub-algorithm.

Since the cutsize of ŷ is no greater than 2, M ≤ M1 + M2 + 3 where Mi is
the number of mistakes made by the sub-algorithm in the PQ game of cutsize i.
Let G1 (resp. G2) be the PQ graph at the start of the PQ game at cutsize 1 (resp.
cutsize 2 (in the case that S is a 2-tree)). By Theorem 5 there exists 1 (resp. 2) edge
disjoint paths p (resp. p, q) in G1 (resp. G2) such that M1 ≤ 1 + log2(|p|) (resp.
M2 ≤ 1 + log2(|p|) + log2(|q|)). But |p| ≤ D(S) + 1 (resp. |p|, |q| ≤ D(S) + 1). We
hence have that M1 ≤ 1 + log2(D(S) + 1) (resp. M2 ≤ 1 + 2 log2(D(S) + 1))

We hence have thatM ≤ 3 log2(D(S))+1)+5 which, by the above, is an upper
bound on the number of mistakes made (by the full algorithm) in S◦.

Lemma 37. The number of mistakes,M, made by the longest-path and 0-Ising
strategies are bounded above by:

M≤
∑

S∈T∪U
14 log2(D(S) + 1)) (2.7)

Proof. Given a tree S ∈ S ∪ T let M(S) be the number of mistakes made in S◦. By
Lemma 32 Item 3 and the definition of J every vertex in T is either in J or in S◦ for
some S ∈ S ∪ T and hence the number of mistakes made in T is upper bounded
by:

M≤ |J |+
∑
S∈T∪S

M(S) (2.8)

= |J |+
∑

S∈T∪U
M(S) (2.9)

≤ |J |+
∑

S∈T∪U
(3 log2(D(S) + 1)) + 5) (2.10)

≤ 6K +
∑

S∈T∪U
(3 log2(D(S) + 1)) + 5) (2.11)

≤
∑

S∈T∪U
(3 log2(D(S) + 1)) + 11) (2.12)

≤
∑

S∈T∪U
14 log2(D(S) + 1)) (2.13)

where Equation 2.9 comes from the definition of U (i.e. for all trees S ∈ S \ U we
have M(S) = 0), Equation 2.10 comes from Lemma 36, Equation 2.11 comes from
Lemma 33 and Equation 2.12 comes from Lemma 32 Item 5.
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We now define the following paths.

Definition 38. For any 1-tree S ∈ U ∪ T define ρ(S) to be a path in S containing
its inner boundary vertex that has maximum length. For any 2-tree S ∈ T let λ(S) be
the path between the inner boundary vertices of S. Let λ′(S) be a path in S that has
a leaf in λ(S) and is edge disjoint from λ(S) that has maximum length. Let ρ(S) =
argmaxp∈{λ(S),λ′(S)} |p|.

For the following we define the constant α := log2(4/3)/ log2(2).

Lemma 39. For any tree S ∈ U ∪ T we have log2(|ρ(S)|) ≥ log2( 1
3D(S) + 1) which is

bounded below by α log2(D(S) + 1).

Proof. Direct from the definition of ρ(S).

Lemma 40. {ρ(S) : S ∈ U ∪ T} is a blanket of cardinality at most 15K.

Proof. We have, by Lemma 32 items 2, 3, 6 and 9, that {ρ(S) : S ∈ U} ∪ {λ(S) : S ∈
T} ∪ {λ′(S) : S ∈ T} is a connected blanket. So since {ρ(S) : S ∈ U∪T} is a subset
of {ρ(S) : S ∈ U} ∪ {λ(S) : S ∈ T} ∪ {λ′(S) : S ∈ T} it is a blanket. The cardinality
of {ρ(S) : S ∈ U ∪ T} follows from Lemma 32 Item 4 and Lemma 35.

We now define the following blanket.

Definition 41. For i ∈ NK inductively define:

Si = argmaxS∈(U∪T)\{Sj :j<i}(|ρ(S)|) (2.14)

and define B := {ρ(Si) : i ∈ NK}.

Lemma 42. B is a blanket of size K which satisfies:∑
p∈B

log2(|p|) ≥ α

15

∑
S∈U∪T

log2(D(S) + 1) . (2.15)

Proof. By Lemma 40 B is a subset of a blanket and is hence a blanket. Since B has
K elements it has, by Lemma 40 at least 1

15 th of the elements of {ρ(S) : S ∈ U∪T}.
So, since in forming B we picked the paths of greatest cardinality, we must have
that

∑
p∈B log2(|p|) ≥ 1

15

∑
p∈{ρ(S):S∈U∪T} log2(|p|) = 1

15

∑
S∈U∪T |ρ(S)| which, by

Lemma 39, is at least α
15

∑
S∈U∪T log2(D(S) + 1).

Theorem 43. The number of mistakesM incurred by the longest-path and 0-Ising
strategies on a tree are bounded above by:

210

α

∑
p∈B

log2(|p|) (2.16)

where α := log2(4/3)/ log2(2). So since B is a blanket of size K the algorithm is, up to a
constant factor, optimal (by Theorem 31).

Proof. Direct from Lemmas 37 and 42.

2.11 Computing the predictions of the 0-Ising strat-
egy is NP-hard

Theorem 44. Computing the predictions of the 0-Ising strategy (see equation (2.1)) is
NP-hard.
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2.11.1 Proof of Theorem 44

NB: Whenever we mention “graph" in this section we mean a graph with source
(label “0”) and target (label “1”) vertices.

Given a graph J , let ⊥(J ) and >(J ) be the source and target vertices of J
respectively. We define a label consistent labeling of J to be a labeling u of J such
that u⊥(J ) = 0 and u>(J ) = 1. We define the cutsize of J to be the minimum
cutsize of a label consistent labelling of J . We define Z(J ) to be the number of
label consistent labellings of J that have cutsize equal to the cutsize of J .

In this proof we assume that we have an oracle (i.e. a black-box that takes
constant time) test(·, ·) that, given an input graph J , of cutsize K, and an input
vertex z ∈ V (J ), outputs “0” if there are fewer label consistent labelings of cutsize
K that label z as “0” than those that label z as “1” and outputs “1” otherwise. From
test(·, ·) we will construct a polynomial time algorithm for counting the number,
Z(G), of label-consistent minimum cuts in a graph G. Since the task of counting
the number of label-consistent minimum cuts is #P-hard [46], we hence have that
test(·, ·) (i.e. computing equation (2.1)) is NP-hard. Let n be the number of vertices
in G.

Definition 45. Given a graph C with cutsize L ≤ n we define the graph C∗ as follows:

1. There exists a set X ⊆ V (C∗) of n + 1 − L vertices such that X ∩ V (C) = ∅ and
V (C∗) = X ∪ V (C)

2. ⊥(C∗) = ⊥(C) and >(C∗) = >(C)

3. E(C∗) = E(C)∪ {(⊥(C), x) : x ∈ X} ∪ {(x, y) : x, y ∈ X,x 6= y} ∪ {(x,>(C)) :
x ∈ X}

Lemma 46. Given a graph C with cutsize L ≤ n the graph C∗ has cutsize n + 1 and
Z(C∗) = 2Z(C).

Proof. Since none of the vertices on the edges of {(⊥(C), x) : x ∈ X} ∪ {(x, y) :
x, y ∈ X,x 6= y} ∪ {(x,>(C)) : x ∈ X} are in V (C) \ {⊥(C),>(C)} we have that for
any min-cut (and label consistent) labelling of C∗, the restriction of that labelling
onto C has cutsize L. So suppose we have a (label consistent) labelling u of C with
cutsize L. We now extent to a labelling u′ of C∗.

If u′x := 1 for every x ∈ X we clearly have a cutsize of n + 1 (L cuts in E(C),
n + 1 − L cuts in {(⊥(C), x) : x ∈ X} and no cuts in {(x, y) : x, y ∈ X,x 6=
y} ∪ {(x,>(C)) : x ∈ X}). If u′x := 0 for every x ∈ X we also have a cutsize
of n + 1 (L cuts in E(C), n + 1 − L cuts in {(x,>(C)) : x ∈ X} and no cuts in
{(⊥(C), x) : x ∈ X} ∪ {(x, y) : x, y ∈ X,x 6= y}).

Now suppose that the above two conditions don’t hold: i.e. that we have
vertices x, y ∈ X with ux := 0 and uy := 1. Then we have at least one cut in
{(x, y) : x, y ∈ X,x 6= y}. Let X1 := {x ∈ X : ux = 1} and let X0 := {x ∈
X : ux = 0}. Then we have |X1| cuts in {(⊥(C), x) : x ∈ X} and |X0| cuts in
{(x,>(C)) : x ∈ X} giving a total of at least n+ 1−L cuts in the union of these two
sets. Adding the L cuts in V (C) gives us a total of over n+ 1 cuts.

So the cutsize of C∗ is n+1 and moreover every (label consistent) labelling u of
C of cutsize L extends to exactly two labellings of C∗ of minimum cutsize. Hence
we have that Z(C∗) = 2Z(C).

Definition 47. Given two graphs C and D, define the merger graph, [C,D], as follows:

1. The structure of [C,D] is the graphs C and D with >(C) and ⊥(D) merged into a
single vertex. i.e. we have a new vertex z such that V ([C,D]) := (V (C)\{>(C)})∪
(V (D) \ {⊥(D)}) ∪ {z} and E([C,D]) = (E(C) \ {(v,>(C)) : v ∈ V (C)}) ∪
{(v, z) : (v,>(C)) ∈ E(C)} ∪ (E(D) \ {(⊥(D), v) : v ∈ V (D)}) ∪ {(z, v) :
(⊥(D), v) ∈ E(D)}.

2. ⊥([C,D]) := ⊥(C)

3. >([C,D]) := >(D)
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Lemma 48. Given graphs C and D of cutsize n+ 1 we have the following:

1. [C,D] has cutsize n+ 1

2. Z([C,D]) = Z(C) + Z(D).

3. Given that z is the vertex formed from the merger of>(C) and⊥(D) then the output
of test(z, [C,D]) is equal to 0 if Z(C) < Z(D) and equal to 1 otherwise.

Proof. Let z be the vertex formed from the merger of >(C) and ⊥(D). Suppose we
have a (label consistent) labelling, u, of [C,D]. If uz = 0 (resp. uz = 1) then there are
at least n+1 cuts in the edges (E(D)\{(⊥(D), v) : v ∈ V (D)})∪{(z, v) : (⊥(D), v) ∈
E(D)} (resp. (E(C) \ {(v,>(C)) : v ∈ V (C)}) ∪ {(v, z) : (v,>(C)) ∈ E(C)}). Hence,
we must have that [C,D] has a cutsize of at least n+ 1 and furthermore that u has
cutsize n + 1 if and only if ux = 0 for every x ∈ V (C) \ {>(C)} (resp. ux = 1
for every x ∈ V (D) \ {⊥(D)}). So since there are Z(D) (resp. Z(C)) labellings of
{z}∪V (D)\{⊥(D)} (resp. {z}∪V (C)\{>(C)}) that label z as 0 and>(D) as 1 (resp.
label z as 1 and⊥(C) as 0) and have n+ 1 cuts in the edges (E(D)\{(⊥(D), v) : v ∈
V (D)})∪{(z, v) : (⊥(D), v) ∈ E(D)} (resp. (E(C)\{(v,>(C)) : v ∈ V (C)})∪{(v, z) :
(v,>(C)) ∈ E(C)}) we have that there are exactlyZ(D) (resp. Z(C)) label consistent
labellings of [C,D] that label z as 0 (resp. z as 1) and have cutsize n + 1. All the
items of the lemma follow.

Definition 49. Given some α ∈ Nn we define Q(α) as follows:

1. There exists a setA ofα vertices such that⊥(Q(α)),>(Q(α)) /∈ A and V (Q(α)) =
{⊥(Q(α)),>(Q(α))} ∪A.

2. E(Q(α)) = {(⊥(Q(α)), v) : v ∈ A} ∪ {(v,>(Q(α))) : v ∈ A}

Given, for some l, the sequence (α0, α1, ..., αl) with αi < αi+1 < n we now
define a graph B(α0, α1, ..., αl) that has a label consistent minimum cutsize of n+1

and such that Z(B(α0, α1, ..., αl)) = 2
∑l
i=0 2αl

Definition 50. Given, for some l, the sequence (α0, α1, ..., αl) with αi < αi+1 < n we
inductively define B(α0, α1, ..., αl) as follows:

1. B(α0) = Q(α0)
∗

2. B(α0, α1, ..., αl) := [Q(α0)
∗
,B(α1, α2..., αl)]

Lemma 51. Given, for some l, the sequence (α0, α1, ..., αl) with αi < αi+1 ≤ n we have
that B(α0, α1, ..., αl) has a cutsize of n+ 1 and Z(B(α0, α1, ..., αl)) := 2

∑l
i=0 2αl .

Proof. Noting that Z(Q(α0)) = 2α0 and hence, by Lemma 46 Z(Q(α0)
∗
) = 2 · 2α0

and Q(α0)
∗ has cutsize n + 1, the proof is direct by induction on l using items 1

and 2 of Lemma 48.

Lemma 52. Z(G) ≤ 2n

Proof. Note that there are 2n labellings of G which implies the result.

The following algorithm calculates Z(G) (unless Z(G) = 1 in which case com-
puting Z(G) is done by running test([B(0),G∗], z) (where z is the vertex formed
from the merger of >(B(0)) and ⊥(G∗))).

Algorithm 53. Throughout the algorithm we maintain a graph J , which is equal to
B(α0, α1, ..., αl) for some l and sequence (α0, α1, ..., αl). J is initialised to be equal to
B(n). The algorithm loops over the following:

1. Let B(α0, α1, ..., αl) := J . Construct the graph [J ,G∗]. Let z be the vertex in
[J ,G∗] formed from the merger of >(J ) and ⊥(G∗).

2. Run test([J ,G∗], z). If the output is 1 then set J ← B(α0 − 1, α1, α2, ..., αl). If
the output is 0 then run the following:
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(a) Construct the graph [[B(0),J ],G∗]. Let z′ be the vertex in [[B(0),J ],G∗]

formed from the merger of >([B(0),J ]) and ⊥(G∗).

(b) Run test([[B(0),J ],G∗], z′). If the output is 1 then the algorithm termi-
nates outputting Z(G) ← 1 +

∑l
i=0 2αi . If, instead, the output is 0 we set

J ← B(α0 − 1, α0, α1, ..., αl)

Theorem 54. Given an oracle test(·, ·), Algorithm 53 outputs Z(G) in polynomial time.

Proof. Note first that by Lemma 46 and Lemma 48 Item 1 all graphs, C, in the
algorithm satisfy Z(C) = n+ 1.

Since, by Lemma 52, we have thatZ(G) ≤ 2n we can find, for some l, β0, β1, ..., βl ∈
Z such that β1 ≥ 0, βl < n, for all i we have βi < βi+1 and Z(G) = 1 +

∑l
i=q 2βi .

By Lemma 46 we have Z(G∗) = 2Z(G) = 2
Ä
1 +

∑l
i=q 2βi

ä
. Let Jt be the graph J

at the start of the tth loop.
We prove, by reverse induction (i.e. from l to 0) on j ≤ l that there exists a t

such that Jt = B(βj , βj+1, ..., βl). We first show the base case: that there is some
time t such that Jt = βl. To see this suppose at some time t′ we have that Jt′ =
B(β′) for some β′ > βl. We consider the (t′)th loop. By Lemma 48 Item 3 and since
Z(G∗) ≤ 2·2·2βl ≤ 2·2β′ = Z(Jt′) (where the last equality comes from Lemma 51),
the result of test([Jt′ ,G∗], z) is 1. We hence have that Jt′+1 = B(β′ − 1). Hence,
since J1 = B(n) and n > βl we have that J1+n−βl = B(βl). We have hence proved
that the inductive hypothesis holds for j = l so now suppose it holds for some
0 < j ≤ l. We now show that it holds for j − 1. Since it holds for j choose t′′ such
that Jt′′ = B(βj , βj+1, ..., βl). We consider the (t′′)th loop. By Lemma 48 Item 3 and
since Z(G∗) ≥ 2

Ä
1 + β0 +

∑l
i=j 2βi

ä
> 2

∑l
i=j 2βi = Z(Jt′′) (where the last equal-

ity comes from Lemma 51), the result of test([Jt′ ,G∗], z) is 0. By Lemma 48 Item
3 and since Z(G∗) ≥ 2

Ä
1 + β0 +

∑l
i=j 2βi

ä
> 2
Ä
1 +

∑l
i=j 2βi

ä
= Z([B(0),Jt′′ ])

(where the last equality comes from Lemma 51), the result of test([[B(0),Jt′′ ],G∗], z′)
is 0. We hence have thatJt′′+1 = B(βj−1, βj , βj+1, ..., βl). Note now that if βj−1 =
βj−1 we are done. Else we have (as βj−1 < βj) that βj − 1 > βj−1. Now suppose
we have some t′ with Jt′ = B(β′, βj , βj+1, ..., βl) for some β′ > βj−1. We consider
the (t′)th loop. By Lemma 48 Item 3 and since Z(G∗) ≤ 2

Ä
2βj−1 +

∑l
i=j−1 2βi

ä
=

2
Ä
2 · 2βj−1 +

∑l
i=j−1 2βi

ä
≤ 2
Ä
2β
′
+
∑l
i=j−1 2βi

ä
= Z(Jt′) (where the last equal-

ity comes from Lemma 51), the result of test([Jt′ ,G∗], z) is 1. We hence have that
Jt′+1 = B(β′−1, βj , βj+1, ...βl). Hence, since Jt′′+1 = B(βj−1, βj , βj+1, ..., βl) and
βj − 1 ≥ βj−1 we have that Jt′′+βj−βj−1

= B(βj−1, βj , βj+1, ..., βl). This completes
the proof of the inductive hypothesis.

By the above we have that there exists a time t such that Jt = B(β0, β1, ..., βl).
We now show that the algorithm outputs at time t. By Lemma 48 Item 3 and since
Z(G∗) = 2

Ä
1 +

∑l
i=0 2βi

ä
> 2

∑l
i=0 2βi = Z(Jt) (where the last equality comes

from Lemma 51), the result of test([Jt′ ,G∗], z) is 0. By Lemma 48 Item 3 and since
Z(G∗) = 2

Ä
1 +

∑l
i=0 2βi

ä
= Z([B(0),Jt′′ ]) (where the last equality comes from

Lemma 51), the result of test([[B(0),Jt′′ ],G∗], z) is 1. The algorithm hence outputs
at time t with output 1 +

∑l
i=0 2βi which is equal to Z(G). The algorithm hence

outputs correctly.
We now show that given an oracle test(·, ·), Algorithm 53 runs in in polyno-

mial time. Note first that it is clear that each loop takes polynomial time. Hence,
all that is required to show is that there is a polynomial number of loops. Let
B(βt0, β

t
1, ..., βlt) := Jt. It is clear that for all t we have βt+1

0 = βt0 − 1 and hence,
since β1

0 = n we have at most n+ 1 loops. This completes the proof.

Since, with an oracle test(·, ·), Algorithm 53 solves a #P-hard problem in poly-
nomial time we must have that test(·, ·) is NP-hard.
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Chapter 3

Online Similarity Prediction

3.1 Abstract

In this chapter we deal with the online similarity prediction problem. By convert-
ing the problem to a linear classification problem on a space of matrices we apply
the perceptron and matrix winnow algorithms to give us two algorithms to solve
the similarity prediction problem. We then use the concept of a binary support
tree (first described in [32] and [17]) to ensure these algorithms have a low mistake
bound. Finally we show how the perceptron-based algorithm on the binary sup-
port tree can be made exponentially faster.
This chapter is based on our paper “Online similarity prediction of networked data
from known and unknown graphs" in COLT 2013. The final section of this chapter
is all my own work. The other sections of this chapter were written in collaboration
with Mark Herbster and Claudio Gentile.

3.2 Related Work

This chapter lies at the intersection between online learning on graphs and ma-
trix/metric learning. Both fields include a substantial amount of work, so we can
hardly do it justice here. Below we outline some of the main contributions in ma-
trix/metric learning, with a special emphasis on those we believe are most related
to this chapter.

Similarity prediction on graphs can be seen as a special case of matrix learn-
ing. Relevant works on this subject include [55, 57, 15, 33] – see also [27] for recent
usage in the context of online cut prediction. In all these papers, special care is
put into designing appropriate regularization terms driving the online optimiza-
tion problem, the focus typically being on spectral sparseness. When operating
on graph structures with Laplacian-based regularization, these algorithms achieve
mistake bounds depending on functions of the cut-size of the labeled graph.Yet, in
the absence of further efforts, their scaling properties make them inappropriate to
practical usage in large networks. Metric learning is also relevant to this chapter.
Metric learning is a special case of matrix learning where the matrix is positive
semi-definite. Relevant references include [51, 19, 41, 59, 14]. Some of these papers
also contain generalization bound arguments. Yet, no specific concerns are cast on
networked data frameworks. Related to our bidirectional reduction from class pre-
diction to similarity prediction is the thread of papers on kernels on pairs (e.g., [6,
41, 37, 11]), where kernels over pairs of objects are constructed as a way to measure
the “distance" between the two referenced pairs. The idea is then to combine with
any standard kernel algorithm. The so-called matrix completion task (specifically,
the recent reference [35]) is also related to our work. In that paper, the authors
introduce a matrix recovery method working in noisy environments, which in-
corporates both a low-rank and a Laplacian-regularization term. The problem of
recovery of low-rank matrices has extensively been studied in the recent statistical
literature (e.g., [12, 13, 26, 48, 42, 34], and references therein), the main concern
being bounding the recovery error rate, but disregarding the computational as-
pects of the selected estimators. Moreover, the way they typically measure error
rate is not easily comparable to online mistake bounds. Finally, the literature on
semisupervised clustering/clustering with side information ([8, 21] – see also [47]
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for a recent reference on spectral approaches to clustering) is related to this chapter,
since the similarity feedback can be interpreted as a must-link/cannot-link feed-
back. Nonetheless, their formal statements are fairly different from ours.

To summarize, whereas we are motivationally close to [35], from a technical
viewpoint, we are perhaps closer to [51, 55, 57, 15, 27, 33], as well as to the literature
on online learning on graphs.

3.3 Introduction and Overview

3.3.1 Problem

We have a graph G with V(G) = Nn and a vector y : Nn → NK , yi being the label
of vertex i.

The learner is given the graph G a-priori but does not know the vector y. On
trial t the learner is given a pair of vertices (it, jt). We define zt = 0 if yit = yjt and
zt = 1 otherwise. The learner is asked to give ẑt, its prediction of zt. After giving
the prediction, ẑt, the learner receives the true value of zt.

3.3.2 Definitions

We define ei to the i-th basis vector of Rn.
We define L to be the laplacian of G. That is, the n× n matrix with Lii equal to the
degree of vertex i and, for i 6= j, Lij := −1 (resp. Lij := 0) if (i, j) is an edge of G
(resp. not an edge of G)).
We define Ψ as an n× n matrix such that ΨTΨ = L.
Given a matrix A we denote by A+ the pseudo-inverse of A.
For k ∈ NK we define the class k cut, ΦGk , to be the set of edges (i, j) ∈ E(G) for
which yi = k and yj 6= k or for which yi 6= k and yj = k. We define the total cut,
ΦG to be equal to

⋃K
k=1 ΦGk . Note that |ΦG| = 1

2

∑K
k=1 |ΦGk |

Given vertices i, j ∈ V(G) we define RGi,j to be the effective resistance between ver-
tices i and j. We defineRG to be the resistance diameter ofG, that is, maxi,j∈V(G)R

G
i,j .

We also define the class k resistance weighted cutsize, φGk , to be:

φGk :=
∑

(i,j)∈ΦG
k

RGi,j (3.1)

3.3.3 Overview

In section 3.4 we transform the problem to a linear classification problem in the
Hilbert space of n × n matrices with the Frobenius inner-product. We then run
the perceptron and matrix winnow algorithms in this space which gives us the
following mistake bounds:

Theorem 55. If we run the perceptron based algorithm with graph G we get a mistake
bound of:

MP ∈ O

(
(RG)2

k∑
k=1

|ΦGk |2
)
. (3.2)

If we run the matrix winnow based algorithm with graph G we get a mistake bound of:

MW ∈ O

(
RG log(n)

k∑
k=1

|ΦGk |

)
. (3.3)
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In section 3.5 we show how to construct a binary support tree, B, of G, who’s

leaves are the vertices of G (first defined in [32] and [17]). Running the previous
algorithms onB, instead of on G, gives us the following expected mistake bounds:

Theorem 56. If we run the perceptron based algorithm with tree B we get an expected
mistake bound of:

E
Ä
MP
ä
∈ O

(
log4(n)

k∑
k=1

(φGk )2

)
. (3.4)

If we run the matrix winnow based algorithm with tree B we get an expected mistake
bound of:

E
Ä
MW
ä
∈ O

(
log3(n)

k∑
k=1

φGk

)
. (3.5)

A severe drawback of these algorithms (when computed naively) is that they
take polynomial time per round (O(n2) for the perceptron and O(n3) for matrix
winnow) and initialisation requires taking a pseudo-inverse (typically cubic time).
Hence, in section 3.6 we give an implementation of the perceptron algorithm that
requires only O(log2(n)) time per round, only O(n) initialisation time and a con-
stant consecutive space requirement (i.e. we don’t store arrays but linked data-
structures).

3.4 Similarity Prediction via Linear Classification

3.4.1 The Algorithms

In Algorithm 1 we give a simple application of the Matrix Winnow (superscript
“w") and Perceptron (superscript “p") algorithms to similarity prediction on graphs.
The algorithms work by the reduction of the similarity problem following linear
classification problem:

We work in the Hilbert space of n × n matrices with inner product given by
〈A,B〉 := TR(ATB). The pair of vertices (it, jt) are converted to an element Xt of
this space given by the following equation (common to the metric learning litera-
ture):

Xt ← (Ψ+)>(eit − ejt)(eit − ejt)
>Ψ+ (3.6)

and in the case of matrix winnow Xt is normalised to have trace 1. The algorithms
are then the perceptron and matrix winnow algorithms run on the instances Xt.

There is a tuning issue related to Matrix Winnow, since the threshold θ̂w depends
on the (unknown) cut-size. To solve this we use the doubling trick which is a stan-
dard technique. We first define ω := η

(eη−e−η)RG
. Let µ := 4RG log n. We use the

result, proved in Section 3.4.3, that with the correct tuning the matrix winnow al-
gorithm makes no more than µ|ΦG|mistakes. The doubling trick works as follows:
We define the algorithm Aτ (i) (for a time τ and natural number i) as follows:

1. Set Wτ ← 1
m I (i.e. the matrix winnow algorithm is restarted)

2. Run the matrix winnow algorithm on ((iτ , jτ ), (iτ+1, jτ+1), (iτ+2, jτ+2), (iτ+3, jτ+3), ...)

with θ̂w = ω/2i until it has made 2i+1µ mistakes.

3. Let τ ′ be the time at which Aτ (i) has made 2i+1µ mistakes.

4. Run Aτ ′(i+ 1).

We now show that the algorithmA1(0) makesO(|ΦG|RG log n) mistakes: To prove
this note that if the algorithm Aτ (dlog(|ΦG|)e) is called at some time τ then since,
during this algorithm θ̂w ≤ ω/RG it makes no more than 2(dlog(|ΦG|)e)µ mistakes
and henceAτ ′(dlog(|ΦG|)e+1) is never called (for any τ ′). SinceAτ (i) makes 2i+1µ
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Algorithm 1: Perceptron and Matrix Winnow algorithms on a graph

Input: Graph G with V(G) = Nn and Laplacian L = Ψ>Ψ,
Parameters: Perceptron threshold θ̂p = (RG)2; Winnow threshold
θ̂w = η

eη−e−η
1

RG |ΦG| , Winnow learning rate η = 1.28;

Initialization: W p
0 = 0 ∈ Rm×m; Ww

0 = 1
m I ∈ Rm×m;

For t = 1, 2, . . . , T :

• Get pair of vertices (it, jt) ∈ V(G)2, and construct similarity
instances,

X
p
t ← (Ψ+)>(eit−ejt)(eit−ejt)>Ψ+; Xw

t ←
(Ψ+)>(eit − ejt)(eit − ejt)

>Ψ+

(eit − ejt)
>L+(eit − ejt)

;

(3.13)

• Predict: zp
t ← [TR((W

p
t−1)>X

p
t ) > θ̂p];

zw
t ← [TR((Ww

t−1)>Xw
t ) > θ̂w];

• Observe zt ∈ {0, 1} and, if mistake (zt 6= ẑt), update

W
p
t ←W

p
t−1 + (zt− ẑ

p
t )X

p
t ; logWw

t ← logWw
t−1 + η (zt− ẑw

t )Xw
t .

mistakes (untilAτ ′(i+1) is called) we hence have that the overall algorithm makes
no more than m mistakes where:

m =

dlog(|ΦG|)e∑
i=1

2i+1µ (3.7)

≤ 2dlog(|ΦG|)e+2µ (3.8)

≤ 2blog(|ΦG|)c+3µ (3.9)

= 8 · 2blog(|ΦG|)cµ (3.10)

≤ 8|ΦG|µ (3.11)

= 32|ΦG|RG log n (3.12)

3.4.2 Perceptron Mistake Bound

In this subsection and the next we prove theorem 55. We often use, in this subsec-
tion and the next, the result that given an n ×m matrix A and an m × n matrix B
we have TR(AB) = TR(BA).

We start off with the Matrix Perceptron bound. We define Xt := (Ψ+)>(eit −
ejt)(eit − ejt)

>Ψ+ (i.e. Xt := Xp) and let 〈A,B〉 be a shorthand for the inner
product TR(ATB). For brevity we define, in this subsection, Wt := W

p
t and θ̂ := θ̂p

We define the separator, U as follows:

Definition 57. Define K vectors u1, . . . ,uK ∈ Rn such that the i-th component, uk,i,
of uk is equal to 1 is yi = k (where yi is the label of the i-th vertex of G) and equal to 0

otherwise. Define U := Ψ
Ä∑K

k=1 uku
>
k

ä
Ψ>

We first bound the norms of the instances:

Lemma 58. 〈Xt, Xt〉 ≤ (RG)2
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Proof. We can write

〈Xt, Xt〉 = TR((Ψ+)T (eit − ejt)(eit − ejt)
TΨ+(Ψ+)T (eit − ejt)(eit − ejt)

TΨ+)

= TR((eit − ejt)
TΨ+(Ψ+)T (eit − ejt)(eit − ejt)

TΨ+(Ψ+)T (eit − ejt))

= ((eit − ejt)
TL+(eit − ejt))

2

= (RGit,jt)
2

≤ (RG)2 .

We now prove the linear separability of sequence (X1, z1), (X2, z2), . . . w.r.t. U .

Lemma 59. If zt = 0 then 〈U,Xt〉 = 0. If zt = 1 then 〈U,Xt〉 = 2.

Proof. We can write

〈U,Xt〉 = TR(UTXt)

=
K∑
k=1

TR(Ψuku
T
k ΨT (Ψ+)T (eit − ejt)(eit − ejt)

TΨ+)

=
K∑
k=1

TR((eit − ejt)
TΨ+Ψuku

T
k ΨT (Ψ+)T (eit − ejt))

=
K∑
k=1

((eit − ejt)
TΨ+Ψuk)2 .

By definition of pseudoinverse, Ψ(Ψ+Ψuk) = (ΨΨ+Ψ)uk = Ψuk for all k =
1, . . . ,K. Hence we have Ψ(Ψ+Ψ− I)uk = 0 so (Ψ+Ψ− I)uk = c1 for some c ∈ R
(noting that multiples of 1 are the only solution to the equation Ψx = 0) . Hence,
Ψ+Ψuk = uk + c1 for some c ∈ R. We therefore have that (eit − ejt)

TΨ+Ψuk =
uk,it − uk,jt , i.e.,

〈U,Xt〉 =
K∑
k=1

(uk,it − uk,jt)2 .

Now, if zt = 0 (i.e., yit = yjt ) then for all k we have uk,it − uk,jt = 0, so that
〈U,Xt〉 = 0. On the other hand, if zt = 1 (i.e., yit 6= yjt ) then there exist distinct
a, b ∈ {1, . . . ,K} such that |ua,it − ua,jt | = |ub,it − ub,jt | = 1, and for all other
k 6= a, b we have uk,it − uk,jt = 0. So, in this case 〈U,Xt〉 = 2.

Finally, we bound the norm of the separator, U :

Lemma 60. 〈U,U〉 ≤ 2
∑K
k=1 |ΦGk |2
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Proof. Let ΦGa,b := {(i, j) ∈ E(G) : yi = a, yj = b}. We have:

〈U,U〉 = TR(UTU)

= TR

((
K∑
a=1

Ψuau
T
aΨT

)(
K∑
b=1

Ψubu
T
b ΨT

))

=
K∑
a=1

K∑
b=1

TR(Ψuau
T
aΨTΨubu

T
b ΨT )

=
K∑
a=1

K∑
b=1

TR(uTb ΨTΨuau
T
aΨTΨua)

=
K∑
a=1

K∑
b=1

(uTb ΨTΨua)2

=
K∑
a=1

K∑
b=1

(uTb Lua)2

=
K∑
a=1

Ñ
(uTaLua)2 +

∑
b6=a

(uTb Lua)2

é
=

K∑
a=1

Ñ
(|ΦGa |)2 +

∑
b 6=a

(−|ΦGa,b|)2

é
=

K∑
a=1

Ñ
|ΦGa |2 +

∑
b6=a

|ΦGa,b|2
é

So, noticing that
∑
b : b6=a |ΦGa,b| = |ΦGa | and hence that

∑
b : b6=a |ΦGa,b|2 ≤ |ΦGa |2, we

get the result.

With the above handy, we now follow the standard analysis of the Perceptron al-
gorithm with non-zero threshold to derive the mistake bound MP.

We denote by M0 the set of mistaken trials with zt = 1 and ẑt = 0, and by M1

the set of mistaken trials with zt = 0 and ẑt = 1, with |M| = |M0|+ |M1|. We have

〈Wt,Wt〉 = 〈Wt−1,Wt−1〉+ 〈Xt, Xt〉+ 2 (zt − ẑt) 〈Wt−1, Xt〉,

where

(zt − ẑt) 〈Wt−1, Xt〉 ≤
®
θ̂ if t ∈M0

−θ̂ if t ∈M1 .

Hence, 〈WT ,WT 〉 ≤ maxt〈Xt, Xt〉 |M| + 2 θ̂ |M0| − 2 θ̂ |M1| so, by lemma 58,
〈WT ,WT 〉 ≤ (RG)2|M|+ 2 θ̂ |M0| − 2 θ̂ |M1|.
Moreover,

〈U,Wt〉 = 〈U,Wt−1 + (zt − ẑt)Xt〉 = 〈U,Wt−1〉+ (zt − ẑt) 〈U,Xt〉,

where, by lemma 59:

(zt − ẑt) 〈U,Xt〉 =

®
2 if t ∈M0

0 if t ∈M1 ,

Hence 〈U,WT 〉 = 2 |M0|. Using the Cauchy-Schwarz ineq. 〈U,WT 〉2 ≤ 〈U,U〉 〈WT ,WT 〉,
and putting together gives

4 |M0|2 ≤ 〈U,U〉
Ä
(RG)2 (|M0|+ |M1|) + 2 θ̂ |M0| − 2 θ̂ |M1|

ä
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So, with θ̂ := (RG)2 we have

4 |M0|2 ≤ 〈U,U〉(RG)2(3|M0| − |M1|) (3.14)

Since 4 |M0|2 and 〈U,U〉(RG)2 are both non-negative, Equation 3.14 automati-
cally gives us 3|M0| − |M1| ≥ 0 so we must have |M1| ≤ 3|M0|. Also, since
〈U,U〉(RG)2|M1| is non-negative Equation 3.14 automatically gives us 4 |M0|2 ≤
3〈U,U〉(RG)2|M0| which, dividing by 4|M0| gives us |M0| ≤ 3

4 〈U,U〉(R
G)2. We

hence have:

|M| = |M0|+ |M1|
≤ |M0|+ 3|M0|
= 4|M0|
≤ 3〈U,U〉(RG)2

≤ 6(RG)2
K∑
k=1

|ΦGk |2

where the last line comes from Lemma 60.

3.4.3 Winnow Mistake Bound

In this subsection we use the arguments in [57] to aid us in deriving a mistake
bound for the matrix-winnow based algorithm

Let Xt and U be as in the previous subsection. In this subsection we define Ũ :=

U/(2|ΦG|). For brevity we define, in this subsection, Wt := Ww
t and θ̂ := θ̂w. We

define θ := 1/(RG|ΦG|)

Lemma 61. TR(Ũ) = 1

Proof.

TR(U) = TR

(
Ψ

(
K∑
k=1

uku
>
k

)
Ψ>

)

=
K∑
k=1

TR(Ψuku
>
k Ψ>)

=
K∑
k=1

TR(u>k Ψ>Ψuk)

=
K∑
k=1

u>k Ψ>Ψuk

=
K∑
k=1

u>k Luk

=
K∑
k=1

|ΦGk |

= 2|ΦG|

which implies the result

Lemma 62. TR(Xw
t ) = 1
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Proof.

TR(Xt) = TR((Ψ+)>(eit − ejt)(eit − ejt)
>Ψ+)

= TR((eit − ejt)
>Ψ+(Ψ+)>(eit − ejt))

= (eit − ejt)
>Ψ+(Ψ+)>(eit − ejt)

= (eit − ejt)
>L+(eit − ejt)

which, since Xw
t = Xt

(eit−ejt )>L+(eit−ejt )
, implies the result.

Lemma 63. If zt = 0 then TR(ŨXw
t ) = 0. If zt = 1 then TR(ŨXw

t ) ≥ θ

Proof. By Lemma 59 we have:

1. If zt = 0 then:

TR(ŨXw
t ) = TR(UXt)/(2|ΦG|((eit − ejt)

>L+(eit − ejt))

= 〈U,Xt〉/(2|ΦG|((eit − ejt)
>L+(eit − ejt))

= 0.

2. If zt = 1 then:

TR(ŨXw
t ) = TR(UXt)/(2|ΦG|((eit − ejt)

>L+(eit − ejt))

= 〈U,Xt〉/(2|ΦG|((eit − ejt)
>L+(eit − ejt))

= 2/(2|ΦG|((eit − ejt)
>L+(eit − ejt))

= 1/(|ΦG|RGit,jt)
≥ 1/(|ΦG|RG)

= θ

Let d(Ũ ,W ) be the matrix (or "quantum") relative entropy

d(Ũ ,W ) = TR(Ũ log Ũ − Ũ , logW +W − Ũ) .

Then, when t is an updating round, we have

d(Ũ ,Wt−1)− d(Ũ ,Wt) = TR(Ũ logWt − Ũ logWt−1) + TR(Wt−1)− TR(Wt)

= η (zt − ẑt) TR(ŨXw
t ) + TR(Wt−1)− TR(exp(logWt−1 + η (zt − ẑt)Xw

t ))

From Golden-Thompson ineq. we have that for any two symmetric (need not be
positive definite) matrices A and B

TR(exp(A+B)) ≤ TR(exp(A) exp(B))

that we apply to the above with A = logWt−1 and B = η (zt − ẑt)Xw
t . This gives

d(Ũ ,Wt−1)− d(Ũ ,Wt) ≥ η (zt − ẑt) TR(ŨXw
t ) + TR(Wt−1 − exp(logWt−1) exp(η (zt − ẑt)Xw

t ))

= η (zt − ẑt) TR(ŨXw
t ) + TR(Wt−1(I − exp(η (zt − ẑt)Xw

t )) .
(3.15)

We then use the following two facts:

1. For any positive semidefinite matrix X with eigenvalues in [0, 1], and any
a ∈ R we have

(1− ea)X ≤ I − exp(aX),

where "≤" is the partial order over positive semidefinite matrices.
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2. If A is a positive semidefinite matrix and B and C are two symmetric matri-

ces with B ≤ C, then TR(AB) ≤ TR(AC).

Notice that Xw
t in (3.15) has eigenvalues in [0, 1] since it is positive semidefinite

with TR(Xw
t ) = 1 (by lemma 62). We use Item 1 with a = η (zt − ẑt), and X = Xw

t ,
and then Item 2 with A = Wt−1, resulting in

d(Ũ ,Wt−1)−d(Ũ ,Wt) ≥ η (zt−ẑt) TR(ŨXw
t )+(1−eη (zt−ẑt)) TR(Wt−1X

w
t ) . (3.16)

At this point we distinguish the two cases: 1) zt = 1, ẑt = 0 and 2) zt = 0, ẑt = 1.
In case 1) we have, by lemma 63, that TR(ŨXw

t ) ≥ θ and TR(Wt−1X
w
t ) < θ̂.

Hence the RHS of (3.16) is at least (notice that 1− eη is negative)

η θ + (1− eη) θ̂.

In case 2) we have, by lemma 63, that TR(ŨXw
t ) = 0 and TR(Wt−1X

w
t ) ≥ θ̂.

Hence the RHS of (3.16) is at least (notice that 1− e−η is positive)

(1− e−η) θ̂.

Setting

θ̂ =
ηθ

eη − e−η

makes the two progress lower bound to be equal to ηθ 1−e−η
eη−e−η = ηθ

1+eη , which is at
least θ/4 when η ' 1.28.

With the above setting for η and θ̂ in hand, we sum (3.16) over mistaken trials,
and conclude that the resulting algorithm has a number of mistakes m satisfying

mθ/4 ≤ d(Ũ ,W0)− d(Ũ ,WT ) ≤ d(Ũ ,W0).

Now, since, by lemma 61, TR(Ũ) = 1, and TR(W0) = 1, it is easy to see that

d(Ũ ,W0) = TR(Ũ log Ũ)−TR(Ũ logW0)+TR(W0)−TR(Ũ) = 0−log
1

n
+1−1 = log n

i.e.,
m ≤ 4|ΦG|RG log n .

3.5 Support Tree

In this section we describe the construction of a binary support tree (BST) of the
graph G (First introduced in [32] and [17]). We will then run the algorithms of the
preceding section on the support tree rather than G. The benefits of doing this are
threefold:

• We replace the (possibly large) factors ofRG in the mistake bounds by log(n).

• We replace the cutsize factors in the mistake bound by the (often much
smaller) resistance-weighted cutsize in expectation.

• In the next section we will give an implementation of the perceptron algo-
rithm on the support tree that requires onlyO(n) initialisation time and only
O(log(n)2) time per trial.

The support tree is constructed as follows:

1. Sample an uniform random spanning tree, T , of G. Recall that a uniformly
random spanning tree of an unweighted graph can be sampled in expected
time O(n lnn) for “most” graphs [10]. Using the nice algorithm of [58], the
expected time reduces to O(n) —see also the work of [3]. However, all
known techniques take expected time Θ(n3) in certain pathological cases.
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FIGURE 3.1: From left to right: The graph G; a random
spanning tree T of G (note that the vertices are numbered
by the order of a depth-first visit of T , starting from root
vertex 1; the path graph P which follows the order of the
depth-first visit of T ; the BST built on top of P . Notice how
the class labels of the 8 vertices in V (corresponding to the

three colors) are propagated upwards.

2. Let P be a path graph with vertex set V(G) and who’s vertices follow the
ordering given by a depth first search of T .

3. Define the support tree, B, to be a full balanced binary tree with leaves V(G)
which are ordered as in P .

The labelling y, on V(G) is extended to V(B) recursively from leaves to root as
follows: Given an internal vertex, i, of B, define yi := yj where j is the left child of
i.

We the run the algorithms of the preceding section on B instead of G.

3.5.1 Mistake Bounds

We now prove theorem 56. We start with the following lemma:

Lemma 64. Let (G,y) be a labeled graph, and T be a spanning tree ofG drawn uniformly
at random. Then, for all k = 1, . . . ,K, we have:

1. E[|ΦTk |] =
∑

(i,j)∈ΦG
k
RGi,j = φGk , and

2. E[|ΦTk |2] ≤ 2(
∑

(i,j)∈ΦG
k
RGi,j)

2 = (φGk )2 .

Proof. Set s = |ΦGk | and ΦGk = {(i1, j1), (i2, j2), . . . , (is, js)}. Also, for ` = 1, . . . , s,
let Y` be the random variable which is 1 if (i`, j`) is an edge of T , and 0 other-
wise. From E[Y`] = RGi`,j` (a standard result) we immediately have 1). In order to
prove 2), we rely on the negative correlation of variables Y`, i.e., that E[Y` Y`′ ] ≤
E[Y`]E[Y`′ ] for ` 6= `′ (a standard result: see, e.g., [40]). Then we can write

E(|ΦTk |2) = E

( s∑
`=1

Y`

)2


= E

[
s∑
`=1

s∑
`′=1

Y`Y`′

]

=
s∑
`=1

E[Y`] +
s∑
`=1

∑
`′ 6=`

E[Y`Y`′ ]

≤
s∑
`=1

E[Y`] +
s∑
`=1

∑
`′ 6=`

E[Y`]E[Y`′ ] .

Now, for any spanning tree T of G, if s ≥ 1 then it must be the case that |ΦTk | ≥ 1,
and hence

∑s
`=1 E[Y`] = E[|ΦTk |] ≥ 1 . Combined with the above we obtain:

E[|ΦTk |2] ≤

(
s∑
`=1

E[Y`]

)2

+
s∑
`=1

∑
`′ 6=`

E[Y`]E[Y`′ ] ≤ 2

(
s∑
`=1

E[Y`]

)2

= 2

(
s∑
`=1

RGi`,j`

)2

,
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as claimed.

From theorem 55 we have that if we execute Matrix Winnow on B with then
the number MW of mistakes satisfies

MW = O

(
(RB) log(n)

k∑
k=1

|ΦBk |

)
.

Since B is a tree, its resistance diameter, RB , is equal to its diameter, which is
O(log n). Moreover, |ΦBk | = O(|ΦTk | log n) (see [30] for proof), for k = 1, . . . ,K,
hence |ΦBk | = O(|ΦTk | log n). Plugging back, taking expectation over T , and using
Lemma 64, 1) proves the Matrix Winnow bound. Similarly, if we run the Matrix
Perceptron algorithm on B then

MP = O

(
(RB)2

k∑
k=1

|ΦBk |2
)
.

Proceeding as before, in combination with Lemma 64, 2), proves the Matrix Per-
ceptron bound.

3.6 Fast Perceptron

In this section we give an implementation of the matrix perceptron algorithm on
the BSTB that requires a per-trial time ofO(log2(n)), an initialisation time ofO(n),
a space requirement of O(n2) and a consecutive space requirement of O(1).

3.6.1 The Algorithm

The algorithm operates on the BSTB by maintaining a (2n−1)×(2n−1) symmetric
matrix F with integer entries initially set to zero. At time t, when receiving the pair
of leaves (it, jt), the algorithm constructs Pt, the (unique) path in B connecting it
to jt. Then the prediction ẑt ∈ {0, 1} is computed as

ẑt =

®
1 if

∑
`,`′∈Pt F`,`′ ≥ 4 log2 n,

0 otherwise .
(3.17)

Upon receiving label zt, the algorithm updates F as follows. First of all, the algo-
rithm is mistake driven, so an update takes place only if zt 6= ẑt. Let Nt be the set
of neighbors of the vertices in Pt, and define St := Nt \ (Pt \ {it, jt}). We assign
integer tags ft(`) to vertices ` ∈ Nt as follows:

1. For all ` ∈ Pt, if ` is the s-th vertex in Pt then we set ft(`) = s;

2. For all ` ∈ Nt \ Pt, let n` be the (unique) neighbor of ` that is contained in
Pt. Then we set ft(`) = ft(n`).

We then update F on each pair (`, `′) ∈ S2
t as

F`,`′ ← F`,`′ + (2zt − 1) (ft(`)− ft(`′))2 . (3.18)

Figure 3.2 illustrates the process.
The fact that the algorithm is O(log2 n) per round easily follows from the fact

that, since B is a balanced binary tree, the sizes of sets Pt (prediction step in (3.17))
and St (update step in (3.18)) are both O(log n).

3.6.2 Adaptive Representation of F

A naive implementation of F as an array would require a consecutive space of
Θ(n2) and an initialisation time of Θ(n2). Hence, we now outline a method of
growing a data structure that stores a representation of F online for which the
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FIGURE 3.2: Matrix Perceptron algorithm at time twith it =
2 and jt = 5. Left: The BST. Light blue vertices are those in
Pt. Thick-bordered vertices are those in St. The ft tags are
the red numbers near the involved vertices (i.e., those in
Pt ∪ St). Middle: The matrix F . In light blue are the entries
of F that are summed over in (3.17). Right: The matrix F ,
where numbers are the values (ft(`)−ft(`′))2 that are added
to (zt = 1, ẑt = 0) or subtracted from (zt = 0, ẑt = 1) the
respective components of F during the update step (3.18).

initialisation time is only O(n) and has an O(1) consecutive space requirement
while keeping the per round time to O(log2 n).

For every vertex ` in B the algorithm maintains a subtree B` of B, initially set
to {ρ}, being ρ the root ofB. At every vertex `′ ∈ B` is stored the value F`,`′ . At the
start of time t, the algorithm climbs B from it to ρ, in doing so storing the ordered
list Lit of vertices in the path from ρ to it. The same is done with jt. The set St is
then computed. For all ` ∈ St, the tree B` is then extended to include the vertices
in Nt and the path from it (note that for each ` ∈ St this takes only O(log n) time,
since we have the list Lit ). Whenever a new vertex `′ is added to B`, the value
F`,`′ is set to zero. Hence, we initialize F “on demand", the only initialization step
being the allocation of B, i.e., O(n) time.

3.6.3 Proof of Equivalence

We now show the equivalence of the sequence of predictions issued by (3.17) to
those of the Matrix Perceptron algorithm run on B. In this section we let L be the
Laplacian of B (instead of G)

Definition 65. For every ` ∈ St define Λt(`) as the maximal subtree of B that contains `
and does not contain any nodes in Pt \ {it, jt}.

Lemma 66. Λt(·) defined above enjoys the following properties (see Figure 3.3, left, for
reference).

1. For all `, Λt(`) is uniquely defined;

2. Any subtree T ofB that has no vertices from Pt \{it, jt} (and hence any of the trees
Λt) contains at most one vertex from St;

3. The subtrees {Λt(`) : ` ∈ St} are pairwise disjoint;

4. The set {Λt(`) : ` ∈ St}∪(Pt\{it, jt}) coversB (so in particular {Λt(`) : ` ∈ St}
covers the set of leaves of B).

Proof. 1. Suppose we have subtrees T and T ′ with T 6= T ′ that both satisfy
the conditions of Λt(`). Then w.l.o.g assume there exists a vertex `′ in T
that is not in T ′. Since T and T ′ are both connected and both contain `, the
subgraph T ∪ T ′ of B is connected and is hence a subtree. Since neither T
nor T ′ contains vertices in Pt \ {it, jt}, T ∪ T ′ does not contain any such
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either. Hence, because T ′ is a strict subtree of T ∪ T ′, we have contradicted
the maximality of T ′.

2. Suppose T has distinct vertices `, `′ ∈ St. Since T is connected, it must
contain the path in B from ` to `′. This path goes from ` to the neighbor
of ` that is in Pt \ {it, jt}, then follows the path Pt \ {it, jt} (in the right
direction) until a neighbor of `′ is reached. The path then terminates at `′.
Such a path contains at least one vertex inPt\{it, jt}, contradicting the initial
assumption about T .

3. Assume the converse – that there exist distinct `, `′ in St such that Λt(`) and
Λt(`

′) share vertices. Then, since Λt(`) and Λt(`
′) are connected, Λt(`) ∪

Λt(`
′) must also be connected (and hence must be a subtree of B). Since

Λt(`) ∪ Λt(`
′) shares no vertices with Pt \ {it, jt}, and contains both ` and `′

(which are both in St), the statement in Item 2 above is contradicted.

4. Assume that we have a ` ∈ B \ (Pt \ {it, jt}). Then let P ′ be the path from `
to the (first vertex encountered in) the path Pt \ {it, jt}. Let `′ be the second
from last vertex in P ′. Then `′ is a neighbor of a vertex in Pt, but is not in
Pt \ {it, jt}, so it must be in St. This implies that the path P ′′ that goes from
` to `′ contains no vertices in Pt \ {it, jt} and is therefore (Item 1) a subtree
of Λt(`

′). Hence, ` ∈ Λt(`
′).

j 
t 'i t '
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FIGURE 3.3: Left: The same BST as in Figure 3.2 with it = 2
and jt = 5. Light blue vertices are those in Pt. Thick-
bordered vertices are those in St. Since vertices 3 and 4
are in Λt(10), we have f̃t(3) = f̃t(4) = ft(10). Since ver-
tices 7 and 8 are in Λt(12), we have f̃t(7) = f̃t(8) = ft(12).
For all other vertices `, we have f̃t(`) = ft(`). Right:
The same BST as in Figure 3.2 with path Pt′ (light blue
vertices) having endpoints it′ = 3 and jt′ = 8. Thick-
bordered vertices are still those in St. Path Pt′ intersects
St at two vertices, 10 and 12, which means that 3 ∈ Λt(10)
and 8 ∈ Λt(12). We have f̃t(3) = ft(10), f̃t(8) = ft(12), and
((e3−e8)L+(e2−e5))2 = (f̃t(3)−f̃t(8))2 = (ft(10)−ft(12))2.

Definition 67. We extend the tagging function ft to all vertices of B via the vector1 f̃t as
follows (note that, by Lemma 66, f̃t is well defined):

1. For all ` ∈ Pt \ {it, jt}, set f̃t(`) = ft(`);

2. For all `′ ∈ St and ` ∈ Λt(`
′), set f̃t(`) = ft(`

′).

Lemma 68. Lf̃t = ejt − eit .

Proof. For any vertex κ of B \ {it, jt} one of the following holds:

1 In our notation, we interchangeably view f̃ both as a tagging function from the 2n− 1
vertices of B to the natural numbers and as a (2n− 1)-dimensional vector.
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1. If κ ∈ Pt, then κ has a neighbor κ1 with f̃t(κ1) = f̃t(κ)− 1, one neighbour κ2

with f̃t(κ2) = f̃t(κ)+1, and (unless κ is the root ofB) one neighbour κ3 with
f̃t(κ3) = f̃t(κ). We therefore have that [Lf̃t]κ = 3f̃t(κ) − f̃t(κ1) − f̃t(κ2) −
f̃t(κ3) = 0.

2. If κ ∈ Nt \ Pt, then κ has one neighbor κ1 in Pt and we have f̃t(κ1) = f̃t(κ).
Let Tκ be the subtree of B containing exactly vertex κ and all neighbors of
κ bar κ1. Since Pt is connected, it contains κ1 and does not contain κ, none
of the other neighbors of κ being in Pt. Hence Tκ is a subtree of B that
contains κ and no vertices from Pt \ {it, jt}, and so by Lemma 66, item 1 it
must be a subtree of Λt(κ). Hence, by definition of f̃t, all vertices κ2 in Tκ
satisfy f̃t(κ2) = f̃t(κ). This implies that for all neighbors κ3 of κ we have
f̃t(κ3) = f̃t(κ), which in turn gives [Lf̃t]k = 0.

3. If κ /∈ Nt then, by Lemma 66 item 4, let κ be contained in Λt(`) for some ` ∈
St. Let Tκ be the subtree of B containing exactly vertex κ and all neighbors
of κ. Note that Tκ is a subtree of B that contains κ and no vertices from
Pt \ {it, jt}. Since Λt(`) also contains κ (hence Λt(`) ∪ Tκ is connected), we
have that Λt(`) ∪ Tκ is a subtree of B that contains ` and no vertices from
P \ {it, jt}. By Lemma 66 item 1, this implies that Λt(`) ∪ Tκ is a subtree
of (and hence equal to) Λt(`). Hence, by definition of f̃t, we have that f̃t is
identical on Tκ. Thus all neighbors κ1 of κ satisfy f̃t(κ1) = f̃t(κ), implying
again [Lf̃t]κ = 0.

So in either case [Lf̃t]κ = 0.
Finally, let i′t be the neighbor of it in B. We have [Lf̃t]it = f̃t(it) − f̃t(i

′
t) =

1 − 2 = −1. Similarly, we have [Lf̃t]jt = 1. Putting together, we have shown that
Lf̃t = ejt − eit , thereby concluding the proof.

Lemma 69. Suppose we have vertices `, `′ ∈ St. Then for any pair of vertices κ and κ′ of
B with κ ∈ Λt(`) and κ′ ∈ Λt(`

′) we have

(eκ − eκ′)
TL+(eit − ejt) = ft(`

′)− ft(`) ,

where ei is the i-th element in the canonical basis of R2n−1.

Proof. By lemma 68 and the definition of pseudoinverse,

Lf̃t = LL+Lf̃t = LL+(ejt − eit) .

This mplies that L(f̃t − L+(ejt − eit)) = 0. Hence, there exists c ∈ R such that
f̃t − L+(ejt − eit) = c1 (noting that multiples of 1 are the only solutions to the
equation Lx = 0) so there exists a constant c such that f̃t = L+(ejt − eit) + c1.
From the definition of f̃ we can hence write

ft(`
′)− ft(`) = f̃t(κ

′)− f̃t(κ)

= ([L+(ejt − eit)]κ′ − c)− ([L+(ejt − eit)]κ − c)
= [L+(ejt − eit)]κ′ − [L+(ejt − eit)]κ

= (eκ − eκ′)
TL+(eit − ejt),

as claimed.

Lemma 70. Let κ, κ′ be two vertices of B. Let P be the path from κ to κ′ in B. Then for
any t either |P ∩ St| ≤ 1 or P ∩ St = {`, `′}, for two distinct vertices ` and `′. No other
cases are possible. Moreover,

((eκ − eκ′)
TL+(eit − ejt))

2 =

®
0 if |P ∩ St| ≤ 1

(ft(`)− ft(`′))2 if P ∩ St = {`, `′} .

Proof. By Lemma 66 item 4, we have two possible cases only:
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1. There exists ` ∈ St such that both κ and κ′ are in Λt(`): In this case (since

Λt(`) is connected) the path P lies in Λt(`). Since, by Lemma 66 item 2, no
`′ ∈ St with `′ 6= ` can be in Λt(`), it is only ever possible that P contains at
most one vertex ` (if any) of St.

2. There exist two distinct nodes `, `′ ∈ St such that κ ∈ Λ(`) and κ′ ∈ Λ(`′).
In this case, P corresponds to the following path: First go from κ to ` (by
Lemma 66 item 2, since this path lies in Λ(`) the only vertex in St that lies in
the section of the path is `); then go to the neighbor of ` that is in Pt \ {it, jt};
then follow the pathPt\{it, jt} until you reach the neighbor of `′ (this section
of P contains no vertices in St); then go from `′ to κ (by Lemma 66 item 2,
since this path lies in Λ(`′) the only vertex in St that lies in this section of the
path is `′). Thus, P ∩ St = {`, `′}.

The result then follows by applying Lemma 69 to the two cases above.

Figure 3.3 illustrates the above lemmas by means of an example.

To conclude the proof, let 〈A,B〉 be a shorthand for TR(A>B). We see that from
Algorithm 1, Lemma 70, and the definition of F in (3.18) we can write

〈Wp
t , X

p
t 〉 = 〈

Ñ
t−1∑

s=1,s∈M
(2zs − 1)X

p
s

é
, X

p
t 〉

=
t−1∑

s=1,s∈M
(2zs − 1)〈Xp

s , X
p
t 〉

=
t−1∑

s=1,s∈M
(2zs − 1)((eit − ejt)

TL+(eis − ejs))
2

=
∑

(`,`′)∈P2
t

F`,`′ ,

whereM is the set of mistaken rounds, and the second-last equality follows from
a similar argument as the one contained in the proof of lemma 58. Note also that
since B is a tree, its resistance diameter is equal to its diameter and since B is
balanced this is equal to 2 log(n). Hence we have that (RB)2 = 4 log2(n).

Plugging these identities into the definition of the matrix perceptron algorithm
(Algorithm 1) gives us the equivalence of the algorithms.
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Chapter 4

A Time and Space Efficient
Junction Tree Architecture

4.1 Abstract

The junction tree algorithm is a way of computing all marginals of boolean multi-
variate probability distributions that factorise over sets of random variables. The
junction tree algorithm first constructs a tree called a junction tree who’s vertices
are sets of random variables. The algorithm then performs a generalised version
of belief propagation on the junction tree. The Shafer-Shenoy and Hugin architec-
tures are two ways to perform this belief propagation that tradeoff time and space
complexities in different ways: Hugin propagation is at least as fast as Shafer-
Shenoy propagation and in the cases that we have large vertices of high degree is
significantly faster. However, this speed increase comes at the cost of an increased
space complexity. This chapter first introduces a simple novel architecture, ARCH-
1, which has the best of both worlds: the speed of Hugin propagation and the low
space requirements of Shafer-Shenoy propagation. A more complicated novel ar-
chitecture, ARCH-2, is then introduced which has, up to a factor only linear in the
maximum cardinality of any vertex, time and space complexities at least as good
as ARCH-1 and in the cases that we have large vertices of high degree is signifi-
cantly faster than ARCH-1.
This chapter is all my own work.

4.2 Introduction

The junction tree algorithm is a popular tool for the simultaneous computation of
all marginals of a multivariate probability distribution stored in a factored form.
In this paper we consider the case in which the random variables are boolean. The
junction tree algorithm is a generalisation of belief propagation [44] performed on a
tree (called a junction tree) who’s vertices are sets of random variables. The Shafer-
Shenoy [50] [43] and Hugin [23] [43] architectures are two variations of the junction
tree algorithm that trade off time and space complexities in different ways: Hugin
propagation is faster than Shafer-Shenoy propagation but at the cost of a greater
space complexity. Large vertices of high degree cause much inefficiency in both
these architectures (especially in that of Shafer-Shenoy) and it is the purpose of this
paper to introduce novel architectures that perform better in these cases. In order
to tackle the problem of high-degree vertices, an algorithm was given in [52] for
constructing a binary junction tree on which Shafer-Shenoy propagation can then
be performed. This method was shown empirically to be faster than Hugin prop-
agation (on a generic junction tree constructed in a certain way) in [36]. The draw-
back of this method, however, is that it can require dramatically more space than
Shafer-Sheony propagation on a generic junction tree due to the maximum cardi-
nality of the intersection of two neighbouring vertices being large. It should also
be noted that in [62] an architecture was given that eliminated the redundant com-
putations (caused by high-degree vertices) of Shafer-Shenoy propagation. Again
though, this architecture can have a dramatically increased space complexity over
that of Shafer-Shenoy propagation. In comparison, the architectures introduced in
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this paper tackle the problem of high degree vertices whilst retaining the low space
complexity of Shafer-Shenoy propagation (on a generic junction tree). Two novel
architectures are introduced in this paper: the first, ARCH-1, achieves the speed
(up to a constant factor) of Hugin propagation and has the low space requirements
of Shafer-Shenoy propagation. ARCH-1 is very simple and serves as a warm up
to a more complicated architecture, ARCH-2, which (almost) has space and time
complexities at least as good as ARCH-1 and in the cases in which we have large
vertices of high degree is significantly faster than ARCH-1/Hugin. In the cases in
which we have a large enough (relative to the rest of the junction tree) vertex who’s
degree is exponential (to some base greater than one) in its cardinality then ARCH-
2 has a polynomial saving in the time complexity over that of ARCH-1/Hugin: i.e.
there exists s < 1 such that a time of Θ(t) (for ARCH-1/Hugin) becomes a time of
O(ts) (for ARCH-2). The saving in time complexity in going from Shafer-Shenoy
to Hugin/ARCH-1 is similar.
A more detailed description of the results of this paper is given in Section 4.4 after
the preliminary definitions have been introduced and the junction tree algorithm
has been described.

In this paper we assume that all basic operations such as arithmetic operations
and memory reads/writes take constant time. We also assume that storing any
number or pointer takes constant space. To ease the reader’s understanding, the
algorithms given in sections 4.5 though 4.7 are sketches: to achieve the stated time
complexities we must be able to find and store variables in constant amortised
time and space. The exact implementations that give the stated time and space
complexities are given in Section 4.9.

This paper is structured as follows: In Section 4.3 we give the preliminary def-
initions required by the paper. In Section 4.4 we give an overview of the junction
tree algorithm, a detailed overview of the results of the paper and some techni-
calities relating to time/space complexities. In Section 4.5 we describe the Shafer-
Shenoy and Hugin architectures and analyse their complexities. In Section 4.6 we
describe the architecture ARCH-1 and analyse its complexity. In Section 4.7 we
describe the architecture ARCH-2 and analyse its complexity. In Section 4.8 we
describe how to modify ARCH-2 such that it can deal with zeros. In Section 4.9 we
give the details of how to implement the algorithms introduced in this paper.

4.3 Preliminaries

In this section we define the notation and concepts used in this paper except for
that required exclusively for the implementation details of the algorithms which
are defined in Section 4.9. Also, the notation J , S, F(C) and MH→C , as well as the
notion of “sending" and “receiving" messages, is defined in Algorithm 71.

4.3.1 Basic Notation

The symbol := is used for definition: e.g. x := y means “x is defined to be equal to
y". Given a ∈ N we define Na to be equal to the set of the first a natural numbers:
i.e. the set {1, 2, 3, ..., (a−1), a}. Given a setX we defineP(X) to be the power-set of
X : that is, the set of all subsets ofX . In this paper, whenever we use the word “set"
we mean a finite set. If we are talking about an infinite set we shall say “(infinite)
set".

We now define the pseudo-code used in this paper: The left arrow,←, denotes
assignment: e.g. a ← b indicates that the value b is computed and then assigned
to the variable a. Function names are written in bold with the input coming in
brackets after the name. When the assignment symbol, ←, has a function on its
right hand side it indicates that the function is run and the output of the function
is assigned to the variable on the left hand side: e.g. a ← function(b) indicates
that the function function is run with input b and its output is assigned to variable
a. When the word “return" appears in the pseudo-code for a function it indicates
that the function terminates and outputs the object coming after the word “return".
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4.3.2 Potentials

A binary labelling of a set X is a map from X into {0, 1}. A potential on a set X is
a map from P(X) into R+. Given a potential Ψ on a set X we define σ(Ψ) := X .
Given a setX we define T (X) to be the (infinite) set of all possible potentials onX .
Given a set X we define 1X to be the potential in T (X) that satisfies 1X(Z) := 1
for all Z ∈ P(X). Note that a potential on a set X is equivalent to a map from all
possible binary labellings of X into the positive reals (which is the usual definition
of a potential). The equivalence is seen by noting that there is a bijecitive mapping
from P(X) into the set of all possible binary labellings of X where a subset Y of X
maps to the labelling µY of X given by µY (x) := 1 for all x ∈ Y and µY (x) := 0 for
all x ∈ X \ Y . The operations in this paper are easier to describe when the domain
of a potential is a power-set, which is why we define potentials in this way.

Given a potential Ψ on a set X and a subset Y ⊆ X we define the Y -marginal,
Ψ

`
Y , of Ψ as the potential in T (Y ) that satisfies, for all Z ∈ P(Y ):

Ψ
`
Y (Z) :=

∑
U∈P(X):U∩Y=Z

Ψ(U) (4.1)

Note that, by above, Ψ may be equivalent to a probability distribution on binary
labellings of X . If this is the case then Ψ

`
Y is equivalent to the marginalisation of

that probability distribution onto Y .
Given sets X and Y and potentials Ψ ∈ T (X) and Φ ∈ T (Y ) we define the

product, ΨΦ, of Ψ and Φ as the potential in T (X ∪ Y ) that satisfies, for all Z ∈
P(X ∪ Y ):

[ΨΦ](Z) := Ψ(Z ∩X)Φ(Z ∩ Y ) (4.2)

We represent the product of multiple potentials by the
∏

symbol, as in the multi-
plication of numbers.

Given a set X and potentials Ψ,Φ ∈ T (X) we define the quotient, Ψ/Φ, of Ψ
and Φ as the potential in T (X) that satisfies, for all Z ∈ P(X):

[Ψ/Φ](Z) := Ψ(Z)/Φ(Z) (4.3)

The reason for the low space complexity of ARCH-2 is that, given a set X and
a potential Φ ∈ T (X), we may not need to store the value of Φ(Y ) for every Y ∈
P(X). This encourages the following definitions: A set ζ of sets is a straddle-set if
and only if, for every Z ∈ ζ and every Y ∈ P(Z) we have Y ∈ ζ. Given a potential
Φ and a straddle-set ζ ⊆ P(σ(Φ)), the restriction, Φ⊕ζ , is the data-structure that
stores the value Φ(Y ) if and only if Y ∈ ζ. Note that storing a restriction Φ⊕ζ

requires a space of only Θ(|ζ|).
ARCH-2 works with the notions of the p-dual, #Ψ, and the m-dual, %Ψ, of a

potential Ψ. These are defined in sections 4.7.1 and 4.7.2 respectively.

4.3.3 Factorisations

Suppose we have a probability distribution P on the set of binary labellings of a set
S. Then a set, F , of potentials is a factorisation of P if and only if

⋃
Λ∈F σ(Λ) = S

and for every binary labelling, µ of S we have:

P(µ) ∝

[∏
Λ∈F

Λ

]
({x ∈ S : µ(x) = 1}) (4.4)

If F is a factorisation of a probability distribution P then we refer to the potentials
in F as factors.

4.3.4 Junction Trees

Given a tree J we define V(J ) and E(J ) to be the vertex and edge set of J re-
spectively. Also, given a tree J and a vertex C ∈ V(J ) we define deg(C) and
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N (C) to be the degree (i.e. number of neighbours) and neighbourhood (i.e. set
of neighbours) of C in J respectively. When a tree J is rooted we define, for a
vertex C ∈ V(J ), ↑(C) and ↓(C) to be the parent of C and the set of children of C
respectively.

A junction tree, J , on a set S is a tree satisfying the following axioms:

• Every vertex of J is a subset of S.

•
⋃
V(J ) = S

• Given C,H ∈ V(J ) and some x ∈ S such that x ∈ C ∩H then x is a member
of every vertex in the path (in J ) from C to H .

The width of a junction tree is defined as the cardinality of its largest vertex.

4.4 The Junction Tree Algorithm

The goal of this paper is as follows: We have a probability distribution P on bi-
nary labellings, µ, of a set S and a factorisation, F , of P. We wish to compute the
marginal probability P(µ(x) = 1) for every x ∈ S.

Note that the marginal P(µ(x) = 1) is equivalent to a potential ρx ∈ T ({x})
defined as ρx(∅) := P(µ(x) = 0) and ρx({x}) := P(µ(x) = 1). The junction tree
algorithm is a way of simultaneously computing the potentials ρx for every x ∈
S. The algorithm has three stages: The junction tree construction stage, the message
passing stage and the computation of marginals stage:

Algorithm 71. The Junction Tree Algorithm:

1. Junction tree construction stage:
A junction tree J on S is constructed such that for all Λ ∈ F we have a vertex
Λ+ ∈ V(J ) for which σ(Λ) ⊆ Λ+. For every C ∈ V(J ) we define F(C) := {Λ ∈
F : Λ+ = C}.

2. Message passing stage:
For every ordered pair (C,E) of neighbouring vertices of J , we create and store a
message MC→E which is a potential in T (C ∩E). When such a message is created
we say that C “sends" the message and E “receives" the message. The messages are
defined recursively by the following equation:

MC→E :=

Ñ ∏
Λ∈F(C)

Λ

éÑ
1C∩E

∏
H∈N (C)\{E}

MH→C

é`
C∩E

(4.5)

3. Computation of marginals stage:
For every x ∈ S we compute the potential ρx from the messages. Specifically, for
any vertex C ∈ V(J ) with x ∈ C we have:

ρx =

Ñ ∏
Λ∈F(C)

Λ

éÑ ∏
H∈N (C)

MH→C

é`
{x}

(4.6)

In the rest of the paper the symbols J , S, F(C) and MH→C , as well as the
notion of “sending" and “receiving" messages, are always defined as above. In
this paper we consider, in detail, the message passing stage of the junction tree
algorithm We first review the Shafer-Shenoy and Hugin architectures that dif-
fer in how the messages are computed. With Shafer-Shenoy propagation each
vertex C contributes a time of Θ

(
deg(C)(deg(C) + |F(C)|)2|C|

)
) to the message

passing stage whilst with Hugin propagation each vertex C contributes a time of
Θ
(
(deg(C) + |F(C)|)2|C|

)
to the message passing stage. When we have large ver-

tices of high degree Hugin propagation is hence significantly faster than Shafer-
Shenoy propagation. However, this speed increase comes at a cost of a higher
space complexity: whilst the space complexity of Shafer-Shenoy propagation is
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only that required to store the factors and messages, the Hugin architecture must
store, for every vertex C, a potential ΓC ∈ T (C); leading to a space requirement of
Ω
Ä∑

C∈V(J ) 2|C|
ä

.
We then describe, from a merger of the ideas behind Shafer-Shenoy and Hugin

propagation, a simple, novel architecture ARCH-1 which has (up to a constant
factor) the best of both worlds: the speed of Hugin propagation and the low space
complexity of Shafer-Shenoy propagation.

The main idea behind ARCH-1, that of simultaneously computing many marginals
of a factored potential, then leads us into the novel architecture ARCH-2 which has
(up to a factor linear in the width of the junction tree) at least the time and space
efficiency of ARCH-1 and is considerably faster when we have large vertices of
high degree. Specifically, each vertex C now contributes a time of only O

(
|C|2|C|

)
to the message passing stage and, in addition to storing the factors and messages,
ARCH-2 requires a space of only
O
Ä
maxC∈V(J ) |C|

ÄÄ∑
H∈N (C) 2|H∩C|

ä
+
Ä∑

Λ∈F(C) 2|σ(Λ)|
äää

.
We note that although we don’t explicitly describe the computation of marginals

stage, the ideas behind ARCH-2 can be used to do this stage with time and space
no greater than the message passing stage of ARCH-2 . The details are left to the
reader.

As stated in the introduction, to ease the reader’s understanding, the algo-
rithms given in sections 4.5 though 4.7 are sketches: to achieve the stated time
complexities we must be able to find and store variables in constant amortised
time and space. The exact implementations that give the stated time and space
complexities are given in Section 4.9.

We also note, that the auxiliary space required by the algorithms in this paper
is an additive factor of O(|S|) more than is stated since we must maintain an array
of size |S| (see Section 4.9). However, since O(|S|) is no greater than the space
required to store the factors it is fine to neglect this.

4.5 Shafer-Shenoy and Hugin Propagation

4.5.1 Shafer-Shenoy Propagation

In this subsection we describe and analyse the complexity of Shafer-Shenoy prop-
agation. Shafer-Shenoy propagation follows the following algorithm:

Algorithm 72. Outline of Shafer-Shenoy Propagation:
Given an ordered pair (C,E) of neighbouring vertices, once C has received messages from
all vertices in N (C) \ {E} the message MC→E is computed as:

MC→E ←

Ñ ∏
Λ∈F(C)

Λ

éÑ
1C∩E

∏
H∈N (C)\{E}

MH→C

é`
C∩E

(4.7)

and is sent from C to E.

Note that the creation of a message in the above algorithm is an instance of the
following operation (where {D1, D2, ..., Dk} := {σ(Λ) : Λ ∈ F(C)} ∪ {C ∩H : H ∈
N (C)}):

Operation 73. We have a set C, subsets {D1, D2, ..., Dk} ⊆ P(C) and a subsetW ⊆ C.

For every i ∈ Nk we have a potential Υi ∈ T (Di). We must compute
Ä∏k

i=1 Υi

ä`W
.

If Operation 73 is performed by firstly computing
∏k
i=1 Υi and then marginal-

ising it onto W it requires an auxiliary space on Θ
(
2|C|

)
leading to a space re-

quirement of at least Ω
(
maxH∈V(J ) 2|H|

)
for the whole algorithm. Hence, we now

give an algorithm that can be implemented to perform Operation 73 in a time of
Θ
(
k2|C|

)
and which uses only constant auxiliary space:
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Algorithm 74. For every Y ∈ P(W ) we maintain a variable h(Y ) ∈ R, initially set to
zero.

For every Z ∈ P(C), in turn, we do the following:

h(Z ∩W )← h(Z ∩W ) +
k∏
i=1

Υi(Z ∩Di) (4.8)

Note that after we have performed the above for every Z ∈ P(C), the function h is equal

to the potential
Ä∏k

i=1 Υi

ä`W
. We then output the potential h.

If Algorithm 74 is used for performing Operation 73 then the computation
of each message MC→E takes a time of Θ((deg(C) + |F(C)|)2|C|) and requires
only constant auxiliary space. Hence, the space complexity of the entire mes-
sage passing algorithm is the space required to store the factors and messages.
Since each vertex C sends deg(C) messages, each vertex C contributes a time of
Θ(deg(C)(deg(C) + |F(C)|)2|C|) to the entire message passing algorithm.

4.5.2 Hugin Propagation

In this subsection we describe and analyse the complexity of Hugin propagation.
Hugin propagation stores the following potentials: For every vertex C ∈ V(J ) we
have a potential ΓC ∈ T (C) initialised to be equal to 1C

∏
Λ∈F(C) Λ. For every

edge {C,E} ∈ E(J ) we have a potential Ψ{C,E} ∈ T (C ∩ E) initialised equal to
1C∩E . Hugin propagation follows the following algorithm:

Algorithm 75. Hugin Propagtion:
Given an ordered pair (C,E) of neighbouring vertices, once C has received messages from
all vertices in N (C) \ {E}, it sends a message to E via the following algorithm:

1. Set Ψold
{C,E} ← Ψ{C,E}

2. Set Ψ{C,E} ← ΓC
`
C∩E

3. Set MC→E ← Ψ{C,E}/Ψ
old
{C,E}

4. Set ΓE ←MC→EΓE

Note that the time required by a vertex C to pass a message to a neighbourE is
Θ(2|C|+2|E|). Since each vertexC sends and receives a message to/from each of its
neighbours, and since the potential ΓC takes a time of Θ(|F(C)|2|C|) to initialise,
we have thatC contributes a time of Θ((deg(C)+|F(C)|)2|C|) to the entire message
passing algorithm. Note then that Hugin propagation is faster than Shafer-Shenoy
propagation. The drawback, however, is that storing, for each vertex C, the poten-
tial ΓC has a space requirement of Θ(2|C|). This leads to a total space requirement
of Θ(

∑
C∈V(J ) 2|C|) in addition to that required to store the factors, which can be

significantly more (and never less) than that of Shafer-Shenoy propagation.
Given a vertex C ∈ V(J ), if the potential ΓC is initialised by combining (via

multiplication) the factors in F(C) on a binary basis (as is described in [49]) then
the initialisation time of ΓC can be less than Θ

(
|F(C)|2|C|

)
so the time complexity

of Hugin propagation can be reduced. However, each vertex still contributes a time
of at least Ω

(
deg(C)2|C|

)
so if the degree of a vertex is greater than the number

of associated factors then combining factors on a binary basis does not speed up
this time by more than a constant factor. In addition, this faster version of Hugin
propagation is still never faster than ARCH-2 by more than a logarithmic factor
and when we have large vertices of high degree is still significantly slower than
ARCH-2.

4.6 ARCH-1

In this section we describe the architecture ARCH-1 which has (up to a constant
factor) the speed of Hugin propagation and the low space complexity of Shafer-
Shenoy propagation. The reason for the low time/space complexity is that many
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marginals are computed simultaneously from a factored potential using a merger
of the ideas behind Shafer-Shenoy and Hugin propagation: an algorithm similar to
Algorithm 74 and the division idea of the Hugin architecture. Like Shafer-Shenoy
propagation we store only the messages and factors.

ARCH-1 selects a vertex R as the root of J and then (as is often in the descrip-
tion of Hugin and Shafer-Shenoy propagation) has two phases: the inward phase, in
which messages are passed up the tree to the root and the outward phase, in which
messages are passed down the tree from the root to the leaves. We first sketch
an outline of ARCH-1 (which is also an outline of ARCH-2) before going into the
details:

Algorithm 76. Outline of ARCH-1/ARCH-2:
The algorithm has two phases: First the inward phase and then the outward phase.

1. Inward phase: For every vertex C ∈ V(J ) \ {R}, once C has received messages
from all its children, it sends a message to its parent as follows:

(a) The message MC→↑(C) is computed as:

MC→↑(C) ←

Ñ ∏
Λ∈F(C)

Λ

éÑ
1C∩↑(C)

∏
H∈↓(C)

MH→C

é`
C∩↑(C)

(4.9)
and is sent from C to ↑(C).

2. Outward phase: For every vertex C ∈ V(J ), once C has received messages from all
its neighbours, it sends messages to all its children as follows:

(a) For every E ∈ ↓(C), simultaneously, the potential M ′E (in T (C ∩ E)) is
computed as:

M ′E ←

Ñ ∏
Λ∈F(C)

Λ

éÑ ∏
H∈N (C)

MH→C

é`
C∩E

(4.10)

(b) For every E ∈ ↓(C) the message MC→E is computed as:

MC→E ←M ′E/ME→C (4.11)

and is sent to E.

We now prove the correctness of Algorithm 76: i.e. that the messages are equal
to those defined in Stage 2 of Algorithm 71.

Consider first the inward phase: Since Equation 4.9 is the same as Equation 4.5
we have, by induction up J from the leaves to the root, that MC→↑(C) is correctly
computed for every C ∈ V(J ) \ {R}.

Consider next the outward phase: We prove, by induction on C down J from
the root to the leaves, that MC→E is correctly computed for all E ∈ ↓(C). By the
inductive hypothesis and the result above that MH→C is correctly computed for
every H ∈ ↓(C) we have that MH→C is correctly computed for every H ∈ N (C).
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Hence, for all E ∈ ↓(C) and all Y ∈ P(C ∩ E) we have:

M ′E(Y ) =

Ñ ∏
Λ∈F(C)

Λ

éÑ ∏
H∈N (C)

MH→C

é`
C∩E

(Y ) (4.12)

=

Ñ ∏
Λ∈F(C)

Λ

é
1C∩E

Ñ ∏
H∈N (C)

MH→C

é`
C∩E

(Y ) (4.13)

=
∑

Z∈P(C):Z∩C∩E=Y

Ñ ∏
Λ∈F(C)

Λ

é
1C∩E

Ñ ∏
H∈N (C)

MH→C

é (Z) (4.14)

=
∑

Z∈P(C):Z∩C∩E=Y

ME→C(Z ∩ C ∩ E)

Ñ ∏
Λ∈F(C)

Λ

é
1C∩E

Ñ ∏
H∈N (C)\{E}

MH→C

é (Z)

(4.15)

=
∑

Z∈P(C):Z∩C∩E=Y

ME→C(Y )

Ñ ∏
Λ∈F(C)

Λ

é
1C∩E

Ñ ∏
H∈N (C)\{E}

MH→C

é (Z)

(4.16)

= ME→C(Y )
∑

Z∈P(C):Z∩C∩E=Y

Ñ ∏
Λ∈F(C)

Λ

é
1C∩E

Ñ ∏
H∈N (C)\{E}

MH→C

é (Z)

(4.17)

= ME→C(Y )

Ñ ∏
Λ∈F(C)

Λ

éÑ ∏
H∈N (C)\{E}

MH→C

é`
C∩E

(Y ) (4.18)

= ME→C(Y )MC→E(Y ) (4.19)

and hence [M ′E/ME→C ](Y ) = MC→E(Y ) so M ′E/ME→C = MC→E which proves
that the inductive hypothesis holds for C.

Note that Step 1a and Step 2a of Algorithm 76 can be solved by instances of the
following operation (where {D1, D2, ..., Dk} := {σ(Λ) : Λ ∈ F(C)} ∪ {C ∩H : H ∈
N (C)}):

Operation 77. We have, as input, a set C, and subsets D1, D2, ..., Dk ∈ P(C) with⋃k
i=1Di = C. For every i ∈ Nk we have, as input, a potential Υi ∈ T (Di).

Define Γ :=
∏k
i=1 Υi and for every i ∈ Nk define Ψi := Γ

`
Di .

We must compute Ψi for every i ∈ Nk.

ARCH-1 computes Operation 77 via the following algorithm, which can be
implemented in a time of Θ(k2|C|) using only constant auxiliary space:

Algorithm 78. For every i ∈ Nk and every Y ∈ P(Di) we maintain a variable hi(Y ) ∈ R
initially set equal to zero.
For every Z ∈ P(C), in turn, we do the following:

1. Set α←
∏k
i=1 Υi(Z ∩Di)

2. For all i ∈ Nk set hi(Z ∩Di)← hi(Z ∩Di) + α.

Note that after we have performed the above for every Z ∈ P(C), the function hi is a
potential in T (Di). We then output, for every i ∈ Nk, Ψi ← hi.
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The correctness of Algorithm 78 is seen immediately by noting that at the end

of the algorithm we have, for all i ∈ Nk and Y ∈ P(Di):

hi(Y ) =
∑

[Z∈P(C):Z∩Di=Y ]

k∏
j=1

Υj(Z ∩Dj) (4.20)

=
∑

Z∈P(C):Z∩Di=Y

[
k∏
j=1

Υj

]
(Z) (4.21)

=
∑

Z∈P(C):Z∩Di=Y

Γ(Z) (4.22)

= Γ
`
Di(Y ) (4.23)

= Ψi(Y ) (4.24)

where Γ is as in the statement of Operation 77.
Note that, for every vertex C, Operation 77 is called twice (once during the

inward phase and once during the outward phase), each time taking a time, un-
der Algorithm 78, of Θ((deg(C) + |F(C)|)2|C|). Each vertex C hence contributes
a time of Θ((deg(C) + |F(C)|)2|C|) to the time complexity of the whole message
passing algorithm. ARCH-1 hence has the same time complexity as Hugin prop-
agation. Like Shafer-Shenoy propagation, the space required by ARCH-1 is only
that required to store the factors and messages.

In Section 4.9.3 we show how, by caching various quantities, we can, whilst
keeping the same space requirements, speed up Algorithm 78 to take a time of
only Θ

Ä∑|C|
i=1 |{j : yi ∈ Dj}|2i

ä
where {yj : j ∈ N|C|} := C. In order be free to

choose the ordering (y1, y2, ..., y|C|) of C that minimises this time we require an
additional time of O

Ä∑k
i=1 |Di|2|Di|

ä
. However, even this faster implementation

of ARCH-1 may still be significantly slower than ARCH-2 and will never be faster
by more than a logarithmic factor.

4.7 ARCH-2

We now describe the architecture ARCH-2. The time and space complexities of
ARCH-2 are always (up to a factor that is linear in the width of J ) at least as
good as those of ARCH-1. In cases in which we have large vertices of high degree
ARCH-2 is significantly faster than ARCH-1/Hugin.

Specifically, each vertex C contributes a time of only Θ(|C|2|C|) to ARCH-2
and, in addition to storing the factors and messages, ARCH-2 requires a space of
only O

Ä
maxC∈V(J ) |C|

ÄÄ∑
H∈N (C) 2|H∩C|

ä
+
Ä∑

Λ∈F(C) 2|σ(C)|
äää

.
ARCH-2 proceeds similarly to ARCH-1, using Operation 77 to do steps 1a and

2a of Algorithm 76. The only difference between ARCH-2 and ARCH-1 is how
Operation 77 is computed. The algorithm for performing Operation 77 is based
upon the concepts of the p-dual and the m-dual of a potential. The p-dual is a
novel concept whilst the m-dual was defined in [53] under the name of “inclusion-
exclusion format" but was used in a very different way from how we use it in this
paper. We first give a definition of the duals and the required theory surrounding
them.

4.7.1 The p-Dual

In this subsection we introduce the p-dual and the required theory surrounding it.
We first define the p-dual of a potential:

Definition 79. The p-dual:
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Given a set X and a potential Φ ∈ T (X), the p-dual, #Φ, of Φ is the potential in

T (X) that satisfies, for every Y ∈ P(X):

#Φ(Y ) :=
∏

Z∈P(Y )

Φ(Z)(−1)|Z| (4.25)

The next theorem will assist us in the the recovery of a potential from its p-dual

Theorem 80. Suppose we have a set X , an element x ∈ X and a potential Φ ∈ T (X).
Define Φ− and Φ+ to be the potentials in T (X \ {x}) that satisfy, for every Z ∈ P(X \
{x}), Φ−(Z) := Φ(Z) and Φ+(Z) := Φ(Z ∪ {x}). For every Y ∈ P(X \ {x}) we have
the following:

1. #Φ−(Y ) = #Φ(Y )

2. #Φ+(Y ) = #Φ(Y )/#Φ(Y ∪ {x})

Proof. 1.

#Φ−(Y ) =
∏

Z∈P(Y )

Φ−(Z)(−1)|Z| (4.26)

=
∏

Z∈P(Y )

Φ(Z)(−1)|Z| (4.27)

= #Φ(Y ) (4.28)

2.

#Φ+(Y ) =
∏

Z∈P(Y )

Φ+(Z)(−1)|Z| (4.29)

=
∏

Z∈P(Y )

Φ(Z ∪ {x})(−1)|Z| (4.30)

=
∏

U∈P(Y ∪{x}):x∈U

Φ(U)(−1)|U|−1

(4.31)

=

Ñ ∏
U∈P(Y ∪{x}):x∈U

Φ(U)(−1)|U|

é−1

(4.32)

=

Ñ ∏
U∈P(Y ∪{x})\P(Y )

Φ(U)(−1)|U|

é−1

(4.33)

=

Ñ ∏
U∈P(Y )

Φ(U)(−1)|U|

éÑ ∏
U∈P(Y ∪{x})

Φ(U)(−1)|U|

é−1

(4.34)

=
#Φ(Y )

#Φ(Y ∪ {x})
(4.35)

From Theorem 80 we get the following theorem, which will aid us in the con-
struction of a p-dual.

Theorem 81. Suppose we have a set X , an element x ∈ X and a potential Φ ∈ T (X).
Define Φ− and Φ+ to be the potentials in T (X \ {x}) that satisfy, for every Z ∈ P(X \
{x}), Φ−(Z) := Φ(Z) and Φ+(Z) := Φ(Z ∪ {x}). For every Y ∈ P(X \ {x}) we have
the following:

1. #Φ(Y ) = #Φ−(Y )

2. #Φ(Y ∪ {x}) = #Φ−(Y )/#Φ+(Y )
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Proof. The result comes from solving the equations of Theorem 80 for #Φ(Y ) and
#Φ(Y ∪ {x})

We next show that the p-dual of a product of potentials with the same domain
is the product of the p-duals of the potentials:

Lemma 82. Given a setX and potentials Φ′,Φ ∈ T (X), we have #(Φ′Φ) = (#Φ′)(#Φ)

Proof. For any Y ∈ P(X) we have:

#[Φ′Φ](Y ) =
∏

Z∈P(Y )

[Φ′Φ](Z)(−1)|Z| (4.36)

=
∏

Z∈P(Y )

[Φ′(Z)Φ(Z)](−1)|Z| (4.37)

=
∏

Z∈P(Y )

Φ′(Z)(−1)|Z|Φ(Z)(−1)|Z| (4.38)

=

Ñ ∏
Z∈P(Y )

Φ′(Z)(−1)|Z|

éÑ ∏
Z∈P(Y )

Φ(Z)(−1)|Z|

é
(4.39)

= [#Φ′(Y )][#Φ(Y )] (4.40)

With the aid of the following lemma we will show how to compute the p-dual
of a product of potentials:

Lemma 83. Given a setX , a set Y ⊆ X , and a potential Φ ∈ T (Y ), let Φ′ be the potential
in T (X) that satisfies, for all Z ∈ P(X), Φ′(Z) := Φ(Z ∩ Y ). Then given U ∈ P(X) we
have:

1. If U ⊆ Y then #Φ′(U) = #Φ(U)

2. If U * Y then #Φ′(U) = 1

Proof. 1.

#Φ′(U) =
∏

Z∈P(U)

Φ′(Z)(−1)|Z| (4.41)

=
∏

Z∈P(U)

Φ(Z ∩ Y )(−1)|Z| (4.42)

=
∏

Z∈P(U)

Φ(Z)(−1)|Z| (4.43)

= #Φ(U) (4.44)
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2. We have U \ Y 6= ∅ so choose some v ∈ U \ Y . We then have:

#Φ′(U) =
∏

Z∈P(U)

Φ′(Z)(−1)|Z| (4.45)

=
∏

W∈P(U\{v})

Φ′(W )(−1)|W |Φ′(W ∪ {v})(−1)|W∪{v}| (4.46)

=
∏

W∈P(U\{v})

Φ(W ∩ Y )(−1)|W |Φ((W ∪ {v}) ∩ Y )(−1)|W∪{v}| (4.47)

=
∏

W∈P(U\{v})

Φ(W ∩ Y )(−1)|W |Φ(W ∩ Y )(−1)|W∪{v}| (4.48)

=
∏

W∈P(U\{v})

Φ(W ∩ Y )(−1)|W |Φ(W ∩ Y )(−1)|W |+1

(4.49)

=
∏

W∈P(U\{v})

Φ(W ∩ Y )(−1)|W |Φ(W ∩ Y )
−(−1)|W | (4.50)

=
∏

W∈P(U\{v})

Φ(W ∩ Y )
(−1)|W |−(−1)|W | (4.51)

=
∏

W∈P(U\{v})

Φ(W ∩ Y )
0 (4.52)

= 1 (4.53)

Theorem 84. Suppose we have a set X , subsets {Yi : i ∈ Nk} ⊆ P(X) such that⋃
{Yi : i ∈ Nk} = X and potentials {Φi : i ∈ Nk} such that Φi ∈ T (Yi). Then for every

U ∈ P(X) we have:

#

[
k∏
i=1

Φi

]
(U) =

∏
i:U⊆Yi

#Φi(U) (4.54)

Proof. For i ∈ Nk let Φ′i be the potential in T (X) that satisfies, for all Z ∈ P(X),
Φ′(Z) := Φ(Z ∩ Y ). Then we have:

#

[
k∏
i=1

Φi

]
(U) = #

[
k∏
i=1

Φ′i

]
(U) (4.55)

=
k∏
i=1

#Φ′i(U) (4.56)

=

Ñ ∏
i:U⊆Yi

#Φ′i(U)

éÑ ∏
i:U 6⊆Yi

#Φ′i(U)

é
(4.57)

=

Ñ ∏
i:U⊆Yi

#Φi(U)

éÑ ∏
i:U 6⊆Yi

1

é
(4.58)

=
∏

i:U⊆Yi

#Φi(U) (4.59)

Where equation 4.56 comes from Lemma 82 and equation 4.58 comes from Lemma
83.

4.7.2 The m-Dual

In this subsection we introduce the m-dual and the required theory surrounding
it. The m-dual was defined in [53] under the name of “inclusion-exclusion format"
but was used in a very different way from how we use it in this paper. We first
define the m-dual of a potential:
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Definition 85. The m-dual:

Given a set X and a potential Φ ∈ T (X), the m-dual, %Φ, of Φ is the potential in
T (X) that satisfies, for every Y ∈ P(X):

%Φ(Y ) :=
∑

Z∈P(X):Y⊆Z

Φ(Z) (4.60)

The following theorem will be useful in the construction of an m-dual:

Theorem 86. Suppose we have a set X , an element x ∈ X and a potential Φ ∈ T (X).
Define Φ− and Φ+ to be the potentials in T (X \ {x}) that satisfy, for every Z ∈ P(X \
{x}), Φ−(Z) := Φ(Z) and Φ+(Z) := Φ(Z ∪ {x}). For every Y ∈ P(X \ {x}) we have
the following:

1. %Φ(Y ) = %Φ−(Y ) + %Φ+(Y )

2. %Φ(Y ∪ {x}) = %Φ+(Y )

Proof. 1.

%Φ(Y ) =
∑

Z∈P(X):Y⊆Z

Φ(Z) (4.61)

=

Ñ ∑
Z∈P(X):Y⊆Z,x/∈Z

Φ(Z)

é
+

Ñ ∑
Z∈P(X):Y⊆Z,x∈Z

Φ(Z)

é
(4.62)

=

Ñ ∑
Z∈P(X\{x}):Y⊆Z

Φ(Z)

é
+

Ñ ∑
Z∈P(X):Y⊆Z,x∈Z

Φ(Z)

é
(4.63)

=

Ñ ∑
Z∈P(X\{x}):Y⊆Z

Φ(Z)

é
+

Ñ ∑
U∈P(X\{x}):Y⊆U

Φ(U ∪ {x})

é
(4.64)

=

Ñ ∑
Z∈P(X\{x}):Y⊆Z

Φ−(Z)

é
+

Ñ ∑
U∈P(X\{x}):Y⊆U

Φ+(U)

é
(4.65)

= %Φ−(Y ) + %Φ+(Y ) (4.66)

where Equation 4.64 comes from setting U := Z \{x} in the right-hand sum.

2.

%Φ(Y ∪ {x}) =
∑

Z∈P(X):Y ∪{x}⊆Z

Φ(Z) (4.67)

=
∑

U∈P(X\{x}):Y⊆U

Φ(U ∪ {x}) (4.68)

=
∑

U∈P(X\{x}):Y⊆U

Φ+(U) (4.69)

= %Φ+(Y ) (4.70)

where Equation 4.68 comes from setting U := Z \ {x}.

From Theorem 86 we get the following theorem, which will be useful in con-
verting an m-dual back to the original potential:

Theorem 87. Suppose we have a set X , an element x ∈ X and a potential Φ ∈ T (X).
Define Φ− and Φ+ to be the potentials in T (X \ {x}) that satisfy, for every Z ∈ P(X \
{x}), Φ−(Z) := Φ(Z) and Φ+(Z) := Φ(Z ∪ {x}). For every Y ∈ P(X \ {x}) we have
the following:
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1. %Φ−(Y ) = %Φ(Y )−%Φ(Y ∪ {x})
2. %Φ+(Y ) = %Φ(Y ∪ {x})

Proof. The result comes from solving the equations of Theorem 86 for %Φ−(Y ) and
%Φ+(Y )

We next show how marginals are computed when working with m-duals:

Theorem 88. Suppose we have sets X and Y with Y ⊆ X and a potential Φ ∈ T (X).
Then for every Z ∈ P(Y ) we have:

%
î
Φ

`
Y
ó

(Z) = %Φ(Z) (4.71)

Proof.

%
î
Φ

`
Y
ó

(Z) =
∑

U∈P(Y ):Z⊆U

Φ
`
Y (U) (4.72)

=
∑

[U∈P(Y ):Z⊆U ]

∑
[W∈P(X):W∩Y=U ]

Φ(W ) (4.73)

Note that if we have U,U ′ ∈ P(Y ) with U 6= U ′ and we have W,W ′ ∈ P(X) with
W ∩ Y = U and W ′ ∩ Y = U ′ then W ∩ Y 6= W ′ ∩ Y so W 6= W ′. Hence, each W
in the (double) sum is counted only once.
Suppose we have W ∈ P(X) with Z ⊆ W . Then if U := W ∩ Y then since Z ⊆ Y
and Z ⊆W we have Z ⊆ U so W is included in the (double) sum.
Now suppose W is included in the (double) sum. Then there exists a U ∈ P(Y )
with Z ⊆ U such that W ∩ Y = U . Hence Z ⊆W ∩ Y so Z ⊆W .
Hence, for each W ∈ P(X), W is contained in the (double) sum if and only if
Z ⊆ W and so since, by above, each such W is counted only once in the (double)
sum we have:

%
î
Φ

`
Y
ó

(Z) =
∑

[U∈P(Y ):Z⊆U ]

∑
[W∈P(X):W∩Y=U ]

Φ(W ) (4.74)

=
∑

W∈P(X):Z⊆W

Φ(W ) (4.75)

= %Φ(Z) (4.76)

4.7.3 Functions for Manipulating Potentials

We now describe the functions used by ARCH-2. The functions are transform1
which transforms a potential into its p-dual, product which computes the prod-
uct of potentials when working with p-duals, transform2 which transforms a re-
striction of the p-dual of a potential into a restriction of the m-dual of the poten-
tial, marginalise which computes marginals of a potential while working with m-
duals, and transform3 which transforms the m-dual of a potential back to the orig-
inal potential.

The functions transform1, transform2 and transform3 all rest on the observa-
tion that, given a potential Φ with σ(Φ) = ∅, we have %Φ = #Φ = Φ.

In the description of the functions transform1, transform2 and transform3,
Φ− and Φ+ are defined from Φ and x as in the statements of theorems 80, 81, 86
and 87: i.e. Φ− and Φ+ are the potentials in T (σ(Φ) \ {x}) that satisfy, for every
Z ∈ P(σ(Φ) \ {x}), Φ−(Z) := Φ(Z) and Φ+(Z) := Φ(Z ∪ {x})

Also, for the function transform2 (resp. transform3) recall that σ(Φ) = σ(#Φ)
(resp. σ(Φ) = σ(%Φ))

For a detailed description of how to implement these functions so they have
the stated time and space complexities see Section 4.9.4 (which is based on notation
and algorithms given earlier in Section 4.9)

We first describe the recursive function transform1:
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• The function takes, as input, a potential Φ

• The function outputs the p-dual, #Φ, of Φ.

• The algorithm can be implemented to take a time of Θ
(
|σ(Φ)|2|σ(Φ)|) and to

require Θ
(
2|σ(Φ)|) auxiliary space. This is proved immediately by induction

over |σ(Φ)|.

• The correctness of the algorithm comes directly from Theorem 81, using in-
duction over |σ(Φ)|.

Algorithm 89. transform1(Φ):
If σ(Φ) = ∅ then return Φ. Else, perform the following:

1. Choose x ∈ σ(Φ).

2. For each Z ∈ P(σ(Φ) \ {x}) set Φ−(Z)← Φ(Z) and Φ+(Z)← Φ(Z ∪ {x}).

3. Set #Φ− ←transform1(Φ−) and #Φ+ ←transform1(Φ+).

4. For each Y ∈ P(σ(Φ) \ {x}) set #Φ(Y ) ← #Φ−(Y ) and #Φ(Y ∪ {x}) ←
#Φ−(Y )/#Φ+(Y )

5. Return #Φ.

We now describe the function product:

• The function takes, as input, a set {#Υi : i ∈ Nk} of p-duals of potentials Υi.

• The function outputs the restriction [#Γ]
⊕ζ where ζ =

⋃k
i=1 P(σ(Υi)) and

Γ =
∏k
i=1 Υi. It is the case that for all Z ∈ P(σ(Γ)) with Z /∈ ζ we have

#Γ(Z) = 1.

• The algorithm can be implemented to take a time ofO
(

2|
⋃k

i=1
σ(Υi)| +

∑k
i=1 2|σ(Υi)|

)
and to require Θ(|ζ|) auxiliary space.

• The correctness of the algorithm comes directly from Theorem 84.

Algorithm 90. product({#Υi : i ∈ Nk}):

1. Let ζ ←
⋃k
i=1 P(σ(#Υi))

2. For each Z ∈ ζ set #Γ(Z)←
∏
i∈Nk:Z⊆σ(Υi)

#Υi(Z).

3. Return [#Γ]
⊕ζ

We now describe the recursive function transform2:

• The function takes, as input, a restriction, [#Φ]
⊕ζ , of the p-dual of a potential

Φ where ζ ⊆ P(σ(Φ)) is a straddle-set such that, for all Z ∈ P(σ(Φ)) with
Z /∈ ζ, we have #Φ(Z) = 1.

• The function outputs the restriction, [%Φ]
⊕ζ , of the m-dual of Φ.

• The algorithm can be implemented to take a time of O(|σ(Φ)|2|σ(Φ|)) and to
require a space of only O(|σ(Φ)||ζ|). This is proved immediately by induc-
tion over |σ(Φ)|, noting that for x ∈ σ(Φ) we have that |{U ∈ ζ : x /∈ U}| ≤
|ζ|.

• The correctness of the algorithm comes directly from theorems 80 and 86,
using induction over |σ(Φ)|

Algorithm 91. transform2([#Φ]
⊕ζ

):
If σ(Φ) = ∅ then return #Φ. Else, perform the following:

1. Choose x ∈ σ(Φ)

2. Set ϑ← {U ∈ ζ : x /∈ U}

3. For each Y ∈ ϑ set #Φ−(Y )← #Φ(Y )
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4. For each Y ∈ ϑ do the following:

If Y ∪ {x} ∈ ζ then set #Φ+(Y )← #Φ(Y )/#Φ(Y ∪ {x}). Else set #Φ+(Y )←
#Φ(Y )

5. Set [%Φ−]
⊕ϑ ← transform2([#Φ−]

⊕ϑ
) and [%Φ+]

⊕ϑ ← transform2([#Φ+]
⊕ϑ

)

6. For each Y ∈ ϑ set %Φ(Y )← %Φ−(Y )+%Φ+(Y ) and %Φ(Y ∪{x})← %Φ+(Y )

7. Return [%Φ]
⊕ζ

We now describe the function marginalise:

• The function takes, as input, a restriction [%Γ]
⊕ζ of the m-dual of a potential

Γ as well as a set of sets {Di : i ∈ Nk}where ζ =
⋃k
i=1 P(Di).

• The function outputs the set of potentials {%Ψi : i ∈ Nk} where, for every
i ∈ Nk, Ψi := Γ

`
Di .

• The algorithm can be implemented to take a time of Θ
(

2|
⋃k

i=1
Di| +

∑k
i=1 2|Di|

)
and to require Θ(|ζ|) auxiliary space.

• The correctness of the algorithm comes directly from Theorem 88

Algorithm 92. marginalise([%Γ]
⊕ζ
, {Di : i ∈ Nk}):

1. For every Z ∈ ζ perform the following:
For every i ∈ Nk with Z ⊆ Di set %Ψi(Z)← %Γ(Z)

2. Return {%Ψi : i ∈ Nk}

We now describe the recursive function transform3:

• The function takes as input the m-dual, %Φ, of a potential Φ.

• The function outputs the potential Φ.

• The algorithm can be implemented to take a time of Θ
(
|σ(Φ)|2|σ(Φ)|) and to

require Θ
(
2|σ(Φ)|) auxiliary space. This is proved immediately by induction

over |σ(Φ)|

• The correctness of the algorithm comes directly from Theorem 87, using in-
duction over |σ(Φ)|.

Algorithm 93. transform3(%Φ):
If σ(Φ) = ∅ then return %Φ. Else, perform the following:

1. Choose x ∈ σ(Φ).

2. For each Y ∈ P(σ(Φ) \ {x}) set %Φ−(Y ) ← %Φ(Y ) − %Φ(Y ∪ {x}) and
%Φ+(Y )← %Φ(Y ∪ {x}).

3. Set Φ− ←transform3(%Φ−) and Φ+ ←transform3(%Φ+).

4. For each Y ∈ P(σ(Φ) \ {x}) set Φ(Y )← Φ−(Y ) and Φ(Y ∪ {x})← Φ+(Y )

5. Return Φ.

4.7.4 Performing Operation 77

As stated at the start of the section, the only difference between ARCH-1 and
ARCH-2 is the way that Operation 77, used to do steps 1a and 2a of Algorithm
76, is performed.
In this subsection let C, k,Di, Υi, Γ and Ψi be as in the description of Operation 77.
That is: C is a set. D1, ..., Dk are subsets of C with

⋃k
i=1Di = C. Υi is a potential

in T (Di). Γ :=
∏k
i=1 Υi and Ψi := Γ

`
Di . The goal of Operation 77 is to compute

Ψi for every i ∈ Nk.

ARCH-2 performs Operation 77 via the following algorithm:
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Algorithm 94. Performing Operation 77:

1. For every i ∈ Nk set #Υi ← transform1(Υi)

2. Set [#Γ]
⊕ζ ← product({#Υi : i ∈ Nk})

3. Set [%Γ]
⊕ζ ← transform2([#Γ]

⊕ζ
)

4. Set {%Ψi : i ∈ Nk} ←marginalise([%Γ]
⊕ζ
, {Di : i ∈ Nk})

5. For every i ∈ Nk set Ψi ← transform3(%Ψi) and return Ψi

To summarise, Algorithm 94 does the following: First the potentials Υi are
converted into their p-duals. From these p-duals, a restriction of the p-dual of
the product, Γ, of the potentials Υi is computed. From this potential, a restriction
of the m-dual of Γ is computed and is then used to compute the m-duals of the
Di-marginals, Ψi, of Γ. These m-duals are then converted into the potentials Ψi.

The correctness of the Algorithm 94 is proved as follows: lines 1 and 5 are
cleary valid by the descriptions of the functions transform1 and transform3. Since
Γ =

∏k
i=1 Υi line 2 is valid. Note that, since by line 2, ζ =

⋃k
i=1 P(σ(#Υi)), ζ is a

straddle set. Hence, since by line 2 it is true that for all Y ∈ P(C) with Y /∈ ζ we
have #Γ(Y ) = 1, line 3 is valid. Since, by line 2 we have ζ =

⋃k
i=1 P(σ(#Υi)) =⋃k

i=1 P(Di), line 4 is valid.

4.7.5 Time and Space Complexity

We now derive the time complexity of Algorithm 94 and use it to calculate the time
complexity of ARCH-2:
Lines 1 and 5 of Algorithm 94 take a time of Θ

Ä∑k
i=1 |Di|2|Di|

ä
. Lines 2 and 4 take

a time of
O
Ä
2|C| +

∑k
i=1 |Di|2|Di|

ä
. Line 3 takes a time of O

(
|C|2|C|

)
. The total time com-

plexity of Algorithm 94 is hence O
Ä
|C|2|C| +

∑k
i=1 |Di|2|Di|

ä
Hence Step 1a and Step 2a of Algorithm 76 both take a time of:

O

Ñ
|C|2|C| +

Ñ ∑
H∈N (C)

|H ∩ C|2|H∩C|
é

+

Ñ ∑
Λ∈F(C)

|Λ|2|Λ|
éé

(4.77)

=O

Ñ
|C|2|C| +

Ñ
|↑(C) ∩ C|2|↑(C)∩C| +

∑
H∈↓(C)

|H ∩ C|2|H∩C|
é

+

Ñ ∑
Λ∈F(C)

|Λ|2|Λ|
éé

(4.78)

⊆O

Ñ
|C|2|C| +

Ñ
|C|2|C| +

∑
H∈↓(C)

|H ∩ C|2|H∩C|
é

+

Ñ ∑
Λ∈F(C)

|Λ|2|Λ|
éé

(4.79)

=O

Ñ
|C|2|C| +

Ñ ∑
H∈↓(C)

|H ∩ C|2|H∩C|
é

+

Ñ ∑
Λ∈F(C)

|Λ|2|Λ|
éé

(4.80)

⊆O

Ñ
|C|2|C| +

Ñ ∑
H∈↓(C)

|H|2|H|
é

+

Ñ ∑
Λ∈F(C)

|Λ|2|Λ|
éé

(4.81)

We call this time complexity the “computation time at C". Note that every vertex
H contributes O(|H|2|H|) to the computation time at H , a time of O(|H|2|H|) to
the computation time at ↑(H) (if it exists), and no time to computation time at any
other vertex. Each vertex H hence contributes a total time of O(|H|2|H|) to the
running time of ARCH-2. In addition, by Equation 4.81 we have that each factor Λ
contributes a time of O

(
|σ(Λ)|2|σ(Λ)|) to the running time of ARCH-2.

Note that the total running time of ARCH-2 is, up to a logarithmic factor, no
worse than that of ARCH-1 (and Hugin propagation), and in cases where we have
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large vertices of high degree ARCH-2 is much faster than ARCH-1 (and Hugin
propagation).

We now derive the space complexity of ARCH-2: The auxiliary space require-
ment of Algorithm 94 is the maximum auxiliary space required by any of the func-
tions which is O (|C||ζ|) ⊆ O

Ä
|C|
⋃k
i=1 2|Di|

ä
. Hence Step 1a and Step 2a of Algo-

rithm 76 both require an auxiliary space of
O
Ä
|C|
ÄÄ∑

H∈N (C) 2|H∩C|
ä

+
Ä∑

Λ∈F(C) 2|σ(Λ)|
äää

. This implies that, in addition
to storing the messages and factors, ARCH-2 has a space requirement of only
O
Ä
maxC∈V(J ) |C|

ÄÄ∑
H∈N (C) 2|H∩C|

ä
+
Ä∑

Λ∈F(C) 2|σ(Λ)|
äää

. Hence, the space
requirement of ARCH-2 is not greater than that of ARCH-1 (and Shafer-Shenoy
propagation) by more than a factor that is linear in width of the junction tree (and
since this factor is logarithmic in the time complexity of the algorithm it is negligi-
ble).

4.8 Incorporating Zeros

So far we have only considered potentials that map into the positive reals (since
ARCH-2 involves division and we can’t divide by zero). We now show how to
generalise so that the codomain of a potential can be R+∪{0}. In [43] the concept of
a zero-concious number is introduced to do this with Hugin propagation (for a wider
range of queries). However, to work with ARCH-2 we need a slightly different
object:

Definition 95. MZC (multi-zero conscious) number:

• An MZC number is a pair (a, i) ∈ R+ × Z.

• The product, (a, i)× (b, j), of two MZC numbers, (a, i) and (b, j), is defined to be
equal to (c, k) where c := ab and k := i+ j.

• For two MZC numbers (a, i) and (b, j) we define (a, i)/(b, j) := (a, i)×(1/b,−j).

• The sum, (a, i)+(b, j), of two MZC numbers, (a, i) and (b, j), is defined to be equal
to (c, k) where c and k are defined are follows: If i < j then c := a and k := i, if
i = j then c := a+ b and k := i, and if i > j then c := b and k := j.

A real number x ∈ R ∪ {0} is converted into an MZC number as follows: If
x = 0 then it is converted into the MZC number (1, 1). Else it is converted into
the MZC number (x, 0). An MZC number (a, i) is converted into a real number as
follows: If i 6= 0 then it is converted into 0. Else it is converted into a.

Zeros are incorporated into ARCH-2 as follows: Before running Algorithm 94
all numbers (that is: the quantities Υi(Z)) are converted from reals numbers into
MZC numbers. Lines 1 to 3 of Algorithm 94 are then run with MZC numbers
instead of reals. After Line 3 is complete then all MZC numbers (that is: the quan-
tities %Γ(Z)) are converted from MZC numbers to real numbers. Lines 4 and 5 of
Algorithm 94 are then run using real numbers.

Due to the equivalence of ARCH-1/ARCH-2 to Hugin propagation we can, in
Line 2b of Algorithm 76, define division of a real number by zero to be equal to
zero (or any other number) as is done in Hugin propagation (see [43]).

4.9 Implementation Details

In this section we make use of tree-structured data-structures. Whenever we use
the word “vertex" or “leaf" we are referring to a vertex in one of these tree-structured
data-structures (not a junction tree).

In this section we assume, without loss of generality, that S = Nn for some
n ∈ N. Throughout the entire junction tree algorithm we maintain an array A of
size n such that each element of A is (a pointer to) a set of (pointers to) internal
vertices of trees. Note that in our pseudo-code we will regard each element ofA to
be a set of vertices rather than a pointer to a set of pointers to vertices. We denote
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the e-th element of A by A(e). We also maintain a set L of (pointers to) leaves of
trees. Like A we shall, in our pseudo-code, regard L as a set of leaves rather than
a set of pointers to leaves.
A and L are used only for synchronised-searches and full-searches (see later)

and in between different synchronised-searches/full-searches we have L = ∅ and
A(e) = ∅ for all e ∈ Nn.

4.9.1 Data-Structures

An oriented binary tree is a rooted tree in which every internal vertex v has two
children: one child is called the left-child of v and is denoted by /(v). The other is
called the right-child of v and is denoted by .(v). Given a vertex v in an oriented
binary tree we define ⇑(v) to be the set of proper ancestors of v and we define ⇓(v)
to be the subtree of v and its descendants.

Given a straddle-set ζ ⊆ P(Nn) we define the straddle-tree, B(ζ) as follows:
B(ζ) is an oriented binary tree who’s internal vertices are labelled with numbers
in
⋃
ζ. Given an internal vertex v we let φ(v) be the label of v. The labels are

such that given internal vertices v and w such that w is a child of v we have that
φ(w) > φ(v). We have a bijection, τ , from the leaves of B(ζ) into the set ζ such
that, for any leaf l we have τ(l) := {φ(v) : v ∈ ⇑(l), .(v) ∈ ⇑(l)}.

Given a straddle-tree B(ζ) we will also refer to the tree that B(ζ) is based on
by B(ζ). Note that since a straddle-tree B(ζ) is a full binary tree with |ζ| leaves it
has only 2|ζ| − 1 vertices in total. Note also that for some set X ⊆ Nn the straddle-
tree B(P(X)) is a balanced oriented binary tree of height |X| such that all internal
vertices at depth i are labeled with the (i+ 1)th smallest number in X .

Given a potential Φ and a straddle-set ζ ⊆ P(σ(Φ)) we define the info-tree,
T(Φ, ζ) as the straddle-tree B(ζ) with a map ψ from the leaves of B(ζ) into R+

such that, for any leaf l we have ψ(l) := Φ(τ(l)). Any restriction, Φ⊕ζ is stored
as the info-tree T(Φ, ζ). Any potential Φ (that is not a restriction) is stored as the
info-tree T(Φ,P(σ(Φ))) which we shall denote by T(Φ)

4.9.2 Searches

In this section we describe the ways that the algorithms perform efficient, simulta-
neous searches over straddle-trees. There are two types of simultaneous search we
describe: full-searches which are used in ARCH-1 and synchronised-searches which
are used in ARCH-2. We start by defining a ghost-search which is what the simul-
taneous searches are based on.

Ghost-Search: Given a set X ⊆ Nn, a ghost-search of X is the following algo-
rithm, which is split up into a sequence of steps called time-steps:

We maintain a stack Z such that each element of Z is either 0 or of the form
(e, f) where e ∈ X and f ∈ {1, 2, 3}. Z is initialised to contain (min(X), 1) as a
single element. On each time-step we do the following:

If the top element of Z is 0 then remove it from Z which completes the time-
step. Else, the top element of Z is (e, f) for some e ∈ X and f ∈ {1, 2, 3} so we have
the following cases:

1. f = 1: In this case we remove (e, f) from Z and then place (e, 2) on the top
of Z. If e = max(X) then next place 0 on the top of Z. Else place (min{b ∈
X : b > e}, 1) on the top of Z. This completes the time-step.

2. f = 2: In this case we remove (e, f) from Z and place (e, 3) on the top of Z.
If e = max(X) then next place 0 on the top of Z. Else place (min{b ∈ X : b >
e}, 1) on the top of Z. This completes the time-step.

3. f = 3: In this case we remove (e, f) from Z which completes the time-step.

The algorithm terminates when Z becomes empty.
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We call a time-step in a ghost-search a leaf-step if and only if at the start of the

time-step we have that the top element of the stack, Z, is 0. Note that a ghost
search of a set X simulates a depth-first search (in which, given an internal ver-
tex v, ⇓(/(v)) is explored before ⇓(.(v))) of B(P(X)) without having to store the
whole tree in the memory. The time-steps in which (at the start of the time-step)
(e, f) is on the top of the stack corresponds to the times when the depth first search
is at some internal vertex v in B(P(X)) with φ(v) = e and it is the f -th time that we
have encountered v throughout the depth first search. The leaf-steps correspond
to the times when the depth-first search is at the leaves of B(P(X)). Hence, by the
bijection τ (from the leaves of B(P(X)) into P(X)), we have a one to one corre-
spondence between the leaf-steps and the sets in P(X).

Full-Search: Given a multi-set X of straddle-trees (or info-trees, as every info-
tree has an underlying straddle-tree), a full-search of X is the following algorithm:

We first define X to be the set of all labels, φ(v), of the internal vertices, v, of
the trees in X. Note that X can be found and ordered quickly. Note that before
running the synchronised-search the set L is empty and the arrayA has the empty
set for every element (see the start of this section). Let R be the set of roots of the
trees in X. We initialise by, for every r ∈ R, adding r to the set A(φ(r)). After
this initialisation we perform a ghost search of X . Let Z be the stack in the ghost
search. At the end of every time-step in the ghost search we do the following:

1. If, at the start of the time-step, the top element of Z is 0 (i.e. the time-step is
a leaf-step) then we do nothing.

2. If, at the start of the time-step, the top element of Z is (e, 1) for some e ∈ X
then for every v ∈ A(e) we do the following: If /(v) is a leaf then we add
/(v) to L. Else we add /(v) to A(φ(/(v))).

3. If, at the start of the time-step, the top element of Z is (e, 2) for some e ∈ X
then for every v ∈ A(e) we do the following: We first remove /(v) from
A(φ(/(v))). If .(v) is a leaf then we add .(v) to L. Else we add .(v) to
A(φ(.(v))).

4. If, at the start of the time-step, the top element of Z is (e, 3) for some e ∈ X
then for every v ∈ A(e) we remove .(v) from A(φ(.(v))).

Once the ghost search terminates, we set A(min(X)) ← ∅ and then the full-search
terminates. Note that upon termination of the full-search we have that L = ∅ and
for all e ∈ Nn we have A(e) = ∅ as required.

Given Y1, Y2, ..., Ya ⊆ Nn, a full-search of {B(P(Yi)) : i ∈ Na} essentially does
the following: Recall from above that given X =

⋃a
i=1 Yi there is a one to one

correspondence between the leaf-steps and sets in P(X). Suppose we are at a leaf-
step. Let Z be the set in P(X) corresponding to the leaf-step. Then at the start of
the leaf-step we have that L is equal to the set of leaves l in the trees {B(P(Yi)) :
i ∈ Na} such that, given l is a leaf of B(P(Yj)), we have τ(l) = Z ∩ Yj .

Note that, given Y1, Y2, ..., Ya ⊆ Nn and y1, y2, ..., yc ∈ Nn with {yi : i ∈
Nc} =

⋃a
i=1 Yi and yi < yj for all i, j ∈ Nc with i < j, then a full-search of

{B(P(Yi)) : i ∈ Na} takes a time of Θ
(∑c

i=1 |{j ∈ Na : yi ∈ Yj}|2i
)

and that this is
bounded above by O (a2c)

Syncronised-Search: Given a multi-set X of straddle-trees (or info-trees, as
every info-tree has an underlying straddle-tree), a synchronised-search of X is the
following algorithm:
We first define X to be the set of all labels, φ(v), of the internal vertices, v, of
the trees in X. Note that X can be found and ordered quickly. Note that before
running the synchronised-search the set L is empty and the arrayA has the empty
set for every element (see the start of this section). Let R be the set of roots of the
trees in X. We initialise by, for every r ∈ R, adding r to the set A(φ(r)). After
this initialisation we perform a ghost search of X . Let Z be the stack in the ghost
search. At the end of every time-step in the ghost search we do the following:
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1. If, at the start of the time-step, the top element of Z is 0 (i.e. the time-step is

a leaf-step) then we set L ← ∅.

2. If, at the start of the time-step, the top element of Z is (e, 1) for some e ∈ X
then for every v ∈ A(e) we do the following: If /(v) is a leaf then we add
/(v) to L. Else we add /(v) to A(φ(/(v))).

3. If, at the start of the time-step, the top element of Z is (e, 2) for some e ∈ X
then for every v ∈ A(e) we do the following: If .(v) is a leaf then we add
.(v) to L. Else we add .(v) to A(φ(.(v))).

4. If, at the start of the time-step, the top element of Z is (e, 3) for some e ∈ X
then we set A(e)← ∅.

Once the ghost search terminates, the synchronised-search also terminates. Note
that upon termination of the synchronised-search we have that L = ∅ and for all
e ∈ Nn we have A(e) = ∅ as required.

Given straddle-sets ζ1, ζ2, ..., ζa ⊆ P(Nn), a synchronised-search of {B(ζi) : i ∈
Na} essentially does the following: Recall from above that given X =

⋃a
i=1 (

⋃
ζi)

there is a one to one correspondence between the leaf-steps and sets in P(X). Sup-
pose we are at a leaf-step. Let Z be the set in P(X) corresponding to the leaf-step.
Then at the start of the leaf-step we have that L is equal to the set of leaves l in the
trees {B(ζi) : i ∈ Na} such that τ(l) = Z.

Note that given straddle sets ζ1, ζ2, ..., ζa ⊆ P(Nn), a synchronised-search of

{B(ζi) : i ∈ Na} takes a time of O
(

2|
⋃a

i=1
(
⋃
ζi)| +

∑a
i=1 |ζi|

)
. However, of-

ten much of the ghost-search underlying the synchronised-search is unnecessary,

meaning that the additive factor of O
(

2|
⋃a

i=1
(
⋃
ζi)|
)

can be reduced.

4.9.3 Implementing Algorithm 78

In this subsection let C, k, Di, Υi, Γ and Ψi be as in the description of Operation
77. That is: C is a subset of Nn. D1, ..., Dk are subsets of C with

⋃k
i=1Di = C. Υi is

a potential in T (Di). Γ :=
∏k
i=1 Υi and Ψi := Γ

`
Di . The goal of Operation 77 is to

compute Ψi for every i ∈ Nk.
We first describe a simple implementation of Algorithm 78 that takes a time of

Θ
(
k2|C|

)
:

We have, as input, the set, {T(Υi) : i ∈ Nk}. Initially, for every i ∈ Nk we set
Ai ← B(P(Di)) (which is copied from T(Υi)) and set ψ(l) ← 0 for every leaf l of
Ai. We then do a full-search of {T(Υi) : i ∈ Nk} ∪ {Ai : i ∈ Nk}. At the start of
every leaf-step in the full-search we do the following:

Let U be the set of leaves in L that are in the trees {T(Υi) : i ∈ Nk} and let W
be the set of leaves in L that are in the trees {Ai : i ∈ Nk}. Set α ←

∑
l∈U ψ(l) and

then set, for every l ∈W , ψ(l)← ψ(l) + α.
After the full-search has terminated we have Ai = T(Ψi) for every i ∈ Nk.

We now describe how, by caching various quantities, Algorithm 78 can, while
retaining the low space complexity, be sped up to take a time of only
Θ
Ä∑

i∈N|C| |{j ∈ Nk : yi ∈ Dj}|2i
ä

where yi is the i-th least element of C:

We have, as input, the set, {T(Υi) : i ∈ Nk}. Initially, for every i ∈ Nk we set
Ai ← B(P(Di)) (which is copied from T(Υi)) and set ψ(q) ← 0 for every leaf q of
Ai. We then do a full-search of {T(Υi) : i ∈ Nk} ∪ {Ai : i ∈ Nk}. For all i ∈ Nk let lti
(resp. qti ) be the leaf of T(Υi) (resp. Ai) that is in L at the start of the t-th leaf-step
in the full-search. During the full-search, in addition to maintaining the variable α
we also maintain a variable β as well as, for every i ∈ Nk, a variable δi. At the start
of the first leaf step we do the following:

1. For all i ∈ Nk set δi ← 0
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2. Set α←

∏
i∈N|C| ψ(l1i )

3. Set β ← α

At the start of the t-th leaf-step, for t > 1, we do the following:

1. For all i ∈ Nk such that qti 6= qt−1
i set ψ(qt−1

i )← ψ(qt−1
i ) + β − δi.

2. For all i ∈ Nk such that qti 6= qt−1
i set δi ← β

3. Set Q← {i ∈ Nk : lti 6= lt−1
i }

4. Set α← α
∏
i∈Q(ψ(lti)/ψ(lt−1

i ))

5. Set β ← β + α

Once the full-search has terminated we set ψ(q
|C|
i ) ← ψ(q

|C|
i ) + β − δi for every

i ∈ Nk. We then have Ai = T(Ψi) for every i ∈ Nk.

Note that, in the above implementation we can first re-order C in order to
minimise the time. However, re-ordering C means that we must re-construct the
info-trees Υi to be consistent with the new order which takes a time of Θ

(
|Di|2|Di|

)
for every i ∈ Nk. Note also that since the above implementation involves division
we should use MZC-numbers (see Section 4.8) instead of real numbers to avoid
division by zero.

4.9.4 Implementing the Functions of ARCH-2

In this subsection we describe the implementation of the functions described in
Section 4.7.3. The notation of this subsection is as in the description of the algo-
rithms in Section 4.7.3. First note that in Step 1 of Algorithm 89, Step 1 of Algo-
rithm 91 and Step 1 of Algorithm 93 we are asked to choose x ∈ σ(Φ). In these
times we will always choose to set x← min(σ(Φ)).

Steps 2, 3 and 4 of Algorithm 91 are performed together as follows:

First define r to be the root of T(#Φ, ζ). Note that the straddle-tree underlying
⇓(/(r)) is B(ϑ) so we can copy this tree and set A− ← B(ϑ) and A+ ← B(ϑ). We
then do a synchronised-search of {A−,⇓(/(r)),⇓(.(r))} (resp. {A+,⇓(/(r)),⇓(.(r))} ).
At the start of every leaf-step we do the following:
If L doesn’t contain a leaf of A− (resp. A+) we do nothing. Else, we have two cases:

1. L contains a leaf of ⇓(.(r)): In this case we have L = {l0, l1, l2} where l0 is a
leaf of A− (resp. A+), l1 is a leaf of ⇓(/(r)) and l2 is a leaf of ⇓(.(r)). We set
ψ(l0)← ψ(l1) (resp. ψ(l0)← ψ(l1)/ψ(l2) )

2. L doesn’t contain a leaf of ⇓(.(r)): In this case we have L = {l0, l1} where
l0 is a leaf of A− (resp. A+) and l1 is a leaf of ⇓(/(r)). We set ψ(l0) ← ψ(l1)
(resp. ψ(l0)← ψ(l1) ).

After the synchronised searches we have A− = T(#Φ−, ϑ) and A+ = T(#Φ+, ϑ)

Step 2 of Algorithm 89 and Step 2 of Algorithm 93 are performed similarly
(with T(Φ) or T(%Φ) instead of T(#Φ, ζ) and P(σ(Φ) \ {x}) instead of ϑ).

Steps 6 and 7 of Algorithm 91 are performed together as follows:
First set A ← B(ζ) (copied from the input). Let r be the root of A. Do a synchro-
nised search of {⇓(/(r)),T(%Φ−, ϑ),T(%Φ+, ϑ)}
(resp. {⇓(.(r)),T(%Φ−, ϑ),T(%Φ+, ϑ)} ). At the start of every leaf-step we do the
following:

If L doesn’t contain a leaf of A then we do nothing. Otherwise we have that
L = {l0, l1, l2} where l0 is a leaf of A, l1 is a leaf of T(%Φ−, ϑ) and l2 is a leaf
T(%Φ+, ϑ). In these cases we set ψ(l0)← ψ(l1) + ψ(l2) (resp. ψ(l0)← ψ(l2) ).
After the synchronised searches we have A = T(Φ, ζ)



4.9. Implementation Details 77
Step 4 of Algorithm 89 and Step 4 of Algorithm 93 are performed similarly

(with P(σ(Φ)) instead of ζ).

Step 1 of Algorithm 90 requires us to construct B(ζ) where
ζ :=

⋃k
i=1{P(σ(#Υi))}. We do this as follows:

We maintain (and grow) a subtree A of B(ζ) initialised to contain the root, r, as
a single vertex (with φ(r) ← min

⋃
ζ). At every point in the algorithm there is a

single vertex of A that is designated as the active vertex. Also, at every point in the
algorithm we say that the active vertex is either left-oriented or right-oriented. We
initialise such that the vertex r is the active vertex and is left-oriented. After this
initialisation we do a synchronised-search of {T(#Υi) : i ∈ Nk}. Let Z be the stack
used in the synchronised search. At the start of every time-step after the first we
do the following:

1. If the top element of Z is 0 (i.e. the time-step is a leaf-step) then do the
following: If the active vertex v is currently left-oriented then add a vertex
w to A such that w = /(v). If the active vertex v is currently right-oriented
then add a vertex w to A such that w = .(v). It is the case that w is a leaf of
B(ζ).

2. If the top element of Z is (e, 1) for some e ∈ Nn then do the following: If
A(e) = ∅ then do nothing. Otherwise, given that the active vertex is cur-
rently v and is currently left-oriented (resp. right-oriented), we add a vertex
w to A such that w = /(v) (resp. w = .(v)) and set φ(w)← e. We then make
w the active vertex and designate it as left-oriented.

3. If the top element of Z is (e, 2) for some e ∈ Nn then do the following: If
A(e) = ∅ then do nothing. Otherwise, given that the active vertex is cur-
rently v, we keep v as the active vertex but now designate it as right-oriented.

4. If the top element of Z is (e, 3) for some e ∈ Nn then do the following: If
A(e) = ∅ then do nothing. Otherwise, given v is currently the active vertex,
we let the parent of v become the active vertex (it doesn’t matter whether it
is left-oriented or right-oriented).

After the synchronised-search is complete we have that A = B(ζ)

After we have constructed B(ζ), Step 2 of Algorithm 90 is performed as fol-
lows: Set A← B(ζ). Do a synchronised-search of {A}∪ {T(#Υi) : i ∈ Nk}. When-
ever we are at the start of a leaf-step such that there exists a leaf, l, of A in Lwe set
ψ(l)←

∏
s∈L\{l} ψ(s). After the synchronised search we have that A = T(#Γ, ζ)

Algorithm 92 is implemented as follows: For every i ∈ Nk set Ai ← B(P(Di)).
Do a synchronised-search of {T(%Γ, ζ)} ∪ {Ai : i ∈ Nk}. Whenever we are at
the start of a leaf-step such that there exists a leaf, l, of T(%Γ, ζ) in L we set, for
every leaf s ∈ L \ {l}, ψ(s) ← ψ(l). After the synchronised-search we have that
Ai = T(%Ψi)
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Chapter 5

Online Bayesian Classification
in Ising Models

5.1 Abstract

In this chapter we first define the general Ising model, show how it comes from a
natural process and show that the Bayes classifier minimises the expected number
of mistakes in an online learning game with the Ising model. We show how to
convert the junction tree algorithm so that it implements efficient online Bayesian
classification in general Ising models. We give the online versions of Shafer-Shenoy
propagation/ARCH-1, Hugin propagation and the novel architecture ARCH-2.
We show that online Shafer-Shenoy is more space efficient than online Hugin but
at the expense of a higher time complexity. We then show that the online version
of ARCH-2 essentially achieves the best of both worlds: it has, up to a factor linear
in the width of the junction tree, the speed of online Hugin propagation and the
space efficiency of online Shafer-Shenoy propagation. Finally we develop an algo-
rithm that, for any tree structured Ising model, constructs, in linear time and space,
a junction tree that gives optimal time per prediction for online Hugin/ARCH-2.
We show that this prediction time is logarithmic in the maximum cardinality of a
binary subtree of the tree (that is, a subtree for which every vertex has degree of
at most three). The space requirement for Hugin/ARCH-2 with the junction tree
is linear in the cardinality of the tree which is optimal for the online junction tree
algorithm.
The final section of this chapter is based on our paper “Online sum-product com-
putations over trees" in NIPS 2012 which was written in collaboration with Mark
Herbster and Fabio Vitale. All other sections in this chapter are all my own work.

5.2 Related Work

The idea of performing, for general Ising models, online Bayesian inference by
updating messages along paths of a junction tree was essentially studied in [2]
where they use an approach similar to online Shafer-Shenoy (see below). In [2]
they also consider updating the data structure when edges of the graph are in-
serted or deleted whilst we consider only the case for which the graph structure is
fixed. Previous work relating to Section 5.6 will be given in that section.

5.3 Notation

In this chapter we will use the notation and terminology of the last chapter. How-
ever, we will, in this chapter, call the vertices of a junction tree super-vertices to
avoid confusion with the vertices of a standard graph.
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5.4 Ising Models and the Bayes’ Classifier

In this section we introduce the online learning problem that we will solve, show
that it is solved via Bayesian classification and then reduce this solution to a database
update/query. We start by introducing the Ising model.

5.4.1 The General Ising Model

In this subsection we introduce the general (note that this is more general than
the standard definition) binary Ising model (from here referred to as simply “Ising
model") and show how it occurs from a very natural process.

Definition 96. The Ising Model: An Ising model on a graph G is a probability distri-
bution on the set of possible binary labellings, µ, of G given by:

P(µ) ∝

Ñ ∏
(v,w)∈E(G)

θ(v,w)(µ(v), µ(w))

éÑ ∏
v∈V(G)

θv(µ(v))

é
(5.1)

for some θ(v,w) : {0, 1}2 → [0, 1] and some θv : {0, 1} → [0, 1].

We now show how the Ising model comes directly from a process in which
people “meet" independently from there musical tastes and then those that meet
may form “friendships" depending on their musical tastes.

We have a set X (e.g. of people). Every x ∈ X has a stochastic binary label
κ(x) ∈ {0, 1} (e.g. his/her musical taste) such that the labels κ(x) are mutually
independent. We have stochastic sets A,B ⊂ {{x, y} : x, y ∈ X,x 6= y} (e.g.
whether people meet and whether people become friends respectively). We have
that A is independent of the labelling κ (e.g. people meet independently of their
musical tastes). We have that B ⊆ A (e.g. for people to become friends they first
must meet) and for all x, y ∈ X the event that {x, y} ∈ B is independent of the
labels {κ(z) : z 6= x, y} and the set A given {x, y} ∈ A (e.g. whether or not people
become friends after meeting is only dependant on who they are and their musical
tastes). For all x, y ∈ X the events {x, y} ∈ B are also mutually independent given
A and κ (e.g. whether or not two people who meet make friends does not influence
whether two other people make friends). We are given the sets A and B (e.g. we
know who’s met and who’s become friends) but we don’t know κ (e.g. we don’t
know people’s musical tastes).

Define P(µ) := P(κ = µ|A,B) for all binary labellings µ. We now show that
P(µ) is an Ising model on the graphG defined by V(G) := X and E(G) := A. To see
this let θ̂(x,y)(i, j) := P({x, y} ∈ B|{x, y} ∈ A, κ(x) = i, κ(y) = j) for all x, y ∈ X
and i, j ∈ {0, 1}. We have:
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P(κ = µ|B = B′, A = A′) (5.2)
∝P(B = B′|κ = µ,A = A′)P(κ = µ|A = A′) (5.3)
∝P(B = B′|κ = µ,A = A′)P(A = A′|κ = µ)P(κ = µ) (5.4)
=P(B = B′|κ = µ,A = A′)P(A = A′)P(κ = µ) (5.5)
∝P(B = B′|κ = µ,A = A′)P(κ = µ) (5.6)

=

Ñ ∏
{x,y}∈B′

P({x, y} ∈ B|A = A′, κ = µ)

éÑ ∏
{x,y}∈A′\B′

P({x, y} /∈ B|A = A′, κ = µ)

é
P(κ = µ)

(5.7)

=

Ñ ∏
{x,y}∈B′

P({x, y} ∈ B|{x, y} ∈ A, κ = µ)

éÑ ∏
{x,y}∈A′\B′

P({x, y} /∈ B|{x, y} ∈ A, κ = µ)

é
P(κ = µ)

(5.8)

=

Ñ ∏
{x,y}∈B′

P({x, y} ∈ B|{x, y} ∈ A, κ = µ)

éÑ ∏
{x,y}∈A′\B′

(1− P({x, y} ∈ B|{x, y} ∈ A, κ = µ))

é
P(κ = µ)

(5.9)

=

Ñ ∏
{x,y}∈B′

θ̂(x,y)(µ(x), µ(y))

éÑ ∏
{x,y}∈A′\B′

(1− θ̂(x,y)(µ(x), µ(y)))

é
P(κ = µ)

(5.10)

=

Ñ ∏
{x,y}∈B′

θ̂(x,y)(µ(x), µ(y))

éÑ ∏
{x,y}∈A′\B′

(1− θ̂(x,y)(µ(x), µ(y)))

é(∏
x∈X

P(κ(x) = µ(x))

)
(5.11)

which is the Ising model on G (where G is defined by V(G) := X and E(G) := A′)
defined by (see definition 96) θv(i) = P(κ(v) = i) and θ(v,w)(i, j) = θ̂(x,y)(i, j) if
{x, y} ∈ B′ and θ(v,w)(i, j) = 1− θ̂(x,y)(i, j) if {x, y} /∈ B′.

Equations 5.3 and 5.4 are Bayes’ rule. Equation 5.5 is since A is independent
of the labelling κ. Equation 5.7 is since B ⊆ A, and since the events {x, y} ∈ B
are mutually independent given A and κ. Equation 5.8 is because for all x, y ∈ X
the event that {x, y} ∈ B is independent of the set A given {x, y} ∈ A. Equation
5.10 is since for all x, y ∈ X the event that {x, y} ∈ B is independent of the labels
{κ(z) : z 6= x, y} given {x, y} ∈ A. Equation 5.11 is since the labels κ(x) are
mutually independent.

5.4.2 The Problem

The online learning problem of this chapter is as follows: We have an Ising model
(on a graph G) which is known to learner and nature. Before the online learning
game a labelling of the graph is drawn from the Ising model. Neither nature nor
learner know the labelling. On each trial t, nature chooses a vertex xt and queries
the learner with it. The learner then gives its prediction ŷt of the (noisy) label of
vertex xt. A noisy label, yt, of xt (note that both nature and learner know the noise
distribution from the start) is then revealed to both nature and learner. The learner
makes a mistake on trial t if and only if ŷt 6= yt. The aim for the learner is to min-
imise the expected number of mistakes (we will give a strategy for the learner that,
whatever nature’s strategy, the expected number of mistakes will be minimised -
the learner need not know natures strategy). Formally, the problem is as follows:

We first have a graph G and a binary Ising model on G: that is, a probability
distribution on the set of possible binary labellings, µ, of G given by P(µ) ∝Ä∏

(v,w)∈E(G) θ(v,w)(µ(v), µ(w))
ä Ä∏

v∈V(G) θv(µ(v))
ä

for some θ(v,w) : {0, 1}2 →
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[0, 1] and some θv : {0, 1} → [0, 1]. At every trial t we have a (vertex/label) pair
ot := (xt, yt) where xt ∈ V(G) (i.e. xt is the query vertex at trial t) and yt ∈ {0, 1}
(i.e. yt is the observed (noisy) label of xt on trial t). For any vertex w we have
that the event xt = w is independent of µ given o1, o2, ..., ot−1 (since nature doesn’t
know the labelling µ a-priori but only receives the observed label yt on each trial
t). For any i ∈ {0, 1} we have that the event yt = i is independent of o1, o2, ..., ot−1

given xt and µ. We also have a function ε : {0, 1}2 → [0, 1] (the noise) such that, for
i ∈ {0, 1} we have P(yt = i|µ, xt) ∝ ε(µ(xt), i). Note that we can generalise ε by
making it a function also of t and xt without much change in what follows.

At every trial t we have a value ŷt ∈ {0, 1} which is a function (the learners
strategy) of {θ(v,w) : (v, w) ∈ E(G)}, {θv : v ∈ V(G)}, ε, xt and {os : s < t} (since
this is the only information revealed to the learner by trial t). The objective of the
learner is to choose this function such that the expected number of mistakes (i.e.
those trials in which ŷt 6= yt) is minimised, and then to compute it efficiently at
every trial.

5.4.3 The Bayes Classifier

Here we introduce the Bayes classifier and show that it minimises the expected
number of mistakes:

Definition 97. The Bayes classifier predicts ŷt := argmaxi∈{0,1} P(yt = i|o1, o2, ..., ot−1, xt).

We now show that the Bayes classifier minimises the expected number of mis-
takes. To see this let T be the total number of trials. For t ≤ T letMt be the cumu-
lative mistakes up until (and including) trial t. For t ≤ T let Dt := (o1, o2, ..., ot).
We prove by reverse induction (i.e. from t := T to t := 0) that the Bayes classi-
fier minimises E(MT −Mt|Dt). This clearly holds in the case that t := T since
E(MT −MT |DT ) = 0 whatever the strategy. So now suppose it holds for some
t ≤ T . We now show it holds for t− 1. We have:

E(MT −Mt−1|Dt−1) =
∑
ot

P(ot|Dt−1)E(MT −Mt−1|ot,Dt−1) (5.12)

=
∑
ot

P(ot|Dt−1)E((MT −Mt) + (Mt −Mt−1)|ot,Dt−1)

(5.13)

=
∑
ot

P(ot|Dt−1)(E(MT −Mt|ot,Dt−1) + E(Mt −Mt−1|ot,Dt−1))

(5.14)

Note that the term E(MT −Mt|ot,Dt−1) appearing in Equation 5.14 is equal to
E(MT − Mt|Dt) which, by the inductive hypothesis is minimised by the Bayes
classifier. Hence, we now need only show that the Bayes classifier minimises the
quantity

∑
ot
P(ot|Dt−1)E(Mt−Mt−1|ot,Dt−1) so, since E(Mt−Mt−1|ot,Dt−1) =

P(ŷt 6= yt|ot,Dt−1)) we need only show that the Bayes classifier minimises the
quantity

∑
ot
P(ot|Dt−1)P(ŷt 6= yt|ot,Dt−1)). We have:∑

ot

P(ot|Dt−1)P(ŷt 6= yt|ot,Dt−1)) (5.15)

=
∑

xt∈V(G)

∑
yt∈{0,1}

P(xt, yt|Dt−1)P(ŷt 6= yt|ot,Dt−1) (5.16)

=
∑

xt∈V(G)

∑
yt∈{0,1}

P(xt|Dt−1)P(yt|xt,Dt−1)P(ŷt 6= yt|ot,Dt−1) (5.17)

=
∑

xt∈V(G)

P(xt|Dt−1)
∑

yt∈{0,1}

P(yt|xt,Dt−1)P(ŷt 6= yt|ot,Dt−1) (5.18)

Since ŷt is a function of xt we can minimise each of the terms
∑
yt∈{0,1} P(yt|xt,Dt−1)P(ŷt 6=

yt|ot,Dt−1)) individually. Since ŷt is a function of only Dt−1 and xt we have that
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yt∈{0,1} P(yt|xt,Dt−1)P(ŷt 6= yt|ot,Dt−1)) = P(yt 6= ŷt|xt,Dt−1) which is min-

imised by setting ŷt := argmaxi∈{0,1} P(yt = i|xt,Dt−1) which is the Bayes classi-
fier. This completes the proof of the inductive hypothesis.

SinceMT =MT −M0 and D0 = ∅ we have that E(MT ) = E(MT −M0|D0)
which, by above, is minimised by the Bayes classifier. This completes the proof.

5.4.4 An evolving factorisation

To predict using the Bayes classifier we need to compute the probability P(yt =
i|o1, o2, ..., ot−1, xt) for i ∈ {0, 1}. In this section we show how this is done by com-
puting marginals in an evolving factorisation.

We first inductively compute P(µ|o1, o2, ..., ot). For t = 0 this quantity is equal to
P(µ) which is proportional to

Ä∏
(v,w)∈E(G) θ(v,w)(µ(v), µ(w))

ä Ä∏
v∈V(G) θv(µ(v))

ä
.

For t > 0 we have:

P(µ|o1, o2, ..., ot) = P(µ|yt, xt, o1, o2, ..., ot−1) (5.19)
∝ P(yt|µ, xt, o1, o2, ..., ot−1)P(µ|xt, o1, o2, ..., ot−1) (5.20)
= P(yt|µ, xt)P(µ|xt, o1, o2, ..., ot−1) (5.21)
∝ ε(µ(xt), yt)P(µ|xt, o1, o2, ..., ot−1) (5.22)
∝ ε(µ(xt), yt)P(xt|µ, o1, o2, ..., ot−1)P(µ|o1, o2, ..., ot−1) (5.23)
= ε(µ(xt), yt)P(xt|o1, o2, ..., ot−1)P(µ|o1, o2, ..., ot−1) (5.24)
∝ ε(µ(xt), yt)P(µ|o1, o2, ..., ot−1) (5.25)

Equation 5.20 is Bayes’ rule. Equation 5.21 comes from the fact that for any i ∈
{0, 1}we have that the event yt = i is independent of o1, o2, ..., ot−1 given xt and µ.
Equation 5.23 is Bayes’ rule. Equation 5.24 comes from the fact that for any vertex
w we have that the event xt = w is independent of µ given o1, o2, ..., ot−1.

Hence, by induction on t we can write
P(µ|o1, o2, ..., ot) ∝

Ä∏
(v,w)∈E(G) θ(v,w)(µ(v), µ(w))

ä Ä∏
v∈V(G) θ

t
v(µ(v))

ä
where θ0

v :=

θv and for all t > 0 we have θtv := θt+1
v if v 6= xt and θtv(µ(v)) := ε(µ(v), yt)θ

t+1
v if

v = xt.

We can hence store the probability distribution P(µ|o1, o2, ..., ot) as a factorisation
Ft which contains, for every edge (v, w) ∈ E(G) a potential in Λ(v,w) ∈ T ({v, w})
corresponding to θ(v,w) (i.e. Λ(v,w)(∅) := θ(v,w)(0, 0), Λ(v,w)({v}) := θ(v,w)(1, 0),
Λ(v,w)({w}) := θ(v,w)(0, 1) and Λ(v,w)({v, w}) := θ(v,w)(1, 1)) and, for every ver-
tex v ∈ V(G) a potential Λv in T ({v}) coresponding to θtv (i.e. Λv(∅) = θtv(0) and
Λv({v}) = θtv(1)). Note that on going from Ft−1 to Ft we only have to update the
potential Λxt .
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We also have:

P(yt = i|o1, o2, ..., ot−1, xt) =
∑
µ

P(yt = i|µ, o1, o2, ..., ot−1, xt)P(µ|o1, o2, ..., ot−1, xt)

(5.26)

=
∑
µ

P(yt = i|µ, xt)P(µ|o1, o2, ..., ot−1, xt) (5.27)

∝
∑
µ

ε(µ(xt), i)P(µ|o1, o2, ..., ot−1, xt) (5.28)

∝
∑
µ

ε(µ(xt), i)P(xt|µ, o1, o2, ..., ot−1)P(µ|o1, o2, ..., ot−1)

(5.29)

=
∑
µ

ε(µ(xt), i)P(xt|o1, o2, ..., ot−1)P(µ|o1, o2, ..., ot−1)

(5.30)

∝
∑
µ

ε(µ(xt), i)P(µ|o1, o2, ..., ot−1) (5.31)

=
∑

j∈{0,1}

∑
µ:µ(xt)=j

ε(j, i)P(µ|o1, o2, ..., ot−1) (5.32)

=
∑

j∈{0,1}

ε(j, i)
∑

µ:µ(xt)=j

P(µ|o1, o2, ..., ot−1) (5.33)

=
∑

j∈{0,1}

ε(j, i)P(µ(xt) = j|o1, o2, ..., ot−1) (5.34)

= ε(0, i)ρxt(∅) + ε(1, i)ρxt({xt}) (5.35)

where ρxt is the result of the junction tree algorithm when run with factorisation
Ft−1 and the sums are over all labellings µ. Equation 5.26 is the law of total prob-
ability. Equation 5.27 comes from the fact that for any i ∈ {0, 1} we have that
the event yt = i is independent of o1, o2, ..., ot−1 given xt and µ. Equation 5.29 is
Bayes’ rule. Equation 5.30 comes from the fact that for any vertex w we have that
the event xt = w is independent of µ given o1, o2, ..., ot−1.

5.5 The Online Junction Tree Algorithm

From the proceeding subsection we see that online Bayesian classification in the
Ising model can be solved via the following database update/query:

1. Initialisation: We have a set F of the following potentials:

(a) For every edge (v, w) ∈ E(G) we have a potential Λ(v,w) ∈ T ({v, w}).
(b) For every vertex v ∈ V(G) we have a potential Λv ∈ T ({v})

2. Update: Change the potential Λv for some vertex v ∈ V(G)

3. Query: Compute the potential ρv for some vertex v where ρv is the result of
the junction tree algorithm when run with factorisation F .

where the time required per trial is the maximum time taken for both update and
query at some vertex v.

Note that the computation of a query at vertex v could be done by running the
junction tree algorithm on factorisation F . Recall that for every potential Λ ∈ F
the junction tree must contain a super-vertex Λ+ that has σ(Λ) as a subset. This
motivates the following definition:

Definition 98. Junction tree of a graph A junction tree J of a graph G is a tree that
satisfies the following axioms:

1. Every vertex of J is a subset of V(G) (note that in this chapter we call the vertices
of J super-vertices).
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2.
⋃
V(J ) = V(G)

3. For every edge (v, w) ∈ E(G) we have a super-vertex of J that contains both v and
w.

4. (Running intersection property:) For every C,D ∈ V(J ) and v ∈ C ∩D we have
that v is contained in every super-vertex in the path from C to D.

i.e. J is a junction tree on V(G) such that for every edge (v, w) ∈ E(G) we have a
super-vertex of J that contains both v and w.

In this section we assume that we have a rooted junction tree J of the graph
G. Let R be the root of J . As an initialisation step we assign, for every potential
Λ ∈ F , a super-vertex Λ+ ∈ V(J ) that has σ(Λ) as a subset. As in the previous
chapter, for every super-vertex C ∈ V(J ) we define F(C) := {Λ ∈ F : Λ+ = C}.
We denote Λv

+ by v+ for all v ∈ V(G)
As was stated above, the computation of a query at vertex v could be done by
running the junction tree algorithm on factorisation F . However, by splitting up
the work between update and query we can be much faster:

1. To initialise we run the junction tree algorithm of factorisation F to compute
all messages. We define an inward message (resp. outward message) to be a
message MC→D for which C is a child of D (resp. D is a child of C).

2. On update at a vertex v we update the inward messages to be consistent with
the new factorisation. Note that since all the inward messages were correct
before the change in Λv we only have update all the inward messages along
the path from v+ to the root.

3. On query at a vertex v we compute ρv by updating, in turn, all the outward
messages from the root to v+ (which can be done since all the inward mes-
sages are correct).

We now formalise the above algorithmically. Like in the previous chapter, there
are different architectures for performing the online junction tree algorithm: Shafer-
Shenoy/ARCH-1, Hugin and ARCH-2 (which correspond directly to the architec-
tures of the previous chapter). We shall show that online Shafer-Shenoy/ARCH-1
is space efficient, online Hugin is time efficient, and online ARCH-2 has, up to a
factor linear in the width of the junction tree, the best of both worlds: the space
efficiency of Shafer-Shenoy and the time efficiency of Hugin.

All the architectures store messagesMC→D (between neighbouring super-vertices
C an D) as defined as in the previous chapter (note though, that these messages
are now only updated when nesscessary). Hugin propagation and ARCH-2 also
store additional potentials. To initialise, the junction tree algorithm (of the previ-
ous chapter) is first run (using the appropriate architecture) to compute the mes-
sages and any additional potentials. All the architectures have three operations
(that differ depending on the architecture): insert(v,Λnew

v ) that changes the poten-
tial Λv , pass(C,E) (for neighbouring super-vertices C and E) that computes the
message MC→E and passes it to E, and result(v) that calculates the potential ρv .
All architectures follow the following algorithms for update and query:
Update at vertex v:
Suppose we need to change Λv to Λnew

v . We perform the following algorithm:

1. Run insert(v,Λnew
v )

2. Let (v+ = C1, C2, C3, ..., Cj = R) be the path from v+ to R in J
3. For i = 1, 2, 3, ..., j − 1 in turn run pass(Ci, Ci+1)

Query at vertex v:
Suppose we need to compute ρv . We perform the following algorithm

1. Let (R = C1, C2, C3, ..., Cj = v+) be the path from R to v+ in J
2. For i = 1, 2, 3, ..., j − 1 in turn run pass(Ci, Ci+1)

3. ρv ←result(v).

We now turn to the different architectures and how they implement the func-
tions insert, pass and result.
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5.5.1 Online Shafer-Shenoy

Online Shafer-Shenoy is the simplest of architectures. We store only the factors and
messages. The operation insert(v,Λnew

v ) simply sets Λv ← Λnew
v .Given neighbour-

ing super-vertices C and E the operation pass(C,E) sets:

MC→E ←

Ñ ∏
Λ∈F(C)

Λ

éÑ
1C∩E

∏
H∈N (C)\{E}

MH→C

é`
C∩E

(5.36)

using Algorithm 74 (Operation 73) of the preceding chapter.
Given a vertex v ∈ V(G) the operation result(v) sets:

ρv ←

Ñ ∏
Λ∈F(C)

Λ

éÑ ∏
H∈N (C)

MH→C

é`
{v}

(5.37)

using Algorithm 74 (Operation 73) of the preceding chapter
Computational Complexity: The space complexity of online Shafer-Shenoy is only
that required to store the factors and messages. The operation pass(C,D) takes
a time of Θ

(
(deg(C) + |F(C)|)2|C|

)
and the operation result(v) takes a time of

Θ
Ä
(deg(v+) + |F(C)|)2|v+|

ä
. This means that during update/query each super-

vertex C in the path from v+ to R contributes a time of Θ
(
(deg(C) + |F(C)|)2|C|

)
(except that on update the super-vertex R contributes no time).

5.5.2 Online Hugin

In addition to storing the messages, online Hugin stores, for every super-vertex
C ∈ V(J ), a potential ΓC ∈ T (C) which is defined as:

ΓC :=

Ñ ∏
Λ∈F(C)

Λ

éÑ ∏
H∈N (C)

MH→C

é
(5.38)

The operation insert(v,Λnew
v ) is the following algorithm:

1. Set Λold
v ← Λv

2. Set Λv ← Λnew
v

3. Set Γv+ ← (Λv/Λ
old
v )Γv+

Note that insert(v,Λnew
v ) only updates Λv and Γv+ .

Given neighbouring super-vertices C and E the operation pass(C,E) is the fol-
lowing algorithm:

1. Set Mold
C→E ←MC→E

2. Set M ′ ← ΓC
`
C∩E

3. Set MC→E ←M ′/ME→C

4. Set ΓE ← (MC→E/M
old
C→E)ΓE

Note that pass(C,E) only updates the message MC→E and the potential ΓE .
Given a vertex v ∈ V(G) the operation result(v) simply sets:

ρv ← Γv+
`
{v} (5.39)

Computational Complexity:

Since online Hugin needs to store the potential ΓC for every super-vertex C it has
a total space complexity of Θ

Ä∑
C∈V(J ) 2|C|

ä
which can be significantly more than

the space complexity of online Shafer-Shenoy.
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The operation insert(v,Λnew
v ) takes a time of Θ

Ä
2|v

+|
ä

. The operation pass(C,E)

takes a time of Θ
(
2|C| + 2|E|

)
. The operation result(v) takes a time of Θ

Ä
2|v

+|
ä

.
This means that upon update/query every super-vertex C in the path from v+ to
R contributes a time of only Θ

(
2|C|

)
to the total time complexity.

5.5.3 Online ARCH-2

In addition to storing the messages, online ARCH-2 stores, for every super-vertex
C ∈ V(J ), the restriction [#ΓC ]

⊕ζC where:

ΓC :=

Ñ ∏
Λ∈F(C)

Λ

éÑ ∏
H∈N (C)

MH→C

é
(5.40)

and

ζC :=

Ñ ⋃
Λ∈F(C)

P(σ(Λ))

é
∪

Ñ ⋃
H∈N (C)

P(C ∩H)

é
(5.41)

Online ARCH-2 uses the functions transform1, transform2 and transform3 de-
fined in section 4.7.3 of the previous chapter.

The operation insert(v,Λnew
v ) is the following algorithm:

1. Set Λold
v ← Λv

2. Set Λv ← Λnew
v

3. Set #Λv ← transfom1(Λv)

4. Set #Λold
v ← transfom1(Λold

v )

5. For all Z ∈ P({v}) set #Γv+(Z)← [#Γv+(Z)][#Λv(Z)]/[#Λold
v (Z)]

Note that insert(v,Λnew
v ) only updates Λv and the restriction, [#Γv+ ]

⊕ζv+ of the
potential #Γv+ . The correctness of Line 5 comes directly from Theorem 84.
Given neighbouring super-vertices C and E the operation pass(C,E) is the fol-
lowing algorithm:

1. Set Mold
C→E ←MC→E

2. Set [%ΓC ]
⊕ζC ← transform2([#ΓC ]

⊕ζC )

3. For all Z ∈ P(C ∩ E) set %M ′(Z) ← %ΓC(Z). Note that %M ′ is now a
potential in T (C ∩ E).

4. Set M ′ ← transform3(%M ′)

5. Set MC→E ←M ′/ME→C

6. Set #Mold
C→E ← transform1(Mold

C→E)

7. Set #MC→E ← transform1(MC→E)

8. For all Z ∈ P(C ∩ E) set #ΓE(Z)← [#ΓE(Z)][#MC→E(Z)]/[#Mold
C→E(Z)]

Note that pass(C,E) only updates the messageMC→E and the restriction, [#ΓE ]
⊕ζE ,

of the potential #ΓE . Note also that M ′ is identical to that in online Hugin and the
correctness of lines 3 and 8 come directly from theorems 88 and 84 respectively.
Given a vertex v ∈ V(G) the operation result(v) is the following algorithm:

1. Set [%Γv+ ]
⊕ζv+ ← transform2([#Γv+]

⊕ζv+ )

2. For all Z ∈ P({v}) set %ρv(Z)← %Γv+(Z). Note that %ρv is now a potential
in T ({v}).

3. Output ρv ← transform3(%ρv)
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Note that the correctness of Line 2 comes directly from Theorem 88.
Computational Complexity: We first derive the basic space requirements of the
data-structure: In addition to storing the factors and messages we also store, for
every C ∈ V(J ), the restriction [#ΓC ]

⊕ζC which has a space requirement of:

O(|ζC |) = O

Ñ
|

Ñ ⋃
Λ∈F(C)

P(σ(Λ))

é
∪

Ñ ⋃
H∈N (C)

P(C ∩H)

é
|

é
(5.42)

⊆ O

ÑÑ ∑
Λ∈F(C)

|P(σ(Λ))|

é
+

Ñ ∑
H∈N (C)

|P(C ∩H)|

éé
(5.43)

= O

ÑÑ ∑
Λ∈F(C)

2|σ(Λ)|

é
+

Ñ ∑
H∈N (C)

2|C∩H|

éé
(5.44)

we call this space complexity the “space required atC". Note that each edge {C,E}
of the junction tree contributes a space of O

(
2|C∩E|

)
to the space required at C

and the space required at E and contributes no space to the space required at any
other super-vertex. Also the edge {C,E} contributes a space of O

(
2|C∩E|

)
for the

messages MC→E and ME→C . Hence the edge {C,E} contributes a total space of
O
(
2|C∩E|

)
to the whole data structure. Also, every factor Λ ∈ F contributes a

space of only 2|σ(Λ)| to the data structure. This means that the data-structure has,
up to a constant factor, the same space requirements of online Shafer-Shenoy.

We now analyse the complexity of the operation pass(C,E): The time/space bot-
tleneck is Line 2 which takes a time of O

(
|C|2|C|

)
and requires an auxiliary space

of:

O (|C||ζC |) ⊆ O

Ñ
|C|

ÑÑ ∑
Λ∈F(C)

2|σ(Λ)|

é
+

Ñ ∑
H∈N (C)

2|C∩H|

ééé
(5.45)

Note also that in Line 8, finding the variable #ΓE(Z) can take a time of |E| if the
potentials are stored in binary trees as in the previous chapter. Hence, the whole
of Line 8 will take a time no greater than O (|E|P(|E|)) so it can be ignored as we
pay O (|E|P(|E|)) to pass the message (via the function pass) from E to the next
super-vertex.

The operations insert(v,Λnew
v ) and result(v) take a time no greater thanO

Ä
|v+|2|v+|

ä
and require only constant auxiliary space.

This implies that during update/query each super-vertex C on the path from v+

to R contributes a time of only O
(
|C|2|C|

)
to the entire time complexity meaning

that online ARCH-2 is only slower by online Hugin by no more than a logarithmic
factor. In addition to the space requirements of the data structure (which, as we
showed, is, up to a constant factor, the same as that of Shafer-Shenoy) we require
an additional space of:

O

Ñ
max

C∈V(J )
|C|

ÑÑ ∑
Λ∈F(C)

2|σ(Λ)|

é
+

Ñ ∑
H∈N (C)

2|C∩H|

ééé
(5.46)

which is, up to a factor linear in the width of the junction tree, no greater than the
space requirements of online Shafer-Shenoy.
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5.6 An Optimal Junction Tree of a Tree

In this section we develop an algorithm that, for any tree T , constructs, in linear
time and space, a junction tree of T that has (up to a constant factor) optimal speed
for update/query under online Hugin/ARCH-2. We show that this update/query
time is logarithmic in the maximum cardinality of a binary subtree (i.e. a subtree in
which every vertex has a cardinality of at most three) of T . The space requirements
for online Hugin/ARCH-2 with this junction tree are linear in the cardinality of T
which is optimal for the online junction tree algorithm.
Related work. In [20] an algorithm was given for this model, in which each predic-
tion required min{∆(T ), log n} time where ∆(T ) is the diameter of the tree. We sig-
nificantly improve on this result we observe that log ∆(T ) ≤ χ(T ) ≤ min{∆(T ), log n}
(where χ(T ) is the time complexity of our resulting junction tree algorithm) and
the lower bound is tight. For example, consider the tree T formed by n/ log n
path graphs having length log n that overlap at same central vertex. In this case
it is not difficult to show that the total time required by our algorithm is χ(T ) =
O(log log n) an exponential improvement over the result in [20]. Our algorithm
was inspired by ideas for predicting efficiently on a path graph in [31]. In [1]
they use an algorithm similar to ours for the construction of (what is essentially)
a junction tree. However, their algorithm is random and it’s possible that a very
inefficient junction tree is produced. Also, by caching products of potentials our
resulting online junction tree algorithm is faster.

Graph-theoretical preliminaries. A graph G is a pair of sets (V,E) such that E is
a set of unordered pairs of distinct elements from V . The elements of V are called
vertices and those of E are called edges. In order to avoid ambiguities deriving
from dealing with different graphs, in some cases we will highlight the member-
ship to graph G denoting these sets as V(G) and E(G) respectively. With slight
abuse of notation, by writing v ∈ G, we mean v ∈ V(G). S is a subgraph G (we
write S ⊆ G) iff V(S) ⊆ V(G) and E(S) = {(i, j) : i, j ∈ V(S), (i, j) ∈ E(G)}.
Given any subgraph S ⊆ G, we define its boundary (or inner border) ∂G0 (S) and
its neighbourhood (or outer border) ∂Ge (S) as: ∂G0 (S) := {i : i ∈ S, j /∈ S, (i, j) ∈
E(G)}, and ∂Ge (S) := {j : i ∈ S, j /∈ S, (i, j) ∈ E(G)}. With slight abuse of notation,
∂Ge (v) := ∂Ge ({v}), and thus the degree of a vertex v is |∂Ge (v)|. Given any graph G,
we define the set of its leaves as leaves(G) := {i ∈ G : |∂Ge (i)| = 1}, and its interior
G• := {i ∈ G : |∂Ge (i)| 6= 1}.

A path P in a graph G is a sequence of vertices (v1, v2, ..., vn) of G, such that
for all i < n we have that (vi, vi+1) ∈ E(G).In this case we say that v1 and vn are
connected by P .

A tree T is a graph in which for all v, w ∈ T there exists a unique path connect-
ing v with w. In this paper we will only consider trees with a non-empty edge set
and thus the vertex set will always have a cardinality of at least 2. Such a path is
denoted by PATHT (v, w). The distance dT (v, w) between v, w ∈ T is the path length
|E(P )|. It may be the case that a vertex r in a tree T is selected as the root of T . In
this case we call (T, r) a “rooted tree. Given a rooted tree (T, r) and any vertex
i ∈ V(T ), the (proper) descendants of i are all vertices that can be connected with r
via paths P ⊆ T containing i (excluding i). Analogously, the (proper) ancestors of
i are all vertices that lie on the path P ⊆ T connecting i with r (excluding i). We
denote the set of all descendants (resp. all ancestors) of i by ⇓rT (i) (resp. ⇑rT (i)). We
shall omit the root r when it is clear from the context. Vertex i is the parent (resp.
child) of j, which is denoted by ↑rT (j) (resp. i ∈ ↓rT (j)) if (i, j) ∈ E(T ) and i ∈ ⇑rT (j)
(resp. i ∈ ⇓rT (j)). Given a tree T we use the notation S ⊆ T only if S is a tree and
subgraph of T . The height of a rooted tree (T, r) is the maximum length of a path
P ⊆ T connecting the root to any vertex: hr(T ) := maxv∈T dT (v, r). The diame-
ter ∆(T ) of a tree T is defined as the length of the longest path between any two
vertices in T . The second diameter ∆2(T ) of a tree T is defined as the maximum
cardinality of a subtree of T in which every vertex has degree at most three.
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5.6.1 Hierarchical Covers
In this section we describe a splitting process that recursively decomposes the in-
put tree T . A (decomposition) tree (D, r) identifies this splitting process, gener-
ating a tree-structured collection H of subtrees that hierarchically cover the given
input tree T .

This process recursively splits at each step a subtree of T (that we call a “com-
ponent") resulting from some previous splits. More precisely, a subtree S ⊆ T
is split into two or more subcomponents and the decomposition of S depends
only on the choice of a vertex v ∈ S•, which we call splitting vertex, in the fol-
lowing way. The splitting vertex v ∈ S• of S induces the split set Ω(S, v) =
{S1, . . . , S|∂Se (v)|} which is the unique set of S’s subtrees overlapping at vertex v
solely and representing a cover for S, i.e. it satisfies (i) ∪S′∈Ω(S,v) S

′ = S and (ii)
{v} = Si ∩ Sj for all 1 ≤ i < j ≤ |∂Se (v)|. Thus the split may be visualized by
considering the forest F resulting from removing a vertex from S, but afterwards
each component S1, . . . , S|∂Se (v)| of F has the “removed vertex” v added back to
it. A component having only two vertices is called atomic, since it cannot be split
further. We indicate with Sv ⊆ T the component subtree whose splitting vertex
is v, and we denote atomic components by S(i,j), where E(S(i,j)) = {(i, j)}. We
finally denote by H the set of all component subtrees obtained by this splitting
process. Since the method is recursive, we can associate a rooted tree (D, r), with
T ’s decomposition into a hierarchical cover, whose internal vertices are the split-
ting vertices of the splitting process. Its leaves correspond to the single edges (of
E(T )) of each atomic component, and a vertex “parent-child” relation c ∈ ↓rD(p)
corresponds to the “splits-into” relation Sc ∈ Ω(Sp, p) (see Figure 5.1).

We will now formalize the splitting process by defining the hierarchical cover
H of a tree T , which is a key concept used by our algorithm.

Definition 99. Given a tree S and a vertex x ∈ S•, the split set, Ω(S, x) is the set of all
subtrees, Q, of S that satisfy:

1. |V(Q)| ≥ 2

2. x is a leaf of Q

3. Given any v ∈ V(Q) \ {x} all neighbours of v (in S) are in V(Q)

Definition 100. An hierarchical cover, H, of a tree T is a tree-structured collection of
subtrees that satisfy the following three properties:

1. T ∈ H ,
2. for all S ∈ H with S• 6= ∅ there exists an x ∈ S• such that Ω(S, x) ⊂ H ,
3. for all S,R ∈ H such that S 6⊆ R and R 6⊆ S, we have |V(R) ∩ V(S)| ≤ 1.

The above definition recursively generates a cover. The splitting process that
generates a hierarchical cover H of T is formalized as rooted tree (D, r) in the
following definition.

Definition 101. IfH is a hierarchical cover of T we define the associated decomposition
tree (D, r) as a rooted tree, whose vertex set V(D) := T • ∪ E(T ) where D• = T • and
leaves(D) ≡ E(T ), such that the following three properties hold:

1. Sr = T ,
2. for all c, p ∈ D•, c ∈ ↓rD(p) iff Sc ∈ Ω(Sp, p) ,
3. for all (c, p) ∈ E(T ) 1, we have (c, p) ∈ ↓rD(p) iff S(c,p) ∈ Ω(Sp, p) .

where, for v ∈ T •, Sv is the tree in H who’s splitting vertex is v and for (c, p) ∈ E(T ),
S(c,p) is the component who’s vertex set is {c, p}.

The following lemma shows that with any given hierarchical coverH it is pos-
sible to associate a unique decomposition tree (D, r).

1Observe that (c, p) ∈ E(T ) implies c, p ∈ V(T ) and (c, p) ∈ leaves(D).
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Lemma 102. A hierarchical coverH of T defines a unique decomposition tree (D, r) such
that if S ∈ H there exists a v ∈ V(D) such that S = Sv and if v, w ∈ V(D) and v 6= w,
then Sv 6= Sw.

Definition 103. Given an hierarchical cover H of a tree T , we define the height of H to
be the height of its associated decomposition tree.

Definition 104. Given a tree T , the decomposition potential, χ∗(T ), is the minimum
height of a hierarchical cover of T .

5.6.2 Bounds on the decomposition potential

The update and query times of our algorithm will be linear in the decomposition
potential of the tree. Hence, we now derive tight bounds for this quantity.

Definition 105. Given a tree T , a subtree, B, of T is a binary subtree if and only if each
vertex of B has a degree (in B) of at most three.

Definition 106. The second-diameter, ∆2(T ), of a tree T is the cardinality of the largest
binary subtree of T .

We now prove that χ∗(T ) ∈ Θ(∆2(T )):

Lemma 107. χ∗(T ) ∈ Ω(log ∆2(T ))

Proof. Let B be a binary subtree of T with ∆2(T ) vertices and let H(T ) be a hier-
archical cover of T with height χ∗(T ). The set H(B) := {S ∩ B|S ∈ H} is then
a hierarchical cover of B with height no greater than χ∗(T ). The decomposition
tree associated with H(B) is a ternary tree, in that every vertex has at most three
children, since, for any tree S in the hierarchical cover, and any v ∈ S•, we have
|Ω(S, v)| ≤ 3. The height of H(B), and hence that of H(T ), must then be bounded
below by the height of a full, balanced ternary tree with |∆2(T )| vertices, which is
logarithmic in ∆2(T ).

Lemma 108. χ∗(T ) ∈ O(log ∆2(T ))

Proof. We prove, by induction on χ∗(T ), that given distinct leaves u and v of T ,
there exists a binary subtree B of T which contains u and v and has cardinality at
least 2

1
3χ
∗(T ). Note that this implies that χ∗(T ) ∈ O(log ∆2(T ))

Since |B| ≥ 2 the result holds for χ∗(T ) ≤ 2.
If χ∗(T ) > 2 then let H be an hierarchical cover of T with height χ∗(T ) and

let x be the split point of T in H. Choose R ∈ argmaxQ∈Ω(T,x)(χ
∗(Q)) and choose

S ∈ argmaxQ∈Ω(T,x)\{R}(χ
∗(Q)). We must have that χ∗(R) = χ∗(T )−1. If χ∗(S) <

χ∗(R)− 2 then we do the following:
Let x′ be the unique neighbour of x that is contained in R, let S′ be the unique tree
in Ω(T, x′) that contains S as a subtree, and let R′ = argmaxQ∈Ω(T,x′)\{S′}(χ

∗(Q)).
By splitting S′ at x we see that χ∗(S′) < χ∗(T ) − 1 and hence also that χ∗(R′) =
χ∗(T ) − 1 (since else, for all Q ∈ Ω(T, x′), we’d have χ∗(Q) < χ∗(T ) − 1 meaning
that there would exist a hierarchical cover of T of height less than χ∗(T )). If we
have that χ∗(S′) < χ∗(T )−2 then we continue recursively onR′ and S′. Eventually
we will either have that χ∗(S′) = χ∗(T ) − 2 or hit reductio ad absurdam: in that
|R′| = 2 and hence χ∗(R′) = 0 < χ∗(T ) − 1 which is is contradiction. Hence,
without loss of generality, we may assume that χ∗(S) ≥ χ∗(T )− 2.

Let y be the vertex of least distance from x which is on both the path from x to
v and the path from u to v. We have three cases:

1. y /∈ (S \ ∂T0 (S)) ∪ (R \ ∂T0 (R)): By the inductive hypothesis, we have the
result by taking binary subtrees B(S) and B(R) (of S and R respectively),
containing x and with cardinality at least 2

1
3 (χ∗(T )−2), and settingB to be the

subtree of T containing exactly those vertices in either B(S), B(R), the path
from x to y, the path from y to u, or the path from y to v.
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2. y ∈ R \ ∂T0 (R): Choose U ∈ argmaxQ∈Ω(R,y)(χ

∗(U)). We must have that
χ∗(U) ≥ χ∗(F )− 1 = χ∗(T )− 2. By the inductive hypothesis, we then have
the result by taking binary subtrees B(U) and B(R) (of U and R respec-
tively), containing y (and x if x ∈ U ) and x respectively, and with cardinality
at least 2

1
3 (χ∗(T )−2), and setting B to be the subtree of T containing exactly

those vertices in either B(U), B(S), the path from x to y, the path from y to
u, or the path from y to v.

3. y ∈ S \ ∂T0 (S): Choose U ∈ argmaxQ∈Ω(S,y)(χ
∗(U)). We must have that

χ∗(U) ≥ χ∗(S) − 1 ≥ χ∗(T ) − 3. By the inductive hypothesis, we then
have the result by taking binary subtreesB(S) andB(U) (of S and U respec-
tively), containing x and y (and x if x ∈ U ) respectively, and with cardinality
at least 2

1
3 (χ∗(T )−3), and setting B to be the subtree of T containing exactly

those vertices in either B(R), B(U), the path from x to y, the path from y to
u, or the path from y to v.

5.6.3 (2, s)-covers

Our algorithms for update and query will work on an hierarchical cover H and
will be exponential on the exposure of H, that is, the maximum cardinality of the
boundary of a component in H. We hence introduce (2, s)-covers, which are a
subset of hierarchical covers with exposure two, and show that we don’t lose much
by considering only these hierarchical covers.

Definition 109. Given a rooted tree T , a vertex w ∈ T , and a descendant, v, of w we
define ñ

w

v

ô
:= argmax

S⊆T
{|S| : v, w ∈ leaves(S)} (5.47)

Definition 110. Given a tree T , rooted at s, a vertex w ∈ T and a child, v, of w, we define
by
[
w
~v

]
the subtree of T with vertex set ⇓sT (v) ∪ {w}. i.e. For any leaf l of T that is a

descendant of v we have ñ
w

~v

ô
:=

ñ
w

l

ô
(5.48)

Definition 111. Given a tree T , rooted at s, an hierarchical coverH is a (2, s)-cover if and
only if, for every S ∈ H there exist vertices v, w ∈ T such that v ∈ ⇓sT (w) and S =

[
w
v

]
.

Given a subtree S of T whose root is s′ when T is rooted at s we define a (2, s)-cover of S
to be the same as a (2, s′)-cover of S.

Definition 112. Given a tree T , rooted at s, we define χ(T ) to be the minimum height of
a (2, s)-cover of T .

The update and query times of our algorithm will be linear in the height of the
hierarchical cover that we use. We now show that χ(T ) ≤ 2χ∗(T ) and hence that
we don’t lose out by considering only (2, s)-covers.

Lemma 113. For any subtree
[
w
u

]
of T , a (2, s)-cover of

[
w
u

]
exists and we have that

χ(
[
w
u

]
) ≤ 2χ∗(

[
w
u

]
). In particular we have that χ(T ) ≤ 2χ∗(T ).

Proof. We prove by induction on χ∗(
[
w
u

]
).

If χ∗(
[
w
u

]
) = 0 then w = ↑T (u) and hence {

[
w
u

]
} is a (2, s)cover of

[
w
u

]
so

χ(
[
w
u

]
) = 0.

If χ∗(
[
w
u

]
) 6= 0 then choose a hierarchical coverH of height χ∗(

[
w
u

]
). Let v be the

split point of
[
w
u

]
in H. Let v′ be the vertex of maximum depth in the intersection

of the paths from u to w and from v to w. For every S ∈ Ω(
[
w
u

]
, v), let H(S) be the

hierarchical cover induced on S by H. Note that the height of each of these is no
greater that χ∗(

[
w
u

]
)− 1 and hence for all such S, χ∗(S) ≤ χ∗(

[
w
u

]
)− 1.

Two cases to consider.
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First, if v = v′ we then have for every S ∈ Ω(

[
w
u

]
, v) both that |∂T0 (S)| ≤ 2

and by the inductive hypothesis, a (2, s)-cover G(S) of S of height no greater than
2(χ∗(

[
w
u

]
− 1). Hence {

[
w
u

]
} ∪

⋃
{G(S) : S ∈ Ω(

[
w
u

]
, v)} is a (2, s)-cover of

[
w
u

]
with

height no greater than 2χ∗(
[
w
u

]
)− 1.

Second, if v 6= v′ then let Q be the tree in Ω(
[
w
u

]
, v′) that contains v and let

R be the tree in Ω(
[
w
u

]
, v) that contains u and w. We have that, for all trees SR ∈

Ω(
[
w
u

]
, v′)\{Q} that SR ⊆ R and hence, since {SR∩U : U ∈ H(R)} is an hierarchical

cover of SR with height at most that of H(R), we have that χ∗(SR) ≤ χ∗(
[
w
u

]
) − 1.

Since the tree
[
v′

v

]
is also a subset of R we likewise obtain χ∗(

[
v′

v

]
) ≤ χ∗(

[
w
u

]
) − 1.

Likewise, for all trees SQ ∈ Ω(Q, v) \ {
[
v′

v

]
} is in Ω(

[
w
u

]
, v) so similarly we see that

χ∗(SQ) ≤ χ∗(
[
w
u

]
) − 1 and |∂T0 (SQ)| ≤ 2. Hence, by the inductive hypothesis,

we may find (2, s)-covers G(SQ) of every tree SQ ∈ Ω(Q, v) which have height at
most 2(χ∗(

[
w
u

]
)− 1) and hence create a (2, s)-cover G(Q) := {Q} ∪

⋃
{G(SQ) : S′ ∈

Ω(Q, v)} of Q with height at most 2χ∗(
[
w
u

]
)− 1.

Thus for every S ∈ Ω(
[
w
u

]
, v′), there exists (2, s)-cover G(S) of S with height at

most 2(χ∗(
[
w
u

]
)) − 1 therefore we may (2, s)-cover

[
w
u

]
with {

[
w
u

]
} ∪

⋃
{G(S) : S ∈

Ω(
[
w
u

]
, v′)} in height no more that 2χ∗(

[
w
u

]
).

5.6.4 Greedy covers

Our algorithm works by constructing a (2, s)-hierarchical cover in a greedy fash-
ion. We shall now formalise what we mean by “greedy". A greedy cover consists
only of trees which are “maximal,” as defined below.

Definition 114. A tree
[
w
v

]
⊆ T is called η-maximal with respect to rooted tree (T, s) iff:

1. χ(
[
w
v

]
) ≤ η ,

2. for every proper ancestor, z, of w we have χ(
[
z
v

]
) > η .

Intuitively, an η-maximal tree (with respected to a rooted tree) is a tree whose
optimal cover height is no more than η and if we should grow the tree toward the
root the optimal cover height must exceed η. We give an example, consider a path
graph with edge set {(1, 2), (2, 3), (3, 4), (4, 5)} and root vertex “1”, the subtrees
identified with the four edges are 0-maximal, the subtrees {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {1, 2}}
are all 1-maximal while the subtrees {{1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 4, 5}} are
2-maximal and the subtree {2, 3, 4, 5} is not η-maximal for any η. Thus we also
observe that the second condition of definition is vacuously satisfied for

[
s
v

]
⊆ T

for any v, since s is the root of T .

Definition 115. A (2, s)-cover RS of a tree S ⊆ T is greedy iff for every tree Q ∈ RS
with Q• 6= ∅, there exists an x ∈ Q• such that Ω(Q, x) ⊂ RS and there exists an η ∈ N
such that every P ∈ Ω(Q, x) is η-maximal with respect to (T, s).

Observe that it is possible to find a greedy (2, s)-cover RZ ⊆ RS for every
element Z of a greedy cover RS of any tree S ⊆ T . In the following lemma we
show that the height of a greedy (2, s)-cover is optimal.

Lemma 116. If G is a greedy (2, s)-cover of
[
x
v

]
then it has optimal height χ(

[
x
v

]
).

Proof. We prove by induction on the height of G.
It holds if the height of G is equal to zero since in this case {

[
x
v

]
} is the unique

cover.
If the height of G is greater than zero then let w be the splitting point of

[
x
v

]
in G.

By definition, there exists some η such that all trees in Ω(
[
x
v

]
, w) are η-maximal. We

also have, by definition, that the (2, s)-covers induced by G on all trees in Ω(
[
x
v

]
, w)

are greedy. So, since all trees S ∈ Ω(
[
x
v

]
, w) satisfy χ(S) ≤ η we have, by the

inductive hypothesis, that the height of the (2, s)-cover induced by G on each such
S is at most η and hence the height of G is at most η + 1. Since

[
w
v

]
is η-maximal

and x is a proper ancestor of w we have that χ(
[
x
v

]
) ≥ η + 1 so since χ(

[
x
v

]
) is no

more than the height of G, both are equal to η + 1.
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We shall now derive sufficient conditions for determining that a subtree is

η-maximal, hence giving sufficient conditions for the recursive construction of
greedy (2, s)-covers. We shall first introduce the notion of a w-cousin.

Definition 117. The vertex u is a w-cousin of v if both u and v are proper descendants of
w and the path from u to v contains w.

Lemma 118. Given a rooted tree (T, s) and
[
y
w

]
⊆ T with some vertex x in the interior of

the path from w to y, if every tree in Ω(
[
y
w

]
, x) is (η − 1)-maximal then

[
y
w

]
is η-maximal.

Proof. By construction we have that χ(
[
y
w

]
) ≤ η since we can take a minimum

height (2, s)-coverRS (of height at most η− 1) for every S ∈ Ω(
[
y
w

]
, x) and present[

y
w

]
∪
⋃
{RS : S ∈ Ω(

[
y
w

]
, x)} as a (2, s)-cover of

[
y
w

]
with height at most η. Thus we

have ve shown the first condition of Definition 114 holds.
We now consider the trivialized case when y = s. We now observe that the

second condition of Definition 114 holds vacuously.
For the case y 6= s, we proceed by contradiction, by supposing that

[
y
w

]
is not

η-maximal.
Then by the second property of Definition 114 there exists a proper ancestor

y′ of y for which χ(
[
y′

w

]
) ≤ η. So take a (2, s)-cover Q of

[
y′

w

]
of minimum height

(≤ η) and suppose
[
y′

w

]
splits at x′ in this (2, s)-cover. Suppose that, for some

proper ancestor z of x, x′ is either equal to z or some z-cousin of w. Then since for
every tree in Q the cardinality of its boundary in T bounded by 2 we must have
that

[
z
w

]
∈ Q. This would mean (since z 6= y′) that χ(

[
z
w

]
) ≤ η − 1 which would

contradict the fact that
[
x
w

]
was (η − 1)-maximal. The alternative is that x′ is a

descendant of x. This implies that
[
y′

x

]
⊆
[
y′

x′

]
and hence {S ∩

[
y′

x

]
: S ∈ Q} is a

(2, s)-cover of
[
y′

x

]
of height at most χ(

[
y′

x′

]
) ≤ χ(

[
y′

w

]
)− 1 ≤ η− 1 which contradicts

the fact that
[
y
x

]
is (η − 1)-maximal. Thus our original supposition is false.

Lemma 119. Given a rooted tree (T, s), the following conditions imply that
[
y
x

]
⊆ T is

η-maximal:

1.
[
y
x

]
is (η − 1)-maximal ,

2. There exists some leaf ` which is a y-cousin of x, some v which is a proper ancestor
of `, and some w which is both a proper ancestor of v and descendant of y, such that
all trees in Ω(

[
w
`

]
, v) are (η − 1)-maximal .

Proof. In the trivial case that y = s condition 1, above immediately implies the
result.

When y 6= s suppose
[
y
x

]
is not η-maximal. Then for some proper ancestor z

of y we have that χ(
[
z
x

]
) ≤ η. By Lemma 118 we have that

[
w
`

]
is η-maximal so

x cannot be a leaf else
[
z
x

]
=
[
z
`

]
which contradicts the proceeding statement. Let

H be a (2, s)-cover of
[
z
x

]
with minimum height (≤ η). Since every tree in H has

the cardinality of its boundary in T bounded by 2 we must have (since x is not
a leaf) that

[
y
`

]
∈ H which would imply that χ(

[
y
`

]
) ≤ η − 1, contradicting the

(η − 1)-maximality of
[
v
`

]
.

5.6.5 Constructing a greedy cover

From a “big picture” perspective, a greedy (2, s)-cover G is recursively constructed
in a bottom-up fashion: in the initialization phase G contains only the atomic com-
ponents covering T , i.e. the ones formed only by a pair of adjacent vertices of
V(T ). We have then at this stage |G| = |E(T )|. Then G grows step by step through
the addition of new covering subtrees of T . At each time step t, at least one subtree
of T is added to G. All the subtrees Sv , that are added at step t, must be such that
all trees in Ω(S, v) are added before step t.

We now introduce the formal description of our method for constructing a
greedy (2, s)-hierarchical cover G. As we said, the construction of G proceeds in
incremental steps. At each step t the method operates on a tree Tt, whose vertices
are part of V(T ). The construction of Tt is accomplished starting by Tt−1 (if t > 0)
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in such a way that V(Tt) ⊂ V(Tt−1), where T0 is set to be the subtree of (T, s)
containing the root and all the internal vertices.

During each step t all the while-loop instructions of Figure 5.1 are executed:
(1) some vertices (the black ones in Figure 5.1) are selected through a depth-first
visit (during the backtracking steps) of Tt starting from s 2, (2) for each selected
vertex v, subtree Sv is obtained from merging subtrees added to G in previous steps
and overlapping at vertex v, (3) in order to create tree Tt+1 from Tt the previously
selected vertices of Tt are removed, (4) the edge set E(Tt+1) is created from E(Tt) in
such a way to preserve the Tt’s structure, but all the edges incident to the vertices
removed from V(Tt) (the black vertices Figure 5.1) in the while-loop step 3 need
to be deleted. The possible disconnection that would arise by the removal of these
parts of Tt is avoided by completing the construction of Et+1 through the addition
of some new edges. These additional edges are not part of E(T ) and link each
vertex v with its grand-parent in Tt if vertex v’s parent was deleted (see the dashed
line edges in Figure 5.1) during the construction of Tt+1 from Tt. In the final while-
loop step the variable t gets incremented by 1.

The idea of this recursive construction is, at each time step t, to find all the
t-maximal trees in the greedy decomposition of T . This is either done by merging
together various (t − 1)-maximal trees (lemma 118) or by simply recognising that
a certain (t− 1)-maximal tree is also t-maximal (lemma 119).

Before we provide the detailed description (figure 5.1) of the algorithm for con-
structing an optimal (2, s)-hierarchical cover we need some ancillary definitions.
We call a vertex v ∈ V(Tt) \ {s} mergeable (at time t) if and only if either (i)
v ∈ leaves(Tt) or (ii) v has a single child in Tt and that child is not mergeable.
If v ∈ V(Tt) \ {s} is mergeable we write v ∈ Zt. We also use the following
shorthands for making more intuitive our notation: We set ctv := ↓sTt(v) when
|↓sTt(v)| = 1, ptv := ↑sTt(v) when v 6= s and gtv := ↑sTt(p

t
v) when v, ptv 6= s. Finally,

given u, u′ ∈ V(T ) such that u′ ∈ ⇓sT (u), we indicate with with ↓sT (u 7→ u′) the
child of u which is ancestor of u′ in T .

We now show that our algorithm outputs the greedy decomposition of T in
linear time.

Lemma 120. The following two properties hold for the hierarchical cover algorithm in
Figure 5.1,

1. for every v ∈ Tt and every leaf ` of T which is a proper descendant of v with[
v
`

]
∩ Tt = {v}, we have that

[
v
`

]
is t-maximal,

2. for every v ∈ V(Tt) \ {s}, we have that
[↑Tt (v)

v

]
is t-maximal .

Proof. We prove by induction on t.
At t = 0, for every v ∈ Tt and every leaf ` of T which is a proper descendant

of v, we have that v = ↑T (`) and hence
[
v
`

]
is 0-maximal. Similarly, for every

v ∈ V(T0) \ {s}we have that ↑T0
(v) = ↑T (v) so

[↑T0 (v)
v

]
is 0-maximal.

[Property 1]: given t 6= 0 consider v ∈ Tt and a leaf ` of T which is a proper
descendant of v with

[
v
`

]
∩ Tt = {v}. First we consider the trivial argument when

v = s is the root of T . Inductively (property 1) we have that
[
v
`

]
is (t− 1)-maximal

and hence as v is the root,
[
v
`

]
is then also t-maximal trivially. We then have two

cases when v 6= s:
First, consider the case that

[
v
`

]
∩ Tt−1 = {v}. Since

[
v
`

]
∩ Tt−1 = {v} and v ∈ Tt

the vertex v cannot be a leaf in Tt−1 and thus there exists a child c of v in Tt−1

that is a v-cousin of `. Now choose a leaf `′ of T that is proper descendent of c
and let d denote a descendent of c (it might be the case that d = c) that is a leaf
of Tt−1 on the path from c to `′. Now by the inductive hypothesis we have that[
d
`′

]
is (t − 1)-maximal (property 1),

[↑Tt−1
(d)

d

]
is (t − 1)-maximal (property 2), and

2Observe that s is the unique vertex belonging to V(Tt) for all time step t ≥ 0.
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v
`

]
is (t − 1)-maximal (property 1). Furthermore, if there exists any leaf `′′ 6= `′

of T that is a proper descendent of d then also inductively
[
d
`′′

]
is (t − 1)-maximal

(property 1). Thus the conditions of Lemma 119 are satisfied and we have that
[
v
`

]
is t-maximal.

Second, consider the case that
[
v
`

]
∩ Tt−1 6= {v}.

Note that |
[
v
`

]
∩Tt−1| ≤ 2 as given the vertices in any path in tree Tt at most one

vertex in every edge in the path on Tt−1 is removed in the construction of Tt via
line 3 and 4 of the pseudocode of the algorithm. Thus if |

[
v
`

]
∩Tt−1| ≥ 3 this implies

|
[
v
`

]
∩ Tt| ≥ 2 which is contradiction. Thus we now have

[
v
`

]
∩ Tt−1 = {u, v} for u

a child of v in Tt−1. By the inductive hypothesis
[
u
`

]
is (t − 1)-maximal (property

1) and
[
v
u

]
is (t − 1)-maximal (property 2). If the leaf ` has any u-cousin leaf `′

the intersection
[
u
`′

]
∩ Tt−1 = {u} (otherwise |

[
v
`

]
∩ Tt| ≥ 2) and hence by the

inductive hypothesis (property 1)
[
u
`′

]
is also (t− 1)-maximal. Thus the conditions

of Lemma 118 are satisfied and we have that
[
v
`

]
is t-maximal.

[Property 2]: given t 6= 0 consider v ∈ Tt \ s. We again have two cases:
First, consider the case that p := ↑Tt(v) = ↑Tt−1

(v).
We have two sub-cases, first the trivial case is the one in which p = s, which

implies by the inductive hypothesis (property 2)
[
p
v

]
is (t − 1)-maximal and hence

as p is the root,
[
p
v

]
is then also t-maximal trivially. If p 6= s then by construction

of Tt from Tt−1 it must be the case that p has at least one child in Tt−1 distinct
from v; denote it as c. Now choose a leaf ` of T that is a proper descendent of c.
Let d denote a descendent of c (it might be the case that d = c) that is a leaf of
Tt−1 on the path from c to `. Now by the inductive hypothesis we have that

[
d
`

]
is

(t − 1)-maximal (property 1),
[↑Tt−1

(d)

d

]
is (t − 1)-maximal (property 2), and

[
p
v

]
is

(t−1)-maximal (property 2). Furthermore, if there exists any leaf `′ 6= ` of T that is
a proper descendent of d then also inductively

[
d
`′

]
is (t− 1)-maximal (property 1).

Thus the conditions of Lemma 119 are satisfied and we have that
[
p
v

]
is t-maximal.

Second, consider the case that ↑Tt(v) 6= ↑Tt−1
(v).

Then by the construction of Tt, lines 3 and 4 in the algorithm, we shall denote
the parent and grandparent of v (in Tt−1) as p := ↑Tt−1

(v) and g := ↑Tt(v) =
↑Tt−1

(p). Let ` denote any leaf of T that is a p-cousin of v; if such a leaf ex-
ists. Note that no p-cousin of v is contained in Tt−1 because that would imply
↑Tt(v) = ↑Tt−1

(v), thus
[
p
`

]
∩ Tt−1 = {p}. Hence if any such ` exists by the induc-

tive hypothesis (property 1) then
[
p
`

]
is (t − 1)-maximal. Furthermore inductively

(property 2) we have that
[
p
v

]
and

[
g
p

]
are (t − 1)-maximal. Thus the conditions of

Lemma 118 are satisfied and we have that
[
g
v

]
is t-maximal.

Theorem 121. Given a rooted tree (T, s), the algorithm in Figure 5.1 outputs G, a (2, s)-
hierarchical cover of height χ(T ), in time linear in |V(T )|.

Proof. We first prove that when V(Tt) = {s}, G is an optimal (2, s)-cover of T .
We observe at time t for every edge (p, v) ∈ Tt that

[
p
v

]
∈ G as either (p, v) ∈ T

and thus added in the initialisation of the algorithm or the edge was created by
the merge of an internal vertex in line 2 of the algorithm pseudocode Likewise if
v ∈ leaves(Tt), c ∈ ↓T (v) and `c ∈ leaves(T ) ∩ ⇓T (c) then

[
v
`c

]
∈ G as

[
v
`c

]
was

added in the initialisation step if c ∈ leaves(T ) otherwise there exists a t′ < t when
|Tt′ ∩ ⇓T (c)| = 1 when

[
v
`c

]
was added to G via line 2 of the pseudocode

Suppose S is a tree added to G at time t by the merge operation (line 2) on a
vertex v. Then, by Lemma 120, all trees in Ω(S, v) are t-maximal (and thus S is
(t+ 1)-maximal by Lemma 118). By the discussion in the preceding paragraph all
trees in Ω(S, v) have been added to G by time t so v is the split point of S in G.
Recalling Definition 100 we see that T (property 1) is in G from the initialisation
step; by the preceding discussion property 2 is satisfied; and the fact that trees
added to cover are formed by “merging” trees already within the cover (line 2)
ensures that all added trees respect property 3 Thus G is a is a (2, s)-cover of T
and furthermore it is greedy (Definition 115) therefore Lemma 116 applies so G is
optimal height χ(T ).

Now we argue that the algorithm requires no more than linear time. Note
that each tree added to G in line 2 of the pseudocode is uniquely indexed by two
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vertices (trees with an boundary of two (in T ) are indexed by pv and cv and trees
with a boundary one (in T ) are indexed by pv and z) so it takes constant time to add
each tree. Computing the set Mt takes linear time via a depth first search. Hence,
at each time t, we have a time complexity proportional to |Tt−1| (where T−1 := T ).
Let Xt be the set of vertices of degree at most two in Tt when V(Tt) 6= s. By the
handshaking lemma the sum of the degrees of all vertices in the subtree containing
all vertices of Tt except s is equal to 2|Tt| − 4 so the number of vertices of degree 3
or more is less than 2

3 |Tt|. Hence, |Xt| > 1
3 |Tt|. We have that |Mt+1| ≥ 1

2 |Xt| − 1,
since if some v ∈ Xt/s is not in Mt+1, then it must be an internal vertex of Tt and
its child must be in Mt+1. Thus since |Tt+2| = |Tt+1| − |Mt+1| < |Tt| − |Mt+1| we
have that |Tt+2| − 1 < 5

6 |Tt| + 1. Since the time complexity of time step t is linear
in |Tt| − 1 the total time complexity is upper bounded by a quantity proportional
to 2[(|T |+ ( 5

6 |T |+ 1) + ( 5
6 ( 5

6 |T |+ 1) + 1) + ...)]. Since at least one vertex is removed
in each time step there are no more that |T | terms in this sum. Hence, this quantity
is upper bounded by 2[

∑
t≥0

(
5
6

)t |T |+ |T |∑t≥0

(
5
6

)t
] which is equal to 24|T |.

5.6.6 Converting the Greedy Cover into a Junction Tree

The greedy cover is converted into a junction tree U of T as follows:
Let (D, r) be the decomposition tree associated with the greedy cover. We have an
isomorphism in tree structure, λ : V(D) → V(U) such that for all v ∈ T • we have
λ(v) := {v} ∪ ∂T0 (Sv) and for all (v, w) ∈ E(T ) we have λ((v, w)) := {v, w}

Note that U has a height of O(χ∗(T )) and each super-vertex is of constant cardi-
nality. Hence, online Hugin/ARCH-2 takes a time of O(χ∗(T )) per update/query.
Hence, update/query time is logarithmic in the second-diameter of T . Note also
that since V(U) has a cardinality no greater than 2|V(T )| and since each super-
vertex has constant cardinality, the space requirement for online Hugin/ARCH-2
is only linear in |V(T )| which is (up to a constant factor) optimal for the online
junction tree algorithm.

5.6.7 The Optimality of the Junction Tree

In this subsection we prove that, given a junction tree of a tree T , online Hugin/ARCH-
2 has an update/query time of at least Ω(χ∗(T )) thereby proving the optimality of
the junction tree constructed in this section.

In this subsection we shall assume that all junction trees are rooted: the root of
a junction tree J is denoted by r(J ). In this section we denote super-vertices of
junction trees by upper-case greek letters rather than the upper-case latin letters.
Subtrees of T will be represented by upper-case latin letters.

In this subsection we will need the following definitions:

Definition 122. Given a junction tree J , the complexity, P(J ), of J is defined as:

P(J ) := max
Γ∈J

∑
Λ∈⇑J (Γ)

2|Λ| (5.49)

Note that the complexity of a junction tree is the time complexity of online
Hugin propagation when run on that junction tree.

Definition 123. Given a subtree S ⊆ T , we define S◦ to be the subtree of S who’s vertices
are those in S that aren’t leaves of T .

Definition 124. Given a subtree S ⊆ T , a junction tree J is an S-junction tree if and
only if it is a junction tree of S◦ with ∂T0 (S) ⊆ r(J ). Given an S-junction tree J we
define C(J ) := r(J ) \ ∂T0 (S).

Definition 125. Generalising the definition of the split set we define, for a subtree S ⊆ T
and a set X ⊆ S•, Ω(S,X) to be the set of subtrees, Q, of S that satisfy:
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1. |V(Q)| ≥ 2

2. Given any v ∈ V(Q) \X all neighbours of v (in S) are in V(Q)

3. No element of X is in Q•.

Intuitively, when S is a tree and X ⊂ S•, Ω(S,X) is the set of trees formed by
splitting S at all vertices in X simultaneously.

Lemma 126. Given an S-junction tree J , then for every Q ∈ Ω(S,C(J )) with |Q| > 2
there exists a child, Γ, of r(J ) such that V(Q◦) ∈

⋃
⇓J (Γ) and, for every edge (x, y) ∈

E(Q◦) there exists some Λ′ ∈ ⇓J (Γ) with x, y ∈ Λ′. In addition we have that ∂T0 (Q) ⊆ Γ.

Proof. Since |Q| > 2 there exists a vertex v in Q•. Note that v ∈ S◦ so there exists
Λ ∈ V(J ) with v ∈ Λ. Since v ∈ Q•, v /∈ ∂T0 (S) ∪ C(J ) = r(J ). Hence we have
Λ 6= r(J ) so let Γ be the child of r(J ) that has Λ as a descendant.
Let w be an arbitrary neighbour of v in Q◦. Then since (v, w) is an edge in S◦ we
have (by definition of a junction tree of S◦) that v, w ∈ Λ′ for some Λ′ ∈ V(J ). If
Λ′ is not a descendant of Γ then r(J ) is in the path from Λ′ to Λ. Since Λ and Λ′

both contain v this implies, by the running intersection property, that r(J ) con-
tains v which contradicts the above. We hence have that Λ′ ∈ ⇓J (Γ) so we have
w ∈

⋃
⇓J (Γ) and v, w ∈ Λ′ ∈ ⇓J (Γ)

We have hence shown that every neighbour of v in Q◦ is in
⋃
⇓J (Γ) and also for

every neighbour, w of v there is a super-vertex Λ′ ∈ ⇓J (Γ) such that v, w ∈ Λ′. Do-
ing the same argument recursively on the neighbours of v in Q◦ gives us V(Q◦) ∈⋃
⇓J (Γ) and, for every edge (x, y) ∈ E(Q◦) there exists some Λ′ ∈ ⇓J (Γ) with

x, y ∈ Λ′ . This proves the first part of the lemma.
We now prove the second part of the lemma: Note first that, by definition of
Ω(S,C(J )) we have that the leaves of Q are either leaves of S or in the set C(J )
which implies that ∂T0 (Q) ⊆ ∂T0 (S) ∪ C(J ) = r(J ). Let v be an arbitrary vertex in
∂T0 (Q) and let w be the neighbour of v in Q. Since |Q| > 2, w ∈ Q• so, by definition
of Ω(S,C(J )) we have that w /∈ C(J ). Since w ∈ Q• we have w ∈ S• so w /∈ ∂T0 (S).
We have hence shown that w /∈ r(J ). Since (v, w) is an edge in S◦ we have, by
definition of a junction tree, that there exists Λ′ ∈ V(J ) with v, w ∈ Λ′. From above
we have that there exists Λ ∈ ⇓J (Γ) with w ∈ Λ. If Λ′ is not a descendant of Γ
then r(J ) is in the path from Λ to Λ′ so by the running intersection property (since
w ∈ Λ and w ∈ Λ′) we have w ∈ r(J ) which contradicts the above. Hence we have
that Λ′ ∈ ⇓J (Γ) so Γ is in the path from r(J ) to Λ′. Since v ∈ Λ′ and (from above)
v ∈ r(J ) we have that v ∈ Γ. Since v was an arbitrary member of ∂T0 (Q) we have
hence proved the second part of the lemma.

Lemma 127. Given an S-junction tree J , then for every Q ∈ Ω(S,C(J )) with |Q| > 2
there exists a Q-junction tree K which satisfies:

P(K) ≤ P(J )− 2|r(J )| (5.50)

Proof. Choose a child, Γ, as in lemma 126. Let K′ be the tree ⇓J (Γ). Form K
from K′ by removing, from all super-vertices in K′, all vertices that aren’t in V(Q).
Since V(Q◦) ∈

⋃
⇓J (Γ) we automatically have that

⋃
V(K) = V(Q◦). The running

intersection property on K is also inherited from J . Since for every edge (x, y) ∈
E(Q◦) there exists some Λ′ ∈ ⇓J (Γ) with x, y ∈ Λ′ we have that there exists Λ ∈ K
with x, y ∈ Λ. This proves that K is a junction tree of Q◦. By lemma 126 we have
that ∂T0 (Q) ⊆ Γ so ∂T0 (Q) ⊆ r(K). We have hence shown that K is a Q-junction
tree.
We now bound the complexity of K: Since, in going from K′ to K, no super-vertex
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increases in size we have:

P(K) = max
Λ∈K

∑
Λ′∈⇑K(Λ)

2|Λ
′| (5.51)

≤ max
Λ∈K′

∑
Λ′∈⇑K′ (Λ)

2|Λ
′| (5.52)

= max
Λ∈K′

∑
Λ′∈⇑J (Λ)\r(J )

2|Λ
′| (5.53)

= max
Λ∈K′

Ñ ∑
Λ′∈⇑J (Λ)

2|Λ
′|

é
− 2|r(J )| (5.54)

≤ max
Λ∈J

Ñ ∑
Λ′∈⇑J (Λ)

2|Λ
′|

é
− 2|r(J )| (5.55)

= P(J )− 2|r(J )| (5.56)

which completes the proof of the lemma.

Lemma 128. Given an S-junction tree, J , there exists an hierarchical cover of S with
height no greater than P(J ).

Proof. We prove by induction on P(J ). If P(J ) = 2 then (since P(J ) ≥ 2|r(J )|,
with the inequality being strict if J has more than one vertex) we must have that J
has a single super-vertex r(J ) which contains a single vertex v. By definition of an
S-junction tree we must then have that V(S◦) = v. Hence, all vertices in V(S) \ {v}
must be leaves of T , hence leaves of S and hence are neighbours of v. We hence
have that all trees in Ω(S, {v}) contain only two vertices so the set {S} ∪ Ω(S, {v})
is an hierarchical cover of S of height 1. The inductive hypothesis hence holds for
P(J ) = 2.
Suppose that the inductive hypothesis holds for all P(J ) ≤ i (for some i ≥ 2).
Now suppose that P(J ) = i+ 1. We construct an hierarchical cover,H of S via the
following algorithm:

1. SetH = {S}

2. For every v ∈ C(J ) in turn do the following:

(a) Let Q be the tree in H of which no subtrees of Q are in H and we have
v ∈ V(Q). SetH ← H∪ Ω(Q, {v}).

3. For every Q ∈ Ω(S,C(J )) in turn do the following:

(a) Choose an minimum height hierarchical cover, H′(Q), of Q and set
H ← H∪H′(Q).

We now bound the height of H. By lemma 127 we have that, for every Q ∈
Ω(S,C(J )) there exists a Q-junction tree K which satisfies P(K) ≤ P(J )− 2|r(J )|.
Since P(K) < P(J ) we have, by the inductive hypothesis, that there exists an hi-
erarchical cover of Q with height no greater than P(K). We must hence have that
the height ofH′(Q) (in the above algorithm) is no greater than P(K) and hence no
greater than P(J )− 2|r(J )|. We hence have that the height of H is no greater than
|C(J )|+P(J )− 2|r(J )| which (since |C(J )| ≤ 2|r(J )|) is no greater than P(J ). The
inductive hypothesis hence holds in this case.

Theorem 129. Given that J is a junction tree of T we have that χ∗(T ) ≤ P(J ).

Proof. Form the junction tree K by removing, from all super-vertices Γ ∈ V(J ), all
leaves of T . It is easy to check that K satisfies all the rules of a junction tree of T ◦.
Since ∂T0 (T ) = ∅ we hence have that K is a T -junction tree. By Lemma 128 there
hence exists an hierarchical cover of T with height no greater than P(K). We hence
have that χ∗(T ) ≤ P(K). Since, in forming K, no super-vertex of J increases in
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cardinality, we have that P(K) ≤ P(J ). Combining with the above we get the
result.
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—————————————————————
Input: Rooted tree (T, s).
—————————————————————
Initialisation: T0 ← T • ∪ {s}; t← 0;

G ←
{[↑sT (v)

v

]
: v ∈ V(T ) \ {s}

}
.

—————————————————————
While

(
V(Tt) 6= {s}

)
1. Construct Zt via depth-first search

of Tt from s.

2. For all v ∈ Zt, merge as follows:
If v ∈ leaves(Tt) then

z ← ↓sT (ptv 7→ v).

G ← G ∪
[ptv
~z

]
.

Else G ← G ∪
[ptv
ctv

]
.

3. V(Tt+1)← V(Tt) \ Zt.

4. E(Tt+1)← {(v, ptv) : v, ptv ∈ V(Tt+1)}∪
{(v, gtv) : v, gtv ∈ V(Tt+1),

ptv 6∈ V(Tt+1)}.

5. t← t+ 1.

—————————————————————
Output: Optimal (2, s)-hierarchical cover G of T .
—————————————————————
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FIGURE 5.1: Left: Pseudocode for the linear time con-
struction algorithm for an optimal (2, s)-hierarchical cover.
Right: Pictorial explanation of the pseudocode and the de-

tails of the hierarchical cover.
In order to clarify the method, we describe some of the de-
tails of the cover and some merge operations that are per-
formed in the diagram. Vertex 1 is the root vertex s. In
each component, depicted as enclosed in a line, the black
node is the splitting vertex, i.e. the mergeable vertex for the
tree Tt in which is depicted. The boundary definition can
be clarified by highlighting, for instance, that ∂T0 (S2) = {4}
and ∂T0 (S10) = {8, 12}. Subtree S2 contains vertices 1, 2,
3 and 4. Vertex 2 is the splitting vertex of S2. Ω(S2, 2) =
{S(1,2), S(2,3), S(2,4)}, i.e. at time t = 0, S2 is formed by
merging the three atomic subtrees S(1,2), S(2,3) and S(2,4),
which were added in the initialization step. These three
subtrees overlap at only vertex 2, which is depicted in black
because it is mergeable in T0. For what concerns the decom-
position tree (D, r), we have ↓rD(5) = {(4, 5), 6}, which im-
plies that S5 is therefore formed by the atomic component
S(4,5) and the non-atomic component S6. At time t = 1, S12

is obtained by merging S10 together with S13, which have
been both created at time t = 0. Observe that in T1 ver-
tex 12 is a leaf and the z variable in the while-loop step 2
is assigned to vertex 10 (v and and ptv is respectively vertex
12 and 8). Regarding the subtree representation with the
square bracket notation we can write, for instance, S2 =

[
1
4

]
and S12 =

[
8
~10

]
(≡
[

8
11

]
≡
[

8
14

]
). Observe that, according to

the definition of (2, s)-hierarchical cover, we have 4 ∈ ⇓1
T (1)

and 10 ∈ ↓1T (8). Finally, notice that the height of the (2, s)-
cover of Sv is equal to t+ 1 iff v is depicted in black in Tt.





103

Bibliography

[1] U. A. Acar et al. “Adaptive Bayesian Inference”. In: NIPS. 2007.

[2] U. A. Acar et al. “Adaptive Inference on General Graphical Models”.
In: UAI. 2008.

[3] N. Alon et al. “Many random walks are faster than one”. In: Comb.
Probab. Comput. 20.4 (2011), pp. 481–502.

[4] Michael O. Ball and J. Scott Provan. “Calculating bounds on reach-
ability and connectedness in stochastic networks”. In: Networks 13.2
(1983), pp. 253–278.

[5] J. M. Barzdin and R. V. Frievald. “On the prediction of general recur-
sive functions”. In: Soviet Math. Doklady 13 (1972), pp. 1224–1228.

[6] J. Basilico and T. Hofmann. “Unifying collaborative and content-based
filtering”. In: Proc of the 21st ICML. ICML. 2004.

[7] Mikhail Belkin and Partha Niyogi. “Semi-Supervised Learning on
Riemannian Manifolds”. In: Mach. Learn. 56.1-3 (2004), pp. 209–239.
ISSN: 0885-6125. DOI: http://dx.doi.org/10.1023/B:MACH.
0000033120.25363.1e.

[8] A. Ben-Dor, R. Shamir, and Z. Yakhini. “Clustering gene expression
patterns”. In: Journal of Computational Biology 6(3/4) (1999).

[9] Avrim Blum and Shuchi Chawla. “Learning from labeled and unla-
beled data using graph mincuts.” In: Proceedings of the Eighteenth In-
ternational Conference on Machine Learning, ICML 1. 2001, pp. 19–26.

[10] A. Broder. “Generating random spanning trees”. In: Proceedings of the
30th Annual Symposium on Foundations of Computer Science. SFCS ’89.
IEEE Computer Society, 1989, pp. 442–447.

[11] C. Brunner et al. “Pairwise support vector machines and their ap-
plication to large scale problems”. In: Journal of Machine Learning Re-
search 13 (2012), pp. 2279–2292.

[12] E. Candes and B. Recht. “Exact matrix completion via convex opti-
mization”. In: Foundations of Computational Mathematics 9(6) (2009),
pp. 717–772.

[13] E. Candes and T. Tao. “The power of convex relaxation: near-optimal
matrix completion”. In: IEEE Transactions on Information Theory 56 (2010),
pp. 2053–2080.

[14] Q. Cao, Z. Guo, and Y. Ying. “Generalization Bounds for Metric and
Similarity Learning”. In: CoRR abs/1207.5437 (2012).

[15] G. Cavallanti, N. Cesa-Bianchi, and C. Gentile. “Linear Algorithms
for Online Multitask Classification”. In: Journal of Machine Learning
Research 11 (2010), pp. 2901–2934.

[16] Nicolò Cesa-Bianchi, Claudio Gentile, and Fabio Vitale. “Fast and Op-
timal Prediction on a Labeled Tree.” In: Proceedings of the 22nd Annual
Conference on Learning. Omnipress, 2009.

http://dx.doi.org/http://dx.doi.org/10.1023/B:MACH.0000033120.25363.1e
http://dx.doi.org/http://dx.doi.org/10.1023/B:MACH.0000033120.25363.1e


104 BIBLIOGRAPHY
[17] Nicolò Cesa-Bianchi et al. “Random Spanning Trees and the Predic-

tion of Weighted Graphs”. In: Proceedings of the 27th International Con-
ference on Machine Learning (27th ICML). 2010, pp. 175–182.

[18] Olivier Chapelle, Jason Weston, and Bernhard Schölkopf. “Cluster
Kernels for Semi-Supervised Learning”. In: Advances in Neural Infor-
mation Processing Systems 15. Ed. by S. Becker, S. Thrun, and K. Ober-
mayer. MIT Press, 2003, pp. 601–608. URL: http://papers.nips.
cc/paper/2257-cluster-kernels-for-semi-supervised-
learning.pdf.

[19] J. Davis et al. “Information-theoretic metric learning”. In: Proceedings
of the 24th international conference on Machine learning. ICML ’07. 2007,
pp. 209–216.

[20] Arthur L. Delcher et al. “Logarithmic-time updates and queries in
probabilistic networks”. In: J. Artif. Int. Res. 4 (1 1996), pp. 37–59. ISSN:
1076-9757. URL: http://dl.acm.org/citation.cfm?id=
1622737.1622740.

[21] A. Demiriz, K. Bennett, and M.J. Embrechts. “Semi-supervised clus-
tering using genetic algorithms”. In: In Artificial Neural Networks in
Engineering (ANNIE-99). 1999, pp. 809–814.

[22] L. R. Ford and D. R. Fulkerson. “Maximal Flow through a Network.”
In: Canadian Journal of Mathematics 8 (1956), pp. 399–404. URL: http:
//www.rand.org/pubs/papers/P605/.

[23] S. Lauritzen F.V. Jensen and K. Olesen. “Baysesian updating in recur-
sive graphical models by local computation”. In: Computational Statis-
tics Quarterly 4 (1990), pp. 269–282.

[24] Thomas Gärtner and Gemma C. Garriga. “The Cost of Learning Di-
rected Cuts.” In: Proceedings of the 18th European Conference on Machine
Learning. 2007.

[25] Leslie Ann Goldberg and Mark Jerrum. “The Complexity of Ferro-
magnetic Ising with Local Fields.” In: Combinatorics, Probability & Com-
puting 16.1 (Nov. 20, 2008), pp. 43–61.

[26] D. Gross. “Recovering low-rank matrices from few coefficients in any
basis”. In: IEEE Transactions on Information Theory 57/3 (2011), pp. 1548–
1566.

[27] E. Hazan, S. Kale, and S. Shalev-Shwartz. “Near-optimal algorithms
for online matrix prediction”. In: Proceedings of the 25th Annual Con-
ference on Learning Theory (COLT’12). 2012.

[28] Mark Herbster. “Exploiting cluster-structure to predict the labeling of
a graph.” In: Proceedings of the 19th International Conference on Algorith-
mic Learning Theory. 2008, pp. 54–69.

[29] Mark Herbster and Guy Lever. “Predicting the labelling of a graph
via minimum p-seminorm interpolation”. In: Proceedings of the 22nd
Annual Conference on Learning Theory (COLT’09). 2009.

[30] Mark Herbster, Guy Lever, and Massimiliano Pontil. “Online Predic-
tion on Large Diameter Graphs”. In: Advances in Neural Information
Processing Systems (NIPS 22). MIT Press, 2009, pp. 649–656.

http://papers.nips.cc/paper/2257-cluster-kernels-for-semi-supervised-learning.pdf
http://papers.nips.cc/paper/2257-cluster-kernels-for-semi-supervised-learning.pdf
http://papers.nips.cc/paper/2257-cluster-kernels-for-semi-supervised-learning.pdf
http://dl.acm.org/citation.cfm?id=1622737.1622740
http://dl.acm.org/citation.cfm?id=1622737.1622740
http://www.rand.org/pubs/papers/P605/
http://www.rand.org/pubs/papers/P605/


BIBLIOGRAPHY 105
[31] Mark Herbster, Guy Lever, and Massimiliano Pontil. “Online Predic-

tion on Large Diameter Graphs.” In: NIPS. Note, referenced predic-
tion algorithm is in an extended version in preparation, 2011. MIT
Press, Apr. 15, 2009, pp. 649–656.

[32] Mark Herbster, Massimiliano Pontil, and Lisa Wainer. “Online learn-
ing over graphs”. In: ICML ’05: Proceedings of the 22nd international
conference on Machine learning. New York, NY, USA: ACM, 2005, pp. 305–
312.

[33] S. M. Kakade, S. Shalev-Shwartz, and A. Tewari. “Regularization Tech-
niques for Learning with Matrices”. In: The Journal of Machine Learning
Research (2012), pp. 1865–1890.

[34] V. Koltchinskii, K. Lounici, and A. Tsybakov. “Nuclear norm penal-
ization and optimal rates for noisy matrix completion”. In: Annals of
Statistics 39(5) (2011), pp. 2302–2329.

[35] V. Koltchinskii and P. Rangel. “Low rank estimation of similarities on
graphs”. In: CoRR (2012). eprint: arXiv/1205.1868.

[36] V. Lepar and P.P. Shenoy. “A comparison of Lauritzen-Spiegelhalter,
Hugin, and Shenoy-Shafer architectures for computing marginals of
probability distributions”. In: UAI’98 Proceedings of the Fourteenth con-
ference on Uncertainty in artificial intelligence (1998), pp. 328–337.

[37] Z. Li, J. Liu, and X. Tang. “Pairwise constraint propagation by semidef-
inite programming for semi-supervised classification”. In: Proc of the
25th ICML. ICML. 2008.

[38] Nick Littlestone. “Learning Quickly When Irrelevant Attributes Abound:
A New Linear-Threshold Algorithm”. In: Machine Learning 2 (1988),
pp. 285–318.

[39] Nick Littlestone and Manfred K. Warmuth. “The Weighted Majority
Algorithm”. In: Inf. Comput. 108.2 (1994), pp. 212–261.

[40] R. Lyons and Y. Peres. Probability on Trees and Networks. In preparation.
Current version available at http://mypage.iu.edu/~rdlyons/.
Cambridge University Press, 2012.

[41] A. Maurer. “Learning similarity with operator-valued large-margin
classifiers”. In: Journal of Machine Learning Research 9 (2008), pp. 1049–
1082.

[42] S. Negahban and M. Wainwright. “Restricted strong convexity and
weighted matrix completion with noise”. In: Preprint (2010).

[43] J.D. Park and A. Darwiche. “A comparison of Lauritzen-Spiegelhalter,
Hugin, and Shenoy-Shafer architectures for computing marginals of
probability distributions”. In: UAI’98 Proceedings of the Fourteenth con-
ference on Uncertainty in artificial intelligence (1998), pp. 328–337.

[44] J. Pearl. “Reverend Bayes on inference engines: A distributed hierar-
chical approach”. In: Proceedings of the American Association of Artificial
Intelligence National Conference on AI (1982), pp. 133–136.

[45] Jean-Claude Picard and Maurice Queyranne. “On the structure of all
minimum cuts in a network and applications”. In: Combinatorial Op-
timization II. Ed. by V.J. Rayward-Smith. Vol. 13. Mathematical Pro-
gramming Studies. Springer Berlin Heidelberg, 1980, pp. 8–16. ISBN:
978-3-642-00803-0. DOI: 10.1007/BFb0120902. URL: http://dx.
doi.org/10.1007/BFb0120902.

arXiv/1205.1868
http://dx.doi.org/10.1007/BFb0120902
http://dx.doi.org/10.1007/BFb0120902
http://dx.doi.org/10.1007/BFb0120902


106 BIBLIOGRAPHY
[46] J. Scott Provan and Michael O. Ball. “The Complexity of Counting

Cuts and of Computing the Probability that a Graph is Connected”.
In: SIAM Journal on Computing 12.4 (1983), pp. 777–788. DOI: 10 .
1137/0212053. eprint: http://epubs.siam.org/doi/pdf/
10.1137/0212053. URL: http://epubs.siam.org/doi/abs/
10.1137/0212053.

[47] S. S. Rangapuram and M. Hein. “Constrained 1-Spectral Clustering”.
In: Proc. 15th International Conference on Artificial Intelligence and Statis-
tics. AISTATS. 2012.

[48] A. Rohde and A. Tsybakov. “Estimation of high-dimensional low rank
matrices”. In: Annals of Statistics 39(2) (2011), pp. 887–930.

[49] T. Schmidt and P.P. Shenoy. “Some improvements to the Shenoy-Shafer
and Hugin architectures for computing marginals”. In: Artificial Intel-
ligence 102 (1998), pp. 323–333.

[50] G.R. Shafer and P.P. Shenoy. “Probability Propagation”. In: Annals of
Mathematics and Artificial Intelligence 2 (1990), pp. 327–351.

[51] S. Shalev-Shwartz, Y. Singer, and A. Ng. “Online and batch learning
of pseudo-metrics”. In: Proceedings of the twenty-first international con-
ference on Machine learning. ICML ’04. ACM, 2004.

[52] P.P. Shenoy. “Binary Join Trees for Computing Marginals in the Shenoy-
Shafer Architecture”. In: International Journal of Approximate Reasoning
17 (1997), pp. 239–263.

[53] P.P. Shenoy. “The inclusion-exclusion rule and its application to the
junction tree algorithm”. In: IJCAI ’13 Proceedings of the Twenty-Third
international joint conference on Artificial Intelligence (2013), pp. 2568–
2575.

[54] Martin Szummer and Tommi Jaakkola. “Partially labeled classifica-
tion with Markov random walks”. In: NIPS. 2001, pp. 945–952.

[55] K. Tsuda, G. Rätsch, and M. K. Warmuth. “Matrix exponentiated gra-
dient updates for on-line learning and Bregman projections”. In: Jour-
nal of Machine Learning Research 6 (2005), pp. 995–1018.

[56] Fabio Vitale et al. “See the Tree Through the Lines: The Shazoo Al-
gorithm”. In: NIPS. Ed. by John Shawe-Taylor et al. 2011, pp. 1584–
1592.

[57] M. K. Warmuth. “Winnowing Subspaces”. In: Proceedings of the 24th
International Conference on Machine Learning. ACM, 2007, pp. 999–1006.

[58] D. B. Wilson. “Generating random spanning trees more quickly than
the cover time”. In: Proceedings of the twenty-eighth annual ACM sym-
posium on Theory of computing. ACM, 1996, pp. 296–303.

[59] J. Zhang and R. Yan. “On the value of pairwise constraints in classifi-
cation and consistency”. In: Proc of the 24th ICML. ICML. 2007.

[60] Dengyong Zhou et al. “Learning with Local and Global Consistency”.
In: NIPS. 2003.

[61] Xiaojin Zhu, Zoubin Ghahramani, and John D. Lafferty. “Semi-Supervised
Learning Using Gaussian Fields and Harmonic Functions”. In: ICML.
2003, pp. 912–919.

http://dx.doi.org/10.1137/0212053
http://dx.doi.org/10.1137/0212053
http://epubs.siam.org/doi/pdf/10.1137/0212053
http://epubs.siam.org/doi/pdf/10.1137/0212053
http://epubs.siam.org/doi/abs/10.1137/0212053
http://epubs.siam.org/doi/abs/10.1137/0212053


BIBLIOGRAPHY 107
[62] H. Zu. “An efficient implementation of belief function propagation”.

In: UAI’91 Proceedings of the Seventh conference on Uncertainty in Artifi-
cial Intelligence (1991), pp. 425–432.


	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Online Learning on a Graph
	Overview of the Thesis

	Online Approximate Prediction at the Limit of Zero Temperature in an Ising Model
	Abstract
	Introduction
	Preliminaries
	The Picard-Queyranne graph

	Mistake Bounds Analysis
	Per-cluster mistake bounds for regular graph label prediction algorithms
	PQ-games
	Global analysis of prediction at zero temperature

	Experiments
	Properties of the PQ-graph (proof of Theorem 2)
	PQ-game proofs (Propositions 1,2,3 and Theorem 5)
	Proof of Proposition 1
	Proof of Propositions 2 and 3
	Proof of Theorem 5

	Global mistake analysis (proofs of Theorems 4 and 7)
	Proof of Theorem 4
	Proof Theorem 7

	Regularity properties of longest-path and 0-Ising (proof of Theorem 6)
	Proof that longest-path is label-monotone
	Proof of Proposition 4


	Proof of Optimality for Trees
	Ingredients from [Section 2]CGV09b
	Proof of Optimality

	Computing the predictions of the 0-Ising strategy is NP-hard
	Proof of Theorem 44


	Online Similarity Prediction
	Abstract
	Related Work
	Introduction and Overview
	Problem
	Definitions
	Overview

	Similarity Prediction via Linear Classification
	The Algorithms
	Perceptron Mistake Bound
	Winnow Mistake Bound

	Support Tree
	Mistake Bounds

	Fast Perceptron
	The Algorithm
	Adaptive Representation of F
	Proof of Equivalence


	A Time and Space Efficient Junction Tree Architecture
	Abstract
	Introduction
	Preliminaries
	Basic Notation
	Potentials
	Factorisations
	Junction Trees

	The Junction Tree Algorithm
	Shafer-Shenoy and Hugin Propagation
	Shafer-Shenoy Propagation
	Hugin Propagation

	ARCH-1
	ARCH-2
	The p-Dual 
	The m-Dual
	Functions for Manipulating Potentials
	Performing Operation 77
	Time and Space Complexity

	Incorporating Zeros
	Implementation Details
	Data-Structures
	Searches
	Implementing Algorithm 78
	Implementing the Functions of ARCH-2


	Online Bayesian Classification in Ising Models
	Abstract
	Related Work
	Notation
	Ising Models and the Bayes' Classifier
	The General Ising Model
	The Problem
	The Bayes Classifier
	An evolving factorisation

	The Online Junction Tree Algorithm
	Online Shafer-Shenoy
	Online Hugin
	Online ARCH-2

	An Optimal Junction Tree of a Tree
	Hierarchical Covers
	Bounds on the decomposition potential
	(2, s)-covers
	Greedy covers
	Constructing a greedy cover
	Converting the Greedy Cover into a Junction Tree
	The Optimality of the Junction Tree


	Bibliography

